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ABSTRACT

Deterministic communicable disease models which are initial value problems for a
system of ordinary differential equations are considered, where births and deaths occur at
equal rates with all newborns being susceptible. Asymptotic stability regions are deter-
mined for the equilibrium points for models involving temporary immunity, disease-
related fatalities, carriers, migration, dissimilar interacting groups, and transmission by
vectors. Epidemiological interpretations of all results are given.

1. INTRODUCTION

The spread of a communicable disease involves not only disease-related
factors such as the infectious agent, mode of transmission, incubation
period, infectious period, susceptibility, and resistance, but also social,
cultural, economic, demographic, and geographic factors. Insight into com-
municable disease processes can be obtained by analyzing models which
contain some of these factors. Here some new differential equation models
are formulated and theorems about equilibrium points and asymptotic
stability regions are obtained by using modern qualitative methods for
differential equations. Terminology, notation, and assumptions are given in
this section. A section on previous results is included, because new formula-
tions of the basic models are used which lead to more meaningful com-
municable disease interpretations and because the treatment here unifies
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scattered results and compares various models. References to other com-
municable disease models are given in the last section.

An epidemic is an occurrence of a disease in excess of normal ex-
pectancy, while a disease is called endemic if it is habitually present;
however, communicable disease models of all types are often referred to as
epidemic models, and the study of disease occurrence is called epidemiol-
ogy. A basic concept in epidemiology is the existence of thresholds; these
are critical values for quantities such as population size or vector density
that must be exceeded in order for an epidemic to occur. In this paper the
infectious contact number, which is the average number of contacts of an
infective during his infectious period, is identified as the threshold quantity
which determines the behavior of the infectious disease.

Communicable disease models involving differential equations were con-
sidered and threshold theorems were obtained by Kermack and
McKendrick [18,19]. Both deterministic and stochastic models are de-
scribed in the book by N. T. J. Bailey [1]. A survey of epidemic results up to
1967 was given by K. Dietz [7]. Deterministic threshold models are con-
sidered in the monograph by P. Waltman [26]. The APHA handbook on
communicable diseases [2] is a good source of information on specific
diseases.

The population or community under consideration is divided into dis-
joint classes which change with time ¢, The susceptible class consists of
those individuals who can incur the disease but are not yet infective. The
infective class consists of those who are transmitting the disease to others.
The removed class consists of those who are removed from the susceptible-
infective interaction by recovery with immunity, isolation, or death. The
fractions of the total population in these classes are denoted by S (1), (),
and R (¢), respectively.

If recovery does not give immunity, then the model is called an SIS
model, since individuals move from the susceptible class to the infective
class and then back to the susceptible class upon recovery. If individuals
recover with immunity, then the model is an SIR model. If individuals do
not recover, then the model is an S/ model. In general, S/R models are
appropriate for viral agent diseases such as measles, mumps, and smallpox,
while SIS models are appropriate for some bacterial agent diseases such as
meningitis, plague, and venereal diseases, and for protozoan agent diseases
such as-malaria and sleeping sickness.

In our communicable disease models, the following assumptions are

made:
1. The population considered has constant size N which is sufficiently

large so that the sizes of each class can be considered as continuous
variables instead of discrete variables. If the model is to include vital
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dynamics, then it is assumed that births and deaths occur at equal rates and
that all newborns are susceptible. Individuals are removed by death from
each class at a rate proportional to the class size with proportionality
constant §, which is called the daily death removal rate. The average
lifetime is 1/8.

2. The population is uniform and homogeneously mixing. The daily
contact rate A is the average number of contacts per infective per day. A
contact of an infective is an interaction which results in infection of the
other individual if he is susceptible. Thus the average number of suscep-
tibles infected by an infective per day is AS, and the average number of
susceptibles infected by the infective class with size NI per day is ANIS. The
daily contact rate A is fixed and does not vary seasonally. The type of direct
or indirect contact adequate for transmission depends on the specific
disease.

3. Individuals recover and are removed from the infective class at a rate
proportional to the number of infectives with proportionality constant v,
called the daily recovery removal rate. The latent period is zero (it is
defined as the period between the time of exposure and the time when
infectiousness begins). Thus the proportion of individuals exposed (and
immediately infective) at time f, who are still infective at time f,+ ¢ is
exp(— v?), and the average period of infectivity is 1/y.

The removal rate from the infective class by both recovery and death is
v+ 8, so that the death-adjusted average period of infectivity is 1/(y+8).
Thus the average number of contacts (with both susceptibles and others) of
an infective during his infectious period is 0 =A/(y + &), which is called the
infectious contact number. Since the average number of susceptibles in-
fected by an infective during his infectious period is oS, the quantity oS is
called the infective replacement number.

2. PREVIOUS RESULTS

In this example we formulate an initial value problem (IVP) using the
class sizes first, and then change to the IVP involving the fractions of the
total population in each class. The IVP for a simple SIS model with vital
dynamics is

[NS (1)]' = —ANIS + YNI + SN — 8N'S,
[NI (1)) =ANIS — yNI— 8NI, (2.1)
NS(0)=NS,>0, NI(0)=NI,>0, NS(t)+NI(f)=N,

where A is positive. The —ANIS term gives the rate of movement from the
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susceptibﬁe class of size NS(f) to the infective class of size NI(f). The
— yNI term gives the rate at which infectives recover (without immunity)
and return to the susceptible class. The 8N term corresponds to the
newborn susceptibles, while —8NS and — 8N/ correspond to deaths in the
susceptible and infective classes, respectively.

If we divide each equation in (2.1) by the population size N, then the IVP
is

S'(t)= —MNS+yI+6—8S,
I'(£)=NIS—yI—8I, (2.2)
S(0)=5,>0, I(0)=I,>0, S()+I(H)=1,

where A is positive. Note that the IVP (2.2) involves only the daily contact
and removal rates and not the population size N. This model might be
appropriate for bacterial agent diseases such as meningitis, streptococcal
sore throat, and tuberculosis. In this paper, all parameters in the differential
equations are nonnegative, and only nonnegative solutions are considered,
since negative solutions have no epidemiological significance.

Since S (f) can always be found from I(¢) by using S(£)=1—1(?), it is
sufficient to consider the IVP for I(¢). The differential equation for I(z)
with S=1-1Tis

I'()=[A=(y+8)][-AI?, (2.3)

which can be solved to obtain the unique solution

ekt
MNeM—1)/k+1/1,"
1
YESVIA

k#+0

I(n={ (2.4)

where k =A—(y+ 8). The asymptotic behavior of I(¢) for large ¢ is found
from the explicit solution (2.4).

THEOREM 2.1

The solution I1(t) of (2.3) approaches 1—1/0 as t—w if s=A/(y+8)>1
and approaches 0 as t—co if 6 < 1.

BIOCOROLLARY 2.1

In a disease without immunity with any initial infective fraction, the
infective fraction approaches a constant endemic value if the infectious contact
number exceeds one; otherwise, the infective fraction approaches zero.
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One advantage of precise threshold results such as Theorem 2.1 is that
the effects of changes in certain parameter values on the asymptotic
behavior can be determined. Note that the infective replacement number 0.5
is 1 at the equilibrium point. A threshold result for an ST model is obtained
from Theorem 2.1 by taking the removal rate y to be zero in the equations
(2.2). If the death rate § is also zero, then the model is the SI model
considered by N. T. J. Bailey [1,p. 20].

Instead of assumption 2 in Sec. 1, it is sometimes assumed that suscep-
tibles become infectious at a rate proportional to the product of the number
of susceptibles and the number of infectives, with proportionality constant
B. By comparing the resulting IVP with the IVP (2.1), we see that 8=A/N,
and thus the assumption that 8 is constant implies that the daily contact
rate A is proportional to the population size N. Although the daily contact
rate would probably increase if the population within a fixed region
increased (i.e., the population density increased), the daily contact rates
might be the same for a large population in a large region and a small
population in a small region. Thus it seems best to carefully separate the
daily contact rate A and the population size N, as we have done in
assumption 2. Moreover, threshold statements such as Theorem 2.1 involv-
ing the infectious contact number seem more realistic than population size
threshold statements which result from the alternate assumption above.
Population size threshold theorems given in previous publications
[1,11,12,18,19] can be converted easily to infectious contact number
threshold theorems.

Although the asymptotic behavior is similar for the SIS models with and
without vital dynamics, this is not true for SIR models. The IVP for an SIR
model without vital dynamics is

S'(1)=—AIS,
I'())=MS -y,
R'(H)=+l, (2.9)

§(0)=S,>0, I1(0)=1,>0, R(0)>0,
S(H+I(nH+R(H=1,
where A and y are positive. Since R (¢) can always be found from S(¢) and

I1(¢) by using R(£)=1—S(¢)— I(2), it is sufficient to consider the IVP in the
SI plane. The solution curves /=1— S+[log(S/Sy)]/0 in the SI plane are
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found from

a _ .1
Sl (2.6)

where o=A/y is the infectious contact number. By analyzing these curves
[13,26] the following result is obtained.

THEOREM 2.2

Let (S(2),1(2)) be the solutions of (2.5). If 6S,< 1, then I1(t) decreases to
zero as t—oo; if 0Sy> 1, then I(t) first increases up to a maximum value
equal to 1—1/0—[log(cS,)]/o and then decreases to zero as t—oo. The
susceptible fraction S (t) is a decreasing function, and the limiting value S (o0)
is the unigue root in (0,1/ ) of the equation

1 5y S/ S

BIOCOROLLARY 23

In a disease without vital dynamics where recovery gives immunity, if the
initial infective replacement number is greater than one, then the infective
fraction increases up to a peak and then decreases to zero; otherwise, the
infective fraction decreases to zero. The infection spread stops because the
infective replacement number becomes less than one when S (t) becomes small,
however, the final susceptible population is not zero.

The IVP for an SIR model with vital dynamics is
S'(1)=—-AIS+6-6S,
I'(t)=AIS —yI- 61,
R()=1-S(5)—-1(»), (2.7)
S(0)=5,>0, 1(0)=1,>0, R(0)>0,
where A and § are positive. The asymptotic behavior of (2.7) in the triangle

D bounded by the S and I axes and the line S+ I=1 was determined in
[12] using Liapunov’s direct method and is a special case of Theorem 4.1.

THEOREM 2.3.

Let (S(t),1(?)) be a solution of the differential equations in 2.7). If 6 > 1,
then D—{(S,0):0< S< 1} is an asymptotic stability region (ASR) for the
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equilibrium point (EP) (1/0,8 (6~1)/X), where 6=A/(y+8). If 6<1, D is
an ASR for the EP (1,0).

BIOCOROLLARY 2.3

In a disease with vital dynamics where recovery gives immunity, if the
infectious contact number exceeds one, then the susceptible and infective
Sractions eventually approach constant positive endemic values except in the
trivial case when there are no infectives initially. If the infectious contact
number is less than one, then the infective fraction approaches zero and the
-removed fraction approaches zero (due to death of removed individuals), so
that the entire population is eventually susceptible (due to the continuous birth
of new susceptibles).

By comparing Theorems 2.2 and 2.3 and their biocorollaries, it is clear
that the asymptotic behaviors for SIR models without and with vital
dynamics are very different. The SIR model without vital dynamics might
be appropriate for describing an epidemic outbreak during a short time
period, whereas the S/R model with vital dynamics would be appropriate
over a longer time period. Viral agent diseases such as measles, chicken pox,
mumps, influenza, and smallpox may have occasional large outbreaks in
certain communities and yet be endemic at a low level in larger population
groups.

Note from Theorems 2.1 and 2.3 that the infectious contact number
threshold criterion for determining if a disease with vital dynamics remains
endemic is the same for diseases without and with immunity; however, the
infective fraction approached asymptotically for large time is higher for
diseases without immunity than for diseases with immunity. The values
I(o0) and I(oc)+ R(o0) are reasonable measures of the intensities of
infectious diseases of SIS and S/R types, respectively. The infective frac-
tion for some diseases such as measles, chicken pox, and mumps varies
periodically because of seasonal changes in the daily contact rates. Models
involving recurrent or periodic epidemics have been considered
[1,11,21,30]. Although numerical and approximate solutions of the asymp-
totic behavior of an SIR model with periodic daily contact rate have been
found, a precise analysis has not been done.

3. MATHEMATICAL PRELIMINARIES

The communicable disease models which we will consider involve two
dimensional autonomous, nonlinear (quadratic) systems of ordinary dif-
ferential equations, and consequently the methods of phase plane analysis
can be applied. See [16,3] for a discussion of phase plane methods, almost
linear systems, and the Poincaré-Bendixson theory.

We now formulate a theorem motivated by a survey paper of W. A.
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Coppel [6], which we use several times to eliminate the possibility of limit
cycles. The method of proof using Green’s theorem has been used by other
authors. In our applications of the theorem, D is a rectangle or triangle in
the first quadrant, and B (x,y) is found by first assuming that it is of the
form x %’ and then finding i and ;j such that

d d
35 (BP)+ 5, (80)

has the same sign throughout D.
THEOREM 3.1

Assume that P and Q are continuously differentiable in an open connected
region D, that no solution path of

x'()=P(x.y),
Y'()=0(x.y)

leaves D, and that D contains at least one EP. If there exists a B(x,y) which
is continuously differentiable in D and such that

d d
35 (BP)+ 5 (BQ)

has the same sign throughout D, then there are no closed paths (periodic
solutions) in D,

Proof. Note that closed paths must contain at least one EP, so that if D
contains no EP, then there are no closed paths in D. Suppose that there is a
closed path T with interior R containing at least one of the EP in D. Since
no path leaves D, R is contained in D. By the assumption that

d d
Bx (BP)+ > (BQ)
has the same sign throughout D and Green’s theorem,

o;eff[%(zapn %(BQ)}dA=jI:Bde—Bde
R

_ dx &y &y dx\, _

which is a contradiction.
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4. AN SIRS MODEL WITH TEMPORARY IMMUNITY.

In this model with vital dynamics, recovery gives temporary immunity.
This model might be appropriate for smallpox, tetanus, influenza, cholera,
and typhoid fever. One conclusion in this section is that temporary instead
of permanent immunity does not change the threshold criterion, but it does
raise the infective level approached asymptotically for large time. Assume
that the rate at which removed individuals lose their immunity and return to
the susceptible class is proportional to the number of removed individuals
with proportionality constant «, called the daily loss of immunity rate. The
average period of immunity is 1/«, with permanent immunity when a=0.
The IVP is

S'(f)= ~NIS+8—8S+aR
= —NS+(8+a)—(8+a)S—al,

I'(t)=MS—yI -8, (4.1)

R()=1-8()—-1(1),

S(0)=8,>0, I(0)=I,>0, R(0)=R,>0,

where A, y+ 8 and 8+ « are positive. The assumption y+ § >0 means that
there must be some flow out of the infective class, and § + a > 0 means that
there must be some flow into the susceptible class. Let =A/(y + §), and let
D be the triangle S >0, I >0, S+ I < 1. Typical S/ plane portraits found by
numerical integration of (4.1), showing solution paths approaching the EP,
are given in Fig. 1 and 2 for infectious contact number less than and greater
than one, respectively.

THEOREM 4.1

Let (S (8),1(1)) be a solution of (4.1). If 6 > 1, then D—{(S,0):0< S< 1}
is an ASR (asymptotic stability region) for the EP (equilibrium point)

El

(1.7t

If a <1, then D is an ASR for the EP (1,0).
BIOCOROLLARY 4.1

In a disease where recovery gives temporary immunity, if the infectious
contact number exceeds one, then the susceptible and infective fractions
approach constant endemic values for large time; otherwise, the susceptible
fraction increases as the infective fraction decreases to zero until eventually the
entire population is susceptible.
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Fic. 1. Typical SI plane solution paths for an S/R model with vital dynamics and

temporary immunity when the infectious contact number is 0.5. The parameter values in
(4.1) are A=0.1, y=0.2, §=0.0001, and a=0.02.

Proof. The EP in the SI plane are (1,0) and the point given by (4.2). If
the EP (1,0) is translated to the origin, the characteristic roots of the
linearization of the system of differential equations are —8§—a and (y+8)
(o—1). If <1, both roots are real and negative, so that (1,0) is an
attractive node; if ¢ > 1, the roots are of opposite sign, so that (1,0) is a
saddle point. More information about the local phase portraits near the FP
can be found. No solution path leaves D, since /=0 is a solution path,
implies S'()=86+a(l1—1)>0, and 7+ S=1 implies I'(¢t)+ S'()=—~

If 6> 1, then the EP (4.2) is in the interior of D. If this EP is tran:
to the origin, then the characteristic roots of the linear part of the differen-
tial equations both have negative real part, so that (4.2) is an attractor. By
Theorem 3.1 with B=1/1I, there are no limit cycles in D. The § axis is the
attractive line for the saddle point (1,0), while the repulsive direction has
slope — 1+ y/(A+ &), which is into the triangle. Thus D minus the S axis is
an ASR for the EP (4.2) for 6> 1.
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1.0

Infective Fraction

oO é 4 8 8 10
Susceptible Fraction

Fi6. 2. Typical SI plane solution paths for an SIR model with vital dynamics and
temporary immunity when the infectiour contact number is 2. The parameter values used
in (4.1) are A=0.4, y=0.2, §=0.0001, and « =0.02.

If 6 <1, the (1,0) is the only EP in D, and consequently every solution
path in D must approach (1,0). If o=1, then the above method does not
apply. However, 6 =1 implies I'(t)=BI(S—1) <0 in D, with equality only
if 7=0. Thus all solution paths approach /=0, but since /=0 is a solution
path, all solution paths must approach (1,0). Hence D is an ASR for (1,0) if

o< 1. :

5. AN SIS MODEL WITH SOME DISEASE FATALITIES

In this SIS model with vital dynamics, we let NR (t) be the number of
people who have died due to the disease. This model might be appropriate
for plague, tuberculosis, or syphilis. A disease where recovery does not give
immunity usually remains endemic; however, we will show that if there are
disease-related fatalities, then the disease eventually disappears, leaving a
positive susceptible fraction. Assume that the rate of removal of infectives



by death due to the disease is proportional to the number of infectives. The
IVP is

S’ ()= —MNS+yI+8(I+S)—8S=—M(S—1/0),
I'()=MNS —yI—8I—ql, (5.1)
R(H=1-8()—1(1),

S(0)=S,>0, I(0)=I,>0, R(0)>0,

where A and n are positive. The parameter 7 is called the daily disease-
related death rate. Let o =A/(y+8), £&=n/(y+8), and let D be the triangle
bounded by the axes and S+ I=1. A typical S plane portrait is given in

Fig. 3.

10
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e
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0
0 2 4 6 8 10

Susceptible Fraction

Fi1G. 3. Typical ST plane portrait for an SIS model with some disease fatalities. The
parameter values used in (5.1) are A=1.0, y=0.2, §=0.0001, and =0.2.



COMMUNICABLE DISEASE MODELS 347
THEOREM 5.1

Let (S,1) be the solution of (5.1). If 1 <aSy< 1+&, then I(t) decreases to
zero as t—o0; if 083> 1+&, then 1(¢) first increases up to a maximum value
equal to

1+§ § §
I_T"’;lo oSO—l (5.2)

and then decreases to zero as t—o0. The susceptible fraction decreases, and the
limiting value S (o) is the unique root in (1/0, (1+§)/0) of

oSlea) =1,

_ §
1—S(c0)+ ;log oSy—1

(5.3)

If 0< 08y < 1, then I(t) decreases to zero as t—o0, and S(0) is the root in

(0,1/0) of (5.3).

BIOCOROLLARY 5.1

In a disease with no immunity where the disease causes death of some of the
infectives, the disease always eventually disappears and the final susceptible
fraction is positive.

This biocorollary seems reasonable because the fraction R is increasing
inasmuch as the disease is fatal to a fixed proportion of the infectives, so
that the reproducing population (S+7) decreases until the birth of new
susceptibles is insufficient to keep the disease endemic. This model is
probably unrealistic in a human population, since for a potentially fatal
disease, preventive measures would probably be taken which would invali-
date one of the model assumptions such as homogeneous mixing. It might
be appropriate for an epizootic in an animal population such as tularemia in
rabbits.

Proof. In the model (5.1), every point on the § axis is an EP. If 05,> 1,
then the translation U= S ~1/¢ yields

U'(t)= —AIU,
I'(ty=NU—1ql, (5.4)

which is essentially the same as (2.3), and all of the conclusions there carry
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over. If 6S, < 1, then [ is decreasing unless I is zero so that I(o0)=0. Also,
S(¢) is increasing and bounded by 1/¢ (since S=1/¢ is a solution path), so
that S (o0) exists. Indeed, S (o) is the root of (5.3) in (0,1/0).

6. AN SIR MODEL WITH CARRIERS

A carrier is an individual who carries and spreads the infectious disease,
but has no clinical symptoms. Models of SIS type involving carriers were
considered in [11]. Carriers are a mode of transmission in diseases with
immunity such as hepatitis, polio, diptheria, typhoid fever, and cholera.
Here we assume that the number of carriers is constant in an S/R model
with vital dynamics (models where C changes with time are possible.) The
IVP is

S'(H=—-AI+C)S+85-8S,
I'(y=\(I+C)S—vyI—8I, 6.1)
R()=1-S()—1(1),

S$(0)=S5,>0, I(0)=I>0, R(0)>0,

where A, C, and 8 are positive. Note that the term ACS could correspond to
either a constant number CN of carriers or an inanimate carrier such as a
polluted water supply with contact rate parameter ACN. Let a=\/(y+4),
and let D be the triangle bounded by the axes and S+ I= 1. The only EP in
D is (§*,I*), where

. [o-1=CA/81+{lo—1~CA/8 P +acNA/8)"
= /6

and S$*=1-AJ*/dq. Typical SI plane portraits would be similar to those in
Fig. 2.

THEOREM 6.1

For the differential equations in (6.1), the triangle D is an ASR for the EP
(S*,1*).

BIOCOROLLARY 6.1

In a disease with carriers and vital dynamics where recovery gives immun-
ity, the disease always remains endemic.
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Proof. 1f the EP (S*,I*) is translated to the origin, the characteristic
roots of the linear part of the differential equation system have negative real
parts, so that (S*,7*) is an attractor. No solutions leave D, and there are no
limit cycles, by Theorem 3.1 with B=1/(SI). Thus every solution path in D
approaches (S*,I*).

7. AN SIS MODEL WITH MIGRATION

Communicable diseases sometimes spread across countries and con-
tinents and around the world. Some models for spatial spread have been
analyzed [1,17,23]. A fascinating question is whether a disease could remain
endemic by traveling geographically around a region or around the world.
In this SIS model with vital dynamics, we assume that individuals im-
migrate and emigrate between two communities at equal rates. One conclu-
sion is that migration can keep the disease endemic in two population
groups, even though without migration the disease would eventually disap-
pear in one of the groups. We assume that a constant proportion 8 of
individuals in each community move to the other community per unit time.
The IVP is

L'(=MI(1-1)—v[,-81,+6(I,—1I)/N,
I,(0)=1I,,>0, S\+1,=1, (7.1)
L'()=ML(1-1)—v,1,-8,L+0(1,- I,)/N,,

12(0)=120>0, S2+12=1,

where A}, A, and 8 are positive. Let 0,=X;/(v;+8;), and let D be the
rectangle bounded by the I, and I, axes and the lines /;=1 and I,=1.
Typical 1,1, plane portraits would be similar to Fig. 4 and 5. Let a=X,—
¥,-6,—8/N,b=8/N,,c=0/N,,andd=\,—v,—68,—8/N,.

THEOREM 7.1

For the differential equations in (7.1), if a+ d <0 and ad— bc > 0, then D is
an ASR for the origin; otherwise, there is a unique EP in the interior of D,
and D minus the origin is an ASR for this EP.
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BIOCOROLLARY 7.1

For a disease without immunity in two communities with migration, the
behavior can be unusual when one of the infectious contact numbers is near 1.
For example, if one infectious contact number slightly exceeds 1 and one is less
than 1, then migration can cause the disease to eventually disappear in both
populations. If one infectious contact number is significantly greater than 1
(a>0) and one is below, then migration causes the disease to remain endemic
in both populations.

Proof. To find the EP in the rectangle D, we need to find the intersection
points of two parabolas. If we set the right side of the equation for I{(¢)
equal to zero, we obtain

N
12=7‘[(71+61+Nil—>\,)1,+>\113]. (7.2)

Infective Fraction 2

0 0 2 4 6 8 10

Infective Fraction |
Fic. 4. Typical 1,1, plane portrait for an SIS model with two dissimilar groups using
the values N;=N,, A;; =03, A, =2, =0.1, A,;,=0.2, y,=y,=04, §,=0.0005, and §,=0.
001 in (8.1).
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10

o]

H~N

Infective Fraction 2

0 2 4 6 8 1.0

Infective Fraction |
Fi6. 5. Typical 1,1, plane solution paths for an SIS model with two dissimilar groups
using the values Ny=N,, A;; =045, Aj;=Ay;=0.1, A;,=0.375, y,=y,=04, §,=0.0005,
and 6,=0.001 in (8.1).

The zero in addition to the origin of this parabola is 1~1/0—8/A\N,. The
right branch of (7.2) intersects the line I,=1 at a point in [0, 1). The second
parabola is symmetrically similar with subscripts 1 and 2 interchanged
throughout. If a+d <0 and ad— bc >0, then the origin is an attractor and
is the only EP (intersection of the parabolas) in D. Since no solutions leave
D, D is an ASR for the origin. Note that a <0 and 4 <0 in this case.

If ad— bc <0, then the origin is a saddle point with repulsive direction
into D and attractive direction not in D. If a+d >0 and ad— bc >0, then
the origin is a repeller. In both of these cases, the parabolas intersect at
exactly one EP in the interior of D. No solutions leave D, the index of this
EP is +1, and there are no limit cycles in D by theorem 3.1 with
B=1/(1,1,). Thus the EP is an attractor, and D minus the origin is an ASR
for this EP. This EP could be found numerically for particular parameter
values. The case when ad~—bc=0 is resolved by analysis of the solution
paths in the regions of D bounded by the parabolas.
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8. AN SIS MODEL FOR TWO DISSIMILAR GROUPS

A communicable disease model may be more realistic if it assumes that
there are several interacting groups, each with different parameter values,
where the subdivision is based on age or social behavior. Typically daily
contact rates are higher for preschool and school children than for adults or
for old people. Models with dissimilar groups are necessary, since changing
a model by joining dissimilar groups together can change the asymptotic
behavior (i.e., whether the disease remains endemic or fades away). Here we
consider an SIS model with two dissimilar interacting groups and vital
dynamics. The IVP is

L) = AL+ A Ny L/ N)(A = 1) =y — 81,
@.1)

1,(0)=1,,>0, S\ +1,=1,

with similar equations for the other population group; here A5, A, and
v1+ 8, + v, + 8, are positive.

The parameter A; is the average number of contacts per day of an
infective in the jth group with individuals in the ith group. Since 1/(y;+ §))
is the death-adjusted average infectious period for an individual in group j,
0;=X;/(y;+ &) is the average number of group i individuals (both suscep-
tibles and infectives) contacted by a group j infective during his infectious
period. Let D be the region bounded by the axes, I, =1, and I,=1. Typical
1,1, plane portraits are given in Fig. 4 and 5. Let a=A,, — v, — §;, b=A;,; N,/
Ni €=AyNy/ Ny d=Ap—7,— 8,

THEOREM &1

For the differential equations in (8.1), if a+ d <0 and ad— bc > 0, then D is
an ASR for the origin; qtherwise, there is a unique EP in the interior of D,
and D —{(0,0)} is an ASR for this EP.

BIOCOROLLARY 8.1

For a disease without immunity in two dissimilar groups, if the infectious
contact numbers (0,, and 0y, ) are less than 1 in both groups, then the
interaction can cause the disease to remain endemic in both groups. If one
infectious contact number is below 1 and one is above 1, then the interaction
causes the disease to remain endemic in both groups.



The proof of theorem 8.1 is similar to the proof of theorem 7.1 except
that the equilibrium points are at the intersection points of two hyperbolas.
Lajmanovich and Yorke [20] consider a model for gonorrhea in a non-
homogeneous population which is actually an SIS model for n dissimilar
groups and consequently could be used for other diseases. Theorem 8.1 is a
special case of their result, with more details.

9. SIS MODELS WITH VECTORS

If a communicable disease exists in two species and individuals in each
species can be infected only by the other, then it is called a host-vector
disease. Some host-vector diseases without immunity are malaria (mosqui-
toes), filariasis (mosquitoes), onchocerciasis (black flies), and plague (fleas).
Since mosquitoes do not recover from malaria during their lifetime, their
recovery rate y is zero, so that the vector part of the malaria model is
actually an S7 model. Gonorrhea with men and women as the two popula-
tions could be interpreted as a host-vector SIS disease [20]. The model (8.1)
for two dissimilar groups is a host-vector model if A, and A,, are zero. This
model was analyzed in [12], where the EP in the interior of D was found
explicitly.

THEOREM 9.1.

For the differential equations in (8.1) with A, =X3,=0, if 6,565, < 1, then D
is an ASR for the origin. If 6,,6,, > 1, then D minus the origin is an ASR for
the EP

( 01205~ | 01205~ | ) (9.1)
012021+ AN /(12+8)N, 7 61200+ AN, /(1 +8))N, | '

BIOCOROLLARY 9.1
For a host-vector disease with no immunity, if the product of the two
infectious contact numbers is less than one, then the disease eventually

disappears; otherwise, the disease remains endemic.

Some diseases have both human and nonhuman hosts such as monkeys,
rodents, pigs, etc. The IVP for a host-vector-host model (i.e., with two hosts)
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is

L) =AoNo (1= 1) /N — v [, = 8,1,

5,(0)=1,,>0, S +1,=1,

L) =QAuN I+ AN LY(1 = 1) /Ny — v, 1, — 8,1, (9.2)

1(0)=1I5>0, S;+I,=1,

L(0) =ApnNoly(1 = 13) /N3 — y3l3= 8515,

L0)=1,>0, S,+I,=1,
Let D be the region 0< I,,I,,I;< 1, and let

P=Y1+8+7,+8,+y;+38,,

g=(11+8)(v2+8) + (124 8)(v3+ 85) + (v, +8)) (5 + 85)

- >\23>‘32 - >\21A12’

r=(v1+8)(v2+8)(v3+ 83) = YidpsAs — y3ApA o

THEOREM 9.2

For the differential equations in (9.2), if p >0, r>0, and pq > r, then D is
an ASR for the origin. Otherwise, there is a unique EP in the interior of D,
and D minus the origin is an ASR for this EP.

Theorem 9.2 follows from the result of Lajmanovich and Yorke [20] and
the Routh-Hurwitz criteria.

10. OTHER COMMUNICABLE DISEASE MODELS

Another type of communicable disease model is the SEIR model, where
E is a class of exposed individuals, who are in the latent period. Various
assumptions regarding the length of the latent and infective periods lead to
delay differential equations, functional differential equations, and integral
equations [28,4,14,10,15,27,29,5,26]. One obvious question is whether the
solution behaviors for these models are essentially different from those of
the ordinary differential equation models considered here. Computer simu-
lation models for various diseases have been used [8]. Clearly, deterministic,
stochastic, and simulation models are interrelated, and conclusions resulting
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from one type of model have implications for the analogous models of the
other types [22].

The control of communicable diseases is an important practical problem.
If communicable disease models can be developed so that epidemiologists
have some confidence in their predictive ability, then these models can be
used in the cost-effectiveness evaluation of various control measures. Mod-
els involving control of diseases by vaccination have been considered
[8,25,24,13,9].
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