
1

1

Parallel Algorithms and Parallel
computers (ii)

 IN4 026

Lecture 2
Cees Witteveen

Parallel and Distributed Systems Group
Faculty Electrical Engineering, Mathematics and Computer Science

2

Basic techniques and Examples

• Balanced trees
– cumulative frequencies

(recursive & iterative)
– inner product, matrix multiplication

• Pointer jumping
– searching for the root of a tree,
– determining the distance to root

• Divide & conquer
– finding the minimum 1-index in an array
– finding the maximum of an array

exercises of
last week

3

1. Balanced Trees

4

balanced trees
• principle

construct a (virtual) balanced binary tree to process input elements
and traverse the tree to perform operations on the nodes.

1. operations at each level
are performed concurrently

2. number of time steps is
T(n) = O(height) = O(log n)

3. number of operations is
W(n) = O(n)

A[1] … A[n]

data

A

A[1] [2]
tree results are well-
defined for binary
left-associative
operators

2

5

balanced trees: example

• Given an array A[1. . n] of frequencies, compute array
C[1 . . n] of cumulative frequencies, i.e. C[i] = Σ j≤ i A[j].

cumfreq (A , n):
begin

1. if n=1 then { C[1]:= A[1]; exit }

2. for 1 ≤ i ≤ n/2 pardo
 B [i] := A [2i-1] + A[2i]

3. Z := cumfreq (B , n/2)
4. for 1 ≤ i ≤ n pardo

{ i = 0 mod 2 => C [i] = Z[i/2],
 i = 1 => C [1] = A[1],
 else => C [i] = Z[(i-1)/2] + A(i) }

end

proof of correctness: see lecture

T = O(1)

T = O(1)

T = O(1)

O(T(n/2))

6

cumulative freq: WT-analysis

• T(n) = O(1) + O(1) + T(n/2) + O(1) = T(n/2) + O(1)
 = O(log n)

• W(n) = O(1) + O(n)+ W(n/2) + O(n) = W(n/2) + O(n)
 = O(n)

• Conclusions:
– algorithm is (weakly) optimal
– algorithm is cost-optimal for p = O(n/log n) on a p-PRAM

7

Cumulative frequencies: iterative

input: array A[1 . . n] n = 2k

output: array Clog n x n with C[0 , j] = Σ j ≤ i A[j].
cumfreq_iter(A , n):
begin

 1. for 1 ≤ j ≤ n pardo B[0,j] : = A[j]

 2. for h = 1 to log n do
 for 1 ≤ j ≤ n/2h pardo
 B[h,j] := B[h - 1, 2j -1] + B[h - 1, 2j]

 3. for h = log n to 0 do
 for 1 ≤ j ≤ n/2h pardo
 { j even => C[h,j] = C[h+1, j/2]
 j = 1 => C[h,1] = B[h ,1]
 else => C[h,j] = C[h+1, (j-1)/2] + B[h,j] }

end

This algorithm is the unfolding of
the previously given recursive
specification of the balanced tree
technique

8

General Comments

• Given an array A[1. . n] and any associative operator ∗, the balanced
tree scheme can be used to compute the array
C[1 . . n] of “prefix sums” where
C[i] = A[1] ∗ A[2] ∗ … ∗A[i].

• The same technique can be used for
– broadcasting a value to all memories of processors
– compacting a labeled array
– inner product computations

3

9

Balanced Trees and Matrix operations

Topics
• inner products and balanced trees
• matrix vector product: a WT-analysis
• matrix multiplication

10

Balanced trees and inner products
• Let u = [ui] and v = [vj] be two n x 1 column vectors.

The inner product uT v is defined as
uT v = ∑i=1..n ui vi = u1 x v1 + u2 x v2 + . . . + un x vn

The inner product can be computed by an
(O(n), O(log n))-algorithm using a simplified balanced tree method

input: U[1..n], V[1..n] where n = 2k; output: U TV
begin
1. for 1 ≤ i≤ n pardo

C[i] = U[i] x V[i]
2. for h=1 to log n do

for 1 ≤ k ≤ n/2h pardo
C[k] = C[2k-1] + C[2k]

3. return C[1]
end

T(n) = O(log n)
W(n) = O(n)

11

Matrix-vector product
input: Anxn, Bnx1, n = 2k;
output: Cnx1 = A x B
begin

1. for 1 ≤ i,k ≤ n pardo
C’[i,k] = A[i,k] x B[k]

2. for h=1 to log n do
for 1 ≤ i ≤ n, 1 ≤ k ≤ n/2h pardo

C’[i,k] = C’[i,2k-1] + C’[i,2k]
3. for 1 ≤ i ≤ n pardo

C[i] = C’[i,1]
end

T(n) = O(1), W(n) = O(n2)

T(n) = O(log n),W(n) = O(n2)

T(n) = O(1), W(n) = O(n)

Total: T(n) = O(log n), W(n) = O(n2)
12

Matrix vector product c’td
• On a p-PRAM, the time needed by the balanced tree

algorithm is

Tp (n) = O(W(n)/p + T(n)) = O(n2/p + log n)

• This implies that for p = O(n2/log n) processors
the algorithm is cost-optimal.

4

13

Matrix product: WT
input: Anxn, Bnxn, n = 2k;
output: Cnxn = A x B
begin

1. for 1 ≤ i,j,k ≤ n pardo
C’[i,j,k] = A[i,k] x B[k,j]

2. for h=1 to log n do
for 1 ≤ i,j ≤ n, 1 ≤ k ≤ n/2h pardo

C’[i,j,k] = C’[i,j,2k-1] + C’[i,j,2k]
3. for 1 ≤ i,j ≤ n pardo

C[i,j] = C’[i,j,1]
end

T(n) = O(1), W(n) = O(n3)

T(n) = O(log n),W(n) = O(n3)

T(n) = O(1), W(n) = O(n2)

Total: T(n) = O(log n), W(n) = O(n3)
14

Matrix product: analysis

• Since T(n) = O(log n), W(n) = O(n3), for p processors we
have

TP(n) = O(n3/p + log n)

• This implies cost-optimality for p = O(n3/ log n) processors

15

Relations with Grama

Consult Grama et al, Chapter 8 for details concerning the influence
of communication and task allocation on the performance.

Compare the results presented here with the results obtained in section
8.1.1 and 8.1.2 of Grama.

Note that for a row-wise 1-D partitioning applied to matrix-vector
multiplication and matrix multiplication, the balanced tree method cannot
profit from concurrency.

Note that in general Grama et al do not make a distinction between the
architecture-free properties of the algorithm and the implementation details.

16

2. Pointer Jumping

5

17

Pointer jumping
• pointer jumping is a technique suitable for fast access in pointer

accessible rooted-tree or -forest like data structures

• a directed rooted tree is a directed graph
T = (V, E) with

– a special node r ∈ V, the root of T
– every node v ∈ V - {r} has out degree 1;

 (r has out degree 0)
– for every v ∈V - {r} there is a

unique path from v to r

• a forest is a set of trees

18

Pointer jumping: example
• Given:

– a forest F = (V, E) where V ={1, . . n}. F is represented as an
array P[1 . . . n] with P[i]= j iff (i , j) ∈ E, i.e.
j is parent of i in a tree of F.

• Question:
– for every j , 1 ≤ j ≤ n , find the root S[j]

in the tree containing j.

19

Pointer jumping: example
begin

for 1 ≤ i ≤ n pardo
 S[i] := P[i];
while S[i] ≠ S[S [i]] do
 S[i] := S[S [i]];

end

1

2

3 4

5 6 7

8 9 10 11

12 13 14 15 16

1 1

2 1

3 2

4 1

5 3

6 3

7 4

8 5

9 5

10 6

11 7

12 8

13 9

14 9

15 10

16 11

S

20

Pointer jumping: example
begin

for 1 ≤ i ≤ n pardo
 S[i] := P[i];
while S[i] ≠ S[S [i]] do
 S[i] := S[S [i]];

end

1

2

3 4

5 6 7

8 9 10 11

12 13 14 15 16

1 1 1

2 1 1

3 2 1

4 1 1

5 3 2

6 3 2

7 4 1

8 5 3

9 5 3

10 6 3

11 7 4

12 8 5

13 9 5

14 9 5

15 10 6

16 11 7

S

6

21

Pointer jumping: example
begin

for 1 ≤ i ≤ n pardo
 S[i] := P[i];
while S[i] ≠ S[S [i]] do
 S[i] := S[S [i]];

end

1

2

3 4

5 6 7

8 9 10 11

12 13 14 15 16

S

1 1 1 1

2 1 1 1

3 2 1 1

4 1 1 1

5 3 2 1

6 3 2 1

7 4 1 1

8 5 3 1

9 5 3 1

10 6 3 1

11 7 4 1

12 8 5 2

13 9 5 2

14 9 5 2

15 10 6 2

16 11 7 1 22

Pointer jumping: example
begin

for 1 ≤ i ≤ n pardo
 S[i] := P[i];
while S[i] ≠ S[S [i]] do
 S[i] := S[S [i]];

end

1

2

3 4

5 6 7

8 9 10 11

12 13 14 15 16

S

1 1 1 1 1

2 1 1 1 1

3 2 1 1 1

4 1 1 1 1

5 3 2 1 1

6 3 2 1 1

7 4 1 1 1

8 5 3 1 1

9 5 3 1 1

10 6 3 1 1

11 7 4 1 1

12 8 5 2 1

13 9 5 2 1

14 9 5 2 1

15 10 6 2 1

16 11 7 1 1

23

Pointer jumping: algorithm
– Assume that for every root r we have P[r] = r.

input: array P such that (i, P[i]) represents edge in E
output: array S with S[i] the root of the tree of node i
begin

 for 1 ≤ i ≤ n pardo
 S[i] := P[i];
 while S[i] ≠ S[S [i]] do
 S[i] := S[S [i]];

end

Correctness of the algorithm: Since F is a forest, for every node i, there is a
unique finite path of length ≤ h from i to its root r, where h = max {height of tree
in F}. Consider the following invariant : Pk[i] = j iff there is a path from node i to
node j and ((j is not root of i and length of path is 2k) or (j is root of i and length
of path ≤ 2k)) . It follows that after k= log h steps, for every node i, we must have
Pk[i]=Pk+1[i], that is, Pk[i] contains the root of i.
Therefore, at the end, for each i, S[i] = Pk[i] will contain the root of i.

j := j+1; Pj := S;

P0 := S; j := 0

24

Pointer jumping: analysis
begin

 for 1 ≤ i ≤ n pardo
 S[i] := P[i]
 while S[i] ≠ S[S [i]] do
 S[i] := S[S [i]]

end

– after each iteration the distance of
node i to the node S(i) doubles
 => we need ≤ log h iterations before S(i) = r
 => T(n) = O(log h)

– every iteration costs O(n) operations
 => W(n) = O(n log h)

The algorithm is
not

weakly optimal!

7

25

POINTER JUMPING (2)
• An algorithm to determine distances D[i] from node i to

the root of the tree:

• begin
 for 1 ≤ i ≤ n pardo

S[i] := P[i];
if i ≠ S[i] then D[i] := 1 else D[i] := 0;
while S[i] ≠ S[S[i]] do

D[i] := D[i] + D[S[i]];
S[i] := S[S[i]];

end

T(n) = O(log h)
W(n) = O(n log h)

Exercise: use this algorithm to
compute the height of a tree

26

3. Divide and Conquer

27

Divide and Conquer
1. Split problem in nearly equal parts;

2. Solve sub problems concurrently,
possibly recursively;

3. Combine solutions of
sub problems to solution of the whole problem.

sequential examples:
binary search;
quicksort

28

Divide and Conquer: example

Problem: min-1 index

• Given
a boolean array A[1..n]

• Question:
find an O(n,1) algorithm on a CRCW-PRAM
to compute the smallest value k such that A[k] = 1.

8

29

Method

• First we present an (O(n2),O(1))- algorithm to solve the
min-1 index problem by concurrent application of a find-min algorithm
to compute the minimum value in an integer array.

• Then we discuss an (O(n),O(1))- algorithm for a simpler problem :
find-1index: given an array A, does there exist a value k such that
A[k]=1.

• Finally we combine both algorithms find-min and find-1index
to an (O(n),O(1))-algorithm using the divide-and-conquer approach.

30

Phase (1): find-min
• An O(n2), O(1)-algorithm to determine the minimal value in an

integer array A[1..n]:

findmin(A , n)
begin

1. for 1 ≤ i, j ≤ n pardo
 if A[i] ≤ A[j] then B[i,j] := 1 else B[i,j] := 0

2. for 1 ≤ i ≤ n pardo
 M[i] := 1;
 for 1 ≤ j ≤ n pardo if B[i,j]= 0 then M[i]:= 0;
 if M[i] then min := A[i]
3. return min;

end

T=O(1), W = O(n2)

T=O(1), W = O(n2)

T=O(1), W = O(1)

31

Phase (2): first version min-index

input : boolean arrayA[1..n]
output: index of first 1 in A, else n +1

begin
var B[1..n] of int
1. for 1 ≤ i ≤ n pardo

if A[i] = 1 then B[i] = i
else B[i] = n+1;

2. return findmin(B,n)
end

Note that this is an O(n2), O(1) algorithm !
32

Phase (3): find1-index
• We turn to a related simpler problem:

find-1index:
given a boolean array A[1..n],
is there an index k such that A[k] = 1?

• An (O(n),O(1)) CRCW-PRAM algorithm to solve this problem

find-1index(A)
�begin

output := 0;
for 1 ≤ j ≤ n pardo

 if A[j] = 1 then output := 1;
return output

end

9

33

Phase(4) : divide and conquer idea
Combine both algorithms to an (O(n),1) -algorithm using divide and
conquer as follows

1. divide array A into √n subarrays with length √n

2. apply algorithm find-1index to these subarrays in parallel; this
enables us to determine in which of the √n-arrays a 1 occurs with
cost T(n) = O(1) and W(n) = O(n)

3. use the results obtained to construct an array C[1.. √n] such that
C[i] = 1 iff the i-th subarray contains a 1; costs T = O(1), W = O(√n)

4. To find the first subarray containing a 1, apply findmin to C[1 . . √n]
costs: T = O(1), W = O(n). If findmin returns m, then we look into
the subarray A[(m-1)x√n +1, . . ., mx√n].

5. We create an array D[1 . . √n] with D[j] = (m-1)x√n + j if
A[(m-1)x√n + j] = 1 and D [j] = n +1 else; we find the first 1 of A by
by applying findmin to D in T = O(1) and W = O(n) 34

Example of application
0 0 0 0 1 0 0 1 0

find1-index 0 1 1

findmin 2

findmin
5

 4 2 3array C

10 5 10array D

array A divide in √n subarrays
each size of √n (here n = 9)

apply find1-index
simultaneously to subarrays

C[i] := number of subarray if
1 found, else √n +1 (= 4)

Apply findmin to array C
=> m = 2

Convert m-th subarray
to integer array D

Apply findmin to array D
=> minimum index 1-position

35

Finding the maximum
Problem:

Given an array A[1..n] such that
for every j=1,...,n, 1≤ A[j] ≤ n,
find an algorithm to determine maxi{ A[i] } in
W =O(n), T= O(1).

• Solution

 begin
 1. for 1 ≤ j ≤ n pardo B[A[j]] := 1

2. max:= findmaxindex(B,n)
end

36

Exercise

• Given an integer array A[1..n],
compute the maximum of n elements
using an (n1+c, O(1)) algorithm,
where c is an arbitrary (small) positive
constant.

Please prepare solutions to this exercise for next week lecture

