Parallel Algorithms and Parallel computers (ii)
IN4 026
Lecture 2
${ }^{\text {ceses }} \mathrm{W}$ meven

Basic techniques and Examples

- Balanced trees
- cumulative frequencies
(recursive \& iterative)
- inner product, matrix multiplication
- Pointer jumping
- searching for the root of a tree,
- determining the distance to root
- Divide \& conquer
- finding the minimum 1-index in an array
exercises of last week
- finding the maximum of an array

balanced trees

principle
construct a (virtual) balanced binary tree to process input elements and traverse the tree to perform operations on the nodes.

balanced trees: example

- Given an array $\mathrm{A}[1 . . \mathrm{n}]$ of frequencies, compute array
$C[1 \ldots n]$ of cumulative frequencies, i.e. $C[i]=\Sigma_{i \leq i} A[j]$.

cumulative freq: WT-analysis

- $\mathrm{T}(\mathrm{n})=\mathrm{O}(1)+\mathrm{O}(1)+\mathrm{T}(\mathrm{n} / 2)+\mathrm{O}(1)=\mathrm{T}(\mathrm{n} / 2)+\mathrm{O}(1)$
$=O(\log n)$
- $W(n)=O(1)+O(n)+W(n / 2)+O(n)=W(n / 2)+O(n)$ $=O(n)$
- Conclusions:
- algorithm is (weakly) optimal
- algorithm is cost-optimal for $\mathrm{p}=\mathrm{O}(\mathrm{n} / \log \mathrm{n})$ on a p -PRAM

```
Cumulative frequencies: iterative
input: array A[1..n] n=2
```



```
cumfreq_iter( A, n ):
begin
    1.for 1 s j m n pardo B[0,j]:=A[j]
    2. for }\textrm{h}=1\mathrm{ to }\operatorname{log}\textrm{n}\mathrm{ do
        for 1\leqj\leqn/2h
        B[h,j]:= B[h-1,2j -1] + B[h-1, 2j]
    3. for }h=\mp@subsup{\operatorname{log}}{n}{}nt\frac{\mathrm{ to }0}{0}\mathrm{ do 
        for 1 
        j=1 even => C[h,j]=C[h+1,j/2
        else =C[h,j]=C[h+1,(j-1)/2]+B[h,j]}
end
```


General Comments

Given an array $\mathrm{A}[1 . \mathrm{n}]$ and any associative operator *, the balanced tree scheme can be used to compute the array
$\mathrm{C}[1 . \mathrm{n}]$ of "prefix sums" where
$\mathrm{C}[\mathrm{i}]=\mathrm{A}[1] * \mathrm{~A}[2] * \ldots * \mathrm{~A}[\mathrm{i}]$.

- The same technique can be used for
- broadcasting a value to all memories of processors
- compacting a labeled array
- inner product computations

Balanced trees and inner products

- Let $\mathbf{u}=\left[u_{i}\right]$ and $\mathbf{v}=\left[\mathrm{v}_{\mathrm{j}}\right]$ be two $\mathrm{n} \times 1$ column vectors. The inner product $\mathbf{u}^{\top} v$ is defined as

$$
\mathbf{u}^{\top} \mathbf{v}=\sum_{i=1 . . n} u_{i} v_{i}=u_{1} \times v_{1}+u_{2} \times v_{2}+\ldots+u_{n} \times v_{n}
$$

The inner product can be computed by an
$(O(n), O(\log n))$-algorithm using a simplified balanced tree method

```input: U[1..n], V[1..n] where n=2 2; output: U TV begin 1. for 1\leqi\leqn pardo```	
$\mathrm{C}[\mathrm{i}]=\mathrm{U}[\mathrm{i}] \times \mathrm{V}[\mathrm{i}]$	$\begin{aligned} & T(n)=O(\log n) \\ & W(n)=O(n) \end{aligned}$
2. for $\mathrm{h}=1$ to $\log \mathrm{n}$ do	
for $1 \leq \mathrm{k} \leq \mathrm{n} / 2^{\mathrm{h}}$ pardo	
$\mathrm{C}[\mathrm{k}]=\mathrm{C}[2 \mathrm{k}-1]+\mathrm{C}[2 \mathrm{k}]$	
3. return C[1]	
end	

## Matrix-vector product

input: $A_{n \times n}, B_{n \times 1}, \mathrm{n}=2^{\mathrm{k}}$;
output: $\mathrm{C}_{\mathrm{nx} 1}=\mathrm{AxB}$
begin

1. for $1 \leq i, k \leq n$ pardo $\mathrm{C}^{\prime}[i, k]=\mathrm{A}[i, k] \times \mathrm{B}[k]$
$T(n)=O(1), W(n)=O\left(n^{2}\right)$
2. for $h=1$ to $\log n$ do
for $1 \leq i \leq n, 1 \leq k \leq n / 2^{h}$ pardo $\quad T(n)=O(\log n), W(n)=O\left(n^{2}\right)$ $\mathrm{C}^{\prime}[\mathrm{i}, \mathrm{k}]=\mathrm{C}^{\prime}[\mathrm{i}, 2 \mathrm{k}-1]+\mathrm{C}^{\prime}[\mathrm{i}, 2 \mathrm{k}]$
$T(n)=O(\log n), W(n)=O\left(n^{2}\right)$
$T(n)=O(1), W(n)=O(n)$ $\mathrm{C}[\mathrm{i}]=\mathrm{C}^{\prime}[\mathrm{i}, 1]$
3. for $1 \leq i \leq n$ pardo
end

## Matrix vector product c'td

- On a p-PRAM, the time needed by the balanced tree algorithm is

$$
T_{p}(n)=O(W(n) / p+T(n))=O\left(n^{2} / p+\log n\right)
$$

- This implies that for $p=O\left(n^{2} / \log n\right)$ processors the algorithm is cost-optimal.


## Matrix product: WT

input: $\mathrm{A}_{\mathrm{nxn}}, \mathrm{B}_{\mathrm{nxn}}, \mathrm{n}=2^{\mathrm{k}}$;   output: $\quad \mathrm{C}_{\mathrm{n} \times \mathrm{n}}=\mathrm{A} \times \mathrm{B}$	
begin	
1. for $1 \leq \mathrm{i}, \mathrm{j}, \mathrm{k} \leq \mathrm{n}$ pardo	$T(n)=O(1), W(n)=O\left(n^{3}\right)$
$C^{\prime}[i, j, k]=A[i, k] \times B[k, j]$	
2. for $\mathrm{h}=1$ to $\log \mathrm{n}$ do	$T(n)=O(\log n), W(n)=O\left(n^{3}\right)$
for $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}, 1 \leq \mathrm{k} \leq \mathrm{n} / 2^{\mathrm{h}}$ pardo	
$\mathrm{C}^{\prime}[\mathrm{i}, \mathrm{j}, \mathrm{k}]=\mathrm{C}^{\prime}[\mathrm{i}, \mathrm{j}, 2 \mathrm{k}-1]+\mathrm{C}^{\prime}[\mathrm{i}, \mathrm{j}, 2 \mathrm{k}]$	
3. for $1 \leq i, j \leq n$ pardo	$\mathrm{T}(\mathrm{n})=\mathrm{O}(1), \mathrm{W}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{2}\right)$
$C[i, j]=C^{\prime}[1, j, 1]$	
end	
	Total: $\mathrm{T}(\mathrm{n})=\mathrm{O}(\log \mathrm{n}), \mathrm{W}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{3}\right)$

## Matrix product: analysis

- Since $T(n)=O(\log n), W(n)=O\left(n^{3}\right)$, for $p$ processors we have

$$
T_{P}(n)=O\left(n^{3} / p+\log n\right)
$$

- This implies cost-optimality for $\mathrm{p}=\mathrm{O}\left(\mathrm{n}^{3} / \log \mathrm{n}\right)$ processors


## Relations with Grama

Consult Grama et al, Chapter 8 for details concerning the influence of communication and task allocation on the performance.

Compare the results presented here with the results obtained in section
8.1.1 and 8.1.2 of Grama.

Note that for a row-wise 1-D partitioning applied to matrix-vector multiplication and matrix multiplication, the balanced tree method cannot profit from concurrency.

Note that in general Grama et al do not make a distinction between the architecture-free properties of the algorithm and the implementation details.
2. Pointer Jumping

## Pointer jumping

- pointer jumping is a technique suitable for fast access in pointer accessible rooted-tree or -forest like data structures
- a directed rooted tree is a directed graph
$T=(V, E)$ with
- a special node $r \in V$, the root of $T$
- every node $v \in \mathrm{~V}-\{r\}$ has out degree 1 ; ( $r$ has out degree 0 )
- for every $v \in V-\{r\}$ there is a unique path from $v$ to $r$
- a forest is a set of trees


## Pointer jumping: example

- Given:
- a forest $F=(V, E)$ where $V=\{1, \ldots n\}$. $F$ is represented as an array $P[1 \ldots n]$ with $P[i]=j$ iff $(i, j) \in E$, i.e.
$j$ is parent of $i$ in a tree of $F$.
- Question:
- for every $\mathrm{j}, 1 \leq \mathrm{j} \leq \mathrm{n}$, find the root $\mathrm{S}[\mathrm{j}$ ] in the tree containing $j$.


## Pointer jumping: example



## Pointer jumping: example




## Pointer jumping: algorithm

- Assume that for every root $r$ we have $P[r]=r$.
input: array P such that ( $\mathrm{i}, \mathrm{P}[\mathrm{i}]$ ) represents edge in E
output: array $S$ with $S[i]$ the root of the tree of node $i$
begin
for $1 \leq i \leq n$ pardo
S[i]:=P[i]
while $S[i] \neq S[S[i]]$ do

Correctness of the algorithm: Since $F$ is a forest, for every node $i$, there is a unique finite path of length $\leq \mathrm{h}$ from i to its root r , where $\mathrm{h}=\mathrm{max}$ \{height of tree in F\}. Consider the following invariant : $P_{k}[i]=j$ iff there is a path from node $i$ to node $j$ and ( $j$ is not root of $i$ and length of path is $2^{k}$ ) or ( $j$ is root of $i$ and length of path $\left.\leq 2^{k}\right)$ ). It follows that after $\mathrm{k}=\log \mathrm{h}$ steps, for every node i , we must have $P_{k}[i]=P_{k+1}[i]$, that is, $P_{k}[i]$ contains the root of $i$. Therefore, at the end, for each $i, S[i]=P_{k}[i]$ will contain the root of $i$.

## Pointer jumping: analysis

## begin

for $1 \leq i \leq n$ pardo
$S[i]:=P[i]$
while $S[i] \neq S[S[i]]$ do
S[i]:= S[S[i]]

## end

- after each iteration the distance of
node ito the node S(i) doubles
$\Rightarrow>$ we need $\leq \log h$ iterations before $S(i)=r$

$$
\Rightarrow \mathrm{T}(\mathrm{n})=\mathrm{O}(\log \mathrm{~h})
$$

- every iteration costs $O(n)$ operations

$$
\Rightarrow W(n)=O(n \log h)
$$

## POINTER JUMPING (2)

- An algorithm to determine distances $\mathrm{D}[\mathrm{i}]$ from node ito the root of the tree:
- begin
$T(n)=O(\log h)$
for $1 \leq \mathrm{i} \leq \mathrm{n}$ pardo
$W(n)=O(n \log h)$
$\mathrm{S}[\mathrm{i}]:=\mathrm{P}[\mathrm{i}]$;
if $i \neq S[i]$ then $D[i]:=1$ else $D[i]:=0$;
while $S[i] \neq S[S[i]]$ do
$\mathrm{D}[\mathrm{i}]:=\mathrm{D}[\mathrm{i}]+\mathrm{D}[\mathrm{S}[\mathrm{i}]]$;
$\mathrm{S}[\mathrm{i}]:=\mathrm{S}[\mathrm{S}[\mathrm{i}]$;
end


## 3. Divide and Conquer

## Divide and Conquer

## Divide and Conquer: example

1. Split problem in nearly equal parts;
2. Solve sub problems concurrently, possibly recursively;
3. Combine solutions of sub problems to solution of the whole problem.
sequential examples: binary search; quicksort

Problem: min-1 index

- Given
a boolean array A[1..n]
- Question:
find an $O(n, 1)$ algorithm on a CRCW-PRAM
to compute the smallest value k such that $\mathrm{A}[\mathrm{k}]=1$.


## Method

- First we present an $\left(O\left(\mathrm{n}^{2}\right), \mathrm{O}(1)\right)$ - algorithm to solve the min-1 index problem by concurrent application of a find-min algorithm to compute the minimum value in an integer array.
- Then we discuss an $(\mathrm{O}(\mathrm{n}), \mathrm{O}(1))$ - algorithm for a simpler problem : find-1index: given an array A, does there exist a value k such that $A[k]=1$.
- Finally we combine both algorithms find-min and find-1index to an $(\mathrm{O}(\mathrm{n}), \mathrm{O}(1))$-algorithm using the divide-and-conquer approach.


## Phase (1): find-min

- An $O\left(n^{2}\right), O(1)$-algorithm to determine the minimal value in an integer array A[1..n]:
findmin(A, n)
begin
1 .for $1 \leq i, j \leq n$ pardo $\mathrm{T}=\mathrm{O}(1), \mathrm{W}=\mathrm{O}\left(\mathrm{n}^{2}\right)$ if $A[i] \leq A[j]$ then $B[i, j]:=1$ else $B[i, j]:=0$

2. for $1 \leq \mathrm{i} \leq \mathrm{n}$ pardo
$\mathrm{M}[\mathrm{i}]:=1$;
$\mathrm{T}=\mathrm{O}(1), \mathrm{W}=\mathrm{O}\left(\mathrm{n}^{2}\right)$
for $1 \leq j \leq n$ pardo if $B[i, j]=0$ then $M[i]:=0$; if $M[i]$ then $\min :=A[i]$
3. return min ;
end
$\mathrm{T}=\mathrm{O}(1), \mathrm{W}=\mathrm{O}(1)$
$r=O(1), W=O(1)$

## Phase (2): first version min--index

input: boolean arrayA[1..n]
output: $\quad$ index of first 1 in $A$, else $n+1$

## begin

var $\mathrm{B}[1 . . \mathrm{n}]$ of int

1. for $1 \leq i \leq n$ pardo
if $\mathrm{A}[\mathrm{i}]=1$ then $\mathrm{B}[\mathrm{i}]=\mathrm{i}$
else $B[i]=n+1$;
2. return findmin $(B, n)$
end
Note that this is an $\mathrm{O}\left(\mathrm{n}^{2}\right), \mathrm{O}(1)$ algorithm !

## Phase (3): find1-index

- We turn to a related simpler problem:
find-1index:
given a boolean array A[1..n],
is there an index k such that $\mathrm{A}[\mathrm{k}]=1$ ?
- An $(O(n), O(1))$ CRCW-PRAM algorithm to solve this problem
find-1index(A)
begin
output := 0;
for $1 \leq \mathrm{j} \leq \mathrm{n}$ pardo
if $A[j]=1$ then output : $=1$;
return output
end


## Phase(4) : divide and conquer idea

Combine both algorithms to an $(O(n), 1)$-algorithm using divide and conquer as follows

1. divide array $A$ into $\sqrt{ } n$ subarrays with length $\sqrt{ } n$
2. apply algorithm find-1index to these subarrays in parallel; this enables us to determine in which of the $\sqrt{n}$-arrays a 1 occurs with $\operatorname{cost} T(n)=O(1)$ and $W(n)=O(n)$
3. use the results obtained to construct an array $\mathrm{C}[1 . . \sqrt{ } \mathrm{n}]$ such that $C[i]=1$ iff the $i$-th subarray contains a 1 ; costs $T=O(1), W=O(\sqrt{ } n)$
4. To find the first subarray containing a 1 , apply findmin to $C[1 \ldots \sqrt{ } n]$ costs: $T=O(1), W=O(n)$. If findmin returns $m$, then we look into the subarray $\mathrm{A}[(\mathrm{m}-1) \mathrm{x} \sqrt{\mathrm{n}}+1, \ldots, \mathrm{mx} \mathrm{V}]$.
5. We create an array $D[1 \ldots \sqrt{ } n]$ with $D[j]=(m-1) x \sqrt{n}+j$ if $A[(m-1) x \sqrt{n}+j]=1$ and $D[j]=n+1$ else; we find the first 1 of $A$ by by applying findmin to $D$ in $T=O(1)$ and $W=O(n)$

Example of application


## Finding the maximum

Problem:
Given an array $A[1 . . n]$ such tha
for every $j=1, \ldots, n, 1 \leq A[j] \leq n$
find an algorithm to determine $\max _{i}\{\mathrm{~A}[\mathrm{i}]\}$ in
$W=O(n), T=O(1)$.

- Solution
begin

1. for $1 \leq j \leq n$ pardo $B[A[j]]:=1$
2. $\max :=$ findmaxindex $(B, n)$
end

## Exercise

- Given an integer array A[1..n]
compute the maximum of $n$ elements using an ( $\mathrm{n}^{1+\mathrm{c}}, \mathrm{O}(1)$ ) algorithm, where $c$ is an arbitrary (small) positive constant.

