CHAPTER 8

Lighting

8.1 Fluorescent Lamp Control

Fluorescent Lamp Control

8.1.1 Efficient Fluorescent Lighting using Electronic Ballasts

This section provides a general background to fluorescent lamps and their control requirements, with emphasis placed on high frequency electronic ballasts and their advantages over conventional $50 / 60 \mathrm{~Hz}$ "magnetic" ballasts. Simplified examples of popular electronic ballast topologies suitable for low cost / economy applications are introduced.

The fluorescent lamp.

A fluorescent tube is a low pressure mercury vapour discharge lamp containing an inert gas consisting of argon or krypton at low pressure (below 1 atmosphere) plus a small measured dose of mercury. There is a filament at each end which, when hot, emit electrons to sustain the discharge when the lamp is operating. The mercury vapour discharge produces ultraviolet light which is converted to visible light by the phosphors coating the inside of the glass tube. The glass blocks the exit of the ultraviolet radiation but allows the visible radiation through. See Fig. 1.

Fluorescent tubes exist in many shapes and sizes. Apart from the many compact types that have appeared on the market in recent years as energy efficient replacements for incandescent lamps, the traditional linear tubes range from 150 mm 4 W up to the very high output 2400 mm 215 W .

Modern fluorescent tubes incorporating the latest triphosphor technology (i.e. red, green and blue phosphors similar to those used in modern high brightness television picture tubes) possess efficacies of around 80 lumens per lamp Watt compared with 68 lumens per lamp Watt for the older most efficient "white" fluorescent tubes and around 12 lumens per Watt for an incandescent bulb. Moreover, the triphosphor lamps reveal colour and skin tones more accurately than the standard "white" lamps, which suffer from a deficiency in output at the red end of the spectrum. This results in a greenish hue and a suppression of red colours from anything illuminated by them.

The elimination of the traditional causes of criticism for fluorescent lighting means that this form of lighting is becoming more acceptable in wider applications than ever before. Adjustment of the ratios of the three phosphors can create colour appearances from a very warm, intimate, incandescent equivalent colour temperature of 2700 K through the cool, clean, businesslike 4000 K to the very cool daylight colour temperature of 6500 K , all with high efficacies and good colour rendering properties. Before the availability of triphosphors, these qualities have always been mutually exclusive. You could either have high efficacy and poor colour rendering or poor efficacy and good colour rendering, but not both.

Fig. 1. A fluorescent tube.
A non-operating fluorescent tube will appear as an open circuit, since there is no electrical connection from one end to the other. In order to "strike the arc", a high voltage must be applied across the lamp in order to ionise the gas within. This will instantly "cold start" the lamp and shorten its life by sputtering electron-emitting material from its cathodes.
However, if the cathodes (heaters) are first preheated to generate a space charge of electrons at each end of the lamp, the strike voltage is considerably reduced and lamp life will not be unduly compromised by the start-up.
As soon as arc current flows, the lamp's electrical impedance will drop. It now exhibits a negative impedance characteristic, where an increase in current is accompanied by a reduction in lamp voltage. There must therefore be a current limiting device in circuit to prevent the rapid onset of runaway and destruction of the lamp.
The lamp running current should ideally be sinusoidal to minimise the radiation of electromagnetic interference from the lamp and its supply wires. Sinusoidal lamp current also maximises lamp life. A peak current approaching twice the RMS current will prematurely deplete the electron emitting material from the lamp cathodes. (For a sinewave the peak value is only 1.414 times the RMS value.)
There should also be no D.C. component to the lamp current; that is, the positive and negative half cycles should be of equal duration. If this is not the case, the resulting partial rectification will result in premature depletion of the electron emitter from one of the lamp cathodes.

The ballast.

The requirements of a fluorescent lamp ballast are to:
(a) Preheat the cathodes to induce electron emission.
(b) Provide the starting voltage to initiate the discharge.
(c) Limit the running current to the correct value.

There are several types of mains frequency "magnetic" ballast available. By far the most common circuit for 230 V mains supplies has traditionally been the switchstart ballast (see Fig. 2), where lamp ballasting is provided by the choke. Other circuits include, in order of popularity, the semi-resonant circuit and the quickstart circuit.

The switchstart circuit has been widely adopted because of its simplicity, low cost and improved efficiency when compared with the alternative options mentioned above. Another reason is that the 230 V mains voltage is sufficiently higher than the tube running voltage to allow the use of the simple series impedance ballast in almost all cases. Where this is not possible, for example in most 120 V supplied circuits, the lamp is controlled by a quickstart circuit incorporating voltage step-up.

Fig. 2. Conventional switchstart "magnetic" ballast circuit.

Switchstart ballast operation.

When the voltage is applied to the circuit, the lamp does not operate at first, so the full mains voltage appears across the starter via the choke and lamp cathodes.

The starter consists of bi metallic contacts sealed within a small discharge bulb with an inert gas filling such as argon or neon. The mains voltage causes a glow discharge within the starter which heats up the bi metallic contacts, causing them to close. This completes the circuit and allows preheat current to flow through the choke and both cathodes.
Since the glow discharge within the starter has now ceased, the bi metallic contacts cool down and open. Because the inductance of the choke tries to maintain current flow, the voltage across the lamp rises rapidly and strikes the lamp. If it does not, the starter's contacts close again and the cycle repeats.

Once the lamp has started, the choke controls its current and voltage to the correct levels. The lamp running current is enough to keep the cathodes (heaters) hot and emitting electrons without the need for separate heater supplies, which would otherwise be wasteful of energy. Since the lamp's running voltage is much lower than the mains voltage, there is now not enough voltage to cause a glow discharge in the starter, so it remains open circuit.
The power factor correction (PFC) capacitor draws leading current from the mains to compensate for the lagging current drawn by the lamp circuit.

Why electronic ballasts?

Electronic ballasts have been available for well over a decade. Recent leaps in performance, coupled with ever increasing energy costs, the increased awareness of the advantages they offer, the increasing environmental awareness of the consumer, and the increased acceptability of the new fluorescent light sources in existing and new applications, have seen an upsurge in electronic ballast use since the beginning of the 1990's.

Replacing the most efficient low loss mains frequency switchstart ballast with an electronic ballast leads to reduced energy consumption and improved performance. The reasons for this are detailed below.

Increased light output.

If the operating frequency is increased from 50 Hz to above the audible limit of 20 kHz , fluorescent lamps can produce around 10% more light for the same input power (see Fig. 3). Alternatively, the input power can be reduced for the same light output.

Fig. 3. Typical fluorescent lamp efficacy.

Flicker eliminated.

A fluorescent lamp operating at $50 / 60 \mathrm{~Hz}$ will extinguish twice every cycle as the mains sinewave passes through zero. This produces $100 / 120 \mathrm{~Hz}$ flicker which is noticeable or irritating to some people. It will also produce the well-known and potentially dangerous stroboscopic effects on rotating machinery.

If the lamp is operated at high frequency, however, it produces continuous light. This is because the time constant and hence the response time of the discharge is too slow for the lamp to have a chance to extinguish during each cycle.

The output waveform of an electronic ballast will usually be slightly modulated by $100 / 120 \mathrm{~Hz}$ "ripple". Provided this is kept to a reasonable level by filtering within the ballast, the drawbacks associated with $100 / 120 \mathrm{~Hz}$ flicker are eliminated.

Audible noise eliminated.

Since electronic ballasts operate above the audible range, they do not suffer from the audible noise problems that can occur with mains frequency magnetic ballasts. The familiar buzzing noise is caused by vibrations in the laminations and coil of the choke. This can then excite vibrations in the steel body of the fitting which effectively amplifies the original noise.

Lower ballast power.

An electronic ballast will consume less power and therefore dissipate less heat than a mains frequency magnetic ballast. For example, for two 1500 mm 58 W energy-saving lamps, the typical ballast power dissipations might be 13W per ballast for two 50 Hz magnetic ballasts compared with 9 W for a single electronic ballast driving two lamps.
The energy-saving benefits of electronic ballasts have made it possible to obtain the same light output from fluorescent lamps as would be obtained using a conventional $50 / 60 \mathrm{~Hz}$ magnetic ballast, for a total circuit power (i.e. lamp and ballast) that is actually less than the rated lamp power alone. This is due to two reasons.

Firstly, the lamp can be underrun at high frequency for the same light output. Secondly, the power consumed by the ballast can be so low that the total circuit power is still less than the rated power printed on the lamp. Because of this, energy cost reductions of $20-25 \%$ are achievable.

Extended lamp life.

An electronic ballast which "soft starts" the lamp (i.e. provides preheat to the cathodes before applying a controlled starting pulse) will dislodge a minimum quantity of material from the cathodes during starting. This will give longer lamp life when compared to the uncontrolled impulses to which the lamp is subjected in a switchstart circuit.

Versatile lamp control.

Electronic ballasts are available which permit lamp dimming. This gives substantial energy savings in situations where the lights are linked to an automatic control system which detects ambient light levels and adjusts lamp
output to maintain a constant level of illumination. Lights may also be programmed to dim during intervals when areas are not in use, for example during lunch breaks.

Electronic ballasts can incorporate feedback to detect the operating conditions of the lamp(s) so that failed lamps can be switched off to avoid annoying flicker and possible ballast damage. They can also incorporate regulation, whereby a constant light output is maintained over a range of input voltages. Operation can be either from AC or DC supplies for emergency lighting applications.

Compact and light weight.

Owing to the high frequency of operation, the magnetic components in an electronic ballast are compact and lightweight with cores of ferrite material, whereas at mains frequency the ballast choke must be larger and heavier with bulkier copper windings and a core of laminated steel.
The shape and geometry of a mains frequency choke is determined by magnetic efficiency requirements, whereas the circuitry within an electronic ballast can be arranged to produce a very slim final package. This permits new levels of slimness and compactness for the final ballast.

Electronic ballast topologies.

The typical building blocks of an electronic ballast are shown in Fig. 4.
An increasing number of electronic ballasts are employing active power factor correction in the form of a boost converter between the rectifier and DC filter stages. (Figure 5 shows a simplified boost converter arrangement.) This obliges the ballast to draw current over most of each mains half cycle instead of the usual current spike that a rectifier / DC filter would demand at each peak of the voltage waveform. This reduces the harmonic content of the current and improves the power factor. It will also reduce the size of the electromagnetic interference (EMI) filter required, since filtering is now required at the higher harmonic frequencies of the boost converter switching frequency instead of at the mains frequency and harmonics of it.
Electronic ballasts take many forms. The simplest and most economical form might consist of a free-running self-oscillating circuit using bipolar transistors. This would be an open loop circuit (i.e. no feedback to detect lamp operating conditions).
More expensive options might contain a controlled oscillator in a closed loop circuit using MOSFETs. Here, features could include regulation for varying AC and DC supply voltages, adjustable lamp brightness, soft starting and a mechanism to detect and shut down failed lamps.

Fig. 4. Electronic ballast block diagram.

Fig. 5. A boost converter for active power factor correction.

Blocking oscillator.

The most basic form of electronic ballast uses a blocking oscillator as shown in Fig. 6. Its use is restricted mainly to low voltage DC , low power ballasts as used in handlamps, leisure lighting and emergency lighting, where operation is only for short periods. This is because the lamp has a severely limited life when it is driven by a spiky waveform, rich in harmonics, such as that produced by this circuit. This topology might typically be used to operate tubes of 4 W to 13W ratings only because of the excessive voltage and current stresses and switching losses that would be experienced by the transistor in higher power mains voltage versions.
Voltage step-up to drive the lamp from the low voltage supply is achieved by the turns ratio of the transformer primary and secondary, while oscillation is maintained by the positive feedback supplied by the auxiliary winding connected to the transistor's base. The values of R, C, transformer primary inductance $\mathrm{L}_{\text {PRI }}$ and the transistor parameters set the oscillation frequency and the mark / space ratio of the waveform (which should be 1:1 for the reason given in the first section).

No separate ballast inductor is required, since the only energy delivered to the lamp during the transistor's OFF time is what was stored in $\mathrm{L}_{\text {PRI }}$ during the preceding ON time. The transistor remains OFF and will not turn ON again until all the stored energy has been delivered to the load. Lamp power is therefore controlled by the amount of energy stored in the $\mathrm{L}_{\text {PRI }}$ during each ON period.

Fig. 6. Basic low voltage ballast using a blocking oscillator.

Unlike the blocking oscillator, mains powered electronic ballasts usually use two switching power transistors in a push pull or half bridge configuration. This can either be a self oscillating or a driven oscillator circuit. The driven oscillator option permits easier lamp control and dimming. The self oscillating option has cost advantages where the benefits of high frequency lighting are required without the necessity for lamp dimming.

The push pull inverter.

A push pull circuit can appear as a voltage fed inverter with series resonant load or a current fed inverter with parallel resonant load. In both cases a centre tapped transformer is required.

Voltage fed push pull inverter.

Figure 7 shows a simplified circuit. This example provides isolation of the output from the mains supply with a separate secondary winding.
In the voltage fed arrangement, the D.C. rail voltage is fed straight to the centre tap. Both ends of the winding are connected to zero volts via transistors, which are alternately switched on during operation. The alternate passage of current in opposite directions through each half of the primary winding induces a square wave voltage across the secondary.
Since the full D.C. rail voltage appears across half the primary winding at a time, twice this voltage will appear across the whole primary winding. This means that during each transistor's "off" period, it will experience a maximum theoretical V_{CE} of $2 \times$ D.C. rail voltage.

Fig. 7. Voltage fed push pull ballast with isolated output.

When power is first applied, the secondary voltage should not be high enough to cold start the lamp, which should remain in the high impedance state. The only current flowing will be through the series resonant combination of L \& C, and both lamp cathodes. This preheat current will be enough to initiate electron emission from the cathodes which will in turn lower the lamp striking voltage to a point where the voltage across the capacitor can then start the lamp (usually within a second).
After starting, the lamp voltage will drop and the current will be limited and filtered by L. C will help to filter out residual harmonic frequencies and its current will fall to negligible proportions at the fundamental operating frequency. The resulting lamp current will closely resemble a sinewave.

The transistor base drives are derived from auxiliary windings on the transformer which provide the necessary positive feedback. An advantage with this transformer-based arrangement is the isolation it provides between the lamp and the mains supply.

Current fed parallel resonant push pull inverter.

The main difference with this circuit over the previous one is that the D.C. rail voltage is fed to the transformer centre tap via an inductor which acts as a current source. A capacitor C across the transformer primary forms a parallel resonant load in combination with the primary winding inductance (see Fig. 8). Instead of a square wave as in the voltage fed circuit, a full wave rectified sinewave appears at the centre tap whose theoretical peak amplitude is $\pi / 2 x$ V_{DC}. Twice this amplitude appears across the whole winding for the same reason as in the voltage fed push pull circuit. Therefore the maximum theoretical $\mathrm{V}_{\mathrm{CE}}=\pi \times \mathrm{V}_{\mathrm{DC}}$.

Fig. 8. Current fed parallel resonant push pull ballast with isolated output.

Since each successive half sine produces current flow in opposite directions through the two half windings, a sinewave is produced across the whole winding whose peak to peak amplitude is $2 \pi \times V_{D C}$.
The additional cost of the inductor might be regarded as a disadvantage. However, the beauty of current fed parallel resonant circuits, of which this is one example, is that they naturally produce a sinusoidal output, so selection of the ballast components for their harmonic filtering properties is no longer so important. This allows the use of a series ballast capacitor instead of the series L normally required.

Another benefit with this type of circuit is its ability to continue normal operation with varying or open circuit loads. This permits independent operation of parallel-connected lamps across the secondary, each with its own ballast capacitor, where failure of one or more lamps
will not affect the operation of the remaining lamps. This is unlike series-connected lamps, where the failure of one tube will disable all the tubes on that ballast.

Sinusoidal output topologies are very popular in the self oscillating low cost ballast market because of these advantages and the circuit simplicity.

The half bridge inverter.

The half bridge topology contains two npn transistors connected in series across the D.C. rail with the load connected to their mid point. The half bridge is so called because the return path for the load current is provided by two series-connected capacitors across the D.C. rail. (A full bridge circuit would have transistors in these positions also, but this arrangement is rarely used in electronic ballasts for fluorescent lamps. Although the required voltage rating of the transistors would be halved, this would not compensate for the increased cost of four power transistors instead of two, and the extra complication of controlling the timing of the switching of all four transistors.)

The two capacitors, which have a very low reactance and are essentially a short circuit at the ballast operating frequency, create a mid-point A.C. reference between the D.C. rails. This blocks the D.C. offset equal to half the rail voltage that would be applied to the lamp if the return path were merely taken to one of the rails.

Current fed parallel resonant half bridge inverter.

Figure 9 shows the simplified circuit. Transformer isolation is provided, and the sinusoidal output permits the use of ballast capacitors as for the current fed push pull topology. The series inductance L in each power supply line acts as the current source.

Fig. 9. Current fed parallel resonant half bridge ballast with isolated output.

As each transistor conducts in turn, the current fed resonant load causes alternate polarity half sinewaves with peak voltages of $\pi / 2 \times V_{D C}$ to appear at one end of the transformer primary. Each half sine appears across the non-conducting transistor. Therefore the maximum theoretical $\mathrm{V}_{\mathrm{CE}}=\pi / 2 \mathrm{x}$ $V_{D C}$.
The sum of these half sines produces a full sinewave with a peak to peak amplitude of $\pi \times \mathrm{V}_{\mathrm{DC}}$. However, as the return current flows to the A.C. half rail created by the half bridge capacitors, only half this voltage appears across the primary, resulting in a peak to peak primary voltage of $\pi / 2$ $x V_{D C}$.

Voltage fed half bridge inverter.

See Fig. 10. This circuit does not employ a transformer so output isolation is not provided. Feedback to drive the transistors is now supplied from two auxiliary windings on the current transformer CT1 in the lamp current path.
As this is a voltage fed circuit whose output is not naturally sinusoidal, lamp starting, ballasting and waveform shaping are provided by the series L and parallel C as for the voltage fed push pull circuit.

In the voltage fed half bridge circuit, since the transistors are "firmly anchored" to the supply rails without any current source series inductance, they will experience a maximum theoretical V_{CE} equal to the D.C. rail voltage.

Fig. 10. Voltage fed half bridge ballast.

Variation on the voltage fed half bridge circuit.

A variation on this circuit is shown in Fig. 11, where the two half bridge capacitors are replaced by the single D.C. blocking capacitor C2. This enables the load to be returned to the positive D.C. rail.

The circuit operates as follows:
On initial power-up, before the lamp has struck, C1, L and C2 form a series resonant circuit. C2 is larger than C1 so it looks like a short circuit compared to C1. C1 therefore dominates and dictates the resonant frequency in
combination with L. A high voltage is developed across C1 at resonance which starts the tube. At this point the tube voltage across C1 collapses and C2 then takes over in dictating a lower running frequency in combination with L .

Fig. 11. Variation on voltage fed series resonant half bridge circuit.

This circuit is the one most commonly used in the electronically ballasted compact fluorescent lamps and it lends itself to driven as well as self oscillating circuits.

Summary.

The circuit examples presented in this Publication all use bipolar transistors, mainly for cost advantage reasons,
especially where high voltage devices up to 1000 V rating and above are required. Ballast manufacturers have perfected many good, reliable designs using such devices in circuits based on the simplified topologies shown.

Popular topologies for low cost electronic ballasts have proved to be the current fed parallel resonant circuits. To summarise the reasons for this, they naturally produce the ideal sinewave output. This permits the use of simple ballast capacitors instead of inductors. The circuits also maintain safe operation with abnormal load conditions. Lamps can be operated in parallel, where the failure of one or more lamp will not disable the remaining lamps.

The current fed topologies require higher voltage transistors than the voltage fed topologies. For example, for the current fed half bridge topology, allowing for safety margins of around 400V for voltage spikes at start-up and 110% mains voltage, a 120 V ballast would require transistors with typical voltage ratings of at least 700V. The ratings for 230 V mains would typically be at least 950 V , and for 277 V mains typical voltage ratings of at least 1100 V would be required.

The ratings for a current fed push pull topology would be $1000 \mathrm{~V}, 1500 \mathrm{~V}$ and 1700 V respectively.

8.1.2 Electronic Ballasts - Philips Transistor Selection Guide

Section 8.1.1 provides an introduction to fluorescent lamps and the circuits required to operate them for maximum life and efficiency. Several simplified electronic ballast topologies are introduced.
This section lists those topologies with the theoretical voltage demands they place on the transistors, together with a selection table of suitable Philips transistors.
a) Voltage fed push pull inverter.

The D.C. rail voltage appears at the transformer centre tap. Therefore $\mathrm{V}_{\text {c.t. }}=\mathrm{V}_{\mathrm{DC}}$.
Half of the transformer's primary winding is energised with the full D.C. rail voltage at any one time. Therefore twice this voltage will appear across the whole winding (autotransformer effect). This voltage appears across each transistor in turn when it is non-conducting. So, during stable circuit operation and neglecting unforeseen voltage spikes:

$$
\mathrm{V}_{\mathrm{CE}(\text { max })}=2 \times \mathrm{V}_{\mathrm{DC}} .
$$

b) Current fed push pull inverter.

The transformer centre tap is no longer connected directly to the D.C. rail. The voltage developed across the series inductor L as each transistor conducts results in a positive half sinewave at the centre tap whose average voltage is equal to the D.C. rail voltage. A half sine instead of a rectangular pulse is produced because of the resonant nature of the load.
Therefore $\mathrm{V}_{\text {c.t.(ave) }}=\mathrm{V}_{\mathrm{DC}}$.
The peak value of this waveform can be shown by integration to be $\pi / 2 \times$ its average value.
Therefore $\mathrm{V}_{\text {c.t.(pk) }}=\pi / 2 \times \mathrm{V}_{\text {c.t.(ave) }}=\pi / 2 \times \mathrm{V}_{\mathrm{DC}}$.
Each successive half sine is conducted through alternate halves of the primary, so twice this amplitude appears across the full primary. This gives a peak voltage of twice the peak centre tap voltage appearing across the non-conducting transistor (as for the voltage fed push pull circuit), so:

$$
\mathrm{V}_{\mathrm{CE}(\mathrm{pk})}=\pi \times \mathrm{V}_{\mathrm{DC}} .
$$

c) Current fed half bridge inverter.

The transformer primary is driven from one end by the collector-emitter junction point of the two transistors. If this were a voltage fed circuit without any series L, the primary would be alternately connected to the positive and negative rails by the alternate transistor switching to produce a square wave with a peak to peak amplitude of V_{DC}. However, because this is a current fed resonant circuit, the conduction of each transistor will produce a half sine whose average voltage is equal to the D.C. rail voltage.
Therefore $\mathrm{V}_{\text {(ave) }}=\mathrm{V}_{\mathrm{DC}}$.
By integrating it can be shown that the half sine will have a peak amplitude of $\pi / 2 \times$ its average value.
Therefore $\mathrm{V}_{(\mathrm{pk})}=\pi / 2 \times \mathrm{V}_{\text {(ave) }}=\pi / 2 \times \mathrm{V}_{\mathrm{DC}}$.

This voltage appears across the non-conducting transistor, so:

$$
\mathrm{V}_{\mathrm{CE}(\mathrm{pk})}=\pi / 2 \times \mathrm{V}_{\mathrm{DC}} .
$$

d) Voltage fed half bridge inverter.

As the transistors are now connected directly to the D.C. rails, their alternate switching will switch the transformer primary between the D.C. rails only.

Therefore $\mathrm{V}_{(\text {max })}=\mathrm{V}_{\mathrm{DC}}$.
As this voltage appears across the non-conducting transistor:

$$
\mathrm{V}_{\mathrm{CE}(\max)}=\mathrm{V}_{\mathrm{DC}} .
$$

Transistor selection guide.

This guide lists suitable transistors with maximum recommended output powers for the different topologies. It assumes that the ballast's D.C. rail is obtained from rectified and smoothed A.C. mains. If boost power factor correction is included which boosts the D.C. rail voltage to around 400 V irrespective of mains voltage, the suggested transistors for 277 V mains should be selected.

	POLOGY:	a) V. fed P.P.		b) C. fed P.P.		c) C. fed H.B.		d) V. fed H.B.	
A.C. SUPPLY:	120V	BUW84/85 BUX84/85 BUT211 BUT18A BUT12A BUW12A	$\begin{aligned} & 35 \mathrm{~W} \\ & 35 \mathrm{~W} \\ & 90 \mathrm{~W} \\ & 110 \mathrm{~W} \\ & 140 \mathrm{~W} \\ & 140 \mathrm{~W} \end{aligned}$	BUX87P BUX85 BUT11A BUT18A BUT12A BUW12A	13W 55W 140W 170W 230W 230W	BUW84/85 BUX84/85 BUT211 BUT18A BUT12A BUW12A	$\begin{aligned} & 25 \mathrm{~W} \\ & 25 \mathrm{~W} \\ & 70 \mathrm{~W} \\ & 80 \mathrm{~W} \\ & 110 \mathrm{~W} \\ & 110 \mathrm{~W} \end{aligned}$	BUW84/85 BUX84/85 BUT211 BUT18A BUT12A BUW12A	15W 15W 40W 55W 70W 70W
	230 V	BUX87P BUW85 BUX85 BUT11A BUT18A BUT12A BUW12A	15 W 70 W 70 W 170 W 210 W 280 W 280 W	BU1706A BU1706AX BU508A	$\begin{aligned} & 230 \mathrm{~W} \\ & 230 \mathrm{~W} \\ & 360 \mathrm{~W} \end{aligned}$	BUX87P BUW85 BUX85 BUT11A BUT18A BUT12A BUW12A	13 W 55 W 55 W 140 W 160 W 220 W 220 W	BUW84/85 BUX84/85 BUT211 BUT18A BUT12A BUW12A	30W 30W 80W 100W 140W 140W
	277V \& most boosted designs	BU1706A BU1706AX BU508A	$\begin{aligned} & \text { 170W } \\ & \text { 170W } \\ & 280 \mathrm{~W} \end{aligned}$	BU1706A BU1706AX	$\begin{aligned} & 260 \mathrm{~W} \\ & 260 \mathrm{~W} \end{aligned}$	BU1706A BU1706AX BU508A	$\begin{aligned} & 130 \mathrm{~W} \\ & 130 \mathrm{~W} \\ & 220 \mathrm{~W} \end{aligned}$	BUW84/85 BUX84/85 BUT211 BUT18A BUT12A BUW12A	$\begin{array}{\|l} \hline 40 \mathrm{~W} \\ 40 \mathrm{~W} \\ 100 \mathrm{~W} \\ 125 \mathrm{~W} \\ 170 \mathrm{~W} \\ 170 \mathrm{~W} \end{array}$

8.1.3 An Electronic Ballast - Base Drive Optimisation

This section investigates the transistor base drive circuit in a current fed half bridge ballast. (Fig. 1 shows the simplified circuit.) The effect on switching waveforms of progressing from a simple base drive circuit to the optimised solution will be shown.

Fig. 1. Current fed half bridge ballast.

Base drive requirements.

1. Each transistor must not be overdriven and oversaturated when conducting otherwise excessive base power dissipation will result. The time will also be increased in bringing the transistor out of saturation during turn-off, leading to increased switching losses.
2. The transistor must not be underdriven because this will result in excessive collector-to-emitter voltage (V_{CE}) during conduction, leading to excessive ON-state losses or inability to sustain oscillation. However, because the transistor is unsaturated, there will be less charge to extract from the base, resulting in a shorter storage time and faster turn-off.
3. Reliable and correct circuit operation should be maintained for all expected transistor gains, maximum and minimum load, maximum and minimum supply voltage and all component tolerances.

Base drive optimisation.

The transformer's auxiliary windings which provide base drive might contain just one or two turns each. In order to provide rapid transistor turn-off, their peak loaded output
voltage would need to be such that the transistor 'sees' a turn-off voltage of around minus 5 V . An approximation to this drive voltage could be arrived at empirically by increasing the number of auxiliary turns one by one. Any final voltage adjustment, if necessary, can be achieved by varying the base drive components.

Simple base drive.

In order to meet the requirements of non-saturation and rapid turn-off, the simplest base drive might consist of a resistor to limit the positive base current and a Schottky diode in parallel with it to discharge the base as quickly as possible. See Fig. 2.

Fig. 2. Simple base drive.
A Schottky diode is specified for its fast switching and low forward voltage drop to best meet the rapid turn-off requirements. A 1 A 40 V device such as the BYV10-40 is ideally suited.
If the resistor is selected empirically so that the transistor is barely saturating, this simple circuit will work, but only for a given load current, supply voltage, transistor gain and base drive voltage from the transformer auxiliary winding. Altering any of these conditions will either cause underdriving of the transistor and, ultimately, cessation of oscillation, or else the transistor will be overdriven, causing increased collector current fall time and excessive switching losses.
For example, the resistor value was optimised for transistors with low gain limits. Fig. 3 shows the resulting I_{C} fall at transistor turn-off, while Fig. 4 shows the effect of replacing the transistor with a high gain limit sample. The shaded areas bounded by the I_{C} and $V_{C E}$ curves represent transistor power dissipation during switching.

Simple base drive.

Fig. 3. Low h_{FE}. I_{C} fall with V_{CE}.
Ic ($0.2 \mathrm{~A} / \mathrm{div}$)
Vce (50V/div)

Simple base drive.
Fig. 4. High h_{FE}. I_{C} fall with V_{CE}.

Improved circuit.

What is required is a means of providing enough base drive under worst case conditions of maximum load current, minimum supply voltage, minimum transistor gain and minimum base drive voltage, while avoiding excessive saturation in the opposite condition. This can be achieved by diverting excess positive base drive current into the collector path when the transistor is fully turned on. This requirement is partly met by a Baker Clamp arrangement as shown in Fig. 5.
When the transistor is fully conducting, V_{CE} will be at a minimum. This will bring V_{C} close to V_{B} so that any excess base drive will then flow through anti saturation diode D2 to the collector. As a first approximation, the single resistor R is divided equally into two and $D 2$ taps its voltage from the mid point. Figs. 6 and 7 show the resulting I_{c} fall waveforms. Considerably reduced transistor saturation is evident.

Fig. 5. Improved base drive.

Ic ($0.2 \mathrm{~A} / \mathrm{div}$)
Vce ($50 \mathrm{~V} / \mathrm{div}$)

Improved base drive.
Fig. 6. Low h_{FE}. I_{C} fall with V_{CE}.
Ic ($0.2 \mathrm{~A} / \mathrm{div}$)
Vce ($50 \mathrm{~V} / \mathrm{div}$)

Improved base drive.
Fig. 7. High h_{FE}. I_{C} fall with V_{CE}.

With regard to the base waveforms, where the simple circuit produces more base drive current than is necessary, as shown in Fig. 8, the improved circuit reduces this to that shown in Fig. 9.

Fig. 8. Simple base drive.
High $\mathrm{h}_{\mathrm{FE}} . \mathrm{I}_{\mathrm{B}}$.
Ib (0.1 A/div)

Fig. 9. Improved base drive.
High $\mathrm{h}_{\mathrm{FE}} . \mathrm{I}_{\mathrm{B}}$.

Optimised base drive.

To ensure correct operation under all conditions, base drive can be optimised by adjusting the ratio of the two resistors to vary the amount of tap-off voltage. With the base resistor divided equally into two, this particular circuit suffered from a lack of base drive at low supply voltage. Too much drive had been diverted away from the base. This was corrected by moving the tap-off point to the right to split the resistor two thirds to one third to reduce the amount of diverted base drive. Referring to Fig. 5, R1 becomes $2 / 3 \times \mathrm{R}$ and R2 becomes $1 / 3 \times R$.

Figs. 11 and 12 show the optimised IC fall waveforms. A few cycles of the switching waveforms with optimised base drive are shown in Fig. 10.

Startup circuit.

The half bridge circuit as described so far cannot start of its own accord. Both transistors are off and will remain off when power is applied until one of them is artificially turned on to draw current through the transformer primary. This will then induce a voltage in the auxiliary windings which will provide the necessary base drive to maintain self oscillation. Startup is usually achieved using a diac such as the BR100/03. The circuit is shown in Fig. 13.

When power is first applied, oscillator start-up is achieved as follows:

Transistors Q1 and Q2 are initially non conducting. Resistor R4, whose value will be several hundred kilohms, provides a high impedance path between Q2's collector and the positive rail to ensure that Q2 has the full D.C. rail voltage across it prior to start-up.
Capacitor C charges up via R1 until the breakover voltage of the diac D8 is reached. The diac breaks over and dumps the capacitor's charge into the base of Q2 to turn it on. Q2 draws current through the transformer primary. From now on, oscillation is maintained by the voltages induced on the auxiliary base drive windings.
Diode D1 discharges C every time Q2 turns on, thereby preventing the diac's breakover voltage being reached during normal circuit oscillation. This avoids repeated triggering of the diac when it is not required, so preventing oversaturation of Q2. (The length of time for C to charge to the diac's breakover voltage is much longer than the time between ON periods of Q2.)

D4 and D5 provide reverse current protection for Q1 and Q2.

Fig. 13. A classic startup arrangement. (Part of current fed half bridge circuit.)

Acknowledgments

We are grateful for all the contributions from our colleagues within Philips and to the Application Laboratories in Eindhoven and Hamburg.
We would also like to thank Dr.P.H.Mellor of the University of Sheffield for contributing the application note of section 3.1.5. The authors thank Mrs.R.Hayes for her considerable help in the preparation of this book.
The authors also thank Mr.D.F.Haslam for his assistance in the formatting and printing of the manuscripts.

Contributing Authors

N.Bennett	D.J.Harper	J.Oosterling
M.Bennion	W.Hettersheid	N.Pichowicz
D.Brown	J.v.d.Hooff	W.B.Rosink
C.Buethker	J.Houldsworth	D.C. de Ruiter
L.Burley	M.J.Humphreys	D.Sharples
G.M.Fry	P.H.Mellor	H.Simons
R.P.Gant	R.Miller	T.Stork
J.Gilliam	H.Misdom	D.Tebb
D.Grant	P.Moody	H.Verhees
N.J.Ham	S.A.Mulder	F.A.Woodworth
C.J.Hammerton	E.B.G. Nijhof	T.van de Wouw

This book was originally prepared by the Power Semiconductor Applications Laboratory, of the Philips Semiconductors product division, Hazel Grove:
M.J.Humphreys
D.Brown
L.Burley
C.J.Hammerton
R.Miller

It was revised and updated, in 1994, by:
N.J.Ham
C.J.Hammerton
D.Sharples

Preface

This book was prepared by the Power Semiconductor Applications Laboratory of the Philips Semiconductors product division, Hazel Grove. The book is intended as a guide to using power semiconductors both efficiently and reliably in power conversion applications. It is made up of eight main chapters each of which contains a number of application notes aimed at making it easier to select and use power semiconductors.
CHAPTER 1 forms an introduction to power semiconductors concentrating particularly on the two major power transistor technologies, Power MOSFETs and High Voltage Bipolar Transistors.
CHAPTER 2 is devoted to Switched Mode Power Supplies. It begins with a basic description of the most commonly used topologies and discusses the major issues surrounding the use of power semiconductors including rectifiers. Specific design examples are given as well as a look at designing the magnetic components. The end of this chapter describes resonant power supply technology.
CHAPTER 3 describes motion control in terms of ac, dc and stepper motor operation and control. This chapter looks only at transistor controls, phase control using thyristors and triacs is discussed separately in chapter 6.
CHAPTER 4 looks at television and monitor applications. A description of the operation of horizontal deflection circuits is given followed by transistor selection guides for both deflection and power supply applications. Deflection and power supply circuit examples are also given based on circuits designed by the Product Concept and Application Laboratories (Eindhoven).
CHAPTER 5 concentrates on automotive electronics looking in detail at the requirements for the electronic switches taking into consideration the harsh environment in which they must operate.
CHAPTER 6 reviews thyristor and triac applications from the basics of device technology and operation to the simple design rules which should be followed to achieve maximum reliability. Specific examples are given in this chapter for a number of the common applications.
CHAPTER 7 looks at the thermal considerations for power semiconductors in terms of power dissipation and junction temperature limits. Part of this chapter is devoted to worked examples showing how junction temperatures can be calculated to ensure the limits are not exceeded. Heatsink requirements and designs are also discussed in the second half of this chapter.

CHAPTER 8 is an introduction to the use of high voltage bipolar transistors in electronic lighting ballasts. Many of the possible topologies are described.

Table of Contents

CHAPTER 1 Introduction to Power Semiconductors

General 3
1.1.1 An Introduction To Power Devices 5
Power MOSFET 17
1.2.1 PowerMOS Introduction 19
1.2.2 Understanding Power MOSFET Switching Behaviour 29
1.2.3 Power MOSFET Drive Circuits 39
1.2.4 Parallel Operation of Power MOSFETs 49
1.2.5 Series Operation of Power MOSFETs 53
1.2.6 Logic Level FETS 57
1.2.7 Avalanche Ruggedness 61
1.2.8 Electrostatic Discharge (ESD) Considerations 67
1.2.9 Understanding the Data Sheet: PowerMOS 69
High Voltage Bipolar Transistor 77
1.3.1 Introduction To High Voltage Bipolar Transistors 79
1.3.2 Effects of Base Drive on Switching Times 83
1.3.3 Using High Voltage Bipolar Transistors 91
1.3.4 Understanding The Data Sheet: High Voltage Transistors 97
CHAPTER 2 Switched Mode Power Supplies 103
Using Power Semiconductors in Switched Mode Topologies 105
2.1.1 An Introduction to Switched Mode Power Supply Topologies 107
2.1.2 The Power Supply Designer's Guide to High Voltage Transistors 129
2.1.3 Base Circuit Design for High Voltage Bipolar Transistors in Power Converters 141
2.1.4 Isolated Power Semiconductors for High Frequency Power Supply Applications 153
Output Rectification 159
2.2.1 Fast Recovery Epitaxial Diodes for use in High Frequency Rectification 161
2.2.2 Schottky Diodes from Philips Semiconductors 173
2.2.3 An Introduction to Synchronous Rectifier Circuits using PowerMOS Transistors 179
Design Examples 185
2.3.1 Mains Input 100 W Forward Converter SMPS: MOSFET and Bipolar Transistor Solutions featuring ETD Cores 187
2.3.2 Flexible, Low Cost, Self-Oscillating Power Supply using an ETD34 Two-Part Coil Former and 3C85 Ferrite 199
Magnetics Design 205
2.4.1 Improved Ferrite Materials and Core Outlines for High Frequency Power Supplies 207
Resonant Power Supplies 217
2.5.1. An Introduction To Resonant Power Supplies 219
2.5.2. Resonant Power Supply Converters - The Solution For Mains Pollution Problems 225
CHAPTER 3 Motor Control 241
AC Motor Control 243
3.1.1 Noiseless A.C. Motor Control: Introduction to a 20 kHz System 245
3.1.2 The Effect of a MOSFET's Peak to Average Current Rating on Invertor Efficiency 251
3.1.3 MOSFETs and FREDFETs for Motor Drive Equipment 253
3.1.4 A Designers Guide to PowerMOS Devices for Motor Control 259
3.1.5 A 300V, 40A High Frequency Inverter Pole Using Paralleled FREDFET Modules 273
DC Motor Control 283
3.2.1 Chopper circuits for DC motor control 285
3.2.2 A switched-mode controller for DC motors 293
3.2.3 Brushless DC Motor Systems 301
Stepper Motor Control 307
3.3.1 Stepper Motor Control 309
CHAPTER 4 Televisions and Monitors 317
Power Devices in TV \& Monitor Applications (including selection guides) 319
4.1.1 An Introduction to Horizontal Deflection 321
4.1.2 The BU25XXA/D Range of Deflection Transistors 331
4.1.3 Philips HVT's for TV \& Monitor Applications 339
4.1.4 TV and Monitor Damper Diodes 345
TV Deflection Circuit Examples 349
4.2.1 Application Information for the 16 kHz Black Line Picture Tubes 351
4.2.2 $32 \mathrm{kHz} / 100 \mathrm{~Hz}$ Deflection Circuits for the 66FS Black Line Picture Tube 361
SMPS Circuit Examples 377
4.3.1 A 70W Full Performance TV SMPS Using The TDA8380 379
4.3.2 A Synchronous 200W SMPS for 16 and 32 kHz TV 389
Monitor Deflection Circuit Example 397
4.4.1 A Versatile $30-64 \mathrm{kHz}$ Autosync Monitor 399
CHAPTER 5 Automotive Power Electronics 421
Automotive Motor Control (including selection guides) 423
5.1.1 Automotive Motor Control With Philips MOSFETS 425
Automotive Lamp Control (including selection guides) 433
5.2.1 Automotive Lamp Control With Philips MOSFETS 435
The TOPFET 443
5.3.1 An Introduction to the 3 pin TOPFET 445
5.3.2 An Introduction to the 5 pin TOPFET 447
5.3.3 BUK101-50DL - a Microcontroller compatible TOPFET 449
5.3.4 Protection with 5 pin TOPFETs 451
5.3.5 Driving TOPFETs 453
5.3.6 High Side PWM Lamp Dimmer using TOPFET 455
5.3.7 Linear Control with TOPFET 457
5.3.8 PWM Control with TOPFET 459
5.3.9 Isolated Drive for TOPFET 461
5.3.10 3 pin and 5 pin TOPFET Leadforms 463
5.3.11 TOPFET Input Voltage 465
5.3.12 Negative Input and TOPFET 467
5.3.13 Switching Inductive Loads with TOPFET 469
5.3.14 Driving DC Motors with TOPFET 471
5.3.15 An Introduction to the High Side TOPFET 473
5.3.16 High Side Linear Drive with TOPFET 475
Automotive Ignition 477
5.4.1 An Introduction to Electronic Automotive Ignition 479
5.4.2 IGBTs for Automotive Ignition 481
5.4.3 Electronic Switches for Automotive Ignition 483
CHAPTER 6 Power Control with Thyristors and Triacs 485
Using Thyristors and Triacs 487
6.1.1 Introduction to Thyristors and Triacs 489
6.1.2 Using Thyristors and Triacs 497
6.1.3 The Peak Current Handling Capability of Thyristors 505
6.1.4 Understanding Thyristor and Triac Data 509
Thyristor and Triac Applications 521
6.2.1 Triac Control of DC Inductive Loads 523
6.2.2 Domestic Power Control with Triacs and Thyristors 527
6.2.3 Design of a Time Proportional Temperature Controller 537
Hi-Com Triacs 547
6.3.1 Understanding Hi-Com Triacs 549
6.3.2 Using Hi-Com Triacs 551
CHAPTER 7 Thermal Management 553
Thermal Considerations 555
7.1.1 Thermal Considerations for Power Semiconductors 557
7.1.2 Heat Dissipation 567
CHAPTER 8 Lighting 575
Fluorescent Lamp Control 577
8.1.1 Efficient Fluorescent Lighting using Electronic Ballasts 579
8.1.2 Electronic Ballasts - Philips Transistor Selection Guide 587
8.1.3 An Electronic Ballast - Base Drive Optimisation 589

Index

Airgap, transformer core, 111, 113
Anti saturation diode, 590
Asynchronous, 497
Automotive
fans
see motor control
IGBT, 481, 483
ignition, 479, 481, 483
lamps, 435, 455
motor control, 425, 457, 459, 471, 475
resistive loads, 442
reverse battery, 452, 473, 479
screen heater, 442
seat heater, 442
solenoids, 469
TOPFET, 473
Avalanche, 61
Avalanche breakdown thyristor, 490
Avalanche multiplication, 134
Baker clamp, 138, 187, 190
Ballast
electronic, 580
fluorescent lamp, 579
switchstart, 579
Base drive, 136
base inductor, 147
base inductor, diode assisted, 148
base resistor, 146
drive transformer, 145
drive transformer leakage inductance, 149
electronic ballast, 589
forward converter, 187
power converters, 141
speed-up capacitor, 143
Base inductor, 144, 147
Base inductor, diode assisted, 148
Boost converter, 109
continuous mode, 109
discontinuous mode, 109
output ripple, 109
Bootstrap, 303
Breakback voltage diac, 492
Breakdown voltage, 70
Breakover current diac, 492
Breakover voltage diac, 492, 592
thyristor, 490

Bridge circuits
see Motor Control - AC
Brushless motor, 301, 303
Buck-boost converter, 110
Buck converter, 108-109
Burst firing, 537
Burst pulses, 564
Capacitance
junction, 29
Capacitor
mains dropper, 544
CENELEC, 537
Charge carriers, 133
triac commutation, 549
Choke
fluorescent lamp, 580
Choppers, 285
Clamp diode, 117
Clamp winding, 113
Commutation
diode, 164
Hi-Com triac, 551
thyristor, 492
triac, 494, 523, 529
Compact fluorescent lamp, 585
Continuous mode
see Switched Mode Power Supplies
Continuous operation, 557
Converter (dc-dc)
switched mode power supply, 107
Cookers, 537
Cooling
forced, 572
natural, 570
Crest factor, 529
Critical electric field, 134
Cross regulation, 114, 117
Current fed resonant inverter, 589
Current Mode Control, 120
Current tail, 138, 143
Damper Diodes, 345, 367
forward recovery, 328, 348
losses, 347
outlines, 345
picture distortion, 328, 348
selection guide, 345
Darlington, 13
Data Sheets
High Voltage Bipolar Transistor, 92,97,331
MOSFET, 69
dc-dc converter, 119
Depletion region, 133
Desaturation networks, 86
Baker clamp, 91, 138
dl/dt
triac, 531
Diac, 492, 500, 527, 530, 591
Diode, 6
double diffused, 162
epitaxial, 161
schottky, 173
structure, 161
Diode Modulator, 327, 367
Disc drives, 302
Discontinuous mode
see Switched Mode Power Supplies
Domestic Appliances, 527
Dropper
capacitive, 544
resistive, 544, 545
Duty cycle, 561

EFD core

see magnetics
Efficiency Diodes
see Damper Diodes
Electric drill, 531
Electronic ballast, 580
base drive optimisation, 589
current fed half bridge, 584, 587, 589
current fed push pull, 583, 587
flyback, 582
transistor selection guide, 587
voltage fed half bridge, 584, 588
voltage fed push pull, 583, 587
EMC, 260, 455
see RFI, ESD
TOPFET, 473
Emitter shorting
triac, 549
Epitaxial diode, 161
characteristics, 163
dl/dt, 164
forward recovery, 168
lifetime control, 162
operating frequency, 165
passivation, 162
reverse leakage, 169
reverse recovery, 162, 164
reverse recovery softness, 167
selection guide, 171
snap-off, 167
softness factor, 167
stored charge, 162
technology, 162

ESD, 67
see Protection, ESD
precautions, 67
ETD core see magnetics

F-pack
see isolated package
Fall time, 143, 144
Fast Recovery Epitaxial Diode (FRED) see epitaxial diode
FBSOA, 134
Ferrites see magnetics
Flicker
fluorescent lamp, 580
Fluorescent lamp, 579
colour rendering, 579
colour temperature, 579
efficacy, 579, 580
triphosphor, 579
Flyback converter, 110, 111, 113
advantages, 114
clamp winding, 113
continuous mode, 114
coupled inductor, 113
cross regulation, 114
diodes, 115
disadvantages, 114
discontinuous mode, 114
electronic ballast, 582
leakage inductance, 113
magnetics, 213
operation, 113
rectifier circuit, 180
self oscillating power supply, 199
synchronous rectifier, 156, 181
transformer core airgap, 111, 113
transistors, 115
Flyback converter (two transistor), 111, 114
Food mixer, 531
Forward converter, 111, 116
advantages, 116
clamp diode, 117
conduction loss, 197
continuous mode, 116
core loss, 116
core saturation, 117
cross regulation, 117
diodes, 118
disadvantages, 117
duty ratio, 117
ferrite cores, 116
magnetics, 213
magnetisation energy, 116, 117
operation, 116
output diodes, 117
output ripple, 116
rectifier circuit, 180
reset winding, 117
switched mode power supply, 187
switching frequency, 195
switching losses, 196
synchronous rectifier, 157, 181
transistors, 118
Forward converter (two transistor), 111, 117
Forward recovery, 168
FREDFET, 250, 253, 305
bridge circuit, 255
charge, 254
diode, 254
drive, 262
loss, 256
reverse recovery, 254
FREDFETs
motor control, 259
Full bridge converter, 111, 125
advantages, 125
diodes, 126
disadvantages, 125
operation, 125
transistors, 126

Gate

triac, 538
Gate drive
forward converter, 195
Gold doping, 162, 169
GTO, 11
Guard ring
schottky diode, 174
Half bridge, 253
Half bridge circuits see also Motor Control - AC
Half bridge converter, 111, 122
advantages, 122
clamp diodes, 122
cross conduction, 122
diodes, 124
disadvantages, 122
electronic ballast, 584, 587, 589
flux symmetry, 122
magnetics, 214
operation, 122
synchronous rectifier, 157
transistor voltage, 122
transistors, 124
voltage doubling, 122
Heat dissipation, 567

Heat sink compound, 567
Heater controller, 544
Heaters, 537
Heatsink, 569
Heatsink compound, 514
Hi-Com triac, 519, 549, 551
commutation, 551
dlcom/dt, 552
gate trigger current, 552
inductive load control, 551
High side switch
MOSFET, 44, 436
TOPFET, 430, 473
High Voltage Bipolar Transistor, 8, 79, 91,
141, 341
'bathtub' curves, 333
avalanche breakdown, 131
avalanche multiplication, 134
Baker clamp, 91, 138
base-emitter breakdown, 144
base drive, 83, 92, 96, 136, 336, 385
base drive circuit, 145
base inductor, 138, 144, 147
base inductor, diode assisted, 148
base resistor, 146
breakdown voltage, 79, 86, 92
carrier concentration, 151
carrier injection, 150
conductivity modulation, 135, 150
critical electric field, 134
current crowding, 135, 136
current limiting values, 132
current tail, 138, 143
current tails, 86, 91
d-type, 346
data sheet, 92, 97, 331
depletion region, 133
desaturation, 86, 88, 91
device construction, 79
dl/dt, 139
drive transformer, 145
drive transformer leakage inductance, 149
dV/dt, 139
electric field, 133
electronic ballast, 581, 585, 587, 589
Fact Sheets, 334
fall time, 86, 99, 143, 144
FBSOA, 92, 99, 134
hard turn-off, 86
horizontal deflection, 321, 331, 341
leakage current, 98
limiting values, 97
losses, 92, 333, 342
Miller capacitance, 139
operation, 150
optimum drive, 88
outlines, 332, 346
over current, 92, 98
over voltage, 92, 97
overdrive, $85,88,137,138$
passivation, 131
power limiting value, 132
process technology, 80
ratings, 97
RBSOA, 93, 99, 135, 138, 139
RC network, 148
reverse recovery, 143, 151
safe operating area, 99, 134
saturation, 150
saturation current, 79, 98, 341
secondary breakdown, 92, 133
smooth turn-off, 86
SMPS, 94, 339, 383
snubber, 139
space charge, 133
speed-up capacitor, 143
storage time, 86, 91, 92, 99, 138, 144, 342
sub emitter resistance, 135
switching, 80, 83, 86, 91, 98, 342
technology, 129, 149
thermal breakdown, 134
thermal runaway, 152
turn-off, 91, 92, 138, 142, 146, 151
turn-on, 91, 136, 141, 149, 150
underdrive, 85,88
voltage limiting values, 130
Horizontal Deflection, 321, 367
base drive, 336
control ic, 401
d-type transistors, 346
damper diodes, 345, 367
diode modulator, 327, 347, 352, 367
drive circuit, 352, 365, 406
east-west correction, 325, 352, 367
line output transformer, 354
linearity correction, 323
operating cycle, 321, 332, 347
s-correction, 323, 352, 404
TDA2595, 364, 368
TDA4851, 400
TDA8433, 363, 369
test circuit, 321
transistors, 331, 341, 408
waveforms, 322
IGBT, 11, 305
automotive, 481, 483
clamped, 482, 484
ignition, 481, 483

Ignition
automotive, 479, 481, 483
darlington, 483
Induction heating, 53
Induction motor
see Motor Control - AC
Inductive load see Solenoid
Inrush current, 528, 530
Intrinsic silicon, 133
Inverter, 260, 273
see motor control ac
current fed, 52, 53
switched mode power supply, 107
Irons, electric, 537
Isolated package, 154
stray capacitance, 154, 155
thermal resistance, 154
Isolation, 153
J-FET, 9
Junction temperature, 470, 557, 561
burst pulses, 564
non-rectangular pulse, 565
rectangular pulse, composite, 562
rectangular pulse, periodic, 561
rectangular pulse, single shot, 561
Lamp dimmer, 530
Lamps, 435
dI/dt, 438
inrush current, 438
MOSFET, 435
PWM control, 455
switch rate, 438
TOPFET, 455
Latching current
thyristor, 490
Leakage inductance, 113, 200, 523
Lifetime control, 162
Lighting
fluorescent, 579
phase control, 530
Logic Level FET motor control, 432
Logic level MOSFET, 436
Magnetics, 207
100W 100kHz forward converter, 197
100W 50 kHz forward converter, 191
50W flyback converter, 199
core losses, 208
core materials, 207
EFD core, 210
ETD core, 199, 207
flyback converter, 213
forward converter, 213
half bridge converter, 214
power density, 211
push-pull converter, 213
switched mode power supply, 187
switching frequency, 215
transformer construction, 215
Mains Flicker, 537
Mains pollution, 225
pre-converter, 225
Mains transient, 544
Mesa glass, 162
Metal Oxide Varistor (MOV), 503
Miller capacitance, 139
Modelling, 236, 265
MOS Controlled Thyristor, 13
MOSFET, 9, 19, 153, 253
bootstrap, 303
breakdown voltage, 22, 70
capacitance, 30, 57, 72, 155, 156
capacitances, 24
characteristics, 23, 70-72
charge, 32, 57
data sheet, 69
dl/dt, 36
diode, 253
drive, 262, 264
drive circuit loss, 156
driving, 39, 250
dV/dt, 36, 39, 264
ESD, 67
gate-source protection, 264
gate charge, 195
gate drive, 195
gate resistor, 156
high side, 436
high side drive, 44
inductive load, 62
lamps, 435
leakage current, 71
linear mode, parallelling, 52
logic level, 37, 57, 305
loss, 26, 34
maximum current, 69
motor control, 259, 429
modelling, 265
on-resistance, 21, 71
package inductance, 49, 73
parallel operation, 26, 47, 49, 265
parasitic oscillations, 51
peak current rating, 251
Resonant supply, 53
reverse diode, 73
ruggedness, 61, 73
safe operating area, 25, 74
series operation, 53
SMPS, 339, 384
solenoid, 62
structure, 19
switching, 24, 29, 58, 73, 194, 262
switching loss, 196
synchronous rectifier, 179
thermal impedance, 74
thermal resistance, 70
threshold voltage, 21, 70
transconductance, 57, 72
turn-off, 34, 36
turn-on, 32, 34, 35, 155, 256
Motor, universal
back EMF, 531
starting, 528
Motor Control - AC, 245, 273
anti-parallel diode, 253
antiparallel diode, 250
carrier frequency, 245
control, 248
current rating, 262
dc link, 249
diode, 261
diode recovery, 250
duty ratio, 246
efficiency, 262
EMC, 260
filter, 250
FREDFET, 250, 259, 276
gate drives, 249
half bridge, 245
inverter, 250, 260, 273
line voltage, 262
loss, 267
MOSFET, 259
Parallel MOSFETs, 276
peak current, 251
phase voltage, 262
power factor, 262
pulse width modulation, 245, 260
ripple, 246
short circuit, 251
signal isolation, 250
snubber, 276
speed control, 248
switching frequency, 246
three phase bridge, 246
underlap, 248
Motor Control - DC, 285, 293, 425
braking, 285, 299
brushless, 301
control, 290, 295, 303
current rating, 288
drive, 303
duty cycle, 286
efficiency, 293
FREDFET, 287
freewheel diode, 286
full bridge, 287
half bridge, 287
high side switch, 429
IGBT, 305
inrush, 430
inverter, 302
linear, 457, 475
logic level FET, 432
loss, 288
MOSFET, 287, 429
motor current, 295
overload, 430
permanent magnet, 293, 301
permanent magnet motor, 285
PWM, 286, 293, 459, 471
servo, 298
short circuit, 431
stall, 431
TOPFET, 430, 457, 459, 475
topologies, 286
torque, 285, 294
triac, 525
voltage rating, 288
Motor Control-Stepper, 309
bipolar, 310
chopper, 314
drive, 313
hybrid, 312
permanent magnet, 309
reluctance, 311
step angle, 309
unipolar, 310
Mounting, transistor, 154
Mounting base temperature, 557
Mounting torque, 514
Parasitic oscillation, 149
Passivation, 131, 162
PCB Design, 368, 419
Phase angle, 500
Phase control, 546
thyristors and triacs, 498
triac, 523
Phase voltage
see motor control - ac
Power dissipation, 557
see High Voltage Bipolar Transistor loss, MOSFET loss
Power factor correction, 580
active, boost converted, 581

Power MOSFET see MOSFET
Proportional control, 537
Protection
ESD, 446, 448, 482
overvoltage, 446, 448, 469
reverse battery, 452, 473, 479
short circuit, 251, 446, 448
temperature, 446, 447, 471
TOPFET, 445, 447, 451
Pulse operation, 558
Pulse Width Modulation (PWM), 108
Push-pull converter, 111, 119
advantages, 119
clamp diodes, 119
cross conduction, 119
current mode control, 120
diodes, 121
disadvantages, 119
duty ratio, 119
electronic ballast, 582, 587
flux symmetry, 119, 120
magnetics, 213
multiple outputs, 119
operation, 119
output filter, 119
output ripple, 119
rectifier circuit, 180
switching frequency, 119
transformer, 119
transistor voltage, 119
transistors, 121
Qs (stored charge), 162
RBSOA, 93, 99, 135, 138, 139
Rectification, synchronous, 179
Reset winding, 117
Resistor
mains dropper, 544, 545
Resonant power supply, 219, 225
modelling, 236
MOSFET, 52, 53
pre-converter, 225
Reverse leakage, 169
Reverse recovery, 143, 162
RFI, 154, 158, 167, 393, 396, 497, 529, 530,
537
Ruggedness
MOSFET, 62, 73
schottky diode, 173
Safe Operating Area (SOA), 25, 74, 134, 557
forward biased, 92, 99, 134
reverse biased, 93, 99, 135, 138, 139

Saturable choke triac, 523
Schottky diode, 173
bulk leakage, 174
edge leakage, 174
guard ring, 174
reverse leakage, 174
ruggedness, 173
selection guide, 176
technology, 173
SCR
see Thyristor
Secondary breakdown, 133
Selection Guides
BU25XXA, 331
BU25XXD, 331
damper diodes, 345
EPI diodes, 171
horizontal deflection, 343
MOSFETs driving heaters, 442
MOSFETs driving lamps, 441
MOSFETs driving motors, 426
Schottky diodes, 176
SMPS, 339
Self Oscillating Power Supply (SOPS)
50W microcomputer flyback converter, 199
ETD transformer, 199
Servo, 298
Single ended push-pull
see half bridge converter
Snap-off, 167
Snubber, 93, 139, 495, 502, 523, 529, 549
active, 279
Softness factor, 167
Solenoid
TOPFET, 469, 473
turn off, 469, 473
Solid state relay, 501
SOT186, 154
SOT186A, 154
SOT199, 154
Space charge, 133
Speed-up capacitor, 143
Speed control
thyristor, 531
triac, 527
Starter
fluorescent lamp, 580
Startup circuit
electronic ballast, 591
self oscillating power supply, 201
Static Induction Thyristor, 11
Stepdown converter, 109
Stepper motor, 309
Stepup converter, 109

Storage time, 144
Stored charge, 162
Suppression
mains transient, 544
Switched Mode Power Supply (SMPS) see also self oscillating power supply 100W 100kHz MOSFET forward converter, 192
100 W 500 kHz half bridge converter, 153
100W 50 kHz bipolar forward converter, 187
16 \& 32 kHz TV, 389
asymmetrical, 111, 113
base circuit design, 149
boost converter, 109
buck-boost converter, 110
buck converter, 108
ceramic output filter, 153
continuous mode, 109, 379
control ic, 391
control loop, 108
core excitation, 113
core loss, 167
current mode control, 120
dc-dc converter, 119
diode loss, 166
diode reverse recovery effects, 166
diode reverse recovery softness, 167
diodes, $115,118,121,124,126$
discontinuous mode, 109, 379
epitaxial diodes, 112, 161
flux swing, 111
flyback converter, $92,111,113,123$
forward converter, 111, 116, 379
full bridge converter, 111, 125
half bridge converter, 111, 122
high voltage bipolar transistor, $94,112,115$,
118, 121, 124, 126, 129, 339, 383, 392
isolated, 113
isolated packages, 153
isolation, 108, 111
magnetics design, 191, 197
magnetisation energy, 113
mains filter, 380
mains input, 390
MOSFET, 112, 153, 33, 384
multiple output, 111, 156
non-isolated, 108
opto-coupler, 392
output rectifiers, 163
parasitic oscillation, 149
power-down, 136
power-up, 136, 137, 139
power MOSFET, 153, 339, 384
pulse width modulation, 108
push-pull converter, 111, 119

RBSOA failure, 139
rectification, 381, 392
rectification efficiency, 163
rectifier selection, 112
regulation, 108
reliability, 139
resonant
see resonant power supply
RFI, 154, 158, 167
schottky diode, 112, 154, 173
snubber, 93, 139, 383
soft start, 138
standby, 382
standby supply, 392
start-up, 391
stepdown, 109
stepup, 109
symmetrical, 111, 119, 122
synchronisation, 382
synchronous rectification, 156, 179
TDA8380, 381, 391
topologies, 107
topology output powers, 111
transformer, 111
transformer saturation, 138
transformers, 391
transistor current limiting value, 112
transistor mounting, 154
transistor selection, 112
transistor turn-off, 138
transistor turn-on, 136
transistor voltage limiting value, 112
transistors, 115, 118, 121, 124, 126
turns ratio, 111
TV \& Monitors, 339, 379, 399
two transistor flyback, 111, 114
two transistor forward, 111, 117
Switching loss, 230
Synchronous, 497
Synchronous rectification, 156, 179
self driven, 181
transformer driven, 180
Temperature control, 537
Thermal
continuous operation, 557, 568
intermittent operation, 568
non-rectangular pulse, 565
pulse operation, 558
rectangular pulse, composite, 562
rectangular pulse, periodic, 561
rectangular pulse, single shot, 561
single shot operation, 561
Thermal capacity, 558, 568

Thermal characteristics
power semiconductors, 557
Thermal impedance, 74, 568
Thermal resistance, 70, 154, 557
Thermal time constant, 568
Thyristor, 10, 497, 509
'two transistor' model, 490
applications, 527
asynchronous control, 497
avalanche breakdown, 490
breakover voltage, 490, 509
cascading, 501
commutation, 492
control, 497
current rating, 511
dl/dt, 490
dlf/dt, 491
dV/dt, 490
energy handling, 505
external commutation, 493
full wave control, 499
fusing $\mathrm{I}^{2} \mathrm{t}, 503,512$
gate cathode resistor, 500
gate circuits, 500
gate current, 490
gate power, 492
gate requirements, 492
gate specifications, 512
gate triggering, 490
half wave control, 499
holding current, 490, 509
inductive loads, 500
inrush current, 503
latching current, 490, 509
leakage current, 490
load line, 492
mounting, 514
operation, 490
overcurrent, 503
peak current, 505
phase angle, 500
phase control, 498, 527
pulsed gate, 500
resistive loads, 498
resonant circuit, 493
reverse characteristic, 489
reverse recovery, 493
RFI, 497
self commutation, 493
series choke, 502
snubber, 502
speed controller, 531
static switching, 497
structure, 489
switching, 489
switching characteristics, 517
synchronous control, 497
temperature rating, 512
thermal specifications, 512
time proportional control, 497
transient protection, 502
trigger angle, 500
turn-off time, 494
turn-on, 490, 509
turn-on dl/dt, 502
varistor, 503
voltage rating, 510
Thyristor data, 509
Time proportional control, 537
TOPFET
3 pin, 445, 449, 461
5 pin, 447, 451, 457, 459, 463
driving, 449, 453, 461, 465, 467, 475
high side, 473, 475
lamps, 455
leadforms, 463
linear control, 451, 457
motor control, 430, 457, 459
negative input, 456, 465, 467
protection, 445, 447, 451, 469, 473
PWM control, 451, 455, 459
solenoids, 469
Transformer
triac controlled, 523
Transformer core airgap, 111, 113
Transformers see magnetics
Transient thermal impedance, 559
Transient thermal response, 154
Triac, 497, 510, 518
400 Hz operation, 489, 518
applications, 527, 537
asynchronous control, 497
breakover voltage, 510
charge carriers, 549
commutating dl/dt, 494
commutating dV/dt, 494
commutation, 494, 518, 523, 529, 549
control, 497
dc inductive load, 523
dc motor control, 525
dl/dt, 531, 549
dlcom/dt, 523
dV/dt, 523, 549
emitter shorting, 549
full wave control, 499
fusing $\mathrm{I}^{2} \mathrm{t}, 503,512$
gate cathode resistor, 500
gate circuits, 500
gate current, 491
gate requirements, 492
gate resistor, 540, 545
gate sensitivity, 491
gate triggering, 538
holding current, 491, 510
Hi-Com, 549, 551
inductive loads, 500
inrush current, 503
isolated trigger, 501
latching current, 491, 510
operation, 491
overcurrent, 503
phase angle, 500
phase control, 498, 527, 546
protection, 544
pulse triggering, 492
pulsed gate, 500
quadrants, 491, 510
resistive loads, 498
RFI, 497
saturable choke, 523
series choke, 502
snubber, 495, 502, 523, 529, 549
speed controller, 527
static switching, 497
structure, 489
switching, 489
synchronous control, 497
transformer load, 523
transient protection, 502
trigger angle, 492, 500
triggering, 550
turn-on dl/dt, 502
varistor, 503
zero crossing, 537
Trigger angle, 500
TV \& Monitors
16 kHz black line, 351
$30-64 \mathrm{kHz}$ autosync, 399
32 kHz black line, 361
damper diodes, 345, 367
diode modulator, 327, 367
EHT, 352-354, 368, 409, 410
high voltage bipolar transistor, 339, 341
horizontal deflection, 341
picture distortion, 348
power MOSFET, 339
SMPS, 339, 354, 379, 389, 399
vertical deflection, 358, 364, 402
Two transistor flyback converter, 111, 114
Two transistor forward converter, 111, 117

Universal motor
 back EMF, 531

starting, 528

Vacuum cleaner, 527
Varistor, 503
Vertical Deflection, 358, 364, 402
Voltage doubling, 122
Water heaters, 537
Zero crossing, 537
Zero voltage switching, 537

