ON FINITE SUMS OF RECIPROCALS OF DISTINCT n TH POWERS

R. L. Graham

Introduction. It has long been known that every positive rational number can be represented as a finite sum of reciprocals of distinct positive integers (the first proof having been given by Leonardo Pisano [6] in 1202). It is the purpose of this paper to characterize (cf. Theorem 4) those rational numbers which can be written as finite sums of reciprocals of distinct nth powers of integers, where n is an arbitrary (fixed) positive integer and "finite sum" denotes a sum with a finite number of summands. It will follow, for example, that p / q is the finite sum of reciprocals of distinct squares ${ }^{1}$ if and only if

$$
\frac{p}{q} \in\left[0, \frac{\pi^{2}}{6}-1\right) \cup\left[1, \frac{\pi^{2}}{6}\right)
$$

Our starting point will be the following result:

Theorem A. Let n be a positive integer and let H^{n} denote the sequence $\left(1^{-n}, 2^{-n}, 3^{-n}, \cdots\right)$. Then the rational number p / q is the finite sum of distinct terms taken from H^{n} if and only if for all $\varepsilon>0$, there is a finite sum s of distinct terms taken from H^{n} such that $0 \leqq s-p / q<\varepsilon$.

Theorem A is an immediate consequence of a result of the author [2, Theorem 4] together with the fact that every sufficiently large integer is the sum of distinct nth powers of positive integers (cf., [8], [7] or [3]).

The main results. We begin with several definitions. Let $S=$ $\left(s_{1}, s_{2}, \cdots\right)$ denote a (possibly finite) sequence of real numbers.

Definition 1. $P(S)$ is defined to be the set of all sums of the form $\sum_{k=1}^{\infty} \varepsilon_{k} s_{k}$ where $\varepsilon_{k}=0$ or 1 and all but a finite number of the ε_{k} are 0 .

Definition 2. $A c(S)$ is defined to be the set of all real numbers x such that for all $\varepsilon>0$, there is an $s \in P(S)$ such that $0 \leqq s-x<\varepsilon$. Note that in this terminology Theorem A becomes:

$$
\begin{equation*}
P\left(H^{n}\right)=A c\left(H^{n}\right) \cap Q \tag{1}
\end{equation*}
$$

Received May 13, 1963.
${ }^{1}$ This result has also been obtained by P. Erdös (not published).
where Q denotes the set of rational numbers.

Definition 3. A term s_{n} of S is said to be smoothly replaceable in S (abbreviated s.r. in S) if $s_{n} \leqq \sum_{k=1}^{\infty} s_{n+k}$.

Theorem 1. Let $S=\left(s_{1}, s_{2}, \cdots\right)$ be a sequence of real numbers such that:

1. $s_{n} \downarrow 0$.
2. There exists an integer r such that $n \geqq r$ implies that s_{n} is smoothly replaceable in S.

Then

$$
A c(S)=\bigcup_{\pi \in P_{r-1}}[\pi, \pi+\sigma)
$$

where $P_{r-1}=P\left(\left(s_{1}, \cdots, s_{r-1}\right)\right)$ (note that $P_{0}=\{0\}$) and $\sigma=\sum_{k=r}^{\infty} s_{k}$ (where possibly σ is infinite).

Proof. Let $x \in \bigcup_{\pi \in P_{r-1}}[\pi, \pi+\sigma)$ and assume that $x \notin A c(S)$. Then $x \in\left[\pi, \pi+\sigma\right.$) for some $\pi \in P_{r-1}$. A sum of the form $\pi+\sum^{k}=1 s_{i_{t}}$ where $r \leqq i_{1}<i_{2}<\cdots<i_{k}$ will be called "minimal" if

$$
\begin{equation*}
\pi+\sum_{i=1}^{k-1} s_{i_{t}}<x<\pi+\sum_{t=1}^{k} s_{i_{t}} \tag{2}
\end{equation*}
$$

(where a sum of the form $\sum_{t=a}^{b}$ is taken to be 0 for $b<a$). Note that since $x \notin A c(S) \supset P(S)$ then we never get equality in (2). Let M denote the set of minimal sums. Then M must contain infinitely many elements. For suppose M is a finite set. Let m denote the largest index of any s_{j} which is used in any element of M and let $p=\pi+\sum_{k=1}^{n} s_{j_{k}}+s_{m}$ be an element of M which uses s_{m} (where $r \leqq$ $j_{1}<j_{2}<\cdots<j_{n}<m$ and possibly n is zero). Thus we have

$$
\pi+\sum_{k=1}^{n} s_{j_{k}}<x<\pi+\sum_{k=1}^{n} s_{j_{k}}+\sum_{i=1}^{\infty} s_{m+t}
$$

since s_{m} is s.r. in S. Therefore there is a least $d \geqq 1$ such that $x<p^{\prime}=\pi+\sum_{k=1}^{n} s_{j_{k}}+\sum_{t=1}^{d} s_{m+t}$. Hence p^{\prime} is a "minimal" sum which uses s_{m+d} and $m+d>m$. This is a contradiction to the definition of m and consequently M must be infinite. Now, let $\delta=\inf \{p-x: p \in M\}$. Since $x \notin A c(S)$ then $\delta>0$. There exist $p_{1}, p_{2}, \cdots \in M$ such that $p_{n}-x<\delta+\delta / 2^{n}$. Since $s_{n} \downarrow 0$ then there exists c such that $n \geqq c$ implies that $s_{n}<\delta / 2$. Also, there exists w such that $n \geqq w$ implies that p_{n} uses an s_{k} for some $k \geqq c$ (since only a finite number of p_{j} can be formed from the s_{k} with $k<c$). Therefore we can write $p_{w}=\pi+\sum_{j=1}^{n} s_{k j}$ where $k_{n} \geqq c$. Hence

$$
p_{w}-s_{k_{n}}-x>p_{w}-\frac{\delta}{2}-x \geqq \delta-\frac{\delta}{2}=\frac{\delta}{2}>0
$$

which is a contradiction to the assumption that p_{w} is "minimal." Thus, we must have $x \in A c(S)$ and consequently

$$
\begin{equation*}
\bigcup_{\pi \in P_{r-1}}[\pi, \pi+\sigma) \subset A c(S) \tag{3}
\end{equation*}
$$

To show inclusion in the other direction let $x \in \operatorname{Ac}(S)$ and suppose that $x \notin \bigcup_{x \in P_{r-1}}[\pi, \pi+\sigma)$. Thus, either $x<0, x \geqq \sum_{k=1}^{\infty} s_{k}$, or there exist π and π^{\prime} in $P_{r \rightarrow-1}$ such that $\pi+\sigma \leqq x<\pi^{\prime}$ where no element of P_{r-1} is contained in the interval $\left[\pi+\sigma, \pi^{\prime}\right)$. Since the first two possibilities imply that $x \notin \operatorname{Ac}(S)$ (contradicting the hypothesis) then we may assume that the third possibility holds. Therefore there exists $\delta>0$ such that

$$
\begin{equation*}
x \leqq \pi^{\prime}-\delta . \tag{4}
\end{equation*}
$$

Let p be any element of $P(S)$. Then $p=\sum_{i=1}^{m} s_{i_{t}}+\sum_{k=1}^{n} s_{j_{u}}$ for some m and n where

$$
1 \leqq i_{1}<i_{2}<\cdots<i_{m} \leqq r-1<j_{1}<j_{2}<\cdots<j_{n} .
$$

Thus for $\pi^{*}=\sum_{t=1}^{n} s_{i_{t}}$ we have $p \in\left[\pi^{*}, \pi^{*}+\sigma\right)$. Consequently any element p of $P(S)$ must fall into an interval $\left[\pi^{*}, \pi^{*}+\sigma\right.$) for some $\pi^{*} \in P_{r-1}$ and therefore, if p exceeds x then it must exceed x by at least δ (since $p \notin\left[\pi+\sigma, \pi^{\prime}\right.$) and thus by (4) $p>x \in\left[\pi+\sigma, \pi^{\prime}\right.$) implies $p \geqq \pi^{\prime} \geqq x+\delta$). This contradicts the hypothesis that $x \in A c(S)$ and hence we conclude that $A c(S) \subset \mathrm{U}_{\pi \in P_{r-1}}[\pi, \pi+\sigma)$. Thus, by (3) we have $A c(S)=\mathrm{U}_{\pi \in P_{r-1}}[\pi, \pi+\sigma)$ and the theorem is proved.

Theorem 2. Let $S=\left(s_{1}, s_{2}, \cdots\right)$ be a sequence of real numbers such that:

1. $s_{n} \downarrow 0$.
2. There exists an integer r such that $n<r$ implies that s_{n} is not s.r. in S while $n \geqq r$ implies that s_{n} is s.r. in S.

Then $A c(S)$ is the disjoint union of exactly 2^{r-1} half-open intervals each of length $\sum_{k=r}^{\infty} s_{k}$.

Proof. By Theorem 1 we have $A c(S)=\bigcup_{\pi \in P_{r-1}}[\pi, \pi+\sigma)$ where $\sigma=\sum_{k=r}^{\infty} s_{k}$ and $P_{r-1}=P\left(\left(s_{1}, \cdots, s_{r-1}\right)\right)$. Let $\pi=\sum_{k=1}^{n} s_{i_{k}}$ and $\pi^{\prime}=$ $\sum_{k=1}^{v} s_{j_{k}}$ be any two formally distinct sums of the s_{n} where $1 \leqq$ $i_{1}<\cdots<i_{u} \leqq r-1$ and $1 \leqq j_{1}<\cdots<j_{v} \leqq r-1$ and we can assume without loss of generality that $\pi \geqq \pi^{\prime}$. Then either there is a least $m \geqq 1$ such that $i_{m} \neq j_{m}$ or we have $i_{k}=j_{k}$ for $k=1,2, \cdots, v$ and
$u>v$. In the first case we have

$$
\begin{aligned}
\pi= & \sum_{k=1}^{u} s_{i_{k}}=\sum_{k=1}^{m-1} s_{j_{k}}+\sum_{k=m}^{u} s_{i_{k}} \\
& >\sum_{k=1}^{m-1} s_{j_{k}}+\sum_{k=1}^{\infty} s_{i_{m}+k} \text { (since } s_{i_{m}} \text { is not s.r. in } S \text {) } \\
& \geqq \pi^{\prime}+\sigma \text { (since } j_{m} \geqq i_{m}+1 \text {). }
\end{aligned}
$$

In the second case we have

$$
\begin{aligned}
\pi= & \sum_{k=1}^{n} s_{i_{k}}=\sum_{k=1}^{v} s_{j_{k}}+\sum_{k=v+1}^{u} s_{i_{k}} \\
& >\sum_{k=1}^{v} s_{j_{k}}+\sum_{k=1}^{\infty} s_{i_{v+1}+k} \text { (since } s_{i_{v+1}} \text { is not s.r. in } S \text {) } \\
& \geqq \pi^{\prime}+\sigma\left(\text { since } i_{v+1}+1 \leqq i_{u}+1 \leqq r\right) .
\end{aligned}
$$

Thus, in either case we see that $\pi>\pi^{\prime}+\sigma$. Consequently, any two formally distinct sums in P_{r-1} are separated by a distance of more than σ and hence, each element π of P_{r-1} gives rise to a half-open interval $[\pi, \pi+\sigma)$ which is disjoint from any other interval $\left[\pi^{\prime}, \pi^{\prime}+\sigma\right.$) for $\pi \neq \pi^{\prime} \in P_{r-1}$. Therefore $A c(S)=\bigcup_{\pi \in P_{r-1}}[\pi, \pi+\sigma)$ is the disjoint union of exactly 2^{r-1} half-open intervals $\left[\pi, \pi+\sigma\right.$), $\pi \in P_{r-1}$, (since there are exactly 2^{r-1} formally distinct sums of the form $\sum_{k=1}^{r-1} \varepsilon_{k} s_{k}, \varepsilon_{k}=$ 0 or 1) where each interval is of length σ. This proves the theorem.

We now need three additional lemmas in order to prove the main theorems.

Lemma 1. Let $S=\left(s_{1}, s_{2}, \cdots\right)$ be a sequence of nonnegative real numbers and suppose that there exists an m such that $n \geqq m$ implies that $s_{n} \leqq 2 s_{n+1}$. Then $n \geqq m$ implies that s_{n} is s.r. in S (i.e., $\left.s_{n} \leqq \sum_{k=1}^{\infty} s_{n+k}\right)$.

Proof. If $\sum_{k=1}^{\infty} s_{k}=\infty$ then the lemma is immediate. Assume that $\sum_{k=1}^{\infty} s_{k}<\infty$. Then

$$
\begin{aligned}
n \geqq m & \Longrightarrow s_{n+k} \geqq \frac{1}{2} s_{n+k-1}, \quad k=1,2,3, \cdots \\
& \Longrightarrow \sum_{k=1}^{\infty} s_{n+k} \geqq \frac{1}{2} \sum_{k=1}^{\infty} s_{n+k-1}=\frac{1}{2} s_{n}+\frac{1}{2} \sum_{k=1}^{\infty} s_{n+k} .
\end{aligned}
$$

Therefore, $s_{n} \leqq \sum_{k=1}^{\infty} s_{n+k}$, i.e., s_{n} is s.r. in S.
Lemma 2. Suppose that $k \leqq\left(2^{1 / n}-1\right)^{-1}$ and k^{-n} is s.r. in H^{n} (where H^{n} was defined to be the sequence $\left(1^{-n}, 2^{-n}, \cdots\right)$). Then $(k+1)^{-n}$ is also s.r. in H^{n}.

Proof.
(5)

$$
\begin{aligned}
k \leqq\left(2^{1 / n}-1\right)^{-1} & \Longrightarrow \frac{1}{k} \leqq 2^{1 / n}-1 \\
& \Longrightarrow\left(1+\frac{1}{k}\right)^{n} \geqq 2 \\
& \Longrightarrow k^{-n} \geqq 2(k+1)^{-n}
\end{aligned}
$$

Since by hypothesis, $\sum_{j=k+1}^{\infty} j^{-n} \geqq k^{-n}$, then by (5)

$$
\sum_{j=k+2}^{\infty} j^{-n} \geqq k^{-n}-(k+1)^{-n} \geqq 2(k+1)^{-n}-(k+1)^{-n}=(k+1)^{-n}
$$

Hence, $(k+1)^{-n}$ is s.r. in H^{n} and the lemma is proved.
Lemma 3. Suppose that $k \geqq\left(2^{1 / n}-1\right)^{-1}$. Then k^{-n} is s.r. in H_{n}. Proof.

$$
\begin{aligned}
r \geqq k & \Longrightarrow r \geqq\left(2^{1 / n}-1\right)^{-1} \\
& \Longrightarrow \frac{1}{r} \leqq 2^{1 / n}-1 \\
& \Longrightarrow\left(1+\frac{1}{r}\right)^{n} \leqq 2 \\
& \Longrightarrow r^{-n} \leqq 2(r+1)^{-n}
\end{aligned}
$$

Therefore, by Lemma 1, r^{-n} is s.r. in H^{n}.
Theorem 3. Let t_{n} denote the largest integer k such that k^{-n} is not s.r. in H^{n} and let P denote $P\left(\left(1^{-n}, 2^{-n}, \cdots, t_{n}^{-n}\right)\right)$. Then

$$
A c\left(H^{n}\right)=\bigcup_{\pi \in P}\left[\pi, \pi+\sum_{k=1}^{\infty}\left(t_{n}+k\right)^{-n}\right)
$$

is the disjoint union of exactly $2^{t_{n}}$ intervals. Moreover, $t_{n}<\left(2^{1 / n}-1\right)^{-1}$ and $t_{n} \sim n / l n 2$ (where $\ln 2$ denotes $\log _{e} 2$).

Proof. With the exception of $t_{n} \sim n / l n 2$, the theorem follows directly from the preceding results. The following argument, due to L. Shepp, shows that $t_{n} \sim n / \ln 2$.

Consider the function $f_{n}(x)$ defined by

$$
\begin{equation*}
f_{n}(x)=x^{n}\left(\sum_{k=1}^{\infty} \frac{1}{(x+k)^{n}}-\frac{1}{x^{n}}\right) \tag{6}
\end{equation*}
$$

for $n=2,3, \cdots$ and $x>0$. Since

$$
f_{n}(x)=\sum_{k=1}^{\infty}\left(1+\frac{k}{x}\right)^{-n}-1
$$

then $f_{n}(x)<0$ for sufficiently small $x>0, f_{n}(x)>0$ for sufficiently
large x, and $f_{n}(x)$ is continuous and monotone increasing for $x>0$. Hence the equation $f_{n}(x)=0$ has a unique positive root x_{n} and from the definition of t_{n} it follows by (6) that $0<x_{n}-t_{n} \leqq 1$. Thus, to show that $t_{n} \sim n / l n 2$, it suffices to show that $x_{n} \sim n / l n 2$. Now it is easily shown (cf., [4], p. 13) that for $a>0,(1+\alpha / n)^{-n}$ is a decreasing function of n. Thus, $f_{n}(\alpha n)$ is a decreasing function of n and since $f_{2}(2 \alpha)<\infty$ for $\alpha>0$ then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} f_{n}(\alpha n) & =\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty}\left(1+\frac{k}{\alpha n}\right)^{-n}-1 \\
& =\sum_{k=1}^{\infty} \lim _{n \rightarrow \infty}\left(1+\frac{k}{\alpha n}\right)^{-n}-1 \\
& =-1+\sum_{k=1}^{\infty} e^{-k / \alpha}=\left(e^{1 / \alpha}-1\right)^{-1}-1
\end{aligned}
$$

since the monotone convergence theorem (cf., [5]) allows us to interchange the sum and limit. Suppose now that for some $\varepsilon>0$, there exist $n_{1}<n_{2}<\cdots$ such that $x_{n_{i}}>n_{i}(1 / l n 2+\varepsilon)$. Then

$$
\begin{aligned}
0 & =\lim _{i \rightarrow \infty} f_{n_{i}}\left(x_{n_{i}}\right) \geqq \lim _{i \rightarrow \infty} f_{n_{i}}\left(n_{i}\left(\frac{1}{\ln 2}+\varepsilon\right)\right) \\
& =\left(e^{(1 / l n 2+\varepsilon)^{-1}}-1\right)^{-1}-1 \\
& =\left(2^{1 /(1+\varepsilon \ln 2)}-1\right)^{-1}-1>0
\end{aligned}
$$

which is a contradiction. Similarly, if for some $\varepsilon, 0<\varepsilon<1 / \ln 2$, there exist $n_{1}<n_{2}<\cdots$ such that

$$
x_{n_{i}}<n_{i}\left(\frac{1}{\ln 2}-\varepsilon\right)
$$

then

$$
\begin{aligned}
0 & =\lim _{i \rightarrow \infty} f_{n_{i}}\left(x_{n_{i}}\right) \leqq \lim _{i \rightarrow \infty} f_{n_{i}}\left(n_{i}\left(\frac{1}{\ln 2}-\varepsilon\right)\right) \\
& =\left(e^{(1 / \ln 2-\varepsilon)^{-1}}-1\right)^{-1}-1 \\
& =\left(2^{1 /(1-\varepsilon \ln 2)}-1\right)^{-1}-1<0
\end{aligned}
$$

which is again impossible. Hence we have shown that for all $\varepsilon>0$, there exists an n_{0} such that $n>n_{0}$ implies that

$$
n\left(\frac{1}{\ln 2}-\varepsilon\right) \leqq x_{n} \leqq n\left(\frac{1}{\ln 2}+\varepsilon\right)
$$

or equivalently

$$
-\varepsilon \leqq \frac{x_{n}}{n}-\frac{1}{\ln 2} \leqq \varepsilon .
$$

Therefore, $\lim _{n \rightarrow \infty} x_{n} / n=1 / \ln 2$ and the theorem is proved. ${ }^{2}$
The following table gives the values of t_{n} for some small values of n.

n	$\frac{t_{n}}{1}$	$\frac{\left[\left(2^{1 / n}-1\right)^{-1}\right]}{1}$
1	1	2
2	2	3
3	4	5
4	5	6
5	12	13
10	$?$	143
100	$?$	1442

We may now combine Theorem 3 and Theorem A (cf. Eq. (1)) and express the result in ordinary terminology to give:

Theorem 4. Let n be a positive integer, let t_{n} be the largest integer k such that $k^{-n}>\sum_{j=1}^{\infty}(k+j)^{-n}$ and let P denote the set $\left\{\sum_{j=1}^{t_{n}} \varepsilon_{j} j^{-n}: \varepsilon_{j}=0\right.$ or 1$\}$. Then the rational number p/q can be written as a finite sum of reciprocals of distinct nth powers of integers if and only if

$$
\frac{p}{q} \in \bigcup_{\pi \in P}\left[\pi, \pi+\sum_{k=1}^{\infty}\left(t_{n}+k\right)^{-n}\right) .
$$

Corollary 1. p/q can expressed as the finite sum of reciprocals of distinct squares if and only if

$$
\frac{p}{q} \in\left[0, \frac{\pi^{2}}{6}-1\right) \cup\left[1, \frac{\pi^{2}}{6}\right) .
$$

Corollary 2. p/q can be expressed as the finite sum of reciprocals of distinct cubes if and only if

$$
\frac{p}{q} \in\left[0, \zeta(3)-\frac{9}{8}\right) \cup\left[\frac{1}{8}, \zeta(3)-1\right) \cup\left[1, \zeta(3)-\frac{1}{8}\right) \cup\left[\frac{9}{8}, \zeta(3)\right)
$$

where $\zeta(3)=\sum_{k=1}^{\infty} k^{-3}=1.2020569 \ldots$
Remarks. In theory it should be possible to calculate directly from the relevant theorems (cf., [2], [3]) an explicit bound for the number of terms of H^{n} needed to represent p / q as an element of $P\left(H^{n}\right)$. However, since the theorems were not designed to minimize such a bound, but rather merely to show its existence, then understandably, this calculated bound would probably be many orders of

[^0]magnitude too large. Erdös and Stein [1] and, independently, van Albada and van Lint [9] have shown that if $f(n)$ denotes the least number of terms of $H^{1}=\left(1^{-1}, 2^{-1}, \cdots\right)$ needed to represent the integer n as an element of $P\left(H^{1}\right)$ then $f(n) \sim e^{n-\gamma}$ where γ is Euler's constant.

It should be pointed out that a more general form of Theorem A may be derived from [2] which can be used to prove results of the following type:

Corollary A. The rational p/q with $(p, q)=1$ can be expressed as a finite sum of reciprocals of distinct odd squares if and only if q is odd and $p / q \in\left[0,\left(\pi^{2} / 8\right)-1\right) \cup\left[1, \pi^{2} / 8\right)$.

Corollary B. The rational p/q with $(p, q)=1$ can be expressed as a finite sum of reciprocals of distinct squares which are congruent to 4 modulo 5 if and only if $(q, 5)=1$ and

$$
\frac{p}{q} \in\left[0, \alpha-\frac{13}{36}\right) \cup\left[\frac{1}{9}, \alpha-\frac{1}{4}\right) \cup\left[\frac{1}{4}, \alpha-\frac{1}{9}\right) \cup\left[\frac{13}{36}, \alpha\right)
$$

where $\alpha=2(5-\sqrt{5}) \pi^{2} / 125=\sum_{k=0}^{\infty}\left((5 k+2)^{-2}+(5 k+3)^{-2}\right)=0.43648 \cdots$
It is not difficult to obtain representations of specific rationals as elements of $P\left(H^{n}\right)$ (for small n), e.g.,

$$
\begin{aligned}
& \frac{1}{2}=2^{-2}+3^{-2}+4^{-2}+5^{-2}+6^{-2}+15^{-2}+18^{-2}+36^{-2}+60^{-2}+180^{-2} \\
& \frac{1}{3}=2^{-2}+4^{-2}+10^{-2}+12^{-2}+20^{-2}+30^{-2}+60^{-2} \\
& \frac{5}{37}=2^{-3}+5^{-3}+10^{-3}+15^{-3}+16^{-3}+74^{-3}+111^{-3}+185^{-3}+240^{-3} \\
&+296^{-2}+444^{-3}+1480^{-3}, \text { etc. }
\end{aligned}
$$

References

1. P. Erdös and S. Stein, Sums of distinct unit fractions, Proc. Amer. Math. Soc., 14 (1963), 126-131.
2. R. Graham, On finite sums of unit fractions, Proc. London Math. Soc., (to appear).
3. —_, Complete sequences of polynomial values, Duke Math. Jour. (to appear).
4. P. P. Korovkin, Inequalities, Random House, New York (1961).
5. M. Loève, Probability Theory, Van Nostrand, Princeton, (1960).
6. Leonardo Pisano, Scritti, vol. 1, B. Boncompagni, Rome (1857) 77-83.
7. K. F. Roth and G. Szekeres, Some asymptotic formulae in the theory of partitions, Quart. Jour. of Math., 5 (1954), 241-259.
8. R. Sprague; Über Zerlegungen in n-te Potenzen mit lauter verschiedene Grundzahlen, Math. Zeit., 51 (1947-48), 466-468.
9. P. J. van Albada and J. H. van Lint, Reciprocal bases for the integers, Amer. Math. Monthly 70 (1963), 170-174.

Bell Telephone laboratories, Inc.

[^0]: ${ }^{2}$ In fact, it can be shown that x_{n} has the expansion $n / 1 n 2-1 / 2+c_{1} n^{-1}+\cdots$ $+c_{k} n^{-k}+0\left(n^{-k-1}\right)$ for any k.

