
EJB’s 101 Damnations

By

Dino Fancellu
Robin Sharp

Matt Stephens

www.bad-managers.com

www.javelinsoft.com

15 March 2002

Copyright © Matt Stephens 2002

This article may be freely distributed, under the following conditions:

1. The article is not modified in any way.
2. The article and this Acrobat file are left intact, i.e. nothing is left out (including this title

page).
3. Distribution of the article is strictly for personal and not-for-profit use (e.g. forwarding it to

a colleague). To discuss distribution for other purposes (e.g. magazine publication),
please contact Matt Stephens at: matt@bad-managers.com

http://www.bad-managers.com
http://www.javelinsoft.com
mailto:matt@bad-managers.com

Table of Contents:

1. Introduction...3

2. Conceptual Issues (High-Level “Damnatians”)...4

3. Design...6

4. Development ... 10

5. Deployment.. 14

6. Run-Time ... 16

7. Knock-On Effects.. 18

8. Conclusion... 20

1. Introduction

This is the tale of 101 Damnations. Sadly, it's no Disney story - in
fact it's more likely to have been pulled from the pages of the
Brothers Grimm.
Whilst writing the EJB modules for our JGenerator product, we started punting
an email back and forth containing all the issues we had with EJB. And there
were many. Before we knew it we ended up with 101 howlers.

In this article we present an edited version of the email. It isn't a complete list
and there may be some overlapping issues. If there is enough interest we will
turn it into a more formal analysis.

Before you flame us for chasing after your sacred cow with a big stick, all
three of us have belonged to the "pro-Java" lobby since Java was in its first
beta, and we still do. We have evangelised Java at every company we have
worked at. However, EJB just presents so much that is wrong and messed up
that we felt we had to speak out.

The 101 issues are divided into the following categories:

• Conceptual

• Design

• Development

• Deployment

• Runtime

• Knock-On Effects

And finally there's a conclusion, containing some heartfelt suggestions for
improving the EJB spec.

We want Java and J2EE to succeed. We want it to remain the platform for
developing server-side applications. We just hope that somebody at Sun is
paying attention…

Why Have We Written This Article?
Some common feedback has been: "You don't have to use EJB..."

We know that. That's why we say EJB is not the same as J2EE. But tell Sun
that. Tell their marketing. Tell the world, the server vendors, the hardware
vendors, the body shops.

I can say that some food is damaging to your health. You tell me that people
don't have to eat it. Does that mean I shouldn't have told people?

Our article serves as a warning, a lighthouse on the rocks. Pointing out that
people don't have to crash onto the rocks hence the lighthouse does not need
to be there seems violently stupid.

http://www.javelinsoft.com/jgenerator/index.jsp

2. Conceptual Issues (High-Level “Damnatians”)

EJB's choice is Hobson's Choice. If you don't like EJB's locking, caching,
performance, failure or persistence mechanisms, then write your own, says
JavaSoft.

101 Damnations to you.

"Thomas Hobson, a seventeenth-century liveryman in Cambridge, England,
told every customer he could have any horse he wanted as long as it was the
one nearest the door. Hobson's choice should not be used in the context of
dilemma or mere indecision. It is a choice between what is offered and
nothing."
Source: Communication World December 1992

On to the Damnations:

1. EJB represents a radical departure from the Beans model. Beans was
based on the (proven) component model also used in Delphi. This means
that for projects that are migrating to EJBs, much of their code base is no
longer valid.

Very little effort was made getting EJB to naturally extend the Beans
specification (remember Java Beans are not just about GUI widgets).

For example, there is no mention of Events in the EJB model. Enterprise
Beans don't have property change events or vetoable events, or indexed
properties. The specifications focus almost entirely on the server side
specification and hypothetical roles.

2. A rigorous set of examples and design goals for application programmers
has been missing from the start. Instead the focus has been on remote
objects and pessimistic locking, rather than the high performance and soft
locking required by most Internet applications today.

3. EJB is based on an Object Pooling optimisation. Optimisations should not
be incorporated into the design, but left for vendors to decide and compete
on. The logic of basing a system on saving a resource as cheap as
memory seems absurd.

4. Sun's recommendation to "Use Container-Managed Persistence when you
can" is contrary to our experience. I am sure we're not alone in that CMP
seems to be useless for complicated applications.

5. The EJB specification makes no reference to other well known distributed
system design references - for example the ISO Basic Reference Model of
Open Distributed Processing 1992.

Most seminal communication specifications make reference to the ISO
Open Communication Models. Either there is a lack of theoretical
grounding, or perhaps the designers didn't think it was worth mentioning.

http://developer.java.sun.com/developer/technicalArticles/ebeans/sevenrules/
http://citeseer.nj.nec.com/context/75296/0

The above-mentioned ISO ODP reference model has several goals for a
distributed system. Many of the important goals have not been met - in
particular (points 6-9 as follows):

6. The EJB spec doesn't address access transparency. Local and remote
object definitions are not transparent, as you inherit from a different
interface and have to cast using the narrow convention.

7. The EJB spec doesn't address performance transparency. The
performance solutions for EJB involve radical redesign of your code, such
as session-based methods, value objects, entity bean serialization or client
side caching.

8. The EJB spec doesn't address migration transparency. If any object
moves, the client must throw away the remote or local interface and get a
new one.

9. The EJB spec doesn't address Concurrency transparency. There are no
clear sets of locking strategies to suit different application programming
tasks. The application and EJB programmer is left to handcraft locking
strategies.

3. Design

Three years on from EJB 1.0 and still not ready for prime time. Design issues
cloud development work.

Compare this with SQL, which was not even the best query language at the
time it was introduced, but is now used almost universally. SQL as the client-
facing interface did not try to tell database vendors how to implement
internals.

The EJB specification is monolithic and causes lots of dependencies for
EARs. The result is that the beans are brittle. Below, we provide some
examples of why this is the case.

In addition, please bear in mind that not all of these items are outright
criticism; remember this article is also a "wish list" of items that we feel would
improve the EJB spec.

This section focuses on the design issues that we believe are preventing EJB
from gaining greater acceptance.

10. The only justification for EJB is on large projects, yet EJB makes those
large projects larger still, and yet more unwieldy. You need to scale to get
EJB to perform.

11. Role based class/method security is rarely useful. Data security is far more
important.

12. EJB Query Language is another language to learn. This is reminiscent of
the situation with WML, where an attempt to write a simpler language than
HTML failed because they didn't just simplify HTML. Instead they started
from the ground up, having decided erroneously that they could do a better
job themselves.

EJB Query language doesn't support many SQL operators, (e.g.
subqueries, IN, ALL, ANY, String comparison, ORDER BY, GROUP BY).

There is a good critique of EJB-QL here.

13. The specification does not provide for proper handling of views or read
only tables. Back in the real world, read only tables and views are very
important.

14. EJB only handles first class objects (i.e. beans that have primary keys). It
would be nice if it also handled second class objects (do not have primary
keys), where they have a one-one relationship with a first class object.

For example, a Cash object might contain a currency and an amount.
Using CMP Entity Beans you would be forced to have a Cash table. A
better design would be to automatically map the Cash.currency and
Cash.amount into the parent table's columns.

http://www.c2.com/cgi/wiki?EjbQueryLanguage

15. No proper handling of validation (e.g. String lengths). For a specification
whose main purpose is reading and writing to a database, this is a
surprising omission.

16. No proper handling of Enumerated Types. Enumerated Types represent
fixed sets of data, such as Sex, Industrial Classification, or Marital Status.
It should be possible to use them as properties on Beans.

It has been argued that this is more of a Java issue, i.e. a deficiency in the
Java language rather than EJBs per se. This is not necessarily the case
though. For example, our JBeans spec includes Enumerated Types
defined via a standard interface and an EnumeratedType abstract class.

Adding Enumerated Types to the Java language would be better; but the
EJB spec would definitely benefit from a similar addition.

17. EJB doesn't make a clear separation between the components and the
machinery that is supposed to persist it. For example a bean can remove
itself, which assumes a bean is always persisted and it must always be
tied to a persistence mechanism.

18. Entity Beans bind the business logic with the persistence mechanism.
Hence the need for Data Access Objects. If the persistence was
orthogonal to the beans this functionality would have been accommodated
more naturally.

19. Optimistic locking is not accounted for. The EJB spec assumes either
pessimistic locking or not locking, or roll your own. There could have been
a locking interface; or a way to specify a logical concurrency mechanism
like isolation levels.

20. Most 'fast' EJB patterns seem to involve using sessions that go straight to
the metal. Half the time is spent navigating, so half of the system ends up
being rewritten.

Entity beans only appear to be useful in single entity transactions, but not
where the entity bean needs to know about its dependent beans. When
you save a bean, the graph of dependent beans should also be saved -
but it doesn't work like that.

For EJB you can specify cascading deletes, but not combinations of
creates, updates and deletes. To save a graph of beans you must create
your own client side User Transaction and call each create on the home,
set on the bean and remove on the bean. The beans should understand
what has been changed in the graph and update the database
accordingly.

If we were "putting the boot" into EJB, we would suggest that this means
EJB is only half complete.

21. There is no meta-data for business, i.e. no meta level to describe your
business. Just code.

22. EJB tries to address both the client side interfaces and the service
provider interfaces. Really as a client we should only care about the client
side interfaces. This would make EJB open to different implementations.

ftp://javelinsoft.com/jbeans/jbeans.pdf

23. No standards for writing Session beans as Beans. Yet this approach is
one of the most talked about on the web.

24. There is no concept of dependency, so that a bean is stored, removed or
updated at the same time.

25. There is no concept of whether the primary key is generated externally by
the application, internally by the container, or automatically by the
database.

26. EJB is designed to handle high-transaction units of work in a distributed
environment. A very small percentage of applications need this. When we
define high-transaction usage we mean thousands, not hundreds. Most
users need only tens a second. The EJB spec also neglects applications
that need to return static data, or real-time data. There are not designs in
place to return these objects.

27. No standardised integration with content management tools (other than
"roll your own" solutions via JSP, for example). For large web sites, it isn't
clear how these would integrate.

This is more of an issue with J2EE as a whole than EJB by itself.

28. To attach enterprise development without going to a higher level, without
approaching it with a blueprint, is like trying to dig a tunnel through a
mountain with ever so slightly sharper spoons. They shouldn't be working
on this level.

29. Sun doesn't have a joined up strategy for persistence, i.e. JDO, JDBC,
Java Blend, serialisation, XML, EJB without any common interfaces. This
is similar to the case with GUIs, i.e. Swing, AWT, MIDP, and web front-
ends which they are trying to address with the mysterious JavaFaces. This
gives the impression that the various design groups at Sun are out of
control.

30. ACID is not always wanted. For example, a search engine wants high
performance, availability, in exchange for accuracy.

As with many of the issues raised in this article, the obvious answer
appears to be: "So don't use EJB for this type of work." Unfortunately, we
believe that this blinkered approach seriously limits EJB's usefulness. Why
should it be limited to such a narrow field of use, simply because of some
erroneous assumptions made early on regarding the sort of features that
all enterprise applications would surely want?]

31. Most web apps are not very transactional. EJB comes from a TP/MTS type
background. Perhaps it should have been called TJB, Transactional Java
Beans, so that people knew where it belonged. As it is, EJB co-opts areas
that simply don't belong to it. It's a baroque framework for transactional
Java beans, which tries to wear the clothes of the enterprise emperor.

EJB is very transactional - it sucks when it comes to high performance
queries, read-only work.

32. EJB hasn't really addressed the issue of efficient access to remote objects.
Effectively you have hand code. It would have been better to have client

side beans where vendors could have generated different options. At the
risk of plugging our own product, JGenerator allows you to do this.

33. There is no clear design for returning Relationships between beans.
Should you return a primary key (and look it up on the client)? Or return a
handle, which does the look up but needs Bean managed code, or return
the related beans remote interface which in turn means referencing the
remote bean from the server?

Container managed relationships can only exist between beans whose
homes are on the same server. This makes it impossible to deploy an
enterprise system where one bean references a bean in another database
automatically. For example, several product databases may reference a
central customer database. There is no way to automatically generate a
getCustomer() method on a product. Not very Enterprise.

34. It's difficult for a bean to tell the server when it is dirty, or read-only. This is
supported in some servers, not in others. This should become part of the
specification.

4. Development

One application speaks volumes about the state of EJB development:
Petstore. Even Microsoft have picked up on this supposed example of correct
EJB design, and trounced its design and performance (see the fallout from
this episode at TheServerSide).

Sun's response was that Petstore is not supposed to be used as a model of
speed and efficiency. Why not? If EJB was a brilliant design, this would never
have been an issue.

35. Use of CMP beans locks you very much into the vendors' proprietary
mapping technology. Beware of the apparent ease of use that CMP tries to
offer.

36. The EJB Spec imagines the role of a container builder and a server
builder. This assumption that there would be separate container products
that would run in the application server is incorrect. Hence the service puts
unnecessarily tight constraints on state control. This should have been left
up to the vendors.

37. Development is very slow. For example, the development cycle is tens of
minutes, rather than seconds, simply to change a small value in a JSP.
This is a huge project killer. Increased development time hardly helps with
'Internet time' projects.

38. There is no concept of a design time state, like in the Beans model that
allows for a quick development cycle.

39. EJB represents a huge learning curve. The EJB spec is supposed to help,
but seems to hinder. It's very complex. Even for the most experienced
engineers and architects, getting all the niggling details correct makes
development painfully slow.

40. Many sites do not need EJB complexity, yet people use EJB for the sake
of fashion, or getting skills on their CV. Too many people are happy to
sacrifice the future of their company/project, in order to get 'sexy' skills.

41. Petstore. No databases are used to stress test the design or
implementation. It's as badly thought out as sending pets through the post.

42. Petstore is too big to be a quick demo test case.

43. Petstore is too small to stress test the memory.

44. Petstore involves too little data to stress test scalability.

45. Petstore is too homogeneous to stress test Code Generators. This is
probably a slightly unfair complaint to make, as Petstore was obviously not
designed with automated code generation in mind. However, code
generation is an increasingly important aspect of EJB design and
development as it removes the drudgery of churning out endless beans to
the same design pattern.

http://www.theserverside.com/discussion/thread.jsp?thread_id=9797

Therefore, we would argue that the J2EE reference application should
reflect the manner in which an increasing number of EJB projects will be
written. In this regard, the problem with Petstore is that it is very samey all
the way through, and the database doesn't do enough "weird" things. For
example: the tables don't contain all the data types, there are no 3 way
primary keys, and no views or read only tables.

The result is that code generating Petstore doesn't prove very much.

46. Vendors all supply their own versions of Petstore, where each seems to be
mostly handcrafted.

There should only be one version of Petstore as a container managed
bean that is fully working. At the moment every vendor has to create their
own CMP to get it working.

47. There is no way of knowing when set property values are done. Explicit
transaction demarcation is done at the property level, not at the Bean
level. If there was a store method on a home/session this would do this.

48. There are no standards for optimising Entity Beans, serializing the whole
bean or sending property sets.

49. One way to fix the previous two problems would be to introduce "smart
stubs" *. Instead however, the programmer is expected to write straight to
the wire for every property get or set, or to use facades, dependent objects
etc. That's an awful lot of extra code, especially when it conceivably affects
every single entity bean in your application.

* Smart stubs are a concept that CORBA came up with. A client side
CORBA stub would have another stub subclassed (and could be
delegated from). So the client side programmer thought they were going
straight to the remote stub, but the application programmer had the
opportunity to 'fiddle' with the call before it went.

Subclassing meant you could only do a little bit of fiddling, but delegation
allows you to completely alter the RMI method call, so that you might write
to the client a sequence of "set" method calls, and all the time it would be
storing the set values in a property list, instead of shoving them over the
wire every time.

Then, when you call the commit transaction method, all the sets that you
have done on all the objects in that transaction are bundled up and sent in
one message. Conversely all the properties can be pulled over when you
call the first get, so you're not getting every tiny property every time you
call a get method.

At Javelinsoft, we do this in our CJBs (Client Java Beans) by serializing
the Entity Bean from the EJB server when we make the first get call, and
filling it up and squirting it back when we say save on the Home.

50. Stateless session beans are supposed to be the most scalable, yet they
are not much more than RMI. However we still need to jump through all
the hoops to get them working.

51. It isn't easy to put EJB in Applets. There is no concept of a lightweight
interface.

ftp://javelinsoft.com/jbeans/jbeans.pdf

52. EJB does not have count methods optionally automatically generated. This
feature is used in many applications I have worked on to save loading
objects into memory.

53. Non web app client access to EJB is vague, and inconsistently supported.
Sometimes an application server will supply you with a jar to include in
your application to get access to the EJBs; sometimes you just have to
figure it out yourself and end up including several megabytes of jars.

54. The spec for EJB cross beans mapping is constantly under change, and
inconsistent across servers. It's also not flexible. The result is that you
cannot easily port from one application server to another.

55. We need to use value objects to get any real performance, else each
get/set makes an RMI call. Why was this concept of local stubs or property
sets not put into EJB? Performance should not be an irrelevance.

56. The EJB Compliance Tests do not appear to include proper examples that
rigorously test all scenarios. Because the CMP and BMP are different for
all vendors, it would be nice to have some examples that have say
100,000 rows being loaded and used, or 100 rows containing all the data
types being tested.

For example, in JDJ volume 7 issue 1, an HP engineer reveals why the
CTS is so important vs the reality of the process that they endured with
HP-AS.

How is it possible to be 'compliant' yet full of bugs? Answer: bad tests.

So yes, we need tests, much better tests. But these synthetic tests, even if
they weren't so bug ridden, would still only test some synthetic criteria.

If instead they simply said, "let's try to use EJB to do business in these
scenarios" and picked 5 or 6 hard business areas they'd do much better
than all this synthetic design.

If we examine Java's history, we see that the same was also true for
Swing. The specification would have advanced much faster if they had
simply said, "let's do Office in Swing". You can only abstract from the
concrete, yet Sun engineers again and again try to abstract from their
imaginings, guessing what might be cool, or pure, as opposed to what
people need. What's the point of writing software to meet future needs if it
won't even meet your current ones?

Another problem is that the tests are only done on toy examples, and there
are no theoretical underpinnings. Therefore, you are never sure when EJB
is going to let you down. At least with Java and SQL we know there is a
rich history and/or theory so we can make measured predictions of what
we can do and how the system will perform.

57. EJB wizards are often shaky and dangerous. They end up creating code
that simply won't work. So you waste time thinking it must be your own
problem somewhere. For example, the RI (Reference Implementation) 1.3
container entity bean wizard misses out "throws CreateException" on
ejbCreate.

http://www.theserverside.com/home/thread.jsp?thread_id=2830

58. The RI seems to have had 0 to little Q.A. For example, 1.3 RI code
generation tools simply produce wrong code. Their entity bean managed
findByPrimary would never work. This is of no help to anyone learning
EJB.

As the RI is the "Reference Implementation" this is very bad. No one
expects the RI to be fast, but we do expect it to be a model of compliance
and correctness.

5. Deployment

Deployment remains one of the most frustrating and time-consuming aspects
of EJB work. This section explores some of the reasons why, and suggests
what might be needed to improve the develop/deploy/test cycle.

59. The WAR/JAR/EAR model is horrible for development and deployment.
The deployment spec is opaque, using the Russian Doll metaphor.

60. EJB deployment is incredibly fragile. Miss setting a property and the
container won't use a sensible default. Of course this depends on the
container, but mostly they simply throw a vague error message and refuse
to continue. This is just plain unhelpful - "jobsworth", even.

The servlet world has it easy in comparison - e.g. the "invoker" servlet
executes anonymous servlet classes that have not been defined in a
web.xml file (usually maps to /servlet/*).

In other words, servlet engine writers go to special efforts to make
deployment easy. Easiness is what it's all about. EJB containers don't
have the equivalent of a default web.xml file that they can inherit default
properties from.

61. There is no standard way to deploy an EJB application. The details
change with each server, and (worse still) with each revision of each
server.

62. EJB needs to be more IDE-friendly, particularly when it comes to
deployment.

Deployment is not always opened up to tools, e.g. RI 1.2.2/1.3 uses batch
files which call Java. Its deploy/package code is not meant to be called by
tools. The RI uses the broken concept of current directory, i.e. must be
called from a DOS window, not from an IDE VM.

Hopefully Sun’s upcoming Deployment Specification will fix this problem.
The spec needs to be such that it can be picked up and used by IDEs.

63. The EJB spec has too many fictitious roles. In reality there are
container/server providers, and application providers who develop,
assemble, deploy, and administer the EJB server. The EJB spec should
reflect this reality.

64. There is no such thing as cross platform EJB. Each platform has its own
horrible bugs. Escape one system to fall prey to another.

65. Developers have to repeat the same meta-data in the code as SQL, as
client properties as server properties, as XML attributes.

66. Container managed EJB often requires you to specify a lot of what would
be in your code, for example the SQL.

67. Administration is different with every server. There is no standard for
administering the deployed EJBs.

http://www.bad-managers.com/rumours/j2ee_deployment_spec.shtml

68. XML is all about interpretation. Different vendors interpret the XML
differently. For example (on the servlet/JSP side), web.xml's <welcome-
file-list>. Some see this as 'look for these files in this order', others as
'these files should be here'.

Of course this sort of misunderstanding just can't be helped sometimes,
but is included here as something to be wary of - it's an example of how
ambiguity can creep into a seemingly bullet-proof spec and cause
standards to fragment.

69. The specifications are continually changing. That's okay, but when new
versions cannot run old applications without major changes, then we have
a problem.

70. The server vendors have graced us with some remarkably vague and
misleading deployment tools, e.g verifiers that spout unhelpful error
messages, or pass classes that then fail on deployment.

71. Loose coupling between the bean and interface. The XML is not strongly
typed, i.e. too much room for error. Very little use of reflection to work out
class relationships.

72. Deployment of code, in order to test it, is a horribly complex, click-laden
process. As well as involving many stages, there seems to be no proper
way to automate it, especially if you are attempting to target many different
EJB servers.

73. The basic ejb.xml, web.xml and application.xml descriptors are not
sufficient to deploy. The result is that further descriptor information must
be written using app-server specific XML.

This means that every ear must be changed to be deployed. It would have
been better to have defaults set up so that a minimally defined EJB would
deploy and run without modification.

74. The XML descriptors use ambiguous names - for example, displayName
isn't just the display name, it's used as the reference name.

75. An EJB ear should be able to be deployed on ANY compliant EJB server,
with no changes to the ear.

It should expose and advertise the environmental items that can be
changed (like war mount point), and those that MUST be changed (like
database connections).

However, there should be no requirement on the ear developer to produce
X different versions, for all the servers out there. This seems to be the
current state, which is madness.

76. The Validator passes descriptors which later fail on deployment. For
example (using Catalina/Tomcat in RI 1.3), try creating a war file with
multiple entries with the same name. The war is passed on verify, but of
course fails to deploy.

A connected problem is that once deployed, there is no way to
automatically test that your beans have actually deployed.

6. Run-Time

Once you have developed your Enterprise Beans and web apps, packaged
them into their respective Jars, Wars and Ears, deployed them to your
favourite gronky EJB server, fought with the deployment tools...

... edited the auto-generated deployment descriptors to make them work, and
then actually seen your JSP page display some data, and rejoiced that the
Gods of EJB have allowed you this small victory… then you might think that
you are home dry.

Unfortunately, there are still the Runtime issues to be grappled with.

77. The real bottleneck is data access and transactions, of which the average
database can only handle about 50-100 a second. EJB needs to take on
board replication server duties in order to really speed things up.

78. There is very little scope for run-time optimisation. The EJB specification
contains no standard flags or extensions for improving performance. For
example, WebLogic has used a 'dirty' flag to help determine if the object
should be written down to the database. Despite being a well-known
extension with well-understood semantics, this didn't make it into the latest
specification.

79. EJB performance is very slow, and uses lots of resources. It's costly to
scale. The "fetch my primary key" query model suggests that the
designers did not understand how relational databases work:

The EJB queries return a list of primary keys. Each of these primary keys
are then used to perform another query to the database. This operates in a
way contrary to the way relational databases are optimised, i.e. on sets of
rows. The whole philosophy behind EJB object pools is to re-use objects,
and not cache them. This relates to Damnation #3 - that EJB is designed
to preserve memory, when memory is not a scarce resource - in fact it's a
dime-a-bucket at the moment.

80. EJB cannot scale. Because your entity beans need to be synchronised
across all the servers that they are deployed on, the amount of network
traffic multiplies.

81. The Reference Implementation (RI) is fragile, easy to break. 1.2.2 simply
broke on perfectly valid code. It also isn't backward compatible - an ear
that worked on an earlier release simply doesn't run on a later release.

The specification was not specific enough to guarantee certain behaviour.

82. EJB servers which have their own Servlet/JSP engine often get it wrong,
e.g. WebLogic 5.1 needs to get to SP7 at least to be even mildly
reasonable. Servers like Orion and HP-AS still have issues with basic
functionality. So even if the EJB side is fine, your web apps will
malfunction.

83. Black box. When your deployed system goes slow you can't work out why
unless you have the container source.

84. An EJB server is harder to build than a servlet engine. Hence they tend to
be far more fragile and mad, which is hardly a good base for an enterprise
application.

85. Sun said that to be 2.0 compliant an EJB app-server would also have to
support 1.2 compliant EJBs. But their own reference implementation does
not support 1.2 compliant beans, because the Sun specific 2.0 XML
interpretation throws errors with 1.2 compliant XML.

86. Sun's J2EE compliance tests seem to let some pretty obvious omissions
through. For example HP-AS doesn't handle nested archives (i.e.
referencing one jar from another through a declaration in the Manifest file),
which is part of the J2EE spec. A server can be officially branded J2EE,
even if half its J2EE features are broken. The promise that they'll be made
to work in the next service release doesn't quite cut it, and often ends up
not happening.

87. Can Sun PLEASE focus on the RI, working around the clock, until it is
100% in line with the specification? Will we ever get to the state where the
RI is in line with its goals, or will the spec always be aspirational?

Why don't Sun take an established open-source EJB server such as
JBoss, and work on making that their reference implementation (or
alternatively, open the RI out to Open Source, in the same way they did
with Tomcat for servlets/JSP)?

7. Knock-On Effects

EJB is baroque: extravagant, complex and bizarre. As a language matures, its
creators have to steer the designs so they don't end up with a house of cards.

Java is going through the same maturation process, yet EJB has been badly
thought through for the developer.

This section examines the effect that EJB's baroque nature has had on the
enterprise marketplace.

88. Sun's marketing confuses people. Often, journalists and managers alike
will confuse EJB with J2EE. Java on the server does not necessarily mean
EJB.

89. EJB exposes Java to attack, not from criticism, but from a better language.
Not talking about C#, but a language based on Components and Stores
instead of classes.

90. Where is the large-scale EJB usage? The thousands of downloads of
J2EE, WebLogic, HP-AS, JBoss etc don't quite tally with the number of
real-life EJB systems in use.

91. Where is the large-scale usage of EJBs? How many companies are really
using EJB for massively scalable back-end systems?

92. The Sun hype pushing EJB will backfire. It reminds us of their spin
machine pushing Applets on the client before the Java UI was ready for
prime time. This had a detrimental effect on Java.

93. Where is the thriving EJB component marketplace 3 years from inception?
The situation seems similar to what was said of C++. VB/Delphi/Java had
and has loads of components, as it is so easy to write them.

94. The EJB specification was not focused on any applications. There should
have been two or three big, complex, real world apps that needed to be
expressed in EJB as a testbed.

It took Sun about 2 years to come up with Pet Cemetery, and even then, it
proves nothing except that they don't have a clue. This same criticism is
just like that of Swing - it took years to come up with proper test apps, e.g.
Forte!

95. Warnings from Gartner Group:

"As components of application server technology, J2EE and Enterprise
JavaBeans (EJB) are not the same thing. Most Java projects use Java
Server Pages (JSP)/servlet capabilities and not EJB. Higher-priced
application servers are designed to run EJB, yet they are using
JSP/servlet capabilities instead."

"Companies have overspent about $1 billion on application server
technology solutions since 1998. Moreover, an additional $2 billion may be
wasted between now and 2003."

"Don't let confusion or hype push you to spend more than necessary."

96. Sun's main revenue stream is from hardware, not Java. Their profit driver
is to sell hardware. This explains why EJB has not been reigned in and
rationalised.

97. There is no real synergy between EJB and the rest of J2EE.

98. Most, if not all, EJB articles on the web seem to be about hacks, bugs,
workarounds, optimizations, as opposed to glowing success stories.
Where are they?

99. The creators of the EJB spec are in a privileged position. It's very easy to
define huge, complex specifications and expect the industry to forever be
trying doggedly to catch up with actual implementations of their mad
schemes and "visions".

It's not so much an OO Utopia as a "Complexia". It would be much harder
for them to try and implement their own specs (as they discovered with the
RI mess).

The server vendors don't get a chance to make their servers useable or
robust, as they're forever trying to catch up with Sun's latest promised
feature-list made on their behalf. Then there's the even bigger problem of
supporting legacy versions (for those vendors that can be bothered with
such "trivial" notions).

100. Brave New World - this isn't just a comment on EJB, but on the state of
enterprise computing:

Everyone expected the OO dream to materialise with interconnected, co-
operating objects whizzing around global networks - instead we have
gronky EJBs and labour-intensive EAI systems (e.g. BizTalk), much too
complex for their own good.

101. The basic idea behind EJBs, and Sun's approach to APIs, is good. The
principle of defining standard specifications for the industry to follow is a
noble one. But something, somewhere, has gone terribly wrong.

8. Conclusion

EJB makes Java look bad. Its gives the enemies of Java a stick to beat us
with. Can it be fixed though?

Much of this article reads like an EJB "wish list". If only certain key issues
could be resolved, J2EE would become unstoppable.

We don't seriously believe that Sun would hold up their hands and say "it's a
fair cop, let's scrap EJB - let's hit the reset button and start again, having
learned from our mistakes."

It is far more likely that they will produce "point releases" that gradually fix
EJB, one minute problem at a time. Local objects are a good example. The
problem is that rather than being fixed from the ground up, the EJB spec will
grow, and become ever more complex as the server vendors must support
the legacy specs as well as the jazzy new "fixed" specs.

As it is, here are a few more recommendations to "fix" EJB:

• That bridges be built between EJB and the Beans spec. To come up
with client side stubs like JBeans Session that fit into the beans spec.

• That development is simplified so that 1-tier, 2-tier and 3-tier are
seamlessly catered for.

• That deployment is simplified so that we programmers can have back
our concept of a separate design time and run time (i.e. not having to
jump through hoops to package everything up, just to test-run/debug
the slightest change). The simple addition of a deployment interface
that IDEs can use would help immensely.

• That the container side specs are revised so that persistence is
decoupled from the business aspects, as this doesn't add any value for
the developer.

EJB is not as type safe as it could have been, so servers need to 'simulate'
type safety by going through a verification phase. Verification is not done at
design or build time - the APIs could have been designed so that more type
checking was made between the Remote Interfaces and the Server side
beans.

Alternatively, some kind of XML meta-constraints could have been
implemented to introspect the Java and match it to the XML.

More importantly, there is no specification for passing or failing the verification
phase - but there is a test for passing J2EE. It would have been nice if they
were one and the same thing, so applications would pass or fail verification
consistently for different vendors.

Back when Java was released, James Gosling said that Java was C++

ftp://javelinsoft.com/jbeans/jbeans.pdf

without the knives and the daggers (with reference to how bad references in
C/C++ caused programs to fail).

Now J2EE introduces bad references to a new generation of developers,
causing programs to fail. The knives and daggers are back. Or is it just the
sign of an over-ripe language?

The Final Word (for now...)
EJB is not the final word in distributed systems. After RPC and CORBA, it is
the third major release of possibly six or more architectures.

Almost every EJB tool vendor offers a "value-added" framework, showing that
it can't stand up on its own as an architecture. EJB was designed by server
enthusiasts for server enthusiasts.

Marc Fleury, who is the founder and lead of the JBoss project, said recently
(regarding the future of J2EE):

"We see J2EE becoming embedded in applications. The 'object poets' want to
see distributed systems with objects talking everywhere, but it just doesn't
work that way. We don't take the paternalistic view of big servers small clients,
we take the view of small servers, with the J2EE stack embedded in
everything."

Looking at the problems with EJB, the next major distributed system will be
based around the client side requirements, and not the server side
implementation. The interfaces will be between business and presentation
logic, for example a more advanced version of the Beans APIs to include the
concepts of Home and Session. The interfaces will be between organisations,
for example a more advanced version of SOAP that will include interfaces.

It is worth reinforcing the fact that J2EE is not EJB. A point made recently by
Rick Ross of JavaLobby.org:

"J2EE is not spelled 'EJB', any more than rectangle is spelled 'square'. ... 90%
or more of current J2EE solutions don't use EJB."

The next distributed architecture must also conceal the persistence
mechanism. The current Java product offering includes many persistence
mechanisms (EJB, JDBC, JNDI, MIDP, Java Spaces, Java Blend, JDO,
Serialization, XML etc.)

The next generation of distributed systems will give application programmers
a choice of architectures. Give them the freedom to choose between the costs
and benefits of each architecture on offer. EJB's choice is Hobson's Choice:
either put up with our design, or handcraft it yourself.

EJB is just a fashion. It mostly doesn't suit requirements, and we're given
Hobson's Choice. To quote from Moby Dick:

"Oh! Ahab," cried Starbuck, "not too late is it, even now, the third day, to
desist. See! Moby Dick seeks thee not. It is thou, thou, that madly seekest
him!"

http://www.theserverside.com/events/library.jsp

