
Linux solution for prefetching
necessary data during application

and system startup

Krzysztof Lichota
lichota@mimuw.edu.pl

mailto:lichota@mimuw.edu.pl

What is prefetching and why it is
needed?

The problem

In modern computers
● CPUs – fast
● Memory – fast
● Disk – slooooow (by orders of magnitude)

– Disk access: ~8 ms = 8*10-3

– Memory access: ~8 ns = 8*10-9

– Difference: 106 = 1 000 000 times

Application start – demand
paging

● Modern operating systems introduced paging
on demand

● Great idea, but...
– Load one page from executable file (8 ms)
– Execute (0.1 ms)
– Need one more page – wait (8 ms)
– Execute (0.1 ms)
– Need next page (8 ms)
– etc.

Scattered files

● Many scattered files cause a lot of disk
seeks

● Seek time is ~proportional to distance
between disk cylinders

The effect

● ~15 seconds to start OpenOffice on Linux
● ~7 seconds to start Firefox
● Note not all of this is caused by disk seeks:

other problems also apply (like linker
problems, which hopefully have been already
solved)

What can be done

● Prefetch all necessary file pages before
application even requests it

● Group files in one place on disk:
– Avoids seeks
– Disk works better when sending large chunks of

data

The question: how to know what to prefetch
and when?

Application start analysis

● Monitor first application start (or system boot)
● Write down which files it fetches and in which

order
● Predict which files will be used next time

(based on history)

Prefetch necessary files

● Prefetch files when application starts next
time

● At the same time monitor if new files are
used and others stop to be used

Laying out files

● Group files in one place on disk
● Order them by access order

Current state of the art

Prefetching in desktop
operating systems

● Windows XP/Vista
– analyzes applications start and system boot
– fetches necessary files on boot and application

start
– Vista tries to predict when you will use

application
– details not known (closed source)

● Mac OS X - BootCache
● Linux – almost nothing

Previous attempts of
prefetching

● There were several attempts to tackle
prefetching problem in Linux

● None of them was completely successful
● All of them required manual intervention of

user

Ubuntu boot readahead

● Consists of boot scripts which can analyze
and prefetch files during boot

● User must manually run analyzing process
upon boot

● Analyzing boot is done using inotify and has
high overhead, so it is not suitable for use on
every boot

● When analysis is done, prefetching is not
performed, so user notices slowdown at boot

Ubuntu boot readahead (2)

● It works on whole files, not on only relevant
parts, so it has higher memory requirements

● This causes problems on machines with less
RAM and might even slow down boot on
such machines

● It does not notice order of read files, files to
prefetch are sorted by disk position and
fetched all at once at boot

● It works purely in userspace
● Does not address application prefetching

Preload

● Developed as part of Google Summer of
Code 2005

● Aimed to provide preloading of file based on
statistical analysis by corellation of
applications (possibly multiple) and files they
use

● Uses /proc/pid/maps as source of
information which files application uses

● Thus does not notice files accesses using
other methods than mmap (like read())

Preload (2)

● It runs as daemon, wakes up every 20
seconds to see if files should be preloaded. It
cannot react to application starting in this 20
seconds interval

● Daemon analyzes what applications are
running together and fetches their files

● It might work for applications which are
started during login as this is predictable

● It does not work well for applications which
are started on user demand, like Firefox

Bootcache/filecache

● Developed as part of Google Summer of
Code 2006

● It concentrates on kernel side of prefetching
by providing facilities for faster readahead
and analysis of page cache

Bootcache/filecache (2)

● It contains some interesting features:
– Adds open-by-inode to Linux kernel which allows

faster readahead (without directory lookups)
– Contains some improvements to ioprio (I/O

prioritization) to make readahead have smaller
impact on currently running applications

– Adds dumping state of file cache for processes,
which is later used for checking which files to
prefetch

– It contains "poor man's defrag" to group files on
disk, using "copy to directory and hardlink in
previous position" trick

Bootcache/filecache (3)

● Problems:
– It does not intercept automatically application

startup, so user must manually set up
prefetching and analyzing

– Poor man's defrag is not complete defragging
solution, it works only on whole files and has
limited capabilities of laying out files as it relies
on behaviour of old and new kernel blocks
allocator. It also can create only one group of
files.

Bootcache/filecache (4)

– Open-by-inode allowed for userspace is a
security risk

– Files can be purged from cache before analyzer
notices they were read (especially for boot
analysis)

– It does not take into account order of files being
read

– It uses user-level threads to do prefetching, they
have to fight for processor with all others,
slowing down prefetching effectiveness and
using CPU for context switches

Conclusions

● Linux needs prefetching to compete
effectively with other desktop systems

● Currently available solutions do not provide
complete and automatic solution:
– None of them is able to intercept application

startup automatically, analyze its behaviour and
prefetch necessary files in efficient manner

– There is no complete defragging solution to lay
out files on disk

– None of them provides lightweight tracing facility
which can be used during each boot

Prefetch implementation for Linux

Overview

● Developed during Google Summer of Code
2007

● Provides:
– automatic application start tracing and

prefetching
– boot tracing and prefetching
– reordering of files (highly experimental)

Overview (2)

● Consists of:
– kernel patches which provide tracing and

prefetching facilities
– boot scripts which control kernel tracing and

prefetching
– utility to reorder files upon shutdown

Tracing and prefetching kernel
facilities

Tracing

● Main problem – distinguishing disk accesses
caused by prefetching and those caused by
application

● Tracing just disk accesses does not work
properly in such case

● Solution – check “page referenced” bit in
Linux VM subsystem

● Based on filecache code to walk all pages in
system

Tracing (2)

● Also notices pages released by VM
subsystem, for greater resolution

● Still misses some accesses (checked using
blktrace) – in investigation

● Even with missed accesses provides enough
information for effective use

● Kernel part provides generic tracing facility
which can be used concurrently by many
facilities (currently boot tracing and
application tracing)

Tracing – implementation
details

● Simple buffer where trace records are added
● Trace record contains:

– device number
– inode number
– start of area (in page units)
– length of area (in page units)

● Hook in __remove_from_page_cache()
which adds released pages to buffer

Tracing – implementation
details (2)

● Module can request walk of all pages in system
● On first walk page referenced bits are cleared
● During next walks pages referenced are added

to buffer during the walk
● Buffer is freed when all modules declare they no

longer want to trace accesses
● Trace can be saved to disk using provided

functions
● Time of pages walk is very small (0.002s for

clearing, 0.02s for recording with 256 MB RAM)

Prefetching

● Module requests prefetching of given set of
records

● Function is provided to read trace from disk
● Records are processed in order
● Devices are opened using their numbers

(tricky)
● Files are opened using their inode numbers
● Cache is populated using

force_page_cache_readahead()
● Possible synchronous and asynchronous

prefetching mode

Application startup tracing and
prefetching

Application tracing and
prefetching

● Hooks into exec() call and checks if there is
trace for executed application

● Application is identified as part of filename
and hash of path

● If there is the trace, reads trace from file and
starts prefetching (synchronous)

● If application is on tracing whitelist, starts
tracing

● Schedules “end startup” handler

Application tracing and
prefetching (2)

● After scheduled startup time (by default 10
seconds, configurable) startup end handler is
run

● Handler finishes tracing, if it was enabled,
and writes new trace to /.prefetch directory

● It also checks if application used a lot of IO
during startup (using delayacct_blkio_ticks())
– if the application reached certain threshold, it

adds it to tracing whitelist
– if it did not reach threshold, removes it from

tracing whitelist

Application tracing and
prefetching (3)

● Only last trace of application startup is used
● Trace is for all files accesses, not only for

traced application
● This creates possibility of reading too much
● On the other hand it solves problem of

prefetching files used by related applications,
needed for startup

● In practice works quite well
● It might be improved by computing

intersection of a few historical traces

Application startup time
measurement

● OpenOffice used as metric (due to long
startup time)

● Problem: erratic behaviour (high variance) –
solved by averaging results over many runs

● Problem: OpenOffice contains its own
prefetching tool, manually crafted – had to
disable it for reliable results

● Startup time measured by loading document
with macro which has written startup time to
file

OpenOffice startup results

● Startup time:
– without any prefetching: 14.38s
– with built-in prefetching (pagein): 12.74s (1.64s

difference)
– with automatic prefetch: 11.01s alone, 11.07s

with pagein
● Improvement: 3.36s (23%) to none, 1.67s

(13%) to pagein

Boot tracing and prefetching

Boot tracing and prefetching

● Kernel module which provides /proc interface
for boot scripts

● Boot init scripts control tracing and
prefetching “phases”

● Phases:
1.From boot from root partition to mounting all

partitions
2.From mounting all partitions till GUI is started

(i.e. display manager)
3.Since GUI is started for 60 seconds (does not

detect user login yet)

Boot tracing and prefetching (2)

● Each phase has separate tracing and
prefetching

● Phases determined by tests – this split gives
best results

● First 2 phases use synchronous prefetching
(i.e. wait until prefetching finishes before
proceeding)

● GUI phase is prefetched asynchronously
after 2 phase – gives best results

Boot tracing and prefetching (3)

● Each phase trace is saved into separate file
● A few historical traces for each phase are

kept
● After boot is finished script computes logical

sum of last 3 traces (separately for each
phase) and writes it as trace used for next
boot

● Boot scripts can be modified to have other
phases – the interface in kernel is generic

Boot time measurement

● Problem: erratic behaviour (high variance) –
solved by averaging results over many runs

● Has to watch out for periodic maintenance
tasks (fsck), network discovery, etc.

● Startup time measured by starting a script as
part of auto-login and recording uptime

● Simulation of changing boot process done by
running OpenOffice as part of boot (before
uptime is recorded)

Boot prefetching results

● Boot time with Ubuntu kernel and Ubuntu
readahead: 61.21s

● Boot time with prefetch kernel and boot
prefetching: 54.91s

● Improvement: 6.31s (10%)
With OpenOffice as part of boot:
● Prefetch kernel and prefetch: 65.53s
● Ubuntu kernel and readahead: 81.01s
● Improvement: 15.48s (19%)
Readahead does not adapt to changes, prefetch

does

File reordering

File reordering tool

● Highly experimental, might eat your data,
do not use yet

● Works only for ext2/3, uses libext2fs for on-
disk manipulation (the same as used in
e2fsck and tune2fs)

● Has nothing to do with e2defrag (do not use
it, it is dangerous!)

● Works on unmounted volume, modifies
physically disk device blocks, similar as fsck

File reordering tool (2)

● Reads planned order of files from input file
● Finds contiguous disk area which can hold

all blocks of file
● Relocates blocks belonging to inodes,

including indirect blocks, in specified order
● Updates bitmaps

Reordering during shutdown

● Reordering of files for faster startup is done
during system shutdown

● Script transforms prefetching boot traces into
file order input file used by reordering tool

● Last shutdown script before power-off runs
reordering tool

Reordering during shutdown -
problems

Problems with reordering during shutdown:
● Reordering tool should run on unmounted

volume
● Root volume cannot be unmounted
● Reordering tool cannot use disk
Solution (hackish, better would be welcome):
● Cache the tool and needed files by reading

them
● Force reordering on read-only mounted

volume

Reordering results

● Reordering run takes about 14-20s (might be
improved)

● Boot time without reordering, with
prefetching: 52.68s

● Boot time with reordering: 47.75s
● Improvement over just prefetching: 4.93s

(9%)

Summary

What is done

● Initial prefetching facility for Linux is
implemented

● Application startup prefetching works and
gives about ~10% improvement in startup
time

● Boot startup works and can give ~10% to
~20% improvement in startup time

● File reordering is not yet ready for production
use, but can give further ~10% improvement
in boot time

Unsolved (yet) problems

● Still to do:
– Applications loaded by IPC (e.g. kdeinit)
– „Loader” applications which load other using

dlopen() (e.g. kcmshell --lang pl. --embed 0x123
displayconfig)

– How to lay out files shared among many
applications effectively?

– Detecting user login

More information, current versions
and precompiled kernel for Ubuntu
available at “Prefetch” project on

Google Code:
http://code.google.com/p/prefetch

http://code.google.com/p/prefetch

