
 Patched
chanism for Fixing CPU Bugs
by Linley Gwennap

Taking an unusual approach to fixing bugs, Intel has
implemented a microcode patch capability in its P6 proces-
sors, including Pentium Pro and Pentium II. This capability
allows the microcode to be altered after the processor is fab-
ricated, repairing bugs that are found after the processor is
designed. Intel has already used this feature several times to
correct minor bugs, and in the future, it may save the com-
pany from recalling CPUs if a major problem is discovered.

Although there have been rumors about downloadable
microcode in previous Intel chips (see MPR 10/88, p. 6), the
company says the P6 is the first of its chips to include this
feature. The CPU maker originally intended the feature to be
used only for debugging, but after dealing with the expense
of the Pentium FDIV bug (see MPR 1/23/95, p. 4), Intel
decided to make it usable in the field. The company plans to
include this capability in all future processors.

High-end systems such as mainframes and some work-
stations often allow the system’s boot code to be remotely
patched, and some allow microcode updates as well. RISC-
based systems, however, have no microcode, so this technique
can’t be used to fix bugs in the microprocessors themselves.
CISC chips from AMD and Cyrix have microcode, but these
vendors have not revealed any patch capabilities.

Patches Stored in BIOS
Like other Intel processors, every P6 chip contains a com-
plete set of microcode in an internal ROM. When it powers
up, a P6 processor begins using this internal microcode. If a
system does not have microcode patches installed, the pro-
cessor will always use this internal microcode. So far, Intel is
offering microcode patches only as part of BIOS (or other
boot) code; the company is investigating whether the patches
can be loaded by the OS, as a Windows DLL file, for example.

Intel has worked with all major BIOS vendors to get the
patch feature into the BIOS of most P6-based PCs. In these
systems, the BIOS writes a memory address into a special
CPU register to trigger a download sequence. Upon receiv-
ing this command, the CPU downloads new microcode from
the specified address.

P6 processors contain a small SRAM that holds up to
60 microinstructions. The patch code is downloaded into
this SRAM. The processor also contains a set of “match” reg-
isters that cause a trap when a particular microcode address
is encountered. (This is similar to the “instruction break-
point” capability used to debug assembly code.) This trap,
which takes a single cycle to process, vectors microcode exe-
cution into the patch RAM.

P6 Microcode Can Be
Intel Discloses Details of Download Me
© M I C R O D E S I G N R E S O U R C E S S E P T E M B E
The downloaded microcode consists of two segments.
The first is an initialization routine that is run immediately
after the code is downloaded. This routine can be used to
reconfigure certain aspects of the processor. This segment of
microcode also initializes the match registers, if necessary.

The second segment contains one or more patches that
remain in the patch RAM during normal operation and are
accessed via a match-register trap. Since the original micro-
code is stored in ROM, it cannot be modified; the match reg-
isters allow the operation of the microcode to be changed. In
this way, an x86 instruction that is operating incorrectly can
be repaired, assuming it is implemented in microcode.

When an instruction needs to be repaired, a patch is
created to replace a section of the original microcode, per-
forming the correct operation and then jumping back to the
original flow. The extra cycles spent jumping to and from the
patch code will, of course, impact performance, but in some
cases a bug can be corrected using this mechanism.

Only Certain Bugs Can Be Fixed
Intel did not disclose the number of match registers, other
than to say that there are more than one. The number of
match registers and the size of the patch RAM limit the num-
ber of bugs that can be fixed for any particular version of the
processor. A single bug, however, might require multiple
patches, and some bugs are too complex to repair in this
manner. Intel believes that the current mechanism could
allow multiple bugs to be fixed, if necessary.

The P6 does not use microcode to implement most x86
instructions. These simpler instructions are the least likely to
have bugs and are also the most heavily tested. In the past,
postproduction bugs that affect specific instructions have
been found in the more complicated microcoded instruc-
tions, such as FIST and FDIV. Intel admits that the Pentium
FDIV bug could not have been fixed in this way if Pentium
had patchable microcode, so it isn’t certain whether the
patch capability will save Intel from a major bug.

As another example, Intel encountered a problem with
the P6’s FIST instruction just after Pentium II was launched
(see www.MDRonline.com/P6/bug). After much investigation,
the company chose to offer a software workaround rather
than a microcode patch. Intel would not say whether the FIST

bug could have been fixed in microcode, but its actions sug-
gest that a microcode patch would have been too large to fit,
or at least too large to leave sufficient room for future use.

Another category of bugs is caused by the incorrect
operation of certain features in the processor, such as instruc-
tion buffers, load and store buffers, and branch prediction.
Many such features of the P6 processor can be disabled via a
R 1 5 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

http://www.MDRonline.com/P6/bug

2 P 6 M I C R O C O D E C A N B E P A T C H E D
special register. In the case of such a bug, the downloaded
microcode can reconfigure the processor to turn off this fea-
ture. In these cases, the processor will then operate correctly,
although often with some performance penalty.

A large majority of bugs, however, cannot be fixed by
either type of microcode patch. If some part of the internal
CPU or the bus interface is simply not functioning properly
in certain circumstances, it is often impossible to correct via
microcode. Intel says it has fixed a handful of P6 bugs using
the patch feature, but this is a small percentage of the total
number of reported errata. Thus, while the patch feature is
useful, it is not a panacea for all processor problems.

Security Features Block Tampering
The new mechanism provides the potential for devious
hackers to reprogram other people’s processors without their
knowledge. To avoid this possibility, Intel has implemented
several layers of security.

Patches are provided to BIOS vendors and system ven-
dors as a 2,048-byte block of data. The block contains a 48-
byte header—which includes a date code, the CPU ID (which
includes the stepping level) of the target processor, and a
checksum—and 2,000 bytes of data to be downloaded by the
processor. The checksum allows the BIOS vendor to make
sure the data block has not been corrupted during trans-
mission, but it is not used by the CPU.

The 2,000 data bytes are encrypted in a way that Intel
claims will be extremely difficult to break. The bytes are
divided into blocks of varying lengths, each of which is
encoded differently. Because the actual microcode patches
are typically much smaller than 2,000 bytes, the remaining
data is random noise intended to confuse anyone attempting
to break the encryption.

Even if a hacker could successfully decipher the encryp-
tion, the next challenge would be constructing a legal patch.
Intel has not published any information on the format of
its microcode, which the company claims is deliberately
designed to be difficult to understand. Only a small number
of Intel employees know the P6 microcode formats. Thus, it
would be nearly impossible to construct a microcode patch
that would, for example, cause the processor to add when it
was supposed to subtract.

If someone could crack the encryption algorithm, they
could simply crash the CPU. If the downloaded byte stream
successfully passes through the decryption process, the CPU
does not verify that the downloaded microinstructions are
valid; it simply executes them. Executing random micro-
instructions would most likely cause the processor to hang; if
this code were written to flash BIOS, it would prevent the
system from successfully booting. Of course, there are many
far easier ways to crash a Windows PC.

A New Way to Fix Bugs
The P6, like any microprocessor, has its share of problems. In
the past, these bugs would be worked around in either hard-
© M I C R O D E S I G N R E S O U R C E S S E P T E M B E
ware or software, or else simply tolerated by the end user,
since most are incredibly obscure. In the case of the famous
FDIV bug, however, Intel actually had to offer to replace mil-
lions of Pentium chips that had already been shipped to cus-
tomers, ultimately costing Intel as much as $475 million.

The new capability in the P6 gives Intel another tool to
correct such problems. The company has already used the
method to fix bugs in the initial steppings of Pentium Pro
and Pentium II. With each new stepping of the chips, the
company incorporates these patches into the internal micro-
code, but as new bugs are found, new patches are needed.

One problem with this method is that newly discovered
bugs may require adding patches to older versions of the
processor. It may not be possible to bring the oldest step-
pings into full compliance, since the number of patches
might exceed the resources available. As time goes by, fewer
and fewer bugs are typically discovered, so hopefully this
limit will not be reached.

BIOS vendors are most affected by the new patch capa-
bility. Intel periodically issues new patch codes to these ven-
dors. Each processor stepping has its own 2K patch code; if a
BIOS vendor wants to support all five existing steppings, it
would need to set aside 10K of ROM. As the P6 continues to
proliferate, this ROM space will balloon further. Instead,
most BIOS vendors have decided to support only the two or
three most recent steppings, assuming that the PC maker will
not use an old CPU with a new BIOS ROM.

In multiprocessor systems, this simplification may be
inadequate, forcing these systems to have a ROM large
enough to accommodate several processor versions. In fact,
many MP systems ship with empty processor slots that can
later be filled. These systems should include a flash BIOS that
can be updated with future patches. Upgrading a Pentium II
PC with a new processor poses a similar problem; fortu-
nately, most Pentium II PCs use flash BIOS.

Upgrading Processors in the Field?
Intel has so far used the patch feature only to repair minor
bugs in its processors. In theory, the feature could be used to
upgrade processors in the field. For example, Intel could
release a low-priced “crippled” P6 processor with many of
the performance-enhancing features disabled via microcode.
An end user could later purchase from Intel a software utility
that would upgrade the processor’s performance. This mech-
anism would require each CPU to have an individual encryp-
tion key, to prevent mass distribution of the upgrade utility,
but such a protective method is surely possible.

Whether Intel will ever attempt such a radically new
business model is unclear. The company will continue to use
microcode patches to fix minor processor bugs. In the case of
a major hardware problem, the ability to download a patch
might save the company millions of dollars, improving cus-
tomer satisfaction as well. Intel has found a creative way to
protect itself against at least some of the inevitable hardware
bugs—a way that its competitors have yet to emulate. M
R 1 5 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

	P6 Microcode Can Be Patched
	Patches Stored in BIOS
	Only Certain Bugs Can Be Fixed
	Security Features Block Tampering
	A New Way to Fix Bugs
	Upgrading Processors in the Field?

