European Aviation Safety Agency

EASA

TYPE-CERTIFICATE DATA SHEET

Number: E.018 Issue: 02

Date: 23 June, 2009

Type: Rolls-Royce Deutschland Ltd & Co KG

BR700-710 engines

Variants

BR700-710A1-10

BR700-710A2-20

BR700-710C4-11

BR700-725A1-12

List of effective Pages:

Page	1	2	3	4	5	6	7	8	9	10	11	12	13			
Issue	2	2	2	2	2	2	2	2	2	2	2	2	2			

TCDS E.018 issue 2, 23 June 2009

BR700-710 Series Engines Variants: BR700-710A1-10, BR700-710A2-20, BR700-710C4-11, BR700-725A1-12

page 2

Intentionally left blank

I. General

1. Type/Variants:

Type: BR700-710

Variants:

BR700-710A1-10 BR700-710	A2-20 BR700-710C4-11	BR700-725A1-12
--------------------------	----------------------	----------------

These variants are approved for use on multi-engined civil aircraft at the ratings and within the operating limitations specified below, subject to compliance with the powerplant installation requirements appropriate to approved installations.

2. Type Certificate Holder:

Rolls-Royce Deutschland Ltd & Co KG (formerly Rolls-Royce Deutschland GmbH, formerly BMW Rolls-Royce GmbH) Eschenweg 11, Dahlewitz 15827 Blankenfelde-Mahlow Germany

EASA Design Organisation Approval No: EASA.21J.065

3. Manufacturer:

Rolls-Royce Deutschland Ltd & Co KG (formerly Rolls-Royce Deutschland GmbH, formerly BMW Rolls-Royce GmbH)

4. Certification Application Date:

BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
16 February 1993	23 March 1994	15 January 2001	6 March 2006

5. Certification Reference Date:

31 August 1993

6. EASA Certification Date:

BR700-710A1- (refer to note (00-710A2-20 er to note 6)	BR700-710C4-11 (refer to note 6)	BR700-725A1-12
14 August 199	96 28 Ja	anuary 1997	24 June 2002	23 June 2009

II. Certification Basis

1. BR700-710A1-10, BR700-710A2-20, BR700-710C4-11:

BR700-710A1-10 BR700-710A2-20 BR700-710C4-11
--

Airworthiness and Environmental Protection Requirements:

- JAR-E, Change 8
- Amendment E/91/1, effective 27.05.1991
- Amendment E/93/1, effective 17.05.1993
- Emissions and Fuel Venting: ICAO Annex 16, Volume II (Second Edition July 1993)

Plus:

• none

- JAR-E, Change 10, E790 Ingestion of Rain and Hail
- JAR-E, Change 10, E40(f) Ratings

Special Conditions:

Ingestion of Hail Ingestion of Bain	• none
Ingestion of Rain	

Deviations:

• JAR-E890(a) Engine Calibration in Reverse Thrust - Exemption

Equivalent Safety Findings:

• JAR-E840(a)(2) Rotor Integrity

1.1 BR700-725A1-12:

Certification Specifications: CS-E, Initial Issue dated 24 October 2003

E50 and E1030 of CS-E, Amendment 1 dated 10 December 2007

Environmental Protection Requirements: ICAO Annex 16, Volume II (Second Edition July 1993), Amendment 5 dated 24 November 2005

Special Conditions: none

Deviations: none

Equivalent Safety Findings: none

III. Technical Characteristics

1. Type Design Definition:

The Engine Type Designs are defined in the following Drawing Introduction Sheets (DIS):

BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
DIS 10002 ISSUE 03	DIS 10005 ISSUE 02	DIS 10012 ISSUE 01	DIS 10016 Issue 1
or later approved	or later approved	or later approved	Revision D or later
issues	issues	issues	approved issues

Changes to the Engine Type Design are introduced by approved Modification Bulletins.

2. Description:

BR700-710A1-10 BR700-710A2-2	20 BR700-710C4-11	BR700-725A1-12
------------------------------	-------------------	----------------

Two spool axial flow engine consisting of a single stage fan, a ten stage axial flow high pressure compressor, an annular combustion chamber, a two stage axial flow high pressure turbine, a two/three* stage axial flow low pressure turbine, an accessory gearbox, a thrust reverser** and a Full Authority Digital Engine Control (FADEC).

3. Equipment:

Approved equipment is listed in the following RRD Reports:

BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
E-TR150/95-(FR), ISSUE 03 'Engine Equipment Classification' or later approved issues	E-TR427/96-(FR), ISSUE 01 'Engine Equipment Classification' or later approved issues	E-TR466/01-(FR), ISSUE 02 'Engine Equipment Classification' or later approved issues	See Installation Manual O-TR1458/08

For details of equipment included in the type design definition: refer to the appropriate engine DIS.

^{*} The BR700-710A1-10, BR700-710A2-20 and BR700-710C4-11 feature a two stage axial flow low pressure turbine, while the BR700-725A1-12 features a three stage axial flow low pressure turbine.

^{**} The BR700-725A1-12 is designed for use with a Thrust Reverser, but it is not part of the engine Type Design.

4. Dimensions:

	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
Overall Length	4669 mm	4669 mm	4660 mm	3297 mm (tip of spinner to rear of exhaust cone)
Maximum Diameter (radius)	1820 mm	1820 mm	1785 mm	950 mm (<u>radius</u> from center line measured at the lowest pont of AGB)

5. Dry Weight:

	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
Dry engine weight	1851,2 kg	1891,0 kg	1818,4 kg	1635,2 kg

Dry weight includes thrust reverser and dressings for the BR700-710A1-10, BR700-710A2-20 and BR700-710C4-11 and dressings for the BR700-725A1-12, but excludes all fluids and all buyer furnished equipment and in the case of the BR700-725A1-12 also the thrust reverser.

6. Ratings:

	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
Take off	65,6 kN	65,6 kN	68,4 kN	71,6 kN
Maximum Continuous	64,3 kN	64,3 kN	64,3 kN	66,6 kN

See Note 5.

7. Control System:

The engine is equipped with a Full Authority Digital Engine Control (FADEC) system.

	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
EEC P/N	1501KDC01-817 or later approved standards	1520KDC01-605 or later approved standards	1505KDC01-002 or later approved standards	G3000ECU03AC or later approved standards

8. Fluids

Approved fuels, additives and oils are listed in the Operating Instructions

9. Aircraft Accessory Drives:

BR700-710A1-10 (with two hydraulic pumps	Direction of Rotation ¹	Trans- mission Ratio	Shear Torque	Weight	Static Overhang Moment	Maximum Torque Extraction
installed)		-	[Nm]	[kg]	[Nm]	[Nm]
Gear Line 6 Pad (Hydr. Pump 1)	counter- clockwise	0.270	418	8.91	8.1	69
Gear Line 8 Pad (Hydr. Pump 2)	counter- clockwise	0.275	418	8.91	8.1	68
Gear Line 11 Pad (Generator)	clockwise	0.520	412.5	32.61	56.5	106

BR700-710A1-10 & BR700-710C4-11	Direction of Rotation ¹	Trans- mission Ratio	Shear Torque [Nm]	Weight [kg]	Static Overhang Moment [Nm]	Maximum Torque Extraction [Nm]
Gear Line 8 Pad (Hydraulic Pump)	counter- clockwise	0.275	418	8.91	8.1	86
Gear Line 11 Pad (Generator)	clockwise	0.520	412.5	32.61	56.5	106

BR700-710A2-20	Direction of Rotation ¹	Trans- mission Ratio	Shear Torque [Nm]	Weight [kg]	Static Overhang Moment [Nm]	Maximum Torque Extraction [Nm]
Gear Line 6 Pad (Hydraulic Pump)	counter- clockwise	0.335	305.1	6.57	6.1	39
Gear Line 8 Pad (Generator No. 2)	counter- clockwise	1.080	283	20.0 ²	32.5	50
Gear Line 11 Pad (Generator No. 1)	clockwise	1.083	283	20.0 ²	32.5	50

BR700-725A1-12	Direction of Rotation ¹	Trans- mission Ratio	Shear Torque	Weight	Static Overhang Moment	Contin. Torque Extraction
		i	[Nm]	[kg]	[Nm]	[Nm]
Hydr. Pump	clockwise	0.261	406,75	14,55 ²	16,37	120
IDG	clockwise	0,522	412,5	32,61 ²	56,5	100
ATS	clockwise	0,988	847	9,99 ²	6,76	415

10. Maximum Permissible Air Bleed Extraction:

BR700-710A1-10, BR700-710A2-20, BR700-710C4-11:

EPR=P50/P20.

The amounts of bleed extraction from stages 5 and 8, respectively, are related to the core entry mass flow, W26. The amounts of fan bleed extraction are related to the fan entry mass flow, W1A.

Stage 8 bleed extractions are cleared for operation up to and including Maximum Continuous rating.

Looking normal to pad along shaft. ² Dry.

BR700-710A1-10	Normal Flow [%]			Maximum Flow [%]		
Power Range	Stage 5	Stage 8	Fan	Stage 5	Stage 8	Fan
Idle to 1.06 EPR		7.8		3.0	12.1	0.6
1.06 to 1.3 EPR	4.4	4.2	0.2	8.3	7.9	1.6
Above 1.3 EPR	4.3	\times	0.4	8.5	8.0	1.8

BR700-710A2-20	Normal Flow [%]			Maximum Flow [%]		
Power Range	Stage 5	Stage 8	Fan	Stage 5	Stage 8	Fan
Idle to 1.06 EPR		7.8	0,4	3.0	12.1	0.6
1.06 to 1.3 EPR	4.4	4.2	0.4	8.3	7.9	0.9
Above 1.3 EPR	4.3		0.4	8.5	8.0	1.1

BR700-710C4-11	Normal Flow [%]			Maximum Flow [%]		
Power Range	Stage 5	Stage 8	Fan	Stage 5	Stage 8	Fan
Idle to 1.06 EPR		7.7	\times	3.0	12.0	0.6
1.06 to 1.3 EPR	4.3	4.1	0.2	8.2	7.8	1.6
Above 1.3 EPR	4.2		0.4	8.3	7.8	1.8

BR700-725A-12:

Notes: $NHRT2 = \frac{\text{Mechanical HP Speed [rpm]}}{\sqrt{\text{Engine Inlet Temperature [K]}}} = \frac{NH}{\sqrt{T2}}$

- Stage 5 and stage 8 HP compressor customer bleed is expressed as a percentage of HP compressor entry mass flow W26.
- Fan bleed flow is expressed as percentage of the fan tip entry mass flow W12.

HP Bleed Stage 5								
Nomir	al	Maximum						
NHRT2	% W26	NHRT2	% W26					
Idle - 675	6.5	ldle - 700	7.7					
675 - 850	10.1	700 - 875	10.1					
850 - MTO	6.5	875 - MTO	8.6					

HP Bleed Stage 8							
Nominal		Maximum					
NHRT2	% W26	NHRT2	% W26				
Idle - 790	13.6	Idle - 800	14.2				
790 - MTO	9.3	800 - MTO	10.0				

LP(Fan) Bleed							
Nomir	nal	Maximu	ım				
NHRT2	% W12	NHRT2	% W12				
Idle - 700	1.4	Idle - 720	1.5				
700 - 775	1.7	720 - MTO	1.9				
775 - MTO	1.7						

V. Operating Limitations:

1. Temperature Limits

Gas Temperatures TGT (trimmed):

Cae remperatures res (minimea).							
	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12			
Maximum prior to starting on ground		150°C					
Starting on ground	700 °C 70		700°C				
Starting in flight		850°C					
Take-off ³		900°C					
Maximum Continuous		885°C					
Maximum Overtemperature(20sec.)		920°C					

Fuel Temperatures:

r doi romporataroo.				
	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12**
LP Pump Inlet, maximum		54	°C	
LP Pump Inlet, 51000ft				47°C
Min. fuel temp.				-40 within the Take- Off envelope/ -45 outside the Take-Off envelope

he max, engine fuel inlet temperatures at altitude below 51000ft are derived by linear interpolation between the values given for sea level and 51000ft

Oil Temperatures:

on romporataroo.				
	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
Minimum for starting	-30 °C	-40 °C ⁴	-30 °C	-10°C
Minimum for acceleration to Take-off	20 °C			
Maximum	160 °C			

2. Permissible Rotational Speeds

Low Pressure Turbine N1:

	BR700-710A1-10 ⁵	BR700-710A2-20 ⁵	BR700-710C4-11 ⁵	BR700-725A1-12 ⁷
Maximum Take-off	101.1 %	102.1 %	101.1 %	102,8 %
Maximum Continuous	101.0 %	102.1 %	101.0 %	102,8 %
Maximum Overspeed (20 sec.)	101.5 %	102.5 %	101.5 %	104,3 %
Reverse Thrust (maximum 30 sec.)	70.0 %			77,7%

The second structure of the se

High Pressure Turbine N2⁶:

	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
Maximum Take-off	99.6%			100.0 %
Maximum Continuous	98.9%			98.7 %
Maximum Overspeed (20 sec.)	99.8%			101.3 %

3. Pressure Limits

Fuel Pressures:				
	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
Minimum at LP Pump Inlet			34.5 kPa	
Differential Oil Pressures:			,	
Lower limit for flight in the range	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
Idle to72.3% N2		241.2	kPa	
72.3% N2 to 90% N2	Straight	line interpolation for	m 241.2 kPa to 31	0.3 kPa
Above 90% N2		310.3	kPa	
Minimum to complete flight in the range	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
Idle to 72.3% N2	172.3 kPa			
72.3% N2 to 90% N2	Straight line interpolation form 172.3 kPa to 241.2 kPa			
Above 90% N2	241.2 kPa			

4. Installation Assumptions:

Refer to Installation Manuals for details.

5. Dispatch Limitations (Time Limited Dispatch):

Information on engine operation with FADEC system dispatch limitations is contained in the respective Time Limits Manuals.

V. Operating and Service Instructions:

	1			
	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
Installation Manual	E-TR206/95 Issue 6 or later approved issues	E-TR364/95 Issue 1 or later approved issues	E-TR240/01(FR) ISS02 or later approved issues	O-TR1458/08 Issue 2 or later approved issues
Operating Instructions	OI-710-1BR	OI-710-2BR	OI-710-4BR	OI-725-7BR

⁶ 100% N2 equals 15898 min⁻¹

Maintenance Manual	M-710-1BR	M-710-2BR	M-710-4BR	M-725-7BR
Engine Manual	E-710-1BR	E-710-2BR	E-710-4BR	E-725-7BR
Time Limits Manual	T-710-1BR	T-710-2BR	T-710-4BR	T-725-7BR
Service Bulletins	As issued by Rolls-Royce Deutschland Ltd & Co KG.			

For BR700-710C4-11 Engines with Modification 72-101466 incorporated E-TR0283/06 Issue01 or later approved issue and the Service Bulletin SB-BR700-72-101466 apply additionally.

VI. Notes

1. The engines are equipped with a thrust reverser:

	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
Left hand engine	P/N04G0001-039 or later approved standards	P/N07G0001-005 or later approved standards	P/N25G0001-001 or later approved standards	P/N RD00103001-1 or later approved standards
Right hand engine	P/N04G0001-041 or later approved standards	P/N07G0001-007 or later approved standards	P/N25G0001-003 or later approved standards	P/N RD00103001-2 or later approved standards
	Operation of these thrust reversers is approved for ground use only.			
	Power back is prohibited.			

- 2. Life limited critical parts are included in the respective Time Limits Manuals.
- 3. The EEC software has been developed and verified in accordance with RTCA/DO-178B respectively ED-12B, Level A
- 4. Information on lightning protection and electromagnetic compatibility is contained in the Installation Manuals.
- 5. The ratings shown under III.6. are achieved at sea level and ISA standard day conditions using a defined test bed configuration for the air intake and exhaust system with all optional bleeds closed and the aircraft service equipment drives unloaded, at a lower fuel heating value of 43179 kJ/kg [22721 CHU/kg].
- 6. Variants BR700-710A1-10, BR700-710A2-20, BR700-710C4-11 were previously covered under LBA Engine Type Certificate 6305 and Type Certificate Data Sheets 6305 (BR700-710A1-10 at Issue 7, BR700-710A2-20 at Issue 6, BR700-710C4-11 at Issue 1) prior to being superseded by the EASA Type Certificate and Type Certificate Data Sheet.
- 7. The BR700-725A1-12 engine is approved for a maximum exhaust gas over temperature of 920°C for inadvertent use for periods up to 20 seconds without requiring maintenance action. The cause of the over temperature must be investigated and recorded.
- 8. The BR700-725A1-12 engine is currently not approved for Time Limited Dispatch operation.
- 9. The BR700-725A1-12 engine is approved for ground operation in freezing fog conditions down to minus 10°C.
