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1. Covering theorems

1.1. Terminology. Disjointed=pairwise disjoint.

1.2. Notation. Let X be a metric space, x ∈ X and r > 0. We write |y − x| instead of ρ(x, y) even
if there is no linear structure on X. We denote by B(x, r) the closed ball {y : |x − y| < r}, no matter
whether B(x, r) = B(x, r) or not. Note that always B(x, r) ⊃ B(x, r).

1.3. Lemma. Let X be a separable metric space and V be a system of closed balls. Then V contains a
maximal disjointed subsystem V ′ and this V ′ is at most countable.

Proof. We consider a countable dense set {xk}. We start with the empty system V0 and at the k-the
step we try add to Vk−1 a ball which is disjoint from the balls of Vk−1 and contains xk. If such a ball Bk
exists, we set Vk = Vk−1 ∪ {Bk}, otherwise we let Vk = Vk−1. At the end we have a system V ′ =

⋃
k Vk

with the desired properties. �

1.4. Remark. A similar assertion (without the countability claim) holds also in nonseparable spaces,
but then this requires the full strength of the axiom of choice.

1.5. Theorem. Let X be a separable metric space and E ⊂ X. Let V be a system of closed balls in X
covering E. Suppose that

R := sup{r : B(x, r) ∈ V} <∞.
Then there exists a countable disjointed subsystem V ′ of V such that

E ⊂
⋃

B(x,r)∈V′
B(x, 5r).
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Proof. We may assume that R = 1. We set

Vm = {B(x, r) ∈ V : 2−m−1 < r ≤ 2−m}.

We start with an empty system. At the m-the step, m ≥ 0, we select a maximal disjointed subsystem
V ′m from

{B(x, r) ∈ Vm : B(x, r) does not intersect any B ∈ V ′0 ∪ · · · ∪ V ′m−1}.
We set

V ′ =
∞⋃
m=0

V ′m.

Let z ∈ E. Then there exists p and B(x, r) ∈ Vp such that x ∈ B(x, r). If B(x, r) is not selected in V ′p,
this must have the reason that there exists m ≤ p and B(y, ρ) ∈ V ′m such that B(x, r) ∩ B(y, ρ) 6= ∅.
Thus,

|z − y| ≤ |z − x|+ |x− y| ≤ r + (ρ+ r) < 5ρ.

Indeed,
r ≤ 2−p ≤ 2 · 2−m−1 < 2ρ.

It follows that z ∈ B(y, 5ρ), so that the covering property is satisfied. �

1.6. Lemma. Let G ⊂ Rn be an open set with |G| <∞. Let E ⊂ G and V be a system of closed balls in
Rn covering E. Then there exists a finite subsystem V ′ of V and an open set G′ ⊂ G such that

|G′| ≤ (1− 6−n)|G|

and

(1) E ⊂ G′ ∪
⋃
B∈V′

B.

Proof. Using Theorem 1.5, we find a disjointed finite or infinite sequence {B(xj , rj)} of balls from the
system V such that

E ⊂
⋃
j

B(xj , 5rj).

Set
G′′ = G ∩

⋃
j

B(xj , 5rj).

Then G′′ is an open set containing E. Since the balls B(xj , rj) are disjointed, we have∑
j

|B(xj , rj)| ≤
∣∣∣⋃
j

B(xj , rj)
∣∣∣ ≤ |G| <∞

and thus the sum
∑
j |B(xj , rj)| is finite or converges. On the other hand,∑

j

|B(xj , rj)| = 5−n
∑
j

|B(xj , 5rj)| ≥ 5−n
∣∣∣⋃
j

B(xj , 5rj)
∣∣∣ ≥ 5−n|G′′|.

We find m such that
m∑
j=1

|B(xj , rj)| > 6−n|G′′|

and set

G′ = G′′ \
m⋃
j=1

B(xj , rj), V ′ = {B(x1, r1), . . . , B(xm, rm)}.

Then G′ is open, (1) holds and

|G′| ≤ |G′′| − |G′′ \G′| ≤ |G′′| − 6−n|G′′| ≤ (1− 6−n)|G|.

�
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1.7. Theorem (Vitali). Let E ⊂ Rn. Let V be a system of closed balls in Rn. Suppose that for each
x ∈ E,

(2) inf
{
r > 0: ∃ z ∈ Rn, x ∈ B(z, r) ∈ V

}
= 0.

Then there exists a countable disjointed subsystem V ′ of V such that

(3)
∣∣∣E \ ⋃

B∈V′
B
∣∣∣ = 0.

Proof. Since we can split Rn into a disjointed countable union of bounded open sets up to a Lebesgue
null set, we may assume that E is contained in a bounded open set G0. Denote τ = 1− 6−n. Lemma 1.6
enables us construct by induction a nested sequence G0 ⊃ G1 ⊃ G2 ⊃ . . . of open sets and an increasing
sequence {Vk} of finite subfamilies of V so that

E ⊂ Gk ∪
⋃
B∈Vk

B, and

|Gk| ≤ τk|G0|.
Indeed, in the k-th step we select only from those balls from V which are contained in Gk−1. The
assumption (2) guarantees that these balls still cover E ∩Gk−1. Finally, we set

V ′ =
⋃
k

Vk.

From the construction it easily follows that

E \
⋃
B∈V′

B ⊂
⋂
k

Gk,

so that (3) holds. �

2. k-dimensional measures on metric spaces

2.1. Definition (Hausdorff measure and spherical measure). Let X be a metric space and k ≥ 0 be a
real number. For E ⊂ X we set

Hkδ (E) = inf
{ ∞∑
j=1

αk
(

1
2 diamEj

)k :
∞⋃
j=1

Ej ⊃ E,diamEj ≤ δ
}
, δ > 0,

Hk(E) = sup
δ>0
Hkδ (E) (= lim

δ→0+
Hkδ (E) ).

and

Kkδ (E) = inf
{ ∞∑
j=1

αk
(

1
2 diamBj

)k : Bj are balls,
∞⋃
j=1

Bj ⊃ E,diamBj ≤ δ
}
, δ > 0,

Kk(E) = sup
δ>0
Kkδ (E) (= lim

δ→0+
Kkδ (E) ).

Here

αk =
πk/2

Γ(k2 + 1)
.

If k is integer, then the constant αk has the meaning of the volume of the unit ball in Rk. The set
function E 7→ Hk(E) is called the k-dimensional (outer) Hausdorff measure. It is quite straightforward
to verify that Hk satisfies the axioms of outer measure. The restriction of Hk to the σ-algebra of all
Hk-measurable sets (in the sense of Carathéodory’s construction) is a measure for which we use the same
symbol. If we integrate with respect to the Hausdorff measure Hk we assume Hk-measurability of the
integrand.

The set function E 7→ Hk∞(E) is called the k-dimensional Hausdorff content. It is an important set
function which however does not obey the additivity properties of measures.

The set function Kk is called the k-dimensional (outer) spherical measure.

2.2. Observations. (a) The Hausdorff content in Rn is not additive on Borel sets (except the case
k = n).

(b) Hk(E) = 0 iff Hk∞(E) = 0.
(c) For each E ⊂ X, Hk(E) ≤ Kk(E) ≤ 2kHk(E).
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2.3. Definition (Distant sets). Let (X, ρ) be a metric space. We call sets E,F ⊂ X to be distant if
there exists δ > 0 such that for each x ∈ E, y ∈ F we have

ρ(x, y) > δ.

2.4. Definition (Metric measure). Let γ be an outer measure on a metric space X. We say that γ is an
metric measure, if

(4) E,F ⊂ X distant =⇒ γ(E ∪ F ) = γ(E) + γ(F ).

2.5. Observation. Hk and Kk are metric measures.

2.6. Theorem. Let γ be a metric measure on a metric space X. Then the σ-albegra of all γ-measurable
sets in X contains all Borel sets.

Proof. We give the proof in a separable space. The reader interested in the nonseparable case can easily
guess the necessary modification of the proof.

It would be clearly sufficient to prove that open balls are γ-measurable, since open balls generate the
Borel σ-algebra (here we use the separability). Let B = B(z, r) be an open ball in Rm and let {rj}∞j=1 be
a sequence of positive radii such that rj ↗ r. The γ-measurability of B in the sense of Carathéodory’s
definition means that for each “test set” T ⊂ Rm we have

(5) γ(T ∩B) + γ(T \B) ≤ γ(T ).

In fact, then the equality holds in (5) since the converse inequality is easy and already stated above. It
is enough to consider a set T ⊂ Rk with γ(T ) <∞. Denote

Pj = T ∩
(
B(z, rj+1) \B(z, rj)

)
, j = 1, 2, . . . ,

P0 = T ∩B(z, r1).

Then the sets P0, P2, P4, . . . are pairwise distant, so that by (4) (together with an induction argument)
q∑
j=0

γ(P2j) = γ
( q⋃
j=0

P2j

)
≤ γ(T )

for all q ∈ N. Similarly
q∑
j=0

γ(P2j+1) ≤ γ(T ). Hence we observe that the series
∞∑
j=0

γ(Pj) is convergent.

Since for each q ∈ N, the sets
q⋃
j=0

Pj and T \B are distant, we have

γ
( q⋃
j=0

Pj

)
+ γ
(
T \B

)
≤ γ

( q⋃
j=0

Pj ∪ (T \B)
)
≤ γ(T )

and thus

γ(T ∩B) ≤ γ
( q⋃
j=0

Pj

)
+ γ
( ∞⋃
j=q+1

Pj

)
≤ γ(T )− γ(T \B) +

∞∑
j=q+1

γ(Pj).

Letting q →∞ we obtain
γ(T ∩B) ≤ γ(T )− γ(T \B),

which is (5). �

2.7. Theorem. Let X, Y be metric spaces and E ⊂ X. Let f : E → Y be a Lipschitz mapping,
lipE f = β. Then

Hk(f(E)) ≤ βkHk(E) .

Proof. Let us consider a sequence {Ej} such that E ⊂
⋃
j Ej . We have diam f(Ej) ≤ β diamEj and

thus
Hkβδ(f(E)) ≤

∑
j

2−kαk(diam f(Ej))k

≤
∑
j

2−kαk(β diamEj)k

4



and passing to the infimum over all coverings we obtain

Hkβδ(f(E)) ≤ βkHkδ (E).

Letting δ → 0+ we conclude the proof. �

2.8. Corollary (Invariance with respect to isometry). Let E ⊂ X and f : E → Y be an isometric
mapping. Then

Hk(f(E)) = Hk(E) .

2.9. Remark. The argument used in the proof of Theorem 2.7 obviously fails for the spherical measure.
To save the situation we would need the following property of the spaces: If E ⊂ B(w, ρ) in X and
f : E → Y is β-Lipschitz, then there exists z ∈ Y such that f(E) ⊂ B(z, βρ).

However if X is the unit disc in R2, E = Y be the unit circle and f is the identity mapping, then
f(E) is not contained in any ball of radius 1 in Y , because the centre that would make the job in Y is
missing.

In the rest of this section, we will show that the desirable property is satisfied if both the spaces X
and Y are Euclidean. This part is included inly as a curiosity, we will not need it in the sequel.

2.10. Lemma. Let E ⊂ Rn be a compact set. Then there exist a unique ball B(z, r) containing E with
the smallest possible diameter. Moreover,

z ∈ conv{y ∈ E : |y − z| = r}.

Proof. Let
r0 = inf{t > 0 : ∃w ∈ Rn such that E ⊂ B(w, t)}.

Let {B(wj , tj)} be a minimizing sequence, then by compactness there exists a convergent subsequence
and a limit ball B(z, r) with r = r0, and containing E. Suppose that there exist two minimal balls
B(z, r) and B(z′, r) containing E. Then

E ⊂ B(z, r) ∩B(z′, r) ⊂ B( 1
2 (z + z′), r′)

with

r′ =
√
r2 −

(
1
2 |z − z′|

)2
< r,

a contradiction. So there is a unique ball B(z, r) containg E with the smallest possible diameter.
Now, suppose that z does not belong to the convex hull of A := {y ∈ E : |y − z| = r}. Since A is

compact, convA is also compact. There exists a hyperplane that separates A and z. Without loss of
generality,

z = −λe1 with λ > 0,
y · e1 > 0, y ∈ A.

Let us consider the compact set K = {y ∈ E : y · e1 ≤ 0}. Then K ⊂ B(z, r), therefore there exists
δ > 0 such that B(y, δ) ⊂ B(z, r) for every y ∈ K. Also,

y ∈ E, y · e1 ≥ 0, 0 < t < λ =⇒ y − te1 ∈ B(z, r).

Hence for sufficiently small t > 0 we have

E − te1 ⊂ B(z, r), which means E ⊂ B(z + te1, r),

which contradicts minimality of r. �

2.11. Lemma. Let E ⊂ B(0, 1) ⊂ Rm be a compact set. Let f : E → Rn be a 1-Lipchitz mapping. Then
there exists z ∈ Rn such that

f(E) ⊂ B(z, 1).

Proof. We find the smallest ball B(z, r) containing f(E). Without loss of generality we may assume that
z = 0. By Lemma 2.10,

0 ∈ conv{f(x) : x ∈ E, |f(x)| = r}.
Therefore there exist xi ∈ E, yi ∈ f(E) and λi ∈ [0, 1] such that

yi = f(xi),
∑
i

λi = 1,
∑
i

λiyi = 0, |yi| = r.
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Since f is 1-Lipschitz, we have ∑
i,j

λiλj |yi − yj |2 ≤
∑
i,j

λiλj |xi − xj |2.

Since |xi| ≤ 1 and |yi| = r, after a routine computation we obtain

(r2 − 1)
∑
i,j

λiλj + |
∑
i

λixi|2 ≤ |
∑
i

λiyi|2 = 0.

It follows that r ≤ 1. �

2.12. Corollary. Let E ⊂ Rm. Let f : E → Rn be a Lipschitz mapping, lipE f = β. Then

Kk(f(E)) ≤ βkKk(E) .

Proof. Using Lemma 2.11, we can proceed as in the proof of Theorem 2.7. �

2.13. Notes. The Hausdorff measure has been introduced by Carathéodory (1914) and Hausdorff (1919).
It was invented to measure the “area” (or “length” if k = 1) of k-dimensional sets (as k-dimensional sur-
faces and their parts) in n-dimensional spaces. There are also alternative ways to introduce k-dimensional
measures in n-dimensional spaces and their outputs are also different. The Hausdorff measure is seem-
ingly the most traditional k-dimensional measure. Moreover, it has the advantage that it measures well
also sets with fractal structure (which are much different from k-dimensional surfaces and their parts),
and that the dimension parameter k may be noninteger. However, this last point of view is not the topic
of these lectures.

3. Comparison of n-dimensional measures in Rn

In this section we shall compare the (outer) measures Hn, Hn∞, Kn, Kn∞, and Ln in Rn. The last one
is the Lebesgue measure

Ln(E) = inf
{ ∞∑
j=1

`(Qj) : Qj are intervals,
∞⋃
j=1

Qj ⊃ E.
}
.

Here `(Q) is the elementary volume of the n-dimensional interval Q. We write also |E| = Ln(E).
If E ⊂ Rn and {Bj} is a sequence of balls that cover E, then

Ln(E) ⊂
∑
j

Ln(Bj) =
∞∑
j=1

αk
(

1
2 diamBj

)n
and passing to the infimum over all such covering we obtain

Ln(E) ≤ Kn∞(E) ≤ Kn(E).

Also we observe that
Hn∞(E) ≤ Kn∞(E)

and
Hn∞(E) ≤ Hn(E) ≤ Kn(E)

In order to obtain that all these outer measures are equal, we need to prove that

Kn(E) ≤ Ln(E). and Ln(E) ≤ Hn∞(E)

The following lemma yields a very rough and temporary estimate.

3.1. Lemma. Let E ⊂ Rn. Then Kn(E) ≤ 5nLn(E). In particular, every Ln-null set is a Kn-null set.

Proof. Let G be an open set containing E and δ > 0. Using Theorem 1.5 we find a systemW of disjointed
balls contained in G such that diamB < δ for each B ∈ W and

E ⊂
⋃

B(x,r)∈W

B(x, 5r).

Then

Kn10δ(E) ≤
∑

B(x,r)∈W

|B(x, 5r)| = 5n
∑

B(x,r)∈W

|B(x, r)| = 5n
∣∣∣ ⋃
B(x,r)∈W

B(x, r)
∣∣∣ ≤ 5nLn(G).

Letting δ → 0 we obtain Kn(E) ≤ 5nLn(G) and passing to the infimum over G we conclude Kn(E) ≤
5nLn(E). �
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3.2. Lemma. Let G ⊂ Rn be an open set and δ > 0. Then there exists a countable disjointed system W
of balls in G such that the diameters of balls in W are less than δ and∣∣∣G \ ⋃

B(x,r)∈W

B
∣∣∣ = 0.

Proof. This is an immediate application of Theorem 1.7, namely we apply it to the system of all balls in
G with diameter less than δ. �

3.3. Theorem. Let E ⊂ Rn. Then Kn(E) ≤ Ln(E).

Proof. Let G be an open set containing E and δ > 0. Using Lemma 3.2 we find a a countable disjointed
system W of balls in G such that the diameters of balls in W are less than δ and∣∣∣G \ ⋃

B(x,r)∈W

B
∣∣∣ = 0.

Denote by W the union of all balls in W. Then

Knδ (E) ≤ Knδ (G) ≤ Knδ (G \W ) +Knδ (W )

Obviously Knδ (W ) ≤ |W | = |G| and by Lemma 3.1, Knδ (G\W ) ≤ 5n|G\W | = 0. Hence Kn(W ) ≤ Ln(G)
and passing to the infimum over G we conclude Kn(E) ≤ Ln(E). �

3.4. Definition (Steiner symmetrization). If x ∈ Rn, the reflection of x with respect to the i-th variable
is defined as

Ri(x) = (x1, . . . , xi−1,−xi, xi+1, . . . , xn) = x− 2xiei.

Let E ⊂ Rn be a convex set. We write

Ri(E) = {ri(x) : x ∈ E}.

The invariance Ri(E) = E has the geometrical meaning of the symmetry with respect to the hyperplane
{x ∈ Rn : xi = 0}. We define the Steiner symmetrization of E with respect to the i-th variable as the
set

Si(E) =
{
x ∈ Rn : ∃ a ∈ R, x+ aei ∈ E, Ri(x) + aei ∈ E

}
.

3.5. Lemma (Properties of the Steiner symmetrization).
(a) Ri(Si(E)) = Si(E).
(b) Rj(E) = E =⇒ Rj(Si(E)) = Si(E).
(c) E convex =⇒ Si(E) convex.
(d) diam(Si(E)) ≤ diamE
(e) Ln(Si(E)) = Ln(E).

Proof. (a) and (b) are elementary. For (c) and (d) it is important to observe that it remains to consider
the situation in the plane, the details are left as an exercise. The part (e) follows from the Fubini
theorem. �

3.6. Lemma (Isodiametric inequality). Let E ⊂ Rn. Then

Ln(E) ≤ 2−nαn (diamE)n.

Proof. Since the diameter of a sets does not vary if we pass to its closed convex hull, we may assume
that E is closed and convex. Using Lemma 3.5 we deduce that the set

S(E) = Sn(. . . (S2(S1(E))))

is convex and balanced (=symmetric with respect to the origin), diamS(E) ≤ diam(E) and Ln(S(E)) =
Ln(E). Let r = 1

2 diam(S(E)). Then S(E) ⊂ B(0, r) and

Ln(E) = Ln(S(E)) ≤ Ln(B(0, r)) = αnr
n = 2−nαn(diamS(E))n

≤ 2−nαn(diamE)n.

�

3.7. Theorem. If E ⊂ Rn, then Ln(E) ≤ Hn∞(E).
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Proof. Let Ej , j = 1, 2, . . . be subsets of Rn such that

E ⊂
⋃
Ej .

Then by the isodiametric inequality (Lemma 3.6)

Ln(E) ≤
∑
j

Ln(Ej) ≤ 2−nαn
∑
j

(diamEj)n.

Thus Ln(E) ≤ Hn∞(E). �

3.8. Notes. The k-dimensional measures in Rn are particularly important for k being a positive integer.
The concept of a k-dimensional measure can be introduced by axioms. Let us consider an outer measure γ
on Rn. We can say that γ is a k-dimensional measure, if e.g. the following set of axioms holds: each Borel
set is γ-measurable, γ((0, 1)k × {0}n−k) = 1 and γ(f(E)) ≤ βk(γ(E)) for each E ⊂ Rn and β-Lipschitz
mapping f : E → Rn. The idea of axiomatic setting for k-dimensional measures is due to Kolmogorov
(1933). There are various methods how to construct k-dimensional measures and the results are really
different measures; even the measures Hk and Kk are diferent for k < n. However, all k-dimensional
measures coincide on the σ-algebra generated by C1-surfaces.

Let us outline a construction of a k-dimensional measure based on ideas entirely different from the
constructions of the measures Hk and Kk. If G ⊂ Rk is an open set and ϕ : G → Rn is an injective
Lipschitz mapping, we may define

γ(ϕ(G)) =
∫
G

|Jϕ(t)| dt,

where Jϕ is the k-dimensional Jacobian of ϕ. This definition does not depend on the choice of the
parametrization γ (this requires some proof). Now, by covering one can produce an outer measure. This
measure has a poor system of null sets, it is sometimes convenient to “compile” the measure with adding
the Hausdorff null set to the covering system.

4. Area and coarea formula – introduction

4.1. Jacobians. Let Ω ⊂ Rn be an open set and f = (f1, . . . , fd) : Ω → Rd be a weakly differentiable
mapping. Then ∇f(x) forms the Jacobi matrix of f at x, i.e. the matrix( ∂fi

∂xj
(x)
)
i=1,...,d
j=1,...,n

∈ Rd×n.

Let I(m, k) be the set of all increasing multiindices from {1, . . . ,m}k, i.e., α = (α1, . . . , αk) ∈ I(m, k) if
αj are integers, 1 ≤ α1 < · · · < αk ≤ m. If α ∈ I(d, k) and β ∈ I(n, k), we define the partial Jacobians

Jαβf(x) =
∂
(
fα1 , . . . , fαk

)
∂
(
xβ1 , . . . , xβk

) (x) = det
(∂fαi

∂xβj

(x)
)
i,j=1,...,k

.

We introduce the k-dimensional Jacobian of f at x as the “multimatrix”

Jkf(x) :=
(
Jαβf(x)

)
α∈I(d,k)
β∈I(n,k)

∈ RI(d,k)×I(n,k).

We write Jf(x) = Jnf(x). If n = d, then, of course, Jf(x) can be identified with an ordinary real
number because the dimension of RI(n,n)×I(n,n) is one.

The points of {x ∈ Ω : Jkf(x) = 0} (i.e. where the rank of ∇f(x) is less than k) are called the
k-singular points (k-singularities) for f . A mapping f : Ω → Rd is termed k-regular if it is C1 and the
set of k-singular points for f is empty.

Let us note that for an arbitrary index set Γ, we introduce the scalar (or inner) product · and the
norm | . | on RΓ as

x · y =
∑
γ∈Γ

xγyγ , x, y ∈ RΓ,

|x| =
√
x · x, x ∈ RΓ.

This gives sense to the norm |Jkf(x)|.
Given a linear mapping A we denote by JkA the k-dimensional Jacobian of A. The symbol does not

refer to a point at which the Jacobian is computed, because linear mappings have constant derivatives
and thus also constant Jacobians.
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4.2. Area formula. Let Ω ⊂ Rn be an open set, Ω′ ⊂ Ω and f : Ω→ Rd be a Sobolev mapping, d ≥ n.
We say that the area formula holds for f on Ω′ if for each measurable set E ⊂ Ω′ we have

(6)
∫
E

|Jf(x)| dx =
∫

Rd

N (f, y, E) dHn(y)

where N (f, y, E) is the number of points in the set E∩f−1(y) (the multiplicity function). The statement
that (6) is valid includes Hn-measurability of the multiplicity function. If Ω′ is not mentioned we
understand that Ω′ = Ω.

4.3. Coarea formula. Let Ω ⊂ Rn be an open set, Ω′ ⊂ Ω and f : Ω → Rd be a Sobolev mapping,
d ≤ n. We say that the coarea formula holds for f on Ω′ if for for each measurable set E ⊂ Ω′ and a.e.
y ∈ Rd, the set E ∩ f−1(y) is Hn−d-measurable and the equality

(7)
∫
E

|Jdf(x)| dx =
∫

Rd

Hn−d(E ∩ f−1(y)) dy

holds. The statement that (7) is valid includes also measurability of the function

y 7→ Hn−d(E ∩ f−1(y)).

If Ω′ is not mentioned we understand that Ω′ = Ω.

4.4. Remark. Later on we shall show that the area formula and the coarea formula hold whenever f
is C1, see Section 6. Even more general criteria will be presented later. In the exercises below we will
assume the knowledge of the C1-statement.

4.5. Remark. Notice that |J1f | = |∇f | which simplifies the area formula if n = 1 (=integration along
curves) and the coarea formula if d = 1 (=scalar case). However, if we want to formulate the area formula
for n = 1 only it is quite unusual to use the symbol ∇f and and f ′ is customarily used instead. This is
not in conflict with the above conventions because Sobolev functions on one-dimensional intervals have
a.e. differentiable continuous representatives.

4.6. Advanced change of variables. Validity of area or coarea formula for a function f implies that
f is a legitimate transformation for change of variables. Advanced formulae on change of variables
are obvious consequences which can be obtained from (6) and (7) in a very routine way (characteristic
function, simple functions,...). If d = n, both area and coarea formula imply the classical theorem on
change of variables.

4.7. Theorem (Change of variables by area formula). Let Ω ⊂ Rn be an open set and f : Ω→ Rd be a
Sobolev mapping, d ≥ n. Suppose that the area formula holds for f . Let E ⊂ Ω be a measurable set and
u : E → R a measurable function. Then∫

E

u(x) |Jf(x)| dx =
∫

Rd

( ∑
x∈E∩f−1(y)

u(x)
)
dHn(y)

provided the integral on the left makes sense.

4.8. Theorem (Change of variables by coarea formula). Let Ω ⊂ Rn be an open set and f : Ω→ Rd be
a Sobolev mapping, d ≤ n. Suppose that the coarea formula holds for f . Let E ⊂ Ω be a measurable set
and u : E → R be a measurable function. Then

(8)
∫
E

u(x) |Jdf(x)| dx =
∫

Rd

(∫
E∩f−1(y)

u(x) dHn−d(x)
)
dy

provided the integral on the left makes sense.

5. Integration on linear subspaces

The simplest case of area or coarea formulae is that of linear mappings. However, already here we
must settle all algebraical difficulties connected with this topic. In this section we use temporarily the
bold font for vectors.

5.1. Linear mappings. We will not much distinguish between linear mappings and their representing
matrices.

We denote by I the identity mapping of Rn → Rn.
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If A : Rn → Rd is a linear mapping, recall that the norm of A is defined by

‖A‖ = sup{|Ax| : x ∈ Rm, |x| ≤ 1}.

The determinant of a linear mapping A : Rn → Rn is the determinant of its representing matrix.
Let A : Rn → Rm be linear. The adjoint of A is defined as the linear mapping A∗ : Rm → Rn

satisfying x · (A∗y) = (Ax) ·y for all x ∈ Rn and y ∈ Rm. The matrix representing A∗ is the transposed
matrix to the matrix representing A.

It can be verified that the norm of A is the square root of the maximal eigenvalue of A∗A.
A linear mapping Q : Rn → Rm is termed orthogonal if (Qx) · (Qy) = x · y for all x,y ∈ Rn. This

is the case iff Q∗Q = I. Another characterization is that this is a linear mapping which preserves the
norm (or euclidean distance).

A linear mapping S : Rn → Rn is termed symmetric (or selfadjoint) if S∗ = S.
A linear mapping D : Rn → Rn is termed diagonal if its representing matrix is diagonal.
A linear mapping P : Rn → Rn is termed positive definite if Px · x > 0 for each x ∈ Rn.

5.2. Lemma (Decomposition of a linear mapping). Let n ≤ d. Let A : Rn → Rd be an n-regular linear
mapping. Then

A = QDP,

where P : Rn → Rn is an orthogonal linear mapping, D : Rn → Rn is a positive definite diagonal linear
mapping and Q : Rn → Rd is an orthogonal linear mapping.

Proof. The mapping A∗A is symmetric and positively definite, hence there exists an orthonormal basis
(u1, . . . ,uk) of the space Rn consisting of eigenvectors of A∗A. Thus there are λi > 0 such that

A∗Aui = λ2
iui, i = 1, . . . , n.

Then Q, D and P will be constructed as linear mappings transforming bases into bases: P (ui) = ei,
D(ei) = λiei, Q(λiei) = A(ui). We have

(Qei) · (Qej) =
Aui
λi
· Auj
λj

=
A∗Aui
λiλj

· uj

=

{
ui · uj = 1, i = j,
λ2

i

λiλj
ui · uj = 0, i 6= j.

which shows that Q is orthogonal. The rest is routine. �

5.3. Theorem (Cauchy-Binet formula). Let A,B : Rn → Rd be linear mappings, d ≥ n. Then

JA · JB = det(B∗A).

In particular,
|JA| =

√
det(A∗A).

Proof. Consider 2n-linear forms

(9) Φ(v1, . . . ,vn,w1, . . . ,wn) =
∑

α∈I(d,n)

det(viαq
)ni,q=1 det(wjαq

)nj,q=1 ,

(10) Ψ(v1, . . . ,vn,w1, . . . ,wn) = det
(
vi ·wj

)n
i,j=1

,

where we write

vi =
d∑
j=1

vijej , wi =
d∑
j=1

wijej .

We shall shortly verify that Φ and Ψ yield the same output if vi and wi are selected from the canonical
basis. Hence the multilinearity implies that Φ and Ψ coincide. The proof the follows applying the result
to the vectors vi = A(ei), wi = B(ei), i = 1, . . . , n.

Pick vi and wi from the canonical basis vectors. If vi1 = vi2 , where i1, i2 ∈ {1, . . . , n} are distinct,
then all determinants det(viαj )ni,j=1 vanish and since

vi1 ·wj = vi2 ·wj , j = 1, . . . , d,
10



also the determinant in (10) vanishes. We may then assume that vi are pairwise distinct, thus there
exists β ∈ I(d, n) such that vi are just a permutation of eβ1 , . . . , eβn

. If among the vectors wj there
does not occur vi0 , i0 ∈ {1, . . . , n}, then Φ yields zero, as

det(wiβj
)ni,j=1 = 0

and for α 6= β we have
det(viαj

)ni,j=1 = 0.
Also Ψ yields zero, as in the matrix (

vi ·wj

)n
i,j=1

the i0-th row vanishes. It remains the case that up to a permutation, wj are eβ1 , . . . , eβn . Then on the
right of (9) there is only one nonvanishing term corresponding to the multiindex β. By the theorem on
the product of determinants, we have

Φ(v1, . . . ,vn,w1, . . . ,wn) = det
( n∑
q=1

viβq
wjβq

)
.

Taking into account that both vi and wj are selected from {eβ1 , . . . , eβn}, we infer
n∑
q=1

viβq
wjβq

= vi ·wj , i, j = 1, . . . , n.

Thus we have verified Φ(v1, . . . ,vn,w1, . . . ,wn) = Ψ(v1, . . . ,vn,w1, . . . ,wn) which finishes the proof.
�

5.4. Theorem (Area formula for a linear mapping). Let n ≤ d. Then the area formula holds for any
n-regular linear mapping A : Rn → Rd.

Proof. Consider first the case of a positive definite diagonal linear mapping D : Rn → Rn. Then

Dx = (d1x1, . . . , dnxn), x ∈ Rn,
where d1, . . . , dn are positive real numbers. For each n-dimensional interval I = (a1, b1)× · · · × (an, bn)
we have

D(I) = (d1a1, d1b1)× · · · × (dnan, dnbn)
and elementary geometry gives

Ln(D(I)) = d1 . . . dn Ln(I) = JD Ln(I).

From the construction of the Lebesgue measure it is clear that it follows

Ln(D(E)) = |JD| Ln(E)

for each E ⊂ Rn.
Consider now the general case of A. By Lemma 5.2 there is a decomposition of A as

A = QDP,

where P : Rn → Rn is an orthogonal linear mapping, D : Rn → Rn is a positive definite diagonal linear
mapping and Q : Rn → Rd is an orthogonal linear mapping. Let E ⊂ Rn be an arbitrary set. Then by
Corollary 2.8, equality of Lebesgue and Hausdorff measure and the previous step we have

Hn(A(E)) = Hn(Q(D(P (E)))) = Hn(D(P (E))) = Ln(D(P (E))) = JDLn(P (E)) = JDLn(E).

It remains to show that JD = |JA|. Obviously

A∗A = (QDP )∗(QDP ) = P ∗D∗Q∗QDP = P ∗D∗DP.

By the theorem on product of determinants we have

det(A∗A) = detP ∗ det(D∗D) detP = det(D∗D).

(Recall that for orthogonal P : Rn → Rn we have detP ∗ = detP ∈ {+1,−1}). Hence by the Cauchy-
Binet formula (Theorem 5.3), JD = |JD| = |JA|. This finishes the proof. �

5.5. Lemma (Decomposition of a linear mapping, n ≥ d). . Let A : Rn → Rd be a d-regular linear
mapping, n ≥ d. Then A = LΠQ, where Q : Rn → Rn is an orthogonal mapping, Π : Rn → Rd is the
projection (x1, . . . , xn) 7→ (x1, . . . , xd) and L : Rd → Rd is a d-regular linear mapping.
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Proof. Let KerA = {x ∈ Rn : Ax = 0}. Let (u1, . . . ,un) be an orthonormal basis of Rn such that
(ud+1, . . . ,un) is an orthonormal basis of KerA. Then Q and L will be constructed as linear mappings
transforming bases into bases: Qui = ei, Lei = Aui. �

5.6. Theorem (Coarea formula for a linear mapping). Let n ≥ d. Then the coarea formula holds for
any d-regular linear mapping A : Rn → Rd.

Proof. Let E ⊂ Rn be measurable. By Corollary 2.8, for each y ∈ Rd we have

Hn−d(E ∩A−1(y)) = Hn−d
(
E ∩Q−1(Π−1(L−1(y)))

)
= Hn−d

(
Q(E) ∩Π−1(L−1(y))

)
.

Let z = L−1y. Then, by the area formula (Theorem 5.4) applied to L, the equality of Hausdorff and
Lebesgue measure, the Fubini theorem and Corollary 2.8 we have∫

Rd

Hn−d(E ∩A−1(y)) dy =
∫

Rd

Hn−d
(
Q(E) ∩Π−1(L−1(y))

)
dy

=
∫

Rd

Hn−d
(
Q(E) ∩Π−1(z)

)
|JdL| dz

=
∫

Rd

Ln−d
({
w ∈ Rn−d : (z,w) ∈ Q(E)

)}
|JdL| dz

= |JdL| Ln(Q(E)) = |JdL|Ln(E).

It remains to show that |JdL| = |JdA|. Using that Q∗ and Π∗ are orthogonal mappings we observe that

AA∗ = (LΠQ)(LΠQ)∗ = LΠQQ∗Π∗L∗ = LΠΠ∗L∗ = LL∗.

The dual version of the Cauchy-Binet formula then yields that

|JdA|2 = det(AA∗) = det(LL∗) = |JdL|2.

�

6. Area and coarea formula: C1-case

In this section we establish area and coarea formulae for C1-mappings. First we consider the regular
case and then we use a trick to handle also the singularities.

We start with the case d ≥ n.

6.1. Lemma. Let Ω ⊂ Rn be an open set, f : Ω→ Rd be a C1-mapping and x0 ∈ Ω. If Jf(x0) 6= 0 then
for each ε > 0 there exists a neighborhod U ⊂ Ω of x0 such that for all x, x′ ∈ U we have

(11) (1− ε)|Ax′ −Ax| ≤ |f(x′)− f(x)| ≤ (1 + ε)|Ax′ −Ax|

where A = f ′(x0).

Proof. Choose ε > 0. Since A is n-regular, there exists λ > 0 such that

|Ax| ≥ λ|x|, x ∈ Rn.

We find a ball U centered at x0 and contained in Ω such that for each x ∈ U we have ‖f ′(x)−A‖ < λε.
Then for x, x′ ∈ U we get∣∣∣f(x′)− f(x)−A (x′ − x)

∣∣∣ =
∣∣∣∫ 1

0

d

dξ

(
f(x+ ξ(x′ − x))−A (x+ ξ(x′ − x))

)
dξ
∣∣∣

=
∣∣∣∫ 1

0

[f ′(x+ ξ(x′ − x))−A] (x′ − x) dξ
∣∣∣

≤ λε|x′ − x| ≤ ε|A (x′ − x)|.

Hence ∣∣∣f(x′)− f(x)
∣∣∣ ≤ ∣∣∣A (x′ − x)

∣∣∣+
∣∣∣f(x′)− f(x)−A (x′ − x)

∣∣∣ ≤ |Ax′ −Ax|+ ε|Ax′ −Ax|

= (1 + ε)|Ax′ −Ax|
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and similarly∣∣∣f(x′)− f(x)
∣∣∣ ≥ ∣∣∣A (x′ − x)

∣∣∣− ∣∣∣f(x′)− f(x)−A (x′ − x)
∣∣∣ ≥ |Ax′ −Ax| − ε|Ax′ −Ax|

= (1− ε)|Ax′ −Ax|

�

6.2. Lemma. Let Ω ⊂ Rn be an open set and f : Ω→ Rd be a C1-mapping. Let x0 ∈ Ω with Jf(x0) 6= 0.
Then given ε ∈ (0, 1) there exists a neighborhood U of x0 such that for each measurable set E ⊂ U , f(E)
is Hn-measurable and

(12) (1− ε)n+1

∫
E

|Jf(x)| dx ≤ Hn(f(E)) ≤ (1 + ε)n+1

∫
E

|Jf(x)| dx.

Proof. Let A = f ′(x0). We write f as
f = (f ◦A−1) ◦A.

Choose ε > 0 and find a neighborhood U of x0 such that the conclusion of Lemma 6.1 holds and moreover

(13) (1 + ε)−1|JA| ≤ |Jf(x)| ≤ (1− ε)−1|JA|, x ∈ U.

Let E ⊂ U be measurable. Then by Theorem 5.4 we have

(14) Hn(A(E)) = |JA|Ln(E).

Further, Lemma 6.1 in fact says that

lipA(E) f ◦A−1 ≤ 1 + ε,

lipf(E)A ◦ f−1 ≤ (1− ε)−1.

By Theorem 2.7 and (14) then

(15) Hn(f(E)) = Hn(f ◦A−1(A(E))) ≤ (1 + ε)nHn(A(E)) = (1 + ε)n|JA|Ln(E).

With the aid of (13) it follows

Hn(f(E)) ≤ (1 + ε)n
∫
E

|JA| dx ≤ (1 + ε)n+1

∫
E

|Jf(x)| dx.

Similarly one can verify the second inequality. It remains to show that f(E) is Hn-measurable. We can
write

E = N ∪
∞⋃
j=1

Fj

where Fj are compact and Ln(N) = 0. By the above computation we have also Hn(f(N)) = 0. The sets
f(Fj) are Hn-measurable because in view of continuity of f they are compact. Hence

f(E) = f(N) ∪
∞⋃
j=1

f(Fj)

is Hn-measurable. �

6.3. Lemma (Area formula: regular case). Let Ω ⊂ Rn be an open set and f : Ω→ Rd be an n-regular
C1-mapping. Then the area formula holds for f .

Proof. Choose ε ∈ (0, 1) and a measurable set E ⊂ Ω. We cover Ω by balls Bj such that f restricted to
Bj is one-to-one and for each j = 1, 2, . . . and each measurable F ⊂ Bj we have (12). We set

(16)

E1 = E ∩B1,

E2 = E ∩ (B2 \B1),

E3 = E ∩ (B3 \ (B1 ∪B2)),
. . .

Then the sets Ej are pairwise disjoint and E =
⋃∞
j=1Ej . By (12) we have

(1− ε)n+1

∫
Ej

|Jf(x)| dx ≤ Hn(f(Ej)) ≤ (1 + ε)n+1

∫
Ej

|Jf(x)| dx.
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Taking into account that the sets f(Ej) are Hn-measurable (by Lemma 6.2) and f is one-to-one in Bj ,
we rewrite Hn(f(Ej)) as

Hn(f(Ej)) =
∫

Rd

N (f, y, Ej) dHn(y).

Summing over j we obtain

(1− ε)n+1

∫
E

|Jf(x)| dx ≤
∫

Rd

N (f, y, E) dHn(y) ≤ (1 + ε)n+1

∫
E

|Jf(x)| dx.

Letting ε→ 0 we obtain the assertion. �

6.4. Lemma (Sard’s theorem). Let Ω ⊂ Rn be an open set and f : Ω → Rd be a C1-mapping. Let
Z = {x ∈ Ω : Jf(x) = 0}. Then Hn(f(Z)) = 0.

Proof. Since the matter is local, we may assume that f ′ is bounded in Ω and that Z is bounded. Choose
ε ∈ (0, 1) and consider the mappings fε : Ω→ Rd × Rn, Π : Rd × Rn → Rd defined by

fε(x) = (f(x), εx), Π(y1, . . . , yd+n) = (y1, . . . , yd).

Then
f = Π ◦ fε,

the mapping fε is n-regular and one-to-one and the mapping Π is Lipschitz with lip Π = 1. The Jacobi
matrix of fε at x ∈ Ω is 

∂f(1)

∂x1
. . . ∂f(1)

∂xn

. . . . . . . . .
∂f(d)

∂x1
. . . ∂f(d)

∂xn

ε . . . 0
. . . . . . . . .
0 . . . ε


.

We easily estimate that there is a constant C such that

|Jfε(x)|2 ≤ |Jf(x)|2 + C2‖f ′(x)‖2n−2ε2.

In particular, if x ∈ Z, then

(17) |Jfε(x)| ≤ C17 ε,

where C17 is a multiple of the upper bound for ‖f ′(x)‖ over Z. Hence

Hn(f(Z)) = Hn(Π(fε(Z))) ≤ Hn(fε(Z)) ≤
∫
Z

|Jfε(x)| dx ≤ C17 εLn(Z).

Letting ε→ 0 we obtain the assertion. �

6.5. Remark. It is quite technical to prove that for d = n we have

Jf = 0 on Z =⇒ Ln(f(Z)) = 0

using Lebesgue measure only. The above proof is more elegant, however, it requires the knowledge of
n-dimensional integration in R2n.

6.6. Theorem (Area formula: the C1 case). Let Ω ⊂ Rn be an open set and f : Ω→ Rd be a C1-mapping.
Then the area formula holds for f .

Proof. Set Z = {x ∈ Ω : Jf(x) = 0}. Since Jf is continuous, the set Ω \ Z is open. By Lemma 6.3, the
area formula for f holds on Ω \ Z. By Lemma 6.4, Hn(f(Z)) = 0 and thus the area formula for f holds
on Z. Therefore it holds on Ω. �

Now we turn to the case d ≤ n.

6.7. Lemma (Coarea formula: regular case). Let Ω ⊂ Rn be an open set and f : Ω→ Rd be a d-regular
C1-maping, d ≤ n. Then the coarea formula holds for f .
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Proof. We already know the trick how make the matter local, cf. (16). Hence it is enough to verify that
for each x0 ∈ Ω, the coarea furmula for f holds on some neighborhood U of x0. Let A = f ′(x0). Then
∇f (1)(x0), . . . ,∇f (d)(x0) are linearly independent. We find a multiindex β = (β1, . . . , βn−d) such that

∇f (1)(x0), . . . ,∇f (d)(x0), eβ1 , . . . , eβn−d
are linearly independent.

We write
Π(x) = (xβ1 , . . . , xβn−d

),

Φ(x) = (f(x),Π(x)).
Then JnΦ(x0) 6= 0. We find a neighborhood U of x0 such that Φ is a diffeomorphism on U . By the
local invertibility theorem there is a diffeomorphic inverse mapping Ψ to Φ on Φ(U). The set Φ(E) is
measurable and thus, by the Fubini theorem, for Ld-a.e. y we have measurability of

{z ∈ Rn−d : (y, z) ∈ Φ(E)}.
For such y, by Theorem 4.7 and Theorem 6.6, the set E ∩ f−1(y) is Hn−d-measurable and we have

(18) Hn−d(E ∩ f−1(y)) =
∫

Π(E∩f−1(y))

|Jn−dΨ(y, ·)(z)| dz.

By the classical change of variables and the Fubini theorem

(19)

∫
Rd

Hn−d(E ∩ f−1(y)) dy =
∫

Rd

(∫
Π(E∩f−1(y))

|Jn−dΨ(y, ·)(z)| dz
)
dy

=
∫

Φ(E)

|Jn−dΨ(y, ·)(z)| dz dy

=
∫
E

|Jn−dΨ(f(x), ·)(Π(x))| |JΦ(x)| dx,

where it follows from the computation that the function

y 7→ Hn−d(E ∩ f−1(y))

is Ld-measurable. The equation (19) is almost the coarea formula, but instead of the Jacobian Jdf(x)
we have some strange expression. We need to show the equality

(20) |Jn−dΨ(f(x), ·)((Π(x)))| |JΦ(x)| = |Jdf(x)|.
Applying the formula (19) to the linear mapping A = f ′(x) in place of f and specifying E to be the unit
interval I = (0, 1)n, appealing to Theorem 5.6 and integrating with respect to x′ while x remains fixed,
we obtain

|Jn−dΨ(f(x), ·)(Π(x))| |JΦ(x)| =
∫
I

|Jn−dΨ(f(x), ·)(Π(x))| |JΦ(x)| dx′

=
∫

Rd

Hn−d(I ∩A−1(y′)) dy′

= |JdA| Ln(I) = |JdA|.
This proves (20). �

6.8. Lemma (Eilenberg’s inequality). Let T ⊂ Rn × Rd and d ≤ k ≤ n+ d. Then

(21)
∫

Rd

Hk−d
(
T ∩ (Rn × {w})

)
dw ≤ C21Hk(T )

where
C21 =

αk−dαd
αk

.

Proof. Choose δ > 0 and consider a covering {Tj} of T such that diamTj < δ for all j ∈ N. Let Xj be
the projection of Tj to Rn and Wj be the projection of Tj to Rd, i.e.

Xj = {x ∈ Rn : ∃w ∈ Rd, (x,w) ∈ Tj},

Wj = {w ∈ Rd : ∃x ∈ Rn, (x,w) ∈ Tj}.

Then diamXj ≤ diamTj and diamWj ≤ diamTj . For any w ∈ Rd we have

T ∩ (Rn × {w}) ⊂
⋃
j

Xj × (Wj ∩ {w})
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and thus

(22) Hk−dδ

(
T ∩ (Rn × {w})

)
≤ 2d−kαk−d

∑
j

(diamXj)k−dχWj
(w).

On the other hand, by the isodiametric inequality (Lemma 3.6), for each j we have

(23) Ld(Wj) ≤ 2−dαd(diamWj)d.

Using the Levi theorem, (22) and (23) we obtain∫
Rd

Hk−dδ

(
T ∩ (Rn × {w})

)
dw ≤

∫
Rd

(
2d−kαk−d

∑
j

(diamXj)k−dχWj
(w)
)
dw

=
∑
j

(∫
Rd

2d−kαk−d(diamXj)k−dχWj
(w)
)
dw

= 2d−kαk−d
∑
j

(diamXj)k−dLd(Wj)

≤ 2−kαk−dαd(diamXj)k−d(diamWj)d

≤ 2−kαk−dαd(diamTj)k.

Taking infimum over all admissible coverings {Tj} gives∫
Rd

Hk−dδ

(
T ∩ (Rn × {w})

)
dw ≤ αk−dαd

αk
Hkδ (T ) ≤ C21Hk(T ).

Letting δ → 0 we conclude the proof. �

6.9. Lemma. Let Ω ⊂ Rn be an open set and f : Ω→ Rn be a C1-mapping. Let Z = {x ∈ Ω : Jdf(x) =
0}. Then ∫

Rd

Hn−d(f−1(y) ∩ Z) dy = 0.

Proof. Since the matter is local, we may assume that f ′ is bounded in Ω and that Z is bounded. Choose
ε > 0 and consider the mapping fε : Ω× Rd → Rd defined by

fε(x,w) = f(x) + εw.

The Jacobi matrix of fε at (x,w) ∈ Ω× Rd is ∂f(1)

∂x1
. . . ∂f(1)

∂xn
ε . . . 0

. . . . . . . . . . . . . . . . . .
∂f(d)

∂x1
. . . ∂f(d)

∂xn
0 . . . ε

 .

It follows that Jdfε 6= 0 and we easily estimate that there is a constant C such that

|Jdfε(x,w)|2 ≤ |Jdf(x)|2 + C2‖f ′(x)‖2d−2ε2.

In particular, if x ∈ Z, then

(24) |Jdfε(x,w)| ≤ C24 ε,

where C24 is a multiple of the upper bound for ‖f ′(x)‖ over Z. Let I = (0, 1)d. Given y ∈ Rd, by Lemma
6.8 ∫

I

Hn−d
(

(Z × {w}) ∩ f−1
ε (y)

)
dw ≤ C21Hn

(
(Z × I) ∩ f−1

ε (y)
)
.

For any w ∈ Rd we clearly have∫
Rd

Hn−d
(

(Z × {w}) ∩ f−1
ε (y)

)
dy =

∫
Rd

Hn−d
(
Z ∩ f−1(y − εw)

)
dy

=
∫

Rd

Hn−d
(
Z ∩ f−1(y)

)
dy.
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Using Fubini’s theorem we obtain∫
Rd

Hn−d
(
Z ∩ f−1(y)

)
dy =

∫
I

(∫
Rd

Hn−d
(

(Z × {w}) ∩ f−1
ε (y)

)
dy
)
dw

=
∫

Rd

(∫
I

Hn−d
(

(Z × {w}) ∩ f−1
ε (y)

)
dw
)
dy

≤ C21

∫
Rd

Hn
(

(Z × I) ∩ f−1
ε (y)

)
dy.

Using the coarea formula for d-regular mappings (Lemma 6.7) we can rewrite the previous estimate as∫
Rd

Hn−d
(
Z ∩ f−1(y)

)
dy ≤ C21

∫
Z×I

Jfε(x,w) dx dw ≤ C21C24 εLn(Z).

Letting ε→ 0 we obtain the assertion. �

6.10. Theorem (Coarea formula: the C1 case). Let Ω ⊂ Rn be an open set and f : Ω → Rd be a
C1-mapping, d ≤ n. Then the coarea formula holds for f .

Proof. Set Z = {x ∈ Ω : Jdf(x) = 0}. Since Jdf is continuous, the set Ω \ Z is open. By Lemma 6.7
and Lemma 6.9, the coarea formula for f holds on Ω \ Z and on Z. Therefore it holds on Ω. �

7. Lusin type approximation

7.1. Lemma (McShane; Lipschitz extension). Let E ⊂ Rn and and u be a bounded Lipschitz function
on E. Then there exists a function v : Rn → R such that

v = u on E, sup
Rn

|v| ≤ sup
E
|u|, lipRn v ≤ lipE u.

Proof. Denote
C0 = sup

E
|u|, C1 = lipE u.

Set
v(x) = min

{
C0, inf

{
u(z) + C1|x− z|, z ∈ E

}}
.

Then it is easy to verify that v has the required properties. �

7.2. Remark. Notice that W 1,∞(Rn) is exactly the set of all functions on Rn which have a bounded
Lipschitz representative. For this representative u we have

‖u‖1,∞ = sup |u|+ lipu.

7.3. Lemma. Let B = B(x0, R) and u ∈W 1,1(B). If x ∈ B is a Lebesgue point for u and a point where
M∇u(x) < +∞ (where M∇u is the Hardy-Littlewood maximal function of the function equal to ∇u on
B and 0 elsewhere), then
(a)

−
(
u(x)−−

∫
B

u
)

=
∫ 1

0

(
−
∫
Bt

∇u(z) · z
t
dz
)
dt,

(b) ∣∣∣u(x)−−
∫
B

u
∣∣∣ ≤ 2R

∫ 1

0

(
−
∫
Bt

|∇u(z)| dz
)
dt ≤ 2n+1RM∇u(x),

where
Bt = B(x+ t(x0 − x), tR).

Proof. We may assume that x = 0. We set

Φ(t) = −
∫
Bt

u(z) dz = −
∫
B(z,R)

u(ty) dy, t ∈ (0, 1].

Then

(25) Φ(1)− Φ(a) =
∫ 1

a

(
−
∫
B(z,R)

∇u(ty) · y dy
)
dt =

∫ 1

a

(
−
∫
Bt

∇u(z) · z
t
dz
)
dt, a ∈ (0, 1).
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This follows from derivation beyond the sign of integral if u is smooth, the general case then follows by
mollification technique. Hence

(26)
∣∣∣u(x)−−

∫
B

u
∣∣∣ = |Φ(1)− Φ(0+)| ≤ 2R

∫ 1

0

(
−
∫
B(z,R)

|∇u(ty)| dy
)
dt = 2R

∫ 1

0

(
−
∫
Bt

|∇u(z)| dz
)
dt

if 0 is a Lebesgue point for u. Since∣∣∣−∫
Bt

|∇u(z)| dz
∣∣∣ ≤ 2n −

∫
B(x,2Rt)

|∇u(z)| dz

we have at such a x ∣∣∣u(x)−−
∫
B

u
∣∣∣ ≤ 2n+1RM∇u(x).

If moreover M∇u(x) < +∞, then the integral on the right of (26) converges, and thus we may let
a→ 0+ on the right of (25).

�

7.4. Lemma. Let u ∈W 1,1(Rn) and ε > 0. There is v ∈W 1,1(Rn) ∩W 1,∞(Rn) such that

‖v‖1,1 ≤ C27‖u‖1,1,(27)

‖v‖1,∞ ≤
C28

ε
‖u‖1,1(28)

and
Ln({v 6= u}) ≤ ε.

The constants C27, C28 depend only on n.

Proof. Choose a > 0 and set
G0 = {|u| > a}, G1 = {M∇u > a}.

Then by the Chebyshev inequality

(29) Ln(G0) ≤ a−1

∫
G0

|u| dx ≤ ‖u‖1
a

and by the Hardy-Littlewood maximal theorem

(30) Ln(G1) ≤ 5n

a
‖∇u‖1.

Let N be the set of zero measure consisting of all points which are not Lebesgue points for u. Set
G = G0 ∪G1 ∪N . Then the choice

(31) a = 5n
‖u‖1,1
ε

implies by (29) and (30)

(32) Ln(G) < ε.

Obviously

(33) |u(x)| ≤ a, x /∈ G.

Let x, y /∈ G. Consider the ball B = B(z,R) where z = 1
2 (x + y) and R = |y − x|. Then x, y ∈ B. By

Lemma 7.3, we have

|u(x)− uB | ≤ 2CR M∇u(x), |u(y)− uB | ≤ 2CR M∇u(y),

and thus

(34) |u(y)− u(x)| ≤ 2CR
(
MDu(x) +MDu(y)

)
≤ 4CRa = 4C a |y − x|, x, y /∈ G.

By (31), (33), (34) and Lemma 7.1, there exist a Lipschitz function v : Rn → R and a constant C28 such
that

v = u on Rn \G
and

(35) ‖v‖1,∞ ≤ (1 + 4C)a ≤ C28
‖u‖1,1
ε

.
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We have ∇v = ∇u a.e. in Rn \G (see TDPP). Using (32) and (35) we estimate

(36)

‖v‖1,1 ≤
∫

Rn\G
(|v|+ |∇v|) dx+

∫
G

(|v|+ |∇v|) dx

≤
∫

Rn\G
(|u|+ |∇u|) dx+ 2‖v‖1,∞Ln(G)

≤
(

1 + 2C28

)
‖u‖1,1.

Hence the function v has the required properties. �

7.5. Lemma. Let u ∈ W 1,1(Rn) a ε > 0. Then there exist functions ũ ∈ W 1,1(Rn) and w ∈ C1(Rn)
such that

(37)
‖ũ‖1,1 ≤

1
4
‖u‖1,1,

‖w‖1,∞ ≤
C28

ε
‖u‖1,1,

and
Ln({ũ+ w 6= u}) < ε.

Proof. Let v be as in Lemma 7.4. Set

w = ψδ ∗ v, ũ = v − w,
where δ > 0 is so small that

‖ũ‖1,1 <
1
4
‖u‖1,1

The existence of such δ is justified because

‖ψδ ∗ v − v‖1 → 0, ‖∇(ψδ ∗ v)−∇v‖1 → 0.

By the convolution inequality and Lemma 7.4

‖w‖1,∞ ≤ ‖v‖1,∞ ≤
C28

ε
‖u‖1,1.

Finally
Ln({ũ+ w 6= u}) = Ln({v 6= u}) < ε.

�

7.6. Theorem (Calderón and Zygmund). Let u ∈ W 1,1(Rn) and ε > 0. Then there exists v ∈ C1(Rn)
such that

‖v‖1,1 ≤ C27‖u‖1,1,(38)

‖v‖1,∞ ≤
C28

ε
‖u‖1,1(39)

and

(40) Ln
(
{v 6= u}

)
≤ ε.

Proof. A recurrent use of Lemma 7.5 yields sequences {uj} and {wj} of functions on Rn such that u0 = u,
uj ∈W 1,1(Rn) for j ∈ N, wj ∈ C1(Rn) for j ∈ N and

‖uj‖1,1 ≤ 4−j‖u‖1,1,

‖wj‖1,∞ ≤
C28

2−jε
‖uj−1‖1,1 ≤

C282−j

ε
‖u‖1,1

and
Ln({uj + wj 6= uj−1}) < 2−jε.

Set
G =

(⋃
j

{
uj + wj 6= uj−1

})
∪
{∑

j

uj =∞
}
.

Then
Ln(G) < ε.
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On the set Rn \G we have

u0 = u1 + w1 = u2 + w2 + w1 = u3 + w3 + w2 + w1 = · · · =
∑
j

wj .

The series
∑
j wj converges in C1 by the Weierstrass criterion. We define v =

∑
j wj , this is a C1-function.

The estimate (39) follows easily from the construction and (38) can be derived as in (36). �

8. Area and coarea formula for Sobolev functions

8.1. Condition N. Let Ω ⊂ Rn be an open set and Ω′ ⊂ Ω. We say that a mapping f : Ω→ Rd satisfies
the (Lusin) condition N on Ω′ if for each E ⊂ Ω′ we have

Ln(E) = 0 =⇒ Hn(f(E)) = 0.

8.2. Theorem (Area formula with condition N). Let Ω ⊂ Rn be an open set and Ω′ ⊂ Ω. Let f : Ω→ Rd
be a weakly differentiable mapping, d ≥ n. Then the area formula for f on Ω′ holds if and only if f
satisfies the condition N on Ω′.

Proof. If the area formula holds for f , for each E ⊂ Ω′ we have

Hn(f(E)) ≤
∫

Rd

N (f, y, E) dHn(y) =
∫
E

|Jf | dx = 0.

This verifies the only if part. The if part is more delicated, however, we have Theorem 7.6 in hand
which is a very strong tool for this purpose. Since the matter is local, we may assume that Ω = Rn and
f ∈ W 1,1(Rn). Consider E ⊂ Ω′ ⊂ Rn. For any j ∈ N we find by Theorem 7.6 a mapping fj ∈ C1(Rn)
such that

Ln({fj 6= f}) < 2−j .
We know that

∇fj = ∇f a.e. in {fj = f}.
Let

Ej = E ∩ {f = fj} ∩ {∇f = ∇fj},
Fj = E1 ∪ · · · ∪ Ej ,

j ∈ N

and write
F0 = ∅, N = Ω′ \

⋃
j

Ej .

Then the sets Ej \ Fj−1 are pairwise disjoint and their union is Ω′ \N . Then∫
Ej\Fj−1

|Jf | dx =
∫
Ej\Fj−1

|Jfj | dx =
∫

Rd

N (fj , y, Ej \ Fj−1) dHn(y)

=
∫

Rd

N (f, y, Ej \ Fj−1) dHn(y)

and summing over j we obtain

(41)
∫

Ω′\N
|Jf | dx =

∫
Rd

N (f, y,Ω′ \N) dHn(y).

On the other hand, the set N has measure zero and thus the condition N guarantees

(42)
∫
N

|Jf | dx =
∫

Rd

N (f, y,N) dHn(y).

Getting together (41) and (42) we obtain the assertion. �

8.3. Condition co-N. Let Ω ⊂ Rn be an open set and Ω′ ⊂ Ω. We say that a mapping f : Ω → Rd
satisfies the condition co-N on Ω′ if for each E ⊂ Ω′ we have

Ln(E) = 0 =⇒
∫

Rd

Hn−d(E ∩ f−1(y)) dy = 0.

8.4. Theorem (Coarea formula with condition co-N). Let Ω ⊂ Rn be an open set and Ω′ ⊂ Ω. f : Ω→ Rd
be a weakly differentiable mapping, d ≤ n. Then the coarea formula for f on Ω′ holds if and only if f
satisfies the condition co-N on Ω′.

Proof. This can be shown by the same argument as in case of area formula (Theorem 8.2). �
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9. Generalized Lipschitz functions

In this section, Ω stands for a fixed open set in Rn. Let E ⊂ Ω and f : Ω→ Rd. The diameter of the
image f(E) is called the oscillation of f over E and denoted as oscE f .

9.1. Generalized Lipschitz function. Let 1 ≤ p <∞. A function f : Ω→ Rd is said to be a generalized
Lipschitz function of class RRp

loc(Ω; Rd) (shortly f ∈ RRp
loc(Ω; Rd)) if there exists a nonnegative function

θ ∈ Lploc(Ω) such that

(43)
(oscB(z,r/2) f

r

)p
≤ −
∫
B(z,r)

θp dx

for each B(z, r) ⊂ Ω. The function θp is called a weight for f .
We write f ∈ RRp(Ω) if it has a weight θp ∈ L1(Ω).

9.2. Remark. We write the definition with θp to keep the analogy with the Poincaré inequalities.
However, this notation may be somewhat inconvenient. Indeed a similar condition can be considered
with a measure weight in place of θp. Then of course, θ itself does not make a sense.

The use of a smaller ball instead of B(z, r) on the left of (43) has the reason that then the class is
much more stable, eg. it is invariant under a bilipschitz change of variables and does not depend on the
choice of norm in Rn.

9.3. Observations. (a) For 1 ≤ p < q we have RRq
loc(Ω; Rd) ⊂ RRp

loc(Ω; Rd).
(b) If Ω is connected, then RRp(Ω; Rd) factorized by constants, is a Banach space with the norm

‖f‖RRp = inf
{
‖θ‖p : θp is a weight for f

}
.

(c) Each Lipschitz function is a RRploc-functions with a constant weight.
(d) Conversely, if f is a RRp

loc function with a constant weight, then it is locally Lipschitz.
(e) Each f ∈ RRp

loc(Ω; Rd) is locally bounded.

9.4. Remark. If Ω ⊂ R1 is an interval, then f ∈ RRploc(Ω) if and only if f is locally absolutely continuous
and f ′ ∈ Lploc(Ω).

9.5. Theorem. Each f ∈ RRn
loc(Ω; Rd) is continuous.

Proof. From (43), for p = n we obtain

oscB(z,r/2) f ≤ C
(∫

B(z,r)

θn dx
)1/n

The right hand side tends to zero as r → 0+. �

9.6. Remark. If 1 ≤ p < n, then the characteristic function of a single point is an RRp-function, which,
in contrast with the theory of Lp-spaces, is not identified with the zero function. Another example of a
discontinuous RRp-function, 1 ≤ p < n, is x1/|x|.
9.7. Theorem (Weak differentiability). Let f ∈ RRp

loc(Ω; Rd) with weight θp. Then f is weakly differ-
entiable and

(44) |∇f | ≤ C44θ.

Consequently, ∇f ∈ Lploc(Ω; Rd×n).

Proof. See TDPP. �

The next result generalizes the Rademacher theorem on differentiation of Lipschitz functions.

9.8. Theorem. Let f ∈ RRp
loc(Ω; Rd). Then f is differentiable a.e. and f ′ = ∇f a.e.

Proof. We may assume that p = 1. By the Lebesgue differentiation theorem, a.e. point z ∈ Ω is a
simultaneous Lebesgue point for f , ∇f and θ. We fix such a z and prove that ∇f(z) is the differential
of f at z. We may assume that f(z) = 0 and ∇f(z) = 0, otherwise we pass to the function x →
f(x)− f(z)−∇f(z)(x− z). We choose ε ∈ (0, 1

4 ) and (using Lebesgue point properties of z) find δ > 0
so that

(45) 0 < ρ ≤ δ =⇒


−
∫
B(z,ρ)

|∇u(x)| dx ≤ εn+1,

−
∫
B(z,ρ)

|θ(x)− θ(z)| dx ≤ εn.
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Let y ∈ B(z, δ/2) and r = 2|y − z|. Then B(y, 2εr) ⊂ B(z, r). We estimate

(46) |f(y)| ≤
∣∣∣f(y)−−

∫
B(y,εr)

f(x) dx
∣∣∣+−
∫
B(y,εr)

|f(x)| dx.

For the first term we have by (45)

(47)

∣∣∣f(y)−−
∫
B(y,εr)

f(x) dx
∣∣∣ ≤ oscB(y,εr) f

≤ ε r −
∫
B(y,2εr)

θ(x) dx

≤ ε r
(
θ(z) +−

∫
B(y,2εr)

|θ(x)− θ(z)| dx
)

≤ ε r
(
θ(z) + 2−nε−n −

∫
B(z,r)

|θ(x)− θ(z)| dx
)

≤ ε r
(
θ(z) + 1

)
.

Because z is a Lebesgue point for f , for the second term of (46) we have by Lemma 7.3 and (45)

(48)

−
∫
B(y,εr)

|f(x)| dx ≤ ε−n −
∫
B(z,r)

|f(x)| dx

≤ 2ε−n r sup
0<ρ≤r

−
∫
B(z,ρ)

|∇f(x)| dx

≤ 2ε r.

From (46)–(48) we conclude that
|v(y)| ≤ Cεr ≤ Cε|y − z|.

This shows that ∇v(z) = 0 as required. �

9.9. Remark. Theorem 9.7 and Theorem 9.8 are both statements on differentiation of generalized
Lipschitz functions, but of a different nature. Notice that in general, weak differentiability does not imply
differentiability a.e. (for n > 1 there exist weakly differentiable functions which are nowhere continuous
and thus also nowhere differentiable independently on choice of a representative) and differentiability
a.e. does not imply weak differentiability (Cantor’s example).

9.10. Theorem (Embedding theorem for p > n). Let Ω ⊂ Rn be an open set and f ∈ W 1,p
loc (Ω) with

p > n. Then f has a continuous reprensentative for which, given any ball B = B(z, r) ⊂⊂ Ω,

(49)
(
oscB f

)p ≤ C49r
p−n

∫
B

|∇f |p dx,

where C49 depends only on n and p.

Proof. Assume first that f is smooth in Rn and consider a ball B = B(z, r) ⊂ Rn. Denote

fB = −
∫
B

f dy.

From Lemma 7.3,

(50)

|f(x)− fB | ≤ C
∫ 1

0

∣∣∣∇u|Bt
dt

≤ Cr
∫ 1

0

(
−
∫
Bt

|∇u(y)|p dy
)1/p

dt

≤ Cr‖∇u‖Lp(B)

∫ 1

0

|Bt|−1/p dt

≤ Cr1−n
p ‖∇u‖Lp(B)

∫ 1

0

t−n/p dt.

Since |f(x′) − f(x)| ≤ |f(x′) − fB | + |fB − f(x)| for any x, x′ ∈ B, from (50) we obtain (49). Now,
let f ∈ W 1,p(Rn). By mollification we obtain a sequence {fj} of smooth functions in W 1,p(Rn) such
that ‖fj − f‖1,p < 2−j . Applying (49) to fj − fj+1 we observe that the sequence converges also locally
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uniformly, and thus its pointwise limit is a continuous representative of f . An easy passage to limit
yields (49) for f . A standard localization argument proves the theorem for a general open domain. �

9.11. Remark. Theorem 9.10 is a converse of Theorem 9.7 for p > n. It follows that RRploc(Ω) can be
identified with W 1,p

loc (Ω) for p > n.

9.12. Remark. If n > 1 and 1 ≤ p ≤ n, there exists a continuous compactly suppported function
f ∈W 1,p(Rn) which does not belong to RRploc(Rn). Indeed, we find f in the form

f =
∑
j

fj ,

where fj are smooth functions supported in Bj = B(xj , rj). We find first rj such that
∑
j r

n
j < ∞

whereas
∑
j r

n−p
j = ∞. Then we find bj ↘ 0 such that still

∑
j r

n−p
j bpj = ∞. Then we find a bounded

sequence xj such that the balls B(xj , 2rj) are pairwise disjoint, and functions fj as above such that
oscBj

fj = bj and ∑
j

∫
Bj

|∇fj |p <∞.

Then the function f has the required properties. Indeed, for any weight θ controlling f we observe∫
B(xj ,2rj)

θp ≥ rn−pj bpj .

9.13. Theorem (Area formula for generalized Lipschitz functions). Let Ω ⊂ Rn be an open set and
f ∈ RRnloc(Ω; Rd), d ≥ n. Then the area formula holds for f .

Proof. In view of Theorem 8.2 and Theorem 9.7 it is enough to verify the condition N. Let E ⊂ Ω be a
set of zero measure. Choose ε > 0. We find an open set G ⊂ Ω such that E ⊂ G and

(51)
∫
G

θn dy < ε.

Consider x ∈ E. If we had ∫
B(x,r)

θn dy < 20−n
∫
B(x,10r)

θn dy

for all small r > 0, by iteration we would obtain

lim
r→0
−
∫
B(x,r)

θn dy = 0

which would contradict that θ ≥ 1. Hence for each x ∈ E there exists rx > 0 such that B(x, rx) ⊂ G
and

(52)
∫
B(x,10rx)

θn dy ≤ 20n
∫
B(x,rx)

θn dy.

The system {B(x, rx) : x ∈ E} forms a covering of E and therefore by the Vitali theorem (Theorem 1.5)
there exists a pairwise disjoint sequence {Bj} of balls Bj = B(xj , rj) such that xj ∈ E, rj = rxj and

E ⊂
⋃
j

B(xj , 5rj).

Then
f(E) ⊂

⋃
j

f(B(xj , 5rj)

and thus, using (52) and (51)

Hn∞(f(E)) ≤ 2−nαn
∑
j

(diam f(B(xj , 5rj)))n ≤ 2−n
∑
j

∫
B(xj ,10rj)

θn dy

≤ 10n
∑
j

∫
B(xj ,rj)

θn dy

≤ 10n
∫
G

θn dy < 10nε.

Letting ε→ 0 we conclude the proof. �
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9.14. Theorem (Coarea formula for generalized Lipschitz functions). Let Ω ⊂ Rn be an open set and
f ∈ RRdloc(Ω; Rd), d ≤ n. Then the coarea formula holds for f .

Proof. In view of Theorem 8.4 and Theorem 9.7 it is enough to verify the condition co-N. Let θd be a
weight for f , we may assume that θ ≥ 1. Let E ⊂ Ω be a set of zero measure. Choose ε > 0 and δ > 0.
We find an open set G ⊂ Ω such that E ⊂ G and

(53)
∫
G

θd dy < ε.

Consider x ∈ E. As in the proof of Theorem 9.13 we find rx > 0 such that 10rx < δ, B(x, rx) ⊂ G and

(54)
∫
B(x,10rx)

θd dy ≤ 20n
∫
B(x,rx)

θd dy.

The system {B(x, rx) : x ∈ E} forms a covering of E and therefore by the Vitali theorem (Theorem 1.5)
there exists a pairwise disjoint sequence {Bj} of balls Bj = B(xj , rj) such that xj ∈ E, rj = rxj

and

E ⊂
⋃
j

B(xj , 5rj).

Given y ∈ Rd, observe

Hn−dδ (E ∩ f−1(y)) ≤ 2d−nαn−d
∑
j

(diamB(xj , 5rj))n−dχf(B(xj ,5rj))
(y).

Integrating with respect to y we obtain∫
Rd

Hn−dδ (E ∩ f−1(y)) dy ≤
∫

Rd

(
2d−nαn−d

∑
j

(diamB(xj , 5rj))n−dχf(B(xj ,5rj))
(y)
)
dy

= 2d−nαn−d
∑
j

(∫
Rd

(diamB(xj , 5rj))n−dχf(B(xj ,5rj))
(y) dy

)
= 5n−dαn−d

∑
j

rn−dj Ld
(
f(B(xj , 5rj))

)
.

Applying isodiametric inequality, (54) and (53) we can continue∫
Rd

Hn−dδ (E ∩ f−1(y)) dy ≤ 5n−dαn−d2−dαd
∑
j

rn−dj (diam f(B(xj , 5rj))
)d

≤ C20−n
∑
j

∫
B(xj ,10rj)

θd dy ≤ C
∑
j

∫
B(xj ,rj)

θd dy

≤ C
∫
G

θd dy ≤ Cε.

�

9.15. Remark. The co-area formula also holds in Sobolev spaces W 1,p with p > d (Malý, Swanson
and Ziemer). The area formula can fail for W 1,n mappings and the coarea formula can fail for W 1,d

mappings.

10. Lebesgue density

10.1. Lebesgue density and measure theoretic “topology”. Given a set E ⊂ Rn and a point
x ∈ Rn, we define

d̄(x,E) = lim sup
r→0+

|B(x, r) ∩ E|
|B(x, r)|

.

A point x ∈ Rn is said to be a point of density for a set E ⊂ Rn if d̄(x,Rn \ E) = 0. The set of all
points of density for E is called the measure theoretic interior of E and denoted as int∗E. The measure
theoretic closure of E is

cl∗E = {x ∈ Rn : d̄(x,E) > 0} = Rn \ int∗(Rn \ E)

and finally the measure theoretic boundary of E is

∂∗E = cl∗E \ int∗E
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All these sets are Borel sets (e.g. int∗E is Fσδ).
The so called density topology is closely related to these notions but there is still a difference between

e.g. the density closure and measure theoretic closure. The density closure cldE of a set E is the smallest
density closed set which contains E, whereas cl∗E is the smallest density closed set which contains almost
all of E. They are related by the formula cldE = E ∪ cl∗E.

The following theorem is a version of the Lebesgue density theorem, which is an easy consequence of
the theory of differentiation of measures. (Recall that this theory relies on Vitali covering theorems.)

10.2. Theorem. Let E ⊂ Rn be a measurable set. Then |∂∗E| = 0.

11. Federer normal

11.1. Federer normal. Let Ω ⊂ Rn be a measurable set and x ∈ Rn. A unit vector n ∈ Rn is said to
be a Federer normal to Ω at x if

x /∈ cl∗
(
Ω4 (x+ Hn)

)
,

where Hn is the halfspace
Hn = {y ∈ Rn : y · n ≤ 0}

and 4 denotes the symmetric difference. The Federer normal is obviously unique if it exists.
Let n(x) is a Federer normal to Ω at x. We write in coordinates

n(x) = (n1(x), . . . ,nn(x)).

The set of all points of Rn where there exists a Federer normal to Ω is denoted by ∂FΩ. Obviously
∂FΩ ⊂ ∂Ω.

A set M ⊂ Rn is called a Lipschitz graph, if there exists a Lipschitz function ξ : Rn−1 → R such that

M = {x ∈ Rn : xn = ξ(x1, . . . , xn−1)}.
We say that M is a rotated Lipschitz graph, if there exists a linear isometric isomorphism L : Rn → Rn
such that L(M) is a Lipschitz graph.

11.2. Theorem. Let Ω ⊂ Rn be a measurable set. Then ∂FΩ can be covered by a countable number of
rotated Lipschitz graphs. More specifically, the set

∂n,+F Ω = {x ∈ ∂FΩ : nn(x) > 0}
can be covered by a countable number of Lipschitz graphs.

Proof. Define
Cα =

{
x ∈ Rn :

xn
|x|

> cosα
}
.

Since

(55)

∂n,+F Ω =
⋃
p,q∈N

{
x ∈ ∂FΩ: nn(x) > sin 1

p ,

|B(x, r) ∩ (x+ C1/p) ∩ Ω|+ |B(x, r) ∩ (x− C1/p) ∩ Ωc| ≤ εp|B(x, r)| for each 0 < r ≤ 1
q

}
,

with εp = 1
4

(
1
2 sin 1

2p

)n
we may consider a part Γ of ∂FΩ which for given p, q ∈ N is contained in the set described on the right
of (55) and moreover satisfies that diam Γ < 1/q. Let x, y ∈ Γ, without loss of generality we may assume
that xn ≤ yn. Assume that

(56) yn − xn > cos 1
2p |y − x|.

Set
z = 1

2 (x+ y), r = |x− y|, ρ = 1
2 r sin 1

2p .

An easy geometric argument shows that
B(z, ρ) ∩ Ω ⊂ B(x, r) ∩ (x+ C1/p) ∩ Ω,

B(z, ρ) ∩ Ωc ⊂ B(y, r) ∩ (y − C1/p) ∩ Ωc,

and thus
|B(z, ρ)| ≤ εp(|B(x, r)|+ |B(y, r)| < |B(z, ρ)|,

so that (56) leads to a contradiction. Therefore, Γ is contained in a Lipschitz graph with Lipschitz
constant not exceeding cotan 1

2p . �
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12. Functions of bounded variation

Let W ⊂ Rn be an open set. Let Cc(W ) be the set of all continuous functions on W with a compact
support in W and Cb(W ) be the Banach space of all bounded continuous functions on W equipped with
the supremum norm ‖ · ‖∞. We define the Banach space C0(W ) as the closure of Cc(W ) in Cb(W ). In
particular, C0(Rn) is the set of all continuous functions f on Rn such that

lim
|x|→∞

f(x) = 0,

THe dual space of C0(W ) is the space M(W ) of all finite signed Radon measures on W . (the dual of
C0(W,Rd) consists of vector measures).

If µ ∈M(W,Rd), the variation of µ is the nonnegative Radon measure |µ| which acts on nonnegative
functions f ∈ C0(W ) as

|µ|(f) = sup
{
µ(g) : g ∈ C0(W,Rd), |g| ≤ f

}
.

Then the norm of µ, defined according to the general definition of dual norm, can be computed as

‖µ‖1 = |µ|(W ).

We define the space BV (W ) as the set of all functions u ∈ L1(W ) whose distributional derivatives belong
to M(W ), with the norm

‖u‖BV := ‖u‖1 + ‖Du‖1.
We reserve the symbol Du for gradient being a measure, and ∇u for gradient being a function. We use
the notation ∫

W

g(x)|Du(x)| dx

for the integral of g by the measure |Du|, although this is not integration by the Lebesgue measure.
Let us notice that the fundamental estimate of Sobolev functions by means of Riesz potential with all

its consequences remains true also for BV -function, namely

−
∫
B

|u(y)− u(x)| dy ≤ C
∫
B

|y − x|1−n|Du(y)| dy

holds whenever B is a ball, u ∈ BV (Rn) and x is a point of B which is a Lebesgue point for u, also the
statements on approximative differentiability a.e. Poincaré inequality and a Luzin type theorem (every
BV function coincides with a C1 function outside a set of small Lebesgue measure) are true.

12.1. Proposition. If u ∈ BV (Rn), then

‖u‖BV = inf
{uj}

{
lim inf

j

∫
Rn

(
|uj |+ |∇uj |

)
dx
}
,

where {uj} runs over all sequences of functions from D(Rn) converging to u in L1(Rn).

Proof. For the ≤ inequality, let us consider a sequence {uj} of C1-functions converging to u in L1(Rn).
We may assume that

lim inf
j

∫
Rn

(
|uj |+ |∇uj |

)
dx <∞.

Then there is no problem with the convergence of the first term. For the second term notice that the
norm of the dual space is always weakly* lower semicontinuous.

For the converse inequality, if u has a compact support we consider the particular sequence obtained
by mollification and notice that by the convolution inequality,∫

Rn

|∇(ψε ∗ u)(x)| dx ≤
∫

Rn

(ψε ∗ |Du|)(x) dx ≤
∫

Rn

|Du|.

In the general case, we first multiply by a cut-off function and then mollify, the details are left to the
reader. �

12.2. Proposition. Let u ∈ BV (Rn). Then the function

uy : xi 7→ u(y + xiei), xi ∈ R

belongs to BV (R) for a.e. y ∈ Hi := {y ∈ Rn : yi = 0}, with ‖Duy‖1 = ‖Diu‖1.
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Proof. Consider a sequence {uj} of smooth functions such that uj → u in L1 and

lim
j

∫
Rn

(
|uj |+ |∇uj |

)
dx = ‖u‖BV .

Set

fj(y) =
∫

R

(
|uj(y + xiei)|+ |∇uj(y + xiei)|

)
dxi, y ∈ Hi.

Then by the Fatou lemma,∫
Hi

lim inf
j

fj(y) dy ≤ lim inf
j

∫
Hi

fj(y) dy ≤ ‖u‖BV .

Take y so that lim infj fj(y) <∞ and uyj → uy in L1(R), where

uyj (xi) = uj(y + xiei),

The integrability of lim infj fj(y) and the Fubini theorem imply that a.e. y has this property. Then,
passing to a subsequence, {uyj}j is bounded in BV (R). This implies an existence of a further subsequence
such that ∇uyj converges weakly* in C∗0 (R). It is easily verified that then this weak* limit is Duy and
that thus uy ∈ BV (R) with the claimed estimate of the norm. �

12.3. Proposition. Suppose that u ∈ BV (R). Then there is a representative of u which is a BV -function
in the classical sense, in particular it is a difference of two bounded monotone functions.

13. Sets of finite perimeter

13.1. Set of finite perimeter. We say that E ⊂ Rn is a set of finite perimeter if χE ∈ BV (Rn). The
perimeter of E is then P (E) := ‖DχE‖1.

We say that E is of locally finite perimeter in an open set U ⊂ Rn if χE ∈ BVloc(U) (the local version
of the space BV ),

Recall that C1
0 (Rn) is defined as the closure of C1

c (Rn) in the C1-norm.

13.2. Observation. Suppose that Ω ⊂ Rn be a set of finite measure.
(a) Let P (Ω) <∞ and ν = −DχΩ. Then

(57) ν(f) =
∫

Ω

div f dx, f ∈ C1
0(Rn; Rn).

(b) Conversely, if ν is a vector Radon measure which satisfies (57), then ν = −DχΩ in the sense of
distributions, and thus P (Ω) <∞.

13.3. Remark. Notice that Observation 13.2 can be regarded as a form of the divergence theorem, even
as a characterization of the situations when the divergence theorem holds. However, for applications
it is quite unclear what is the measure ν that we have to integrate by. Also the requirement of finite
perimeter is less transparent and less easy to verify than e.g. assumptions in terms of the smoothness of
the boundary.

14. Differentiability of the boundary

In the following theorem, we find the representation of νn, where ν = (ν1, . . . , νn) = −DχΩ. A similar
representation can be found for each νi, only the notation is then more complicated. In our case, we
identify Rn with the cartesian product Rn−1 × R and write x = (τ, γ), where τ = (x1, . . . , xn−1) and
γ = xn. We write E ∼ F if the measure of the symmetrical difference E4F is zero.

14.1. Theorem. Suppose that Ω ⊂ Rn is a set of finite perimeter, ν = −DχΩ. Then there exist
measurable sets Am ⊂ Rn−1, m = 1, 2, . . . , measurable functions am, bm: Am → R and measurable sets
Em,l ⊂ Am, l = 1, 2, . . . , such that

(58) A1 ⊃ A2 ⊃ . . . ,

(59) a1 < b1 < a2 < b2 < · · · < am < bm on Am,

(60) {γ : (τ, ϕ(E)) ∈ Ω} ∼
⋃

{m : τ∈Am}

(am(τ), bm(τ)) for a.e. τ ∈ Rn−1,
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(61) Am ∼
⋃
l

Em,l,

and

(62) am, bm are Lipschitz on Em,l.

Moreover, we obtain the representation

(63)
∫

Rn

u dνn =
∑
m

∫
Am

(
u(τ, bm(τ))− u(τ, am(τ))

)
dτ

for each u ∈ C1
0(Rn).

Proof. From Proposition 12.2 we infer that for a.e. τ ∈ Rn−1 there are intervals a1(τ) < b1(τ) < · · · <
ap(τ) < bp(τ) with p = p(τ) such that

{γ : (τ, γ) ∈ Ω} ∼
p⋃

m=1

(am(τ), bm(τ)).

Indeed, recall that if a BV -function on line is simultaneously a characteristic function, then it has a
representative which is a union of a finite family of intervals. Set

Am = {τ : p(τ) ≥ m}.
The function p is measurable, because by Proposition 12.2,

2p(τ) = ‖DnχΩ(τ, ·)‖1.
It follows that the sets Am are measurable. For a fixed m, the functions am, bm are measurable. Indeed,
by induction, it follows from the Fubini theorem that, given c ∈ R, the sets

{τ ∈ Rn−1 : a1(τ) < c} =
{
τ ∈ Rn−1 :

∫ c

−∞
χ

Ω(τ, γ) dγ > 0,
}
,

{τ ∈ Rn−1 : b1(τ) < c} =
{
τ ∈ Rn−1 :

∫ c

a1(τ)

(1− χΩ(τ, γ)) dγ > 0
}
,

{τ ∈ Rn−1 : a2(τ) < c} =
{
τ ∈ Rn−1 :

∫ c

b1(τ)

χ
Ω(τ, γ) dγ > 0

}
,

. . .

are measurable. We have proven (58)–(60). Now, we can divide Am into measurable sets Pm,q, q =
1, 2, . . . in such a manner that for each q there exists and interval (c, d) (depending on m and q) such
that

am(τ) < c < bm(τ) < d for each τ ∈ Pm,q,
d < am+1(τ) for each τ ∈ Pm,q ∩Am+1.

Now, set

`(τ) = `m,q(τ) = c+
∫ d

c

χ
Ω(τ, γ) dγ.

Then `(τ) = bm(τ) for each τ ∈ Pm,q. By Proposition 12.1, there are smooth function ϕk ∈ D(Rn) such
that ϕk → χ

Ω in L1(Rn) and
‖ϕk‖BV → ‖χΩ‖BV .

Set

ψk(τ) = c+
∫ d

c

ϕk(τ, γ) dγ.

Then
∂ψk
∂τj

(τ) =
∫ d

c

∂ϕk
∂yj

(τ, γ) dγ,

and thus ∫
Rn−1

|∇ψk| dτ ≤
∫

Rn

|∇ϕk| dx.

It follows that the sequence {ψk} is bounded in BV (Rn−1). By the Rellich compact embedding theorem,
passing if necessary to a subsequence, we may achieve that ψk converge in L1 and a.e., and the limit
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cannot be anything else than `. Now, the function ` belongs to BV (Rn−1) and thus by the Lusin-
type approximation theorem, there exist C1-functions `m,q,s : Rn−1 → R, s ∈ N, and measurable sets
Em,q,s ⊂ Rn−1 such that, for each m, q ∈ N,

Pm,q ∼
⋃
p

Em,q,s,

and, for each l ∈ I,
`m,q,s = `m,q = bm on Em,q,s.

Rearranging for each m the sequence {Em,q,s}q,s into a single sequence {Em,l}l, we obtain (61) and (62).
It remains to prove (63). The n-th coordinate of ν can be characterized by the following consequence

of (57): ∫
Rn

u dνn =
∫∫

Ω

∂u

∂γ
(τ, γ) dτ dγ, u ∈ C1

0 (Rn).

Using the Newton-Leibniz rule and the Fubini theorem we obtain∫
Am

(
u(τ, bm(τ))− u(τ, am(τ))

)
dτ =

∫
Am

(∫ bm

am

∂u

∂γ
(τ, γ) dγ

)
dτ

=
∫∫
{(τ,γ) : am(τ)<γ<bm(τ)}

∂u

∂γ
(τ, γ) dτ dγ

and summing over m we conclude∑
m

∫
Am

(
u(τ, bm(τ))− u(τ, am(τ))

)
dτ =

∫∫
Ω

∂u

∂γ
(τ, γ) dτ dγ,

which proves (63). �

14.2. Lemma. Suppose that Ω ⊂ Rn is a set of finite perimeter, ν = −DχΩ. Let A ⊂ Rn−1 be a
measurable set, I = (c, d) ⊂ R be an interval, b : Rn−1 → I be a Lipschitz functions. Suppose that

{(τ, γ) ∈ A× I : γ < b(τ)} ∼ (A× I) ∩ Ω,

{(τ, γ) ∈ A× I : γ > b(τ)} ∼ (A× I) ∩ Ωc,

Then
(a) for a.e. τ ∈ A, (τ, b(τ)) ∈ ∂FΩ and

n(τ, b(τ)) =

(
−∂b(τ)

∂τ1
, . . . ,− ∂b(τ)

∂τn−1
, 1
)√

1 + |∇b(τ)|2
.

(b) For Hn−1-a.e. x ∈ {(τ, γ) ∈ A× I : γ = b(τ)} we have x ∈ ∂FΩ.
(c) for each u ∈ C0(Rn),∫

E

u(τ, b(τ)) dτ =
∫
{(τ,b(τ)) : τ∈E}

u(x) nn(x) dHn−1(x).

Proof. (a) Let τ be a point of density of A and of differentiability of b and x := (τ, b(τ)). Denote
β = (β1, . . . , βn−1) = ∇b(τ), this is understod as a linear form on Rn−1. Consider the vector

n =

(
−β1, . . . ,−βn−1, 1

)√
1 + |β|2

Then
Hn = {y ∈ Rn : yn < β(y1, . . . , yn−1)}

We have

Ω 4 (x+ Hn) ⊂ (A× I)c ∪
{

(τ ′, γ′) ∈ A× I : |γ′ − β(τ ′ − τ)| ≤ |b(τ ′)− β(τ ′ − τ)|
}
.

Since x is a density point of A× I and

b(τ ′)− β(τ ′ − τ) = o(τ ′ − τ),

the claim follows.
(b) Consider the Lipschitz mapping ϕ : Rn−1 → Rn defined as ϕ(τ) = (τ, b(τ)). Then the assertion of

(b) follows from (a) using the Theorem 2.7).
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(c) It is easily obtained from (a) and (b) using the area formula (Theorem 9.13) for the mapping
ϕ. �

14.3. Lemma. Suppose that Ω ⊂ Rn is a set of finite perimeter, ν = −DχΩ. Let A ⊂ Rn−1 be a
measurable set, I = (c, d) ⊂ R be an interval, ` : Rn−1 → I, b : Rn−1 → R be Lipschitz functions.
Suppose that

{(τ, γ) ∈ A× I : γ < b(τ)} ∼ (A× I) ∩ Ω,

{(τ, γ) ∈ A× I : γ > b(τ)} ∼ (A× I) ∩ Ωc,

Γ := {(τ, γ) ∈ A× I : γ = `(τ)} ⊂ ∂FΩ.
Then b = ` a.e. in A.

Proof. Let τ be a point of density of A and x := (τ, `(τ)). Suppose that e.g. b(τ) > `(τ). Then there is
a neighborhood V of τ such that b > ` on V . We see that x is a density point of{

(τ ′, γ′) ∈ A× I : γ′ < b(τ ′)
} ⊂∼ Ω

and thus there cannot exist a Federer normal to Ω at x. �

14.4. Theorem. Let Ω ⊂ Rn be a set of finite perimeter and ν = −DχΩ. Then
(a) |ν| = Hn−1b(∂FΩ),
(b) n = dν

d|ν| .

Proof. It follows from Theorem 14.1 and Lemma 14.2 that the integration over ν consist of integration
over the graphs of functions of type γ = a(τ), γ = b(τ) with respect to the Hausdorff measure with weight
n. We also know that the above mentioned graphs can be considered as parts of the Federer boundary
∂FΩ. It remains to show that the integration is performed over (almost) all of ∂FΩ. However, we know
by Theorem 11.2, Theorem 14.1 and Lemma 14.3 that the Federer boundary can be also decomposed
into Lipschitz graphs and these are included in graphs of the functions of type γ = a(τ), γ = b(τ). �

14.5. Theorem. Let Ω ⊂ Rn be a set of finite perimeter. Then ∂FΩ ⊂ ∂∗Ω and Hn−1(∂∗Ω \ ∂FΩ) = 0.

Proof. The inclusion ∂FΩ ⊂ ∂∗Ω is obvious. Suppose that x ∈ ∂∗Ω. Then there exists k ∈ N such that

(64) lim sup
r→0+

|B(x, r) ∩ Ω|
|B(x, r)|

>
1
k

and lim sup
r→0+

|B(x, r) \ Ω|
|B(x, r)|

>
1
k
,

Let Mk be the set of all points x for which (64) holds and G be an open set containing Mk \ ∂FΩ. The
collection of balls

V :=
{
B(x, r) : x ∈Mk \ ∂FΩ, B(x, r) ⊂ G, |B(x, r) ∩ Ω|

|B(x, r)|
>

1
k
,
|B(x, r) \ Ω|
|B(x, r)|

>
1
k

}
is then a fine covering of Mk \ ∂FΩ. Indeed, notice that if for a radius r′ we have

|B(x, r′) ∩ Ω|
|B(x, r′)|

>
1
k

and for another radius r′′ we have
|B(x, r′′) ∩ Ω|
|B(x, r′′)|

< 1− 1
k

then, by the Darboux property of the quotient, there is a r between r′ and r′′ where we have both. Thus,
by the Vitali type theorem, there exists a sequence {B(xj , rj)}j of pairwise disjoint balls from V such
that

(65) Mk \ ∂FΩ ⊂
⋃
j

B(xj , 5rj).

If B(x, r) ∈ V, using the Poincaré inequality we obtain

(66) rn ≤ C inf
c∈R

∫
B(x,r)

|χΩ − c| dy ≤ Cr
∫
B(x,r)

|DχΩ| = Cr|ν|(B(x, r)).

By (65) and (66),

Hn−1
∞ (Mk \ ∂FΩ) ≤ C

∑
j

rn−1
j ≤ C

∑
j

|ν|(B(xj , rj)) ≤ C|ν|(G).
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Since G ⊃Mk \ ∂FΩ was arbitrary and, by Theorem 14.4, |ν|(Rn \ ∂FΩ) = 0, we conclude

Hn−1(Mk \ ∂FΩ) ≤ C|ν|(Mk \ ∂FΩ) = 0.

�

15. Characterization of sets of finite perimeter

15.1. Lemma. Suppose that K0 ⊂ Rn−1 is a compact set of positive measure and a0 < b0 are real
numbers. Suppose that

K0 × [a0, b0] = V1 ∪ V2,

where V1 and V2 are measurable subsets of Rn of positive measure. Suppose that for each τ ∈ K, the one
dimensional measure of both sets

{γ ∈ (a0, b0) : (τ, γ) ∈ V1}, {γ ∈ (a0, b0) : (τ, γ) ∈ V2}

is strictly positive. Then cl∗ V1 ∩ cl∗ V2 6= ∅.

Proof. We extend the definition: Vj = V1 if j is odd, Vj = V2 if j is even. A set of type K × [a, b], where
K is a compact subset of Rn−1 and (a, b) ⊂ R is an open interval, is said to be a good cylinder if |K| > 0
and for each τ ∈ K,

| {γ ∈ (a, b) : (τ, γ) ∈ V1}| > 0 and |{γ ∈ (a, b) : (τ, γ) ∈ V2}| > 0.

If x = (x1, . . . , xn) ∈ Rn, let us denote Q(x, r) = [x1 − r, x1 + r] × · · · × [xn − r, xn + r]. We construct
recurrently a sequence {Qj} of cubes, Qj = Q(xj , rj), xj = (τj , γj), and a sequence {Tj} of good cylinders
of the form Tj = Kj × [aj , bj ]. We find a cube Q0 such that T0 := K0 × [a0, b0] ⊂ Q0. Suppose that all
the objects that we construct are already determined and Tj−1 ⊂ Qj−1. Using the Fubini theorem we
observe that

|V2 ∩ Tj−1| > 0, |V1 ∩ Tj−1| > 0.
We find a point x′j , which is a density point of Vj ∩ Tj−1. We find a cube Q′j centered at x′j of diameter
at most 1/j such that Q′j ⊂ Qj−1 and

|Vj ∩ Tj−1 ∩Q′j | > 3
4 |Q

′
j |.

Now we distinguish two cases. If Q′j ∩ Tj−1 contains a good cylinder, we define Tj as this good cylinder
and Qj := Q′j . Otherwise Q′j ∩ Tj−1 ∩ Vj has the structure

Q′j ∩ Tj−1 ∩ Vj ∼ Hj × [a′j , b
′
j ],

where Hj is a measurable subset of Rn−1 and

|Hj ∩Π(Q′j)| > 3
4 |Π(Q′j)|

Here Π denotes the projection x 7→ (x1, . . . , xn−1) : Rn → Rn−1. Find the largest interval [a′′j , b
′′
j ] ⊂

[aj−1, bj−1] with the property that
|(Hj × [a′′j , b

′′
j ]) \ Vj | = 0.

Then, by the definition of goodness of Tj−1,

[a′′j , b
′′
j ] 6= [aj−1, bj−1]

and thus there exists [aj , bj ] ⊂ [aj−1, bj−1] which is as long as [a′j , b
′
j ] and contains “both pieces of [a′′j , b

′′
j ]

and of its complement” in such a way that

|Vj ∩Qj | > 1
2 |Qj |,

where
Qj = Π(Q′j)× [aj , bj ],

and Qj contains a good cylinder. This completes one step of the construction. If the entire construction
is established, we observe that the intersection of the cubes Qj contains exactly one point, which belongs
to cl∗ V1 ∩ cl∗ V2. �

15.2. Theorem. Suppose that Ω ⊂ Rn be a measurable set of finite measure. The Ω has a finite perimeter
if and only if

Hn−1(∂∗Ω) <∞.
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Proof. Necessity follows from Theorem 14.5, we will prove the sufficiency. Suppose thatHn−1(∂∗Ω) <∞.
Then, by the Eilenberg inequality (Lemma 6.8),∫

Rn−1
#{γ : (τ, γ) ∈ ∂∗Ω} dt <∞.

We claim that for almost all τ ∈ Rn−1, χΩ(τ, ·) is a.e. constant between the points of {γ : (τ, γ) ∈ ∂∗Ω}.
Having this claim for granted, we observe that χΩ is BV along all lines parallel to coordinate axes and∫

Rn−1
‖χΩ(·, γ)‖BV dγ <∞,

similarly for rermaining coordinates. A routine calculation involving integration by parts and Fubini
theorem then shows that χΩ ∈ BV (Rn) as required. To prove the claim, we proceed as in the proof
of Theorem 14.1 and, assuming that the conclusion is not true, find a compact set K0 and an interval
[a0, b0] such that

∂∗Ω ∩
(
K0 × [a0, b0]

)
= ∅

and χ
Ω(τ, ·) is essentially nonconstant on [a0, b0] for each τ ∈ K0. Then an application of Lemma 15.1

leads to a contradiction. �

16. Divergence theorem

16.1. Theorem. Let Ω ⊂ Rn be a set of finite perimeter and f ∈ C1
0(Rn; Rn). Then∫

∂∗Ω

f · n dHn−1 =
∫

Ω

div f dx.

Proof. This is a summary of preceding results Theorem 14.4 and Theorem 14.5. �

16.2. Corollary. Let W ⊂ Rn be an open set and Ω ⊂ W be a set of locally finite perimeter in W . Let
f ∈ C1

c (W ; Rn). Then

(67)
∫
W∩∂∗Ω

f · n dHn−1 =
∫

Ω

div f dx.

Proof. Let B(x, r) ⊂⊂ W . Then ∂∗(Ω ∩ B(x, r)) ⊂ ∂B(x, r) ∪ (∂∗Ω ∩ B(x, r)) and thus this is a set of
finite Hn−1-measure. In view of Theorem 15.2 it follows that Ω∩B(x, r) is a set of finite perimeter and
(67) holds for f supported in such a ball. The general case follows now by a partition of unity. �
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17. Surface integration

17.1. Surface and surface integral. Let X be a metric space and k be a positive integer. We define a k-
dimensional (parametric) surface as a locally Lipschitz mapping ϕ : E → X, where E ⊂ Rk is Lebesgue
measurable. Suppose that g1, . . . , gk : X → R are locally Lipschitz functions and g = (g1, . . . , gk).
Further, let f : X → R be measurable with respect to Hk. We define the surface integral of the
integrand f dg1 . . . dgk as ∫

ϕ

f dg1 . . . dgk =
∫
E

f(ϕ(t)) J(g ◦ ϕ)(t) dt.

17.2. Theorem (Canonical change of variables). Let X be a metric space, E ⊂ Rk be a measurable set,
ϕ : E → X be a surface, g = (g1, . . . , gk) : X → Rk be locally Lipschitz and f : X → R be Hk-measurable.
Then ∫

ϕ

f dg1 . . . dgk =
∫

Rk

∑
t∈E∩g−1(y)

sgn J(g ◦ ϕ)(t) f(ϕ(t)) dy1 . . . dyk.

Proof. This is a routine consequence of the theorem on change of variables by the area formula (Theorem
4.7). �

18. Surrounding: Euclidean case

18.1. Jacobian. If ϕ : E → Rn is an (n−1) dimensional surface, we define

Jϕ =
∂ϕ

∂t1
× · · · × ∂ϕ

∂tn−1
.

18.2. Lemma. Let W ⊂ Rn (n > 1) be an open set and Ω ⊂W be of locally finite perimeter in W . Let
ϕ : E → W be a n−1-dimensional surface. Suppose that Hn−1(ϕ(E) \ ∂FΩ) = 0. Then Jϕ(t) is a real
multiple of n(ϕ(t)) for a.e. t ∈ E.

Proof. We can ignore preimages of null sets, because by the area formula the Jacobian Jϕ vanishes a.e.
on them. Now, let us assume that there is a measurable A ⊂ Rn−1, and interval I = (c, d) ⊂ R and a
Lipschitz function ` : Rn−1 → I such that

ϕ(E) ⊂ {(τ, γ) ∈ A× I : γ = `(τ)} ⊂ ∂FΩ

Then

(68) ϕn(t) = `(ϕ1(t), ..., ϕn−1(t)), t ∈ E.
By the area formula (and Rademacher theorem), for a.e. t ∈ E ∩ {Jϕ 6= 0} we observe that ` is
differentiable at ϕ(t). Let us denote

ψ(τ) = (τ, `(τ)) , µ = (ϕ1, . . . , ϕn−1).

We may rewrite (68) as
ϕ = ψ ◦ µ.

By Lemma 14.3 and 14.2,

n(ψ(τ)) =
Jψ(τ)
|Jψ(τ)|

for a.e. τ ∈ A.

By the chain rule and the rule for multiplication of determinants,

Jϕ(t) = Jµ(ψ(t))Jψ(t)

for a.e. t ∈ E ∩ {Jϕ 6= 0}, this proves the claim in the special case.
Similarly we proceed if the image of A lies in a rotated graph of above mentioned type, i.e. if a different

than last coordinate is expressed explicitly in terms of the remaining ones. By Theorems 14.1 and 11.2
this describes piecewise all of ∂FΩ. The general case follows now by a decomposition argument. �

18.3. Surrounding: Euclidean case. Let W ⊂ Rn (n > 1) be an open set and Ω ⊂ W be of locally
finite perimeter in W . Let ϕ : E → W be an n−1-dimensional surface. We say that ϕ surrounds
(ohraničuje) Ω in W if ϕ is one-to-one,

Hn−1(∂∗Ω 4 ϕ(E)) = 0.

and Jϕ(t) is a positive multiple of n(ϕ(t)) for a.e. t ∈ E.
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18.4. Theorem. Suppose that W ⊂ Rn (n > 1) be an open set and Ω ⊂W be of locally finite perimeter
in W . Then there exists an n−1-dimensional surface which surrounds Ω in W .

Sketch of the proof. Pieces of this surface are obtained in Theorem 14.1, they can be put together into a
single surface (cf. proof of Theorem 19.4). The proof that such a surface surrounds Ω is based on Lemma
14.2, Lemma 14.3, Theorem 14.4 and Theorem 14.5. �

18.5. Theorem. Suppose that W ⊂ Rn (n > 1) be an open set and Ω ⊂W be of locally finite perimeter in
W . Let ϕ : E →W be a n−1-dimensional surface. Suppose that ϕ surrounds Ω in W . Let f, g1 . . . gn−1 :
W → R be locally lipschitz function and f has a compact support in W . Then∫

ϕ

f dg1 . . . dgn−1 =
∫

Ω

det(∇f,∇g1, . . . ,∇gn−1) dx.

Proof. Suppose first that f, g are smooth. Then

div
(
f ∇g1 × · · · × ∇gn−1

)
= det(∇f,∇g1, . . . ,∇gn−1).

By Corollary 16.2∫
∂∗Ω∩W

f ∇g1 × · · · × ∇gn−1 · n dHn−1 =
∫

Ω

det(∇f,∇g1, . . . ,∇gn−1) dx

On the other hand, by the definition of surrounding and the Cauchy-Binet formula (Theorem 5.3)∫
∂∗Ω∩W

f ∇g1 × · · · × ∇gn−1 · n dHn−1

=
∫
E

(f ∇g1 × · · · × ∇gn−1)(ϕ(t)) · n(ϕ(t))|Jϕ(t)| dt

=
∫
E

f(ϕ(t)) (∇g1 × · · · × ∇gn−1)(ϕ(t)) · Jϕ(t) dt

=
∫
E

f(ϕ(t)) det(∇(g ◦ ϕ)(t)) dt =
∫
ϕ

f dg1 . . . dgn−1.

The general case follows by a routine approximation argument. �

19. Stokes theorem

19.1. Atlas, Lipschitz manifold. Let X be a separable metric space and A be a system of bilipschitz
mappings (charts) µ : Uµ → Rn, where Uµ ⊂ X is open. Suppose that all images µ(Uµ) are open in Rn
and ⋃

µ∈A
Uµ = X.

Then A is called a Lipschitz atlas and (X,A) is called a (n-dimensional) Lipschitz manifold. We say
that (X,A) is oriented if

J(ν ◦ µ−1)(t) > 0 for a.e. t ∈ µ(Uµ ∩ Uν)
whenever µ, ν ∈ A. The definition is justified by the following theorem.

19.2. Theorem. Suppose that G ⊂ Rn be a connected open set and f : G→ Rn be a bilipschitz mapping.
Then f(G) is open and either Jf > 0 a.e. (f is sense preserving), or Jf < 0 a.e. (f is sense reversing).

Proof. See [LM]. Notice that f can be extended as bilipschitz to G and that the signum of the Jacobian
corresponds to the signum of

deg(f,G, p), p ∈ f(G).
�

19.3. Parametrization. Let X be a Lipschitz manifold. Let G ⊂ Rn be an open set and ϕ : G→ X be
a locally Lipschitz one-to-one mapping. We say that ϕ is a

• parametrization of X if ϕ(G) = X,
• generalized parametrization of X if X \ ϕ(G) is a null set (i.e. the image under any chart from

the atlas is Lebesgue null).
• local parametrization in general.
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A local parametrization ϕ is said to be positive if X is oriented and

J(µ ◦ ϕ) > 0 a.e. on ϕ−1(Uµ) for each µ ∈ A.

19.4. Theorem. Let X be an oriented Lipschitz manifold of dimension n ≥ 1. Then there exists a
positive generalized parametrization ϕ of X.

Sketch of the proof. Pieces of the parametrization are obtained from inversions of charts. We obtain
bilipschitz ϕj : Gj → X such that Gj are bounded, Ln(∇Gj) = 0 and ϕj(Gj) cover X. Now we set

G̃i = Gi \
⋃
j<i

ϕ−1
i (ϕj(Gj))

to make the images of the pieces disjoint, but still covering almost all of X. After a change of variable
by shifts of G̃j we may assume that G̃j are disjoint, so that we can define

ϕ = ϕj on Gj .

�

19.5. Integration over manifolds. Let X be an oriented Lipschitz manifold, M ⊂ X be a Hn-
measurable set, g : X → Rn be localy Lipschitz and f : M → R be Hn-measurable. We define∫

M

f dg1 . . . dgn =
∫
ϕ

fbM dg1 . . . dgn

where fbM is just f extended by 0 outside M and ϕ is a positive generalized parametrization of X. This
integral does not depend on the choice of ϕ.

19.6. Perimeter. Let X be an oriented Lipschitz manifold and Ω ⊂ X. We say that Ω has a locally
finite perimeter in X if for each µ ∈ A the set µ(Ω ∩ Uµ) has a locally finite perimeter in µ(Uµ).

19.7. Surrounding. Let X be an oriented n-dimensional Lipschitz manifold (n > 1), Ω ⊂ X be of
locally finite perimeter and ϕ : E → X be a n−1-dimensional surface. We say that ϕ surrounds Ω if
µ ◦ ϕ surrounds µ(Ω) in µ(Uµ) for each µ ∈ A.

19.8. Lemma. Let X be an oriented n-dimensional Lipschitz manifold (n > 1), Ω ⊂ X be of lo-
cally finite perimeter and ϕ : E → X be a n−1-dimensional surface which surrounds Ω. Suppose that
(f, g1, . . . , gn−1) is an n-tuple of locally Lipschitz functions on X such that f has a compact support in
X. Then the formula

(69)
∫
ϕ

f dg1 . . . dgn−1 =
∫

Ω

df dg1 . . . dgn−1

is valid.

Sketch of the proof. If the support is obtained in Uµ for some µ ∈ A, this can be obtained using formulas
on change of variables. The general case follows by partition of unity. �

19.9. Remark. In what follows, we will be rather interested in “global” validity of (69), i.e., we will
want to relax the assumption concerning the compact support. The previous lemma leaves untreated
some interesting cases, e.g. if X is the cone {x2

1 + x2
2 = x2

3, x3 > 0} and 0 ∈ Ω ∪ ϕ(E). Our main result
will be the following.

19.10. Stokes Theorem. Let X be an oriented n-dimensional Lipschitz manifold (n > 1), Ω ⊂ X be
of locally finite perimeter and ϕ : E → X be a (n−1)-dimensional surface which surrounds Ω. Suppose
that (f, g1, . . . , gn−1) is an n-tuple of locally Lipschitz functions on X such that f has a compact support
in X, consider the mapping g = (g1, . . . , gn−1) : X → Rn−1. Suppose that for a.e. y ∈ Rn−1 the set
Ω ∩ g−1(y) is relatively compact in X. Then the formula∫

ϕ

f dg1 . . . dgn−1 =
∫

Ω

df dg1 . . . dgn−1

is valid provided both the integrals converge.
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Proof. Suppose first that f has a compact support. Define a function σ on ϕ(E) as

σ(ϕ(t)) = sgnJ(g ◦ ϕ)(t).

Recall that ∫
ϕ

f dg1 . . . dgn−1 =
∫

Rn−1

( ∑
x∈ϕ(E)∩g−1(y)

f(x)σ(x)
)
dy,

whereas, by the coarea formula,∫
Ω

df dg1 . . . dgn−1 =
∫

Rn−1

(∫
Ω∩g−1(y)

df
)
dy,

where Ω ∩ g−1(y) is oriented by ∗(dg1 ∧ dg2 ∧ · · · ∧ dgn−1). Let ψ ∈ D(Rn−1) and set

fψ(x) = f(x)ψ(g(x)).

Then
dfψ(x) = df(x)ψ(g(x)) + f(x) dψ(g(x)).

Since
dψ(g(x)) ∧ dg1 ∧ · · · ∧ dgn−1 = 0,

we obtain∫
Rn−1

( ∑
x∈ϕ(E)∩g−1(y)

f(x)σ(x)
)
ψ(y) dy =

∫
Rn−1

( ∑
x∈ϕ(E)∩g−1(y)

fψ(x)σ(x)
)
dy

=
∫
ϕ

fψ dg1 . . . dgn−1 =
∫

Ω

dfψ dg1 . . . dgn−1

=
∫

Ω

ψ◦g df dg1 . . . dgn−1 =
∫

Rn−1

(∫
Ω∩g−1(y)

df
)
ψ(y) dy.

It follows that ∑
x∈ϕ(E)∩g−1(y)

f(x)σ(x) =
∫

Ω∩g−1(y)

df for a.e. y ∈ Rn−1.

Now we will consider the general case, only, since f is integrable, we may assume that f ≥ 0. Let {ωj}
be a partition of unity on X and ηj be the partial sums of ωj . We apply the preceding computation to
fηk, pass to the limit and obtain

(70)

∫
Ω

df dg1 . . . dgn−1 =
∫

Rn−1

(∫
Ω∩g−1(y)

df
)

=
∫

Rn−1
lim
k

(∫
Ω∩g−1(y)

(ηk df + f dηk)
)
dy

=
∫

Rn−1
lim
k

( ∑
x∈ϕ(E)∩g−1(y)

f(x)σ(x)ηk(x)
)
dy

=
∫

Rn−1

( ∑
x∈ϕ(E)∩g−1(y)

f(x)σ(x)
)
dy =

∫
ϕ

f dg1 . . . dgn−1.

The first equality in (70) is the coarea formula, here passing from local to global we use the existence
of the integral on the left. The second equality is an obvious consequence of the hypothesis on relative
compactness of the preimages Ω∩g−1(y). The third equality is the relatively compact case. In the fourth
equality we use that f ≥ 0 and ηk ↗ 1. �

36


