GIMP and Film Production
v 1.0

http://film.gimp.org

Caroline Dahllof Calvin Williamson
caro@Qrhythm.com calvinw@mindspring.com
Manish Singh Garry Osgood
yosh@gimp.org gosgood@idt.net

September 22, 2000

Contents

1 Introduction 3
2 GIMP 2.0 Design 5
21 GimpCon 5
2.2 GIMP 2.0 Architecture 5
221 GEGL e 6

2.2.2 GIMP Core and Plug-in Interfaces 6

223 Layer Trees i 6

2.2.4 Common Object Request Broker Architecture 7

2.2.5 Multi-threading L. 7

2.2.6 The Application L. 7

3 GEGL 8
3.1 High Level Design 8
3.2 LowULevel Design 8
3.3 Current State 9

4 Schedule 10
5 Conclusion 13
5.1 Commercial Paint Packages 13
5.2 (Call for Participation with GIMP 13

A GIMP Versions, Licenses 14
Al History of GIMP 14
A2 GIMP 1.2o 14
A3 Film Versionof GIMP 14
A4 GIMP License o v v v v v i i it e 15

B GIMP at Rhythm & Hues Studios 16
B.1 Why Rhythm & Hues uses GIMP 16
B.2 How GIMP is used at Rhythm & Hues 17
B.3 Some GIMP Problems 17
B.4 Future of GIMP at Rhythm & Hues 18

C Contributing to GIMP

D More Information

19

20

Chapter 1

Introduction

This paper discusses GIMP (General Image Manipulation Program) and its
possible use in film and production environments. GIMP is a freely available
open source paint program (http://www.gimp.org). It can be downloaded with
source code, and built and installed on most Unix and Windows machines. It has
a standard set of painting and image editing tools, similar to Adobe Photoshop.
It supports plug-ins and scripting.

Because the source code is available, GIMP can be customized to fit the
needs of production. Experimental versions which support 16-bits per channel
have been built and proven useful in production for over a year (see Appendix
B).

With the unstable future of many of the current 16-bit off-the-shelf paint
packages on the Unix platform, GIMP has a definite advantage for the film
industry. It provides an opportunity to build and contribute to a stable and
customizable solution for many of the particular needs of production.

This document describes GIMP and gives some details about the upcoming
architectural changes for future versions. It also discusses ways interested parties
can help contribute to the GIMP community.

The following is an outline of the topics we cover:

e Chapter 2 “GIMP 2.0 Design” describes the basic architecture of GIMP
2.0.

e Chapter 3 “GEGL” reviews the most concretely realized component of
GIMP 2.0, the GEGL library. GEGL will be the heart of the GIMP 2.0
image processing engine.

e Chapter 4 “Schedule” is a list of tasks for GIMP 2.0 which describes the
main parts of the next major version of gimp. It gives some rough schedule
estimates for the tasks.

e Chapter 5, “Conclusion” summarizes our document.

In addition, the appendices cover some useful extra material:

Appendix A “GIMP Versions, Licenses” covers GIMP versions 0.54 to 1.2
and the experimental HOLLYWOOD branch. It also describes GIMP’s
license.

Appendix B “GIMP at Rhythm & Hues Studios” goes into details of the
use of the GIMP HOLLYWOOD branch in a production setting.

Appendix C “Contributing to GIMP” This is a short description of how
things get done in open source projects.

Appendix D “More Information” contains URLs to web pages with more
information.

Chapter 2

GIMP 2.0 Design

Though the upcoming 1.2 release of GIMP contains many new features, most
development effort since the 1.0 version has involved improved UI and tools
(Appendix A), with little improvement in underlying architecture. Internally
GIMP is still a monolithic application with a plug-in library wrapped around
it. It was never broken into libraries or manageable pieces.

This makes it difficult to add features like color management, CMYK sup-
port, different color models and data types. Without breaking GIMP into a
series of libraries, moving forward with any major architectural enhancements
is impossible. So the plan for GIMP after 1.2 release is to break GIMP into
modules, separate the UI from the engine code, and give GIMP the flexibility to
handle the next stage of functionality. Unfortunately there is no way to avoid
this reworking of GIMP’s current architecture.

2.1 GimpCon

In June 2000 the first official GIMP Developers Conference took place in Berlin.
At the meeting many of the core developers discussed the future direction of
GIMP.

The main topic of the conference was a new architecture for GIMP and a
corresponding set of libraries. The remaining sections in this chapter describe
the new architecture and design.

2.2 GIMP 2.0 Architecture

GIMP 2.0 will consist of the following libraries:
e gegl — Image processing library.
o libgimpcore — Core code, includes main GIMP objects and classes.

e libgimpcoreui — Private widgets needed by app, not exported to plug-ins.

libgimpui — Widgets available for both app and plug-ins.

libgimpwidget — Utility widgets used in building the other UI libraries.

libgimpapp — Actual GIMP app.

libgimpezrt — Communication library between plug-ins and application.

libgimpiface — Interfaces for libgimpui and libgimpcore.

e libgimpjunk — Various utilities.

2.2.1 GEGL

Pixel manipulation will be done using GEGL (Generic Graphics Library — Chap-
ter 3). GEGL abstracts the color model and color depth (8-bit, 16-bit, float)
and provides generic data types for channels or colors. The algorithms imple-
mented using these abstract types are converted to the actual C code using a
code-generator. That way it’s easier to add additional data types and color
models and optimizations.

Chapter 3 has a more detailed description of this library.

2.2.2 GIMP Core and Plug-in Interfaces

Built on top of this, the GIMP core will implement objects like images, tools,
layers, channels, brushes etc. The interfaces of these high level objects will be
defined in the appropriate library, and implementations of these objects will be
provided for use by plug-ins as well. The relevant code to implement the objects
for the plug-in library will be auto-generated from the object descriptions. This
will give plug-in developers an object-oriented interface instead of the simple
procedural approach GIMP uses now.

This architecture also allows reuse of Ul-elements from the core UI libraries
in plug-ins and provides a clean model-view separation. By exporting the in-
ternal object structure to the plug-ins it will become possible to implement
operators, tools or complete layer types as plug-ins. For example one could
create plug-in vector tools for vector layers in with this design.

2.2.3 Layer Trees

The simple composite of layers into a projection from GIMP 1.x will become
with the help of GEGL, a chain (or tree) of operations, allowing things like
effect and vector layers to be part of the composite as well.

Each node (comparable to a layer in current gimp) may compute its data
internally as pixels, vectors, text, or whatever is appropriate for that node,
and just needs to implement a well-defined interface so it can be plugged into
the computation chain. In this way anything that does image processing can
be used as part of the chain: color corrections, blur filters as well as affine
transformations and more complex effects are all viewed in the same way.

2.2.4 Common Object Request Broker Architecture

The communication between the core application and the plug-ins will be done
using CORBA. The interface between the actual objects and the ORB will be
generated using the object descriptions mentioned above. The developer will
only see GTK+-objects and will not have to deal with the shoals of CORBA.
GIMP 2.0 will use a network-transparent client-server system.

2.2.5 Multi-threading

Another highlight will be multi-threading of image processing computations.
This allows complicated composites and projections of the layers to be computed
efficiently. When an update of the projection becomes necessary, the system
locks the necessary resources and gives the operation to the batch-renderer to
run in its own thread. This way the user interface, and object system stays
responsive.

2.2.6 The Application

The GIMP application is a small layer on top of all the libraries and just holds

the libraries together. This design will make it possible to implement other

applications like video-editors or compositors with the same set of libraries.
Most of this chapter is taken from http://www.gimp.org/gimpcon/review.html.

Chapter 3

GEGL

GEGL (Generic Graphics Library) is a new image processing library to be
used by GIMP 2.0. It will support different color models and data type-
s (8bit,16bit,float) in a general way, and allow new models and types to be
added easily. It will include support for common image processing operations,
and provide a way to create chains of operations and apply these in a memory
efficient way. Early versions will include operations needed by GIMP 2.0, and
later versions will add a full library of image processing operations and color
models. GEGL is available from http://www.gegl.org.

3.1 High Level Design

GEGL is based on the GTK+ object model, an object oriented system that
supports inheritance, has an advanced signal and type system, and provides a
reference counting scheme for memory management.

The main classes for GEGL are for images, image processing operators, and
color models. Operators and images inherit from a common abstract base class,
so image operation chains (or trees) can be set up with nodes representing
either images or image operations. Color and data conversions between inputs
and outputs is handled automatically if desired during computation of a chain.

Each color model implements at least converters to and from an absolute
CIE XYZ color model. Specific color models may implement direct conversions
between common or closely related color models as well.

Image processing on a chain is done by passing a destination image buffer
and region of interest and evaluating the chain to fill in the destination.

3.2 Low Level Design

GEGL will include a comprehensive set of operators for point, area, geometric
and statistics operations. For these, different data types (i.e. bit depths) for

channels and color models will be handled through generic programming tech-
niques. This involves using a Generic Image Language (GIL), a simple image
manipulation and algorithm description language designed as part of GEGL.

Image algorithms will be written where possible using GIL and particular
data type and color model cases will be generated from their GIL description.
Though many image processing algorithms are well suited to this style of generic
coding, it will be necessary to allow partial specialization techniques where a
generic approach is not suitable.

Memory management will include a cache and swapping system. Image
data will typically consist of tiles. Multi-threaded computation of operations
is planned where possible. For efficiency, region of interests and domains of
definitions will be calculated to avoid doing unnecessary computations.

3.3 Current State

GEGL is currently in a development stage, and work is ongoing for most of the
major classes.

The abstract base image and operator classes for creating and processing
chains of image operations have been written. The Generic Image Language
(GIL) has been implemented for the case of point operators using lex/yacc to
generate code for some basic common color models (RGB, Gray) and data types
(float, 8bit, 16bit). Current work on AreaOps in GIL is beginning. The color
model inheritance classes and accompanying data/colors pace converters which
provide support for converting color models/data types during image processing
has been written as well.

The memory management classes for caching and tiling, as well as effi-
cient computation of chains of operations using regions of interests and do-
mains of definition are beginning design. For details of GEGL progress, see
http://www.gegl.org.

Chapter 4

Schedule

The schedule for achieving GIMP 2.0 is broken into three main parts.

The first part involves the development of GEGL. Since GEGL is a low-level
library to be used by GIMP, work for it can proceed somewhat independent of
GIMP.

Once GEGL is far enough along, a simple skeleton of imaging and paint-
ing tools will be developed using GEGL. This stripped down version is called
MicroGIMP and will include some simple paint, retouch and editing tools, e-
nough to provide first tests of each of the major areas of functionality for GIMP:
painting, editing, compositing, color conversions.

After MicroGIMP is built and tested as a small production tool, the rest
of the major GIMP libraries will be built. These libraries include the various
GIMP UI libs and the core code for GIMP’s graphics objects (Images, Layers,
Channels, Drawables). GIMPs task management (rendering pipeline), libraries
for plugin communication as well as GIMPs component for scripting (PDB,
Procedural Database) are all included here.

10

Schedule for GIMP 2.0

Task | Description | Library | Cost
MicroGIMP
MicroGimp- | Create stripped down GIMP | gimpcore 40h 1w
skeleton with basic simple toolbox ui.
MicroGimp- | Write initial simple versions of | gimpcore 40h 1w
basic classes | Image, Layer, Drawable classes
for stripped down GIMP.
MicroGimp- | Write the initial paint core code | gimpcore 80h 2w
paint core for microgimp using GEGL.
MicroGimp- | Write first test tools: paint, | gimpcore 120h 3w
tools clone, simple edit tools
Sub-total | 280h Tw
GEGL
Area Classes for common area opera- | gegl 120h 3w
Operation tions in GEGL (convolve, kernel
ops)
Geometric Classes for common geometric | gegl 120h 3w
Operations operations such as scaling, trans-
formation.
GIL Mechanism for allowing partial | gegl 120h 3w
Specialization| specialization in GIL code
Point Classes for LUT operations gegl 120h 3w
Operations
Preprocessor | Generates colormodel and data | gegl 80h 2w
for type code from GIL specifica-
codegen tions
Memory Cache and virtual memory gegl 300h 7.5w
Management | management classes
Multi-thread | Multi-threaded support for gegl 200h 5w
support image operations.
Sub-total | 1060h 26.5w
GIMP
Image, Complete Image, Drawable, Lay- | gimpcore 160h 4w
Drawable, er, Channel classes. The basic
Layer, core classes used in GIMP
Channel
Widgets Ul Build utility widgets for use in | gimpwidgets | 200h 5w
other UI libs
Core UI Private widgets not shared with | gimpcoreui 120h 3w
plugins
Gimp UI Widgets shared with plugins gimpui 200h 5w
Painting Paint, Airbrush, Erase, Blur etc | gimpcore, 120h 3w
tools gimpui
Editing Rect Select, Free select, Bezier | gimpcore, 120h 3w
tools etc gimpui

11

Schedule for GIMP 2.0

Task | Description | Library | Cost
GIMP (cont)
Resize tools | Scale, Resize, Transform... gimpcore, 80h 2w
gimpui
Image Brightness, Levels, Histogram gimpcore, 120h 3w
Adjustment gimpui
tools
GIMP GIMP task management code to | gimpcore, 120h 3w
Render manage calls to gegl, ui tasks, io | gegl
Pipeline
Generic Ul Widgets for multiple data types | gimpwidgets, | 120h 3w
gimpcoreui,
gimpui
Undo Build undo history mechanism gimpcore 100h 2.5w
Plugin Corba based design for com- | gimpext, 300h 7.5w
libraries munication between plugins and | gimpiface
GIMP
Sub-total | 1760h 44w
Total | 3100h 77.5w

12

Chapter 5

Conclusion

We think that GIMP 2.0 is the best alternative for solving 16bit paint needs in
the film and production world.

5.1 Commercial Paint Packages

Several current 16bit Unix paint packages have uncertain futures. They are
costly to install and usually involve working without full control over image
data types, and display look tables.

5.2 Call for Participation with GIMP

We hope that you will join us in contributing to the development of GIMP.
GIMP is a great example of an open source program whose advancement and
progress is clearly beneficial for the graphics community at large. From a very
practical point of view, it can be made to solve many of the problems that turn
up with paint programs in production settings. It is a solution that can last as
well.

13

Appendix A

GIMP Versions, Licenses

A.1 History of GIMP

Spencer Kimball and Peter Mattis wrote the first version of GIMP, released in
1995 as GIMP 0.54. This original version worked with the Motif UI toolkit, and
was later replaced with an open source Ul toolkit written specifically for GIMP
called the GIMP Toolkit (GTK+, see http://www.gtk.org/).

The next main release was GIMP version 0.99 which came out in 1997. This
version included new tile memory management, transparency layers, and a plug-
in architecture. In May 1998 version 1.0 of GIMP was released, with the stable
version 1.0.4 shortly after that.

The GIMP 1.1 series of developer releases has continued throughout 1999 and
2000 and is currently at version 1.1.25 (Sept. 2000). The current development
versions are being debugged and stabilized with the goal of releasing GIMP 1.2
based on these in the very near future.

A.2 GIMP 1.2

This is the next stable version due for release. This version contains many
changes since the last stable version, 1.0.4. These include new tools
(dodge/burn, smudge, ink), improved progress and status bars, many UI im-
provements (drag and drop support), better preferences, much improved Bezier
path tools, and support for editable brushes. For more details on this version
of GIMP see http://sven.gimp.org/1.1/.

A.3 Film Version of GIMP

The film version of GIMP supports both 16-bit and floating point channel data.
This version was written as a test for introducing high color resolution support
into future versions of GIMP, and to investigate the viability of using GIMP

14

for film production work. Work on this version was done as a branch of the
main GIMP project. This branch is called HOLLYWOOD (the CVS tag for it).
HOLLYWOOD is based on the GIMP 1.0.4 code base, and the necessary changes
were made to that version to allow it to work for 16-bit and float channels. The
HOLLYWOOD branch was updated to work with a more recent version of the
GIMP UI toolkit (GTK+1.2) as well. More information about the film version
of GIMP is available at http://film.gimp.org.

This film version of GIMP is being used currently at Rhythm and Hues
Studios. (see Appendix B).

A.4 GIMP License

GIMP is an open source software project developed for the most part under the
GNU Public License (GPL) and the Library GNU Public License (LGPL). The
source code for the application itself is licensed under the GPL. The source code
for libgimp, the library which communicates with plug-ins and which plug-ins
link with, is licensed under the LGPL.

You may download, install, build, make changes to the source code as pro-
vided by these licenses (http://www.gnu.org/).

15

Appendix B

GIMP at Rhythm & Hues
Studios

Rhythm & Hues is a character animation and visual effects studio located in Los
Angeles. The company’s work is featured in recent films like ”Babe”, ” Mouse-
Hunt”, and ”The Flintstones in Viva Rock Vegas”. Other work includes com-
mercials for Hankook Tires, Game Boy, and the Coca Cola ”Polar Bear” series.
The studio has around 400 employees. It uses SGIs for computer graphics work.

The HOLLYWOOD version of GIMP has been used in production at
Rhythm & Hues for the past year and a half.

B.1 Why Rhythm & Hues uses GIMP

Rhythm & Hues has a history of writing proprietary software tools for pro-
duction needs. These were written because commercial versions didn’t exist at
the time, or available tools could not be altered for production needs. Also
it is expensive to install commercial versions of software on large numbers of
machines.

Having access to the source code for software has some obvious advantages
as well, among them the ability to alter tools for exact needs of production
tasks, and to insure that tools work together in a pipeline without data loss.

This is why GIMP was a good choice for Rhythm & Hues. It can be in-
stalled, compiled and supported by in-house programmers in much the same
way proprietary software can. This is in contrast to commercial paint solutions,
which rarely can be configured to match the Rhythm & Hues image data types.

Other big advantages of having source code for GIMP include being able to
install and use multiple film display look up tables for viewing film images on
monitors. TDs can view images with a variety of these tables depending on the
type of job, or film stock.

16

B.2 How GIMP is used at Rhythm & Hues

GIMP is used at Rhythm & Hues in a number of different ways, from simple
retouching and cloning to more specialized fur painting.
Here are some standard uses for GIMP in production

e Dusting and touching up frames
o Texture painting

e Painting mattes

e Painting maps

e Rig and wire removal in scenes where procedural methods are impossible.
To make this possible new features were added to GIMP. In this case the
ability to flip through frames was added

o Together with other in-house programs.

Rhythm & Hues uses GIMP in conjunction with its in-house fur program
and there are plans to integrate GIMP closely with the compositor to
make the ”talking animal” pipeline even more efficient.

B.3 Some GIMP Problems

After using GIMP in film production for a year and a half, it is clear there are
also certain areas where GIMP needs improvement to become a full-featured
and mature paint tool for film work:

o Alpha channel access and editing
Direct access to the matte or alpha channel of a RGBA image is very
important for film work. It is currently only possible to view and edit the
alpha channel of an image in GIMP only indirectly and with some trouble.

e Color Channel visibility and editing
It is difficult to edit single color channels (r,g,b) and cut and paste easily
between color channels. Swapping color channels is hard as well.

e Memory usage
Too much memory is used for some simple operations, and this is especially
a when large images are involved. Just two 2k layers of images usually
becomes difficult to manipulate and use.

o Speed

Some operations are slow, and could use more efficient algorithms.

e Resolution independence

It should be easy to re-use image operations at several resolutions. Spatial
parameters should scale correctly to make this work.

17

B.4 Future of GIMP at Rhythm & Hues

Rhythm & Hues is excited about GIMP’s future and will continue to support
and contribute to the GIMP community. These contributions are made available
to everyone through the normal open source process. Additions, improvements,
bug fixes and changes made by Rhythm and Hues are released publicly back to
the GIMP project.

It is hoped that the unique opportunity that GIMP provides is clear motiva-
tion for other production companies, software developers and users to contribute
to and promote this project as well.

18

Appendix C

Contributing to GIMP

The GIMP project has many developers, all with different interests and located
around the world. To work within this setting, new contributors should be
willing to participate in the normal development process of the project, and
demonstrate their interest and committed to the advancement of the project.

This starts with communication via emails, GIMP news groups, developer
lists, documentation, proposals, and IRC as well. GIMP interest groups at
conferences and SIGGRAPH are other places where developers and users can
meet.

For the most part there is no direct management in the traditional sense for
open source projects. No managers tell anyone they must do something. Rather
people and interested parties offer to contribute. This means it is up to potential
contributors to learn about what is going on by looking at documentation (user
and programmer) and studying code and reading emails.

Once developers prove they can contribute (usually by coding things like
bug fixes as patches, or writing plug-ins) they graduate to working on libraries
and similar things by finding areas that need work or maintenance, and by
volunteering to do that work.

Just as GIMP development must address the needs of the software itself
it must also improve the development process within the GIMP project. This
involves the need for concrete design documents for each module of GIMP, and
schedules and task lists that describe ongoing status of the library or module.
An example of this can be seen for the GEGL library, and hopefully as other
parts of GIMP 2.0 modules are built, they will include similar documentation
as well.

Please feel free to contact the authors with any questions or issues and ideas
about the above and becoming involved with GIMP and GEGL.

19

Appendix D

More Information

For more information please look at the following URLs:
o http://www.gimp.org This is GIMP’s home page.

o http://www.gegl.org This is GEGL’s home page. It includes more docum-
netation about its different compoments.

o http://www.gimp.org/gimpcon This is the site for the GIMP Conference
that has held in Berlin this past June.

o http://plugins.gimp.org/gimp2 Contains information about new libraries
for GIMP 2.0

20

