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Abstract. Generics are a very popular feature of contemporary OO languages,
such as Java, C# or Scala. Their support for genericity is lacking, however. The
problem is that they only support abstracting over proper types, and not over
generic types. This limitation makes it impossible to, e.g., define a precise in-
terface for Iterable, a core abstraction in Scala’s collection API. We imple-
mented “type constructor polymorphism” in Scala 2.5, which solves this problem
at the root, thus greatly reducing the duplication of type signatures and code.

1 Introduction

Object-oriented languages such as Java, C#, and (until now) Scala offer only limited
support for genericity, in that generic types are not considered first-class types. In this
section, we illustrate why this limitation is problematic using a core abstraction from
Scala’s collections API and sketch the solution we implemented in Scala 2.5.

The following sections provides a more detailed discussion of type constructor poly-
morphism and elaborate on interesting applications. Finally, the section on related work
discusses how type constructor polymorphism has been known for several decades in
research on functional programming (FP) languages. Industrial-strength FP languages,
such as Haskell, have supported it for at least 15 years.

1.1 The trouble with Iterable

The Iterable interface (an extract is shown below) declares the operations that un-
derlie Scala’s for-comprehensions. map takes a function from El to NewEl and applies
it to every element of the current collection to produce a new collection of NewEl’s.
flatMap generalises this behaviour in that, for every element of type El, the user-
supplied function may produce a collection of NewEl’s, instead of just a single element.
The produced elements will all be merged into one collection. Finally, filter exam-
ines every element in the current collection and returns a new one containing only those
elements that matched the user-supplied predicate p.
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trait Iterable[El] {
def map[NewEl](f: El ⇒ NewEl): Iterable[NewEl]
def flatMap[NewEl](f: El ⇒ Iterable[NewEl]): Iterable[NewEl]
def filter(p: El ⇒ Boolean): Iterable[El]

}

The signatures of Iterable’s methods precisely track the type of the elements
in the containers they manipulate. However, little is known (or enforced) about the
container itself. A container of elements of type T produced by one of these methods
must simply be a subtype of Iterable[T]. Actual implementations of these methods
allow for stricter bounds on their return types: in a subclass of Iterable, the precise
type of the produced container is known, and this information should be exposed to the
clients of these methods (to a certain extent).

The obvious3 way to improve Iterable so that subclasses can precisely specify
which type of container they produce, is to abstract over that type. However, we run into
problems when trying to define a type parameter Container that could later be instan-
tiated in a subclass. We must be able to apply different type arguments to Container

(NewEl and El), but this is not allowed:

trait Iterable[El, Container] {
// error: Container does not take type parameters
def map[NewEl](f: El ⇒ NewEl): Container[NewEl]
def flatMap[NewEl](f: El ⇒ Container[NewEl]): Container[NewEl]
def filter(p: El ⇒ Boolean): Container[El]

}

Our extension adds support for type parameters that take type parameters them-
selves. We will elaborate on this in the rest of the paper. First, we show the ad-hoc
solution currently employed in the Scala libraries.

Currently, every subclass of Iterable refines the result type of the relevant meth-
ods individually, scattering this part of Iterable’s contract over the class hierarchy.
Furthermore, this kind of change is only allowed for result types, as they are in a co-
variant position. More complicated designs quickly transcend these limitations.

As an example of this redundancy, consider the List subclass:

class List[El] extends Iterable[El] {
def map[NewEl](f: El ⇒ NewEl): List[NewEl]
def flatMap[NewEl](f: El ⇒ Iterable[NewEl]): List[NewEl]
def filter(p: El ⇒ Boolean): List[El]

}

We must refine every single method inherited from the Iterable interface to de-
note the fact that these methods actually produce the same container as the one they
were applied to. Worse, almost the same code has to be written over and over again in
the subclasses of Iterable. Our extension not only allows these methods to receive

3 Bruce’s MyType [4] or Eiffel’s type anchors [12] are not viable alternatives, as the result types
are not necessarily the same as the type of the enclosing class: Iterable[El]’s methods
return Iterable[El]’s as well as Iterable[NewEl]’s. Furthermore, our approach fully
supports programming against interfaces, whereas these alternatives do not.
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a more precise signature, it also makes it possible to implement them at the level of
Iterable, factoring out only the small part that varies over the subclasses.

If List did not refine the result type of these methods to reflect its implementation,
the following piece of client code would not type check (even though the run-time type
of ys would indeed be List[String]):

val xs: List[Int] = List(1, 2, 3)
val ys = xs.map(_.toString) // ys has type Iterable[String]

assert(xs.length == ys.length) // error: length is not a member of
Iterable[String]

At the very least, transforming a finite collection should be constrained to result in
a finite collection (i.e., one that has a length).

The next few paragraphs introduce our extension and illustrate how it solves these
problems more systematically.

1.2 Type constructor polymorphism

In the above, List and Iterable are type constructors. List takes one type param-
eter, and applying it to a type argument Int yields the proper type List[Int]. We
put the emphasis on whether a type expects type arguments. Thus, a type that expects
type arguments is a “type constructor” and a type that does not expect type arguments
is a “proper type”, whether it be a type constructor applied to type arguments, such as
List[Int] or simply Int.

From now on, type constructors have the same first-class status as proper types, and
we shall refer to both as “types”. “Parametric polymorphism” is the language mecha-
nism that abstracts over types using type parameters. When disambiguation is necessary,
“type constructor polymorphism” emphasises type constructors are abstracted over. We
avoid the overloaded term “genericity”.

In Java, type constructors are called “generic types”. A generic type that has been
applied to actual arguments, is (confusingly) referred to as a parameterised type – we
simply consider this a proper type, as it does not expect any (further) type arguments.
In a sense, type constructor polymorphism may be thought of as a safe way of dealing
with “raw types”.

Type constructors are also known as “higher-kinded types” in functional program-
ming languages, which have been putting them to good use for over a decade. Section
4 goes into more detail on this, the rest of the paper does not require any knowledge of
functional programming. We do assume some familiarity with Scala [33].

1.3 A better iterable

With type constructor polymorphism, we can refine the definition of Iterable as
shown below. Now, a subclass, such as List, can instantiate a single abstract type
constructor parameter (Container, which takes one type parameter) to accomplish
the refinement we were after.
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trait Iterable[El, Container[_]] {
def map[NewEl](f: El ⇒ NewEl): Container[NewEl]
def flatMap[NewEl](f: El ⇒ Iterable[NewEl]): Container[NewEl]
def filter(p: El ⇒ Boolean): Container[El]

}

abstract class List[El] extends Iterable[El, List]

Section 3 discusses a more detailed implementation of Iterable.

2 Informal Description

In this section we’ll elaborate on the impact of type constructor polymorphism on the
language. First, the level of kinds is defined so that it integrates well with Scala’s exist-
ing features. We gradually build up the kind system to illustrate the complications that
arise. Finally, well before version 2.5, Scala already allowed type constructor polymor-
phism to be encoded to a certain extent. We explain the encoding and contrast it with
the direct support.

2.1 Kinds

If we are to give type constructors the same status as proper types, we must not gloss
over of what makes them different: (most) proper types have instances, whereas a type
constructor must first be applied to correct type arguments: this then yields a proper
type, which in turn may be used to construct values. This alludes to a nice analogy: type
constructors are the type-level equivalent of value-level functions. We will elaborate on
this in section 2.5.

One may wonder why we should bother at all with types that do not immediately
produce objects. However, if we did not care for those types, we should immediately
abolish abstract classes and — on a different level — first-class functions, since the
former can’t be instantiated, and (almost) the only thing we can do with a function is
to apply it to actual arguments, so that we get the object we are interested in. These
analogies are meant to build intuition, they are certainly not the final word on the utility
of type constructors.

To distinguish proper types from type constructors, we use “kinds” (a term borrowed
from functional programming). Kinds are to types as types are to values. This divides
our language into three levels: at the bottom, we have objects (our values). Objects
are classified by types, which reside in the next level. Finally, types are classified by
kinds. As higher levels imply a higher level of abstraction, the number of “entities” in
a level becomes more constrained as we go up in the hierarchy: the number of objects
isn’t known until run time, types must be known at compile time, and the number of
essentially different kinds is fixed by the language specification.

Unlike types, kinds are purely structural: they simply reflect the kinds of the type
parameters a type expects. Since proper types all take the same number of type parame-
ters (i.e., none), they are classified by the same kind, which is called *. To classify type
constructors, we need exactly one more kind. Or rather, a kind constructor From →
To, which abstracts over the kinds From and To. From is the kind of the expected type
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argument and To is the kind of the type that results from applying the type constructor
to an argument.

For example, class List[T] gives rise to a type constructor List that is classi-
fied by the kind * → *, as applying List to a proper type yields a proper type. Note
that, since kinds are structural, given e.g., class Animal[FoodType], Animal has
the exact same kind as List.

2.2 Kinds and subtyping

Subtyping plays an important role in building abstractions. As such, it interacts with
type constructors in interesting ways. For example, what’s the kind of Carnivore in
class Carnivore[FoodType <: Meat]? Simply classifying it as * → * clearly
ignores the bound on FoodType. We will see later why this distinction is important.
First, we incorporate bounds in our notion of kinds.

Before we set out to improve our kind system, let us take stock of the system by
defining it explicitly. Since kinds are not user-definable, we invent some syntax based
on the existing mechanisms for defining classes. Defining a kind looks just like defining
a type, except for the more fitting kind keyword.

kind *
kind →[From, To]

The essential difference between the definitions kind * and class * is of course
that *’s instances are types – the proper types, to be exact. The kind → takes two kind
parameters, From and To. From → To, which is infix notation for →[From, To],
classifies the type constructors that take a type argument of kind From and yield a type
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of kind To. This model does not contain any references to types, so kinds cannot denote
type bounds such as <: Meat.

Instead of re-using Scala’s class system, perhaps a more standard way of describing
the level of kinds is using BNF. Note that kinds are not defined explicitly in Scala, so
these syntactic constructs do not appear in Scala programs. That said, the syntax of
kinds is described as:

Kind ::= ’*’ | Kind ’→’ Kind

To model bounded types as types that are classified by a certain kind, we enrich the
definition of *, so that it includes the lower and upper bounds that must be satisfied by
the types it classifies:

kind *(lower: *, upper: *)

A type T is classified by *(L, U) if it is a supertype of L and a subtype of U.
Syntactically, the Kind production thus becomes (assuming the appropriate Type

production):

Kind ::= ’*’ ’(’ Type ’,’ Type ’)’ | Kind ’→’ Kind

Note that we maintain the convention that (statically known) parameters that are
in the same level as the “function” they are applied to, are written in [...], while
parameters from a lower level are enclosed in (...). Values are always surrounded by
(...), to emphasise that they are not statically known.

This improvement neatly incorporates bounded types into our three-level model
of classification: FoodType <: Meat is translated into FoodType : *(Nothing,

Meat). (Nothing is the default lower bound.)
Now we can properly classify Carnivore as→[*(Nothing, Meat), *(Nothing

, Any)], or, using more convenient syntax: *(Meat) → *. We’ll keep using * as
shorthand for *(Nothing, Any), and, since we predominantly use upper bounds, *(
T) abbreviates *(Nothing, T).

2.3 Kinds and variance

Another facet of the interaction between subtyping and type constructors is seen in
Scala’s support for definition-site variance annotations [14]. Essentially, variance anno-
tations provide the information required to decide subtyping of types that result from
applying the same type constructor to different types.

As the classical example, consider the definition of the class of immutable lists,
class List[+T]. The + before List’s type parameter denotes that List[T] is a
subtype of List[U] if T is a subtype of U. We say that + introduces a covariant type
parameter, - denotes contravariance (the subtyping relation between the type arguments
is the inverse of the resulting relation between the constructed types), and the lack of
an annotation means these type arguments must be identical for the constructed types
to be comparable.

Variance annotations pose the same kind of challenge to our model of kinds as did
bounded type parameters: our kinds must encompass them as they represent information
that should not be glossed over when passing around type constructors. We won’t go
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into much detail here, but the same strategy as for including bounds into * can be
applied here, except that variance is a property of type constructors, so we track it in
→:

sealed kind Variance // an enumeration with three elements
abstract class Covariance : Variance
abstract class Contravariance : Variance
abstract class Invariance : Variance

kind →[From, To](variance: Variance)

Thus, List : →[*, *](Covariance), or abbreviated: List : *
+→ *.

The syntactic description is extended correspondingly:

Kind ::= ’*’ ’(’ Type ’,’ Type ’)’ | Kind VarianceArrow Kind

VarianceArrow ::= ’
+→’ | ’

−→’ | ’→’

2.4 Syntax

Although kinds play an important role on the conceptual level, they do not manifest
themselves syntactically in Scala. In this respect, they are much like method types,
which are only expressed indirectly by a method’s signature.

The only syntactic change required to support type constructor polymorphism, is
that abstract type members and type parameters may now declare type parameters. Be-
fore, the signature of an abstract type (the collective term for type parameters and ab-
stract type members) was just an identifier followed by bounds. Now, the identifier may
additionally be followed by a list of formal type parameters.

For example, the type parameter Container[x] is declared to take one type pa-
rameter. Thus, Container is of kind * → *, and Container[Int] is of kind *, as
discussed earlier. When x is not used, it may be replaced by a _ wild-card: Container
[_]. Note that x is in scope in the immediately enclosing list of parameters as well as
in Container’s bounds. A more complicated definition, such as Container[x <:

Bound[x]] <: Iterable[x, Bound, Container] illustrates this. The next sec-
tion extends our notion of kinds to deal with this final complication.

2.5 F-bounds

There’s one more feature of bounded types that complicates our definition of kinds [6].
We must extend our model to deal with the possibility that a type’s bounds mention the
type itself, such as in class OrderedSet[T <: Ordered[T]]. Our current notation
provides no way to fill in the ?? in OrderedSet : *(Ordered[??]) → *. Here,
the ??’s refer to T, the type argument expected by OrderedSet.

To understand this better, let’s go down a level and see how this works for value-
level functions. As far as dependencies are concerned, the kind of OrderedSet is very
similar to the function type that corresponds to the method def id(x: Any): x.

type. A valid function type would look like Any ⇒ ??.type, except that the ??

cannot be filled in, as id’s argument cannot be referenced in the type. Since Scala
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models functions simply as objects with apply methods, we can however express this
type as:

class IdFunction {
def apply(x: Any): x.type

}

Comparing this to the general definition of a function of one argument, makes clear
that the type parameter To must be able to refer to x:

// From ⇒ To is syntactic sugar for Function1[From, To]
class Function1[From, To] { // From, To are types
def apply(x: From): To // x is a value

}

Thus, if we take this one level higher, and rename → to TypeFunction1 to em-
phasise the similarities, we get (in pseudo-Scala):

kind TypeFunction1[From, To] { // From, To are kinds
type apply[tp: From]: To // tp is a type

}

Or, concretely for OrderedSet:

kind OrderedSetFunction {
type apply[tp : *(Nothing, Ordered[tp])]: *

}

So, in this case, the From kind parameter has to be able to reference the type it
classifies (tp).

We will use the notation x@K → K’ to succinctly write down these dependent func-
tion kinds. The x may be used to reference the type classified by K. A dependent func-
tion type is written similarly: x@T ⇒ T’. This allows us to classify OrderedSet as
T@*(Ordered[T]) → *, or even better, as T@*(Ordered[T]) → *(OrderedSet

[T]).
Finally, the full syntax for kinds can be described as:

Kind ::= ’*’ ’(’ Type ’,’ Type ’)’ | KindArgs VarianceArrow Kind
KindArgs ::= Kind | ’[’ [Id ’@’] Kind (’,’ [Id ’@’] Kind)* ’]’

VarianceArrow ::= ’
+→’ | ’

−→’ | ’→’

2.6 Why kinds track bounds

Unfortunately, the previous definition of Iterable precludes reusing it for collections
that require their elements to be bounded, such as OrderedSet:

trait OrderedSet[T <: Ordered[T]]
extends Iterable[T, OrderedSet] // Incorrect!

To see why this is problematic, consider the second type argument that OrderedSet
passes to Iterable. This type, OrderedSet, is classified by the kind T@*(Ordered[
T]) → *. In words, it is a type function that expects a type that supports ordering and
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returns some proper type. However, Iterable’s second type parameter — Container

— is expected to be of kind * → *, i.e., it should be a type function that accepts any
type. Clearly, OrderedSet does not respect this contract: it only deals with types T that
are a subtype of T <: Ordered[T].

On the value level, this would correspond to supplying a function of type, say,
String ⇒ Any when a function of type Any ⇒ Any was expected: the latter may
be applied to any argument, whereas the former only accepts String’s. This is why
String ⇒ Any is not a subtype of Any ⇒ Any. Correspondingly, we say that T@*(
Ordered[T]) → * is not a subkind of * → *.

Luckily, these bounds can be accommodated from the start. This version of Iterable
abstracts over the upper bound of its elements:

trait Iterable[El <: Bound[El], Bound[_], Container[T <: Bound[T]]] {
def map[NewEl <: Bound[NewEl]](f: El ⇒ NewEl): Container[NewEl]
def flatMap[NewEl <: Bound[NewEl], NewContainer[T <: Bound[T]]](
f: El ⇒ Iterable[NewEl, Bound, NewContainer]): Container[NewEl]

def filter(p: El ⇒ Boolean): Container[El]
}

trait OrderedSet[T <: Ordered[T]]
extends Iterable[T, Ordered, OrderedSet]

Note that this version strictly generalises the previous one, as we may instantiate
Bound to the trivial upper-bound, Any. Note that — for convenience — Any is “kind-
overloaded”: it is the top type for all well-kinded types. (Likewise, Nothing is a sub-
type of every well-kinded type.)

2.7 Subkinding

In this section we make the notion of subkinding more precise. The similarities with
subtyping are striking.

Subkinding for the kinds that classify proper types, simply corresponds to subtyping
the corresponding bounds. Type bounds with lower bound S and upper bound T are
subsumed by type bounds with a “lower” lower bound and a “greater” upper bound:

Γ ` S ′ <:S
Γ ` T <:T ′

Γ ` ∗ (S , T ) <: ∗ (S ′ , T ′ )
K_SUB_STAR

For our dependent function kinds, [ x1@K1, .., xn@Kn ] → K, matters be-
come slightly more complicated. Such a function may be passed whenever a function
that accepted “fewer” arguments and returned “worse” results was expected. More pre-
cisely, [ x1@K1, .., xn@Kn ] → K is a sub-kind of [ x1@K’1, .., xn@K’n ]

→ K’ if their argument kinds vary contravariantly (K’i <: Ki), where both Ki and
K’i may contain the free variables xi that denote the type they classify, and if, assum-
ing the “best” kind K’i for that type argument xi, the result kinds behave covariantly.
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Γ ` K ′
i <:Ki

Γ , Xi : K ′
i ` K <:K ′

Γ ` [X1 @K1 , ..,Xn @Kn ] → K <: [X1 @K ′
1 , ..,Xn @K ′

n ] → K ′ K_SUB_ARR

Note that — modulo the syntax — this rule is identical to the rule for subtyping
dependent function types [2].

2.8 Kind assignment

The rules that define the well-formedness of types in a single-kinded language, corre-
spond to the rules that assign a kind * to a type. Parametric polymorphism essentially
adds two more forms of types that may be well-kinded: type abstractions and type ap-
plications.

A type that abstracts over types T1 to Tn to yield a type T, which may contain ref-
erences to the Ti, receives the kind T1 @ K1 → ... → Tn @ Kn → K if T has the
kind K under the assumption that the Ti have kind Ki. Applying such a type abstraction
to n type arguments Si with kind Ki again results in a type with kind K (with a suitable
simultaneous substitution of the type parameters).

Finally, saying that a type has “a” kind is slightly misleading, as well-kinded types
have many kinds. This is due to our — somewhat non-standard — approach of tracking
bounds in the *-kind, so that all of the following hold:

Int : *(Nothing, Any)
Int : *(Nothing, Int)
Int : *(Int, Int)

At this point, it is unclear what the impact of this feature is on the meta-theory of
the underlying calculus. Intuitively, we consider it an elegant way of keeping the levels
of types and kinds as similar as possible. “is-of-type”-constraints on values correspond
nicely to “is-subtype-of” constraints on types, therefore we model both as classification
by a meta-entity.

Furthermore, the “singleton” kind *(Int, Int) seems an interesting way to ex-
press “exact types” — types that are not subject to subsumption. We have yet to explore
their applications in detail, but the interaction with virtual classes seems promising.

Until now, we have only used the functional style of abstraction and application, that
is, using type parameters. Scala’s abstract type members closely correspond to type pa-
rameters, and abstract type member refinement (a restricted form of mixin composition)
is the object-oriented counterpart of type application. Abstract type member refinement
allows to override abstract type members with concrete ones. The rules for application
and abstraction carry over straightforwardly to this approach. In fact, via this corre-
spondence, Scala already provided limited support for type constructor polymorphism
before our extension.
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2.9 Encoding type constructors using abstract type members

With its second release, Scala added support for abstract type member refinement,
which allowed for an encoding of higher-kinded types using abstract type members.
Type application could be accomplished through abstract type member refinement.

While this encoding theoretically fully supports type constructor polymorphism, it
requires a global rewrite of all parameterised types involved. Type parameters must
be replaced by abstract type members, and type application is achieved by overriding
abstract type members with concrete ones.

Besides the non-local character of the encoding, it does not detect erroneous type
applications as early as possible. More precisely, a well-typed program may still contain
ill-formed (encodings of) type applications, which result in empty (uninhabited) types.
Consider the encoding of our running example:

trait TypeConstructor1 { type A }

trait Iterable extends TypeConstructor1 {
type Container <: TypeConstructor1

def map[B](f: A ⇒ B): Container{type A = B}
def flatMap[B](f: A ⇒ Iterable{type A = B}): Container{type A= B}
def filter(p: A ⇒ Boolean): Container{type A = Iterable.this.A}

}

trait List extends Iterable { type Container = List }

Now, what happens when we encode the erroneous version of OrderedSet? The
compiler rejects the following program, as we discussed in section 2.6:

trait OrderedSet[T <: Ordered[T]]
extends Iterable[T, OrderedSet] // Incorrect, compiler error.

However, the encoded version below is accepted without a warning or error.

trait OrderedSet extends Iterable {
type A <: Ordered[A]
type Container = OrderedSet // Incorrect, but no error reported!

}

Note that this indulgence does not imply “type unsoundness”, as these erroneous
types cannot be instantiated. Nonetheless, we regard it as a shortcoming of the compiler
that these degenerate types are allowed to slip by unnoticed. Even though they are
prevented from being instantiated, they could be unmasked earlier.

A similar situation arises with abstract classes. Translating the leniency with type
members to this context would mean that any class would be allowed to be abstract
implicitly, so that, until an attempt is made to instantiate this class, the oversight might
go unnoticed. Based on this precedent, erroneous type applications should be detected
as early as possible too.

In fact, we consider it a “kind unsoundness” that well-kinded types may contain
type applications that “go wrong”. The problem lies in the fact that the type function
OrderedSet is allowed to strengthen its type argument A (encoded as the abstract type
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member A), while still being considered a subtype of TypeConstructor1 (i.e., it is
considered of kind * → *). Section 2.6 discussed in more detail why T@*(Ordered[

T]) → * (the kind of OrderedSet) should be distinguished from * → *.
This discrepancy has its roots in the νObj calculus [34], which allows abstract type

members to be refined covariantly, thus OrderedSet <: TypeConstructor1. This
is at odds with our definition of subkinding and the assumption that types can only be
subtypes when their kinds are subkinds: here, OrderedSet <: TypeConstructor1

although it is not the case that T@*(Ordered[T]) → * <: * → *.
Related work seems to deviate from νObj’s design, although making a precise

comparison is complicated by the differences in features supported by the various ap-
proaches. In the notation of Cardelli [8], the main two types are classified as follows:

OrderedSet : ALL[A::POWER[Ordered[A]]] TYPE
TypeConstructor1 : ALL[X::TYPE] TYPE

Cardelli does not define subkinding for these kinds, but does define subtyping for
polymorphic functions (“All[X::K]B <: All[X::K‘]B’ if K‘<::K (where <:: denotes a
subkind relation[, . . . ]), and B<:B’ under the assumption that X::K”’). It seems reason-
able to lift this rule (which deals with functions that take a type to yield a value) to the
level of kinds, which results in our rule that deals with functions that take a type to yield
a type.

Similarly, in the notation of Compagnoni and Goguen [11]:

OrderedSet : Pi A <: Ordered A : *. *
TypeConstructor1 : Pi X <: T* : *. *

Although the authors require these bounds to be equal for the kinds to be compa-
rable (their treatment does not include subkinding), we generalise based on the same
observation as the previous paragraph, but using a slight different source of inspiration.
Namely, Full System F<:’s [9] rule that deals with bounded quantification at the value
level (Sub Forall) also requires contravariance for the bounds of the quantifier.

2.10 Dependencies

Even though we distinguish three levels (values, types, and kinds), they are not strictly
separated. Scala has always allowed types to depend on certain values (called “paths”),
and now kinds may also depend on types. The former allows for sound late-bound
(“virtual” or “abstract”) type members, and the latter is a natural consequence of the
interaction between subtyping and kinds.

It is important to note that these dependencies are quite restricted. Types may only
depend on immutable values, called paths, for which a simple — statically decidable —
notion of equality is defined. This design seems like a good trade-off between a fully
dependently typed languages (such as Cayenne [3], Epigram [28], . . . ) and a language
that maintains a strict phase separation (such as Haskell [20] and Ωmega). Interestingly,
singleton types are considered an important pattern in Ωmega [38].

As mentioned earlier, singleton kinds are an artefact of our conceptual model that
we have not explored yet. They could be used to support exact types, i.e., types that are
not subject to subsumption. These types provide more information about their values.
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As such, they may make virtual classes more practical in that they provide more oppor-
tunities for detecting that virtual types are comparable. Exact types are not new: in F#,
for example, a type (ascription) has to be made “eligible” for subsumption explicitly
[39].

3 Examples

3.1 Implementing Iterable

In this section we demonstrate how type constructor polymorphism can be leveraged
to define a more precise — and at the same time more compact — Iterable. To do
this, we introduce the Builder and Buildable abstractions, which may be considered
the “duals” of Iterator and Iterable. An Iterable provides a way to abstractly
consume the elements of a collection, whereas a Builder is used to abstractly produce
a collection from its individual elements.

To continue the Iterator/Builder analogy on the level of methods: a client
“pulls” elements from a collection using next, and += “pushes” elements to the col-
lection under construction. Finally, hasNext signals that the collection is exhausted,
while the constructed collection is retrieved using finalise. using and foreach are
obvious convenience methods.

trait Builder[Container[_], El] {
def +=(el: El): Unit
def finalise(): Container[El]

def using(op: this.type ⇒ Unit): Container[El] = {
op(this); finalise() }

}

trait Iterator[+El] {
def next(): El
def hasNext: Boolean

def foreach(op: El ⇒ Unit): Unit = while(hasNext) op(next())
}

Most importantly, note that Builder makes precise which kind of container it pro-
duces using the Container type constructor parameter. For now, the + variance anno-
tation on Iterator’s type parameter may safely be ignored.

Before we get to the implementation of Iterable, we show its collection-producing
counterpart, Buildable:

trait Buildable[Container[_]] {
def builder[T]: Builder[Container, T]

def fromIterator[El, NewEl](elems: Iterator[El])
(op: Builder[Container, NewEl] ⇒ El ⇒ Unit): Container[NewEl]
= builder.using{ b ⇒ elems.foreach(op(b)) }

}
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The method fromIterator constructs a Container[NewEl] by applying the
user-supplied operation op to the right Builder and to each of the elements that
should be in the resulting container. With these fundamental operations, we can reduce
Iterable’s core methods to their very essence.

To avoid distractions, we first show a slightly simplified implementation, omitting
how the b of type Buildable[Container] is supplied and delaying another gen-
eralisation. For every element in the Iterable, filter passes it to the builder if
the user-supplied predicate p yields true for this element. Similarly, map transforms
each element using f and passes the result to the builder. Finally, flatMap invokes the
builder for every individual element returned by f.

def filter(p: El ⇒ Boolean) = b.fromIterator(elements){
builder ⇒ el ⇒ if(p(el)) builder += el

}
def map[NewEl](f: El ⇒ NewEl) = b.fromIterator(elements){
builder ⇒ el ⇒ builder += f(el)

}
def flatMap[NewEl](f: El ⇒ Iterable[NewEl]) =
b.fromIterator(elements){ builder ⇒ el ⇒
f(el).elements.foreach{ el ⇒ builder += el }

}

The complete implementation, shown in Fig. 1.1, differs only slightly. The filter
/map/flatMap trio is first implemented more generally, allowing the caller to specify
explicitly which type of collection should be used to contain the resulting elements.
The traditional methods can be implemented trivially on top of the more general ones.
For convenience, Container is an abstract type member, which may be thought of as
a type parameter that can be referenced by name from outside Iterable. Therefore, it
need not be made explicit every time the type Iterable[T] is written.

The second simplification was the omission of the implicit argument list from the
methods, so that we could not explain how the methods knew which instance of Buildable
[Container] to use. Each of them receives this instance as the implicit argument b.
If an implicit argument is not specified by the programmer, the compiler automatically
supplies the matching implicit value that is in scope (if there is exactly one such value).
Thus, it is easy to chose different building strategies without changing the rest of the
behaviour of the container.

The listing in Fig. 1.2 and 1.3 show the implicit objects that implement the Buildable
interface for List and Option. This style of programming was inspired by Haskell’s

type classes [40,32,41]. Buildable models a type class and the implicit objects declare
instances of Buildable for List and Option.

The goal of this section was to show how type constructor polymorphism enables
more precise signatures and reduced code duplication. We did not strive for perfor-
mance. Our implementation certainly is less efficient than the one in the Scala libraries,
due to the heavy use of closures to factor out the commonalities between the filter

/map/flatMap methods. Preliminary micro-benchmarks indicate an overhead between
20% and 30%. We do not go in more detail as these results do not pertain to the use of
higher-kinded types.
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Listing 1.1. A complete implementation of Iterable
trait Iterable[+El] {
type Container[+X] <: Iterable[X]

def elements: Iterator[El]

def filterTo[NewContainer[+X]](p: El ⇒ Boolean)
(implicit b: Buildable[NewContainer]): NewContainer[El]

= b.fromIterator(elements){ builder ⇒ el ⇒
if(p(el)) builder += el

}
def mapTo[NewEl, NewContainer[_]](f: El ⇒ NewEl)

(implicit b: Buildable[NewContainer]): NewContainer[NewEl]
= b.fromIterator(elements){ builder ⇒ el ⇒

builder += f(el)
}

def flatMapTo[NewEl, NewContainer[X]](f: El ⇒ Iterable[NewEl])
(implicit b: Buildable[NewContainer]): NewContainer[NewEl]

= b.fromIterator(elements){ builder ⇒ el ⇒
f(el).elements.foreach{ el ⇒ builder += el }

}

def map[NewEl](f: El ⇒ NewEl)
(implicit b: Buildable[Container]): Container[NewEl]

= mapTo[NewEl, Container](f)
def filter(p: El ⇒ Boolean)

(implicit b: Buildable[Container]): Container[El]
= filterTo[Container](p)

def flatMap[NewEl](f: El ⇒ Iterable[NewEl])
(implicit b: Buildable[Container]): Container[NewEl]

= flatMapTo[NewEl, Container](f)
}

Listing 1.2. Supplying the strategy to build a List
implicit object ListIsBuildable extends Buildable[List] {
def builder[El]: Builder[List, El] = new ListBuffer[El] with
Builder[List, El] {
def finalise(): List[El] = toList

}
}
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Listing 1.3. Supplying the strategy to build an Option
implicit object OptionIsBuildable extends Buildable[Option] {
def builder[El]: Builder[Option, El] = new Builder[Option, El] {
var res: Option[El] = None()

def +=(el: El) = if(res.isEmpty) res = Some(el)
else throw new UnsupportedOperationException("An Option holds

max 1 element")

def finalise(): Option[El] = res
}

}

Finally, this improved Iterable interface may be used to type-check for-compre-
hensions without first expanding them to the corresponding method calls. Due to the
former lack of a universal Iterable interface, for-comprehensions are purely syntactic
sugar. Because the program is type checked after expanding the syntactic sugar, error-
reporting is complicated. We leave it to future work to remedy this.

3.2 Type-level Church encodings

Scala’s kinds correspond to the types of the simply-typed lambda calculus [10]. This
means that we can express addition on natural numbers on the level of types using a
Church Encoding. A natural number is represented by a type function that takes two
arguments: the successor function and the zero element. 0 is then encoded as the type
function that simply returns its second argument:

type _0[s[_], z]= z

Subsequent naturals are expressed using repeated application of the supplied suc-
cessor function:

type _1[s[_], z]= s[z]
type _2[s[_], z]= s[s[z]]

Given these definitions, addition is a type function that takes two natural numbers
as well as the successor function and the zero element. These are then composed so that
one of the terms becomes the zero element of the other term:

type plus[m[s[_], z], n[s[_], z], s[_], z] = n[s, m[s, z]]

type _3[s[_], z] = plus[_1, _2, s, z]
// = _2[s, _1[s,z]] = s[s[_1[s,z]]]
// = s[s[s[z]]]

Scala allows type constructors to be written infix, so that, if we fix the types that
represent the neutral element and the successor function, we can simply write _2 + _2:
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abstract class Zero
abstract class Succ[a]

type +[m[s[_], z], n[s[_], z]] = plus[m, n, Succ, Zero]
type _4 = _2 + _2

Since it is meaningless to instantiate Zero and Succ[a], they are declared abstract.
To check that the type _2 + _2 actually equals the type that represents 4, we define a
helper class Equals. If Equals[A, B] is well-typed, the types A and B are equal.

case class Equals[A >: B <: B, B]

Thus, the equation 2 + 2 = 4 is encoded as Equals[ _2 + _2, Succ[Succ[

Succ[Succ[Zero]]]] ]

4 Related Work

Since the seminal work of Girard and Reynolds in the early 1970’s, fragments of the
higher-order polymorphic lambda calculus or System Fω [15,37,5] have served as the
basis for many programming languages. The most notable example is Haskell [20],
which has supported higher-kinded types for over 15 years [19].

However, Haskell eschews subtyping. Most of the use-cases for subtyping are sub-
sumed by type classes, a novel mechanism to handle overloading systematically [40].
Still, it does not seem possible to abstract over class contexts [23,26]. In our setting, this
corresponds to abstracting over a type that is used as a bound, as discussed in section
2.6.

The interaction between higher-kinded types and subtyping is a well-studied sub-
ject [8,36,11]. As far as we know, none of these approaches combine bounded type
constructors, subkinding, subtyping and variance, although all of these features are in-
cluded in at least one of them. A similarity of interest is Cardelli’s notion of power types
[7], which corresponds to our bounds-tracking kind *(L, U).

Ωmega [38] is a Haskell-based language that (most notably) supports user-defined
kinds and type-level computation. To a certain extent, it seems possible to encode the
first mechanism using sealed hierarchies of abstract classes in Scala. Scala’s singleton
types are a good match for the Singleton pattern, which — according to Sheard — is an
important concept in Omega. It may be possible to encode a limited form of type-level
computation using Scala’s implicits. However, dedicated support is clearly needed for
this feature to be powerful enough. Part of our ongoing work is geared towards bringing
the essence of Omega’s power to Scala. The main goal of this effort is to realise an
extensible type system that can be used for program verification.

Finally, it seems type constructor polymorphism has only recently started to trickle
down to object-oriented languages. Cremet and Altherr’s work on extending Feather-
weight Generic Java with higher-kinded types [1] partly inspired the design of our syn-
tax. Other than that, we are not aware of other contemporary object-oriented languages
with similar features. C++’s template mechanism is closely related. Templates are very
flexible, but this comes at a (steep) price: they can only be type-checked after they have
been expanded. Recent work on “concepts” alleviates this [16].
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Listing 1.4. Abstracting over type constructors
class Collection[T]
class List[T] extends Collection[T]

abstract class Builder[SomeCollection[X] <: Collection[X]] {
def build[T]: SomeCollection[T]

}

5 Conclusion

Although object-oriented languages have adopted “parametric polymorphism” from
functional programming (FP) languages as “genericity”, they have not gone all the way
yet by also supporting abstracting over generic types. These types are called “higher-
kinded types” in FP. We call them “type constructors” and we use “type constructor
polymorphism” to refer to genericity that deals with type constructors and regular types
alike. In other words, a type constructor is like a function on the level of types that
takes type arguments to yield a type. Type constructor polymorphism is the type-level
equivalent of allowing value-level functions to be used as arguments.

The code fragment in Fig. 1.4 illustrates the utility of this generalisation. Consider
the generic class Collection, which abstracts over the type of its elements by means
of a type parameter T. Using type constructor polymorphism, we can provide different
strategies to build collections of a given type constructor. Thus, Builder takes a type
constructor parameter SomeCollection, which itself takes one type parameter. For
any type T, SomeCollection[T] must be a subtype of Collection[T].

A client can use such a builder to build a specific type of collection. For example,
a Builder[List] denotes a builder for lists. Invoking build[Int] on an instance of
Builder[List] yields a List[Int]. Without type constructor polymorphism, this
can only be approximated using ad-hoc specialisation and duplication of code and
types, which is exactly what genericity tries to avoid.

We implemented type constructor polymorphism in Scala 2.5. The integration with
subtyping makes it easy to define abstractions that are quite tricky to express even in
Haskell. The prime example is our version of Iterable (which is much like a monad)
that abstracts over the bound on its elements [23,26]. The current implementation has
two known limitations: type constructor parameters are not inferred (we suspect this
may be undecidable in our setting) and Scala’s view bounds have not yet been lifted to
support higher-kinded type parameters. The latter is only a minor inconvenience, as it
can easily be encoded.

We showed how type constructor polymorphism reduces the duplication of code
and types in the subclasses of Iterable, while at the same time providing a richer and
more precise interface. A more in-depth exploration of this design space as well as the
search for more applications is a topic of ongoing research. A more refined Iterable

interface is just one of the many applications of type constructor polymorphism.
Two other examples of promising technologies that rely on type constructor poly-

morphism, are data-type generic programming (DGP) [24,17,18] and parser combina-
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tors [27,22,21]. In previous work, we ported techniques for DGP from Haskell to Scala
[30,29]. Recently, we developed a library for parser combinators in Scala [31], and
we are currently investigating how type constructor polymorphism can be leveraged to
provide more powerful abstractions in this context.

Finally, we are working on a more formal treatment of our extension. For the mo-
ment, the most promising strategy seems to be to interpret higher-order polymorphism
as the infinite family that results from instantiating the type constructor parameters with
all the conforming concrete type constructors. Based on earlier meta-theoretic results
for Scala without type constructor polymorphism [13], we aim to prove our extension
sound by proving this expansion turns a well-typed program in the calculus with type
constructor polymorphism into a well-typed program using only traditional parametric
polymorphism. This technique of representing polymorphic types as the corresponding
families of their instantiations has previously been employed by Kennedy and Syme
[25], and Odersky and Läufer [35].
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