
Cantera
Dave Goodwin

Division of Engineering and Applied Science
California Institute of Technology

Cantera is a suite of software tools for reacting flow problems

n Thermodynamic and transport
properties

n Homogeneous and heterogeneous
chemistry

n Chemical equilibrium

n Reactor networks

n Steady 1D flames

n Reaction path diagrams

n Non-ideal equations of state

n Electrochemistry

n Open source

n Object-Oriented

n Multi-Platform: Windows, Mac,
linux, unix, …

n Use from C++, Fortran 77,
Fortran 90, Python, or MATLAB

n Backward compatible with
CHEMKIN-II

Timeline

Cantera is designed to be easy to use, but without sacrificing
performance

n Simple, intuitive structure in terms
of easy-to-understand objects:

– phases, mixtures, interfaces,
reactors, BVP solvers, 1D reacting
flows, …

n Undergraduate and graduate
student can learn Cantera and do
real computations in a few hours.
(Faculty take a little longer.)

– Work in MATLAB or Python
– no need to learn Fortran of C++

n Example scripts

n Python and MATLAB interfaces are
only front ends; calculations are done in
optimized, compiled code

n Cantera has most of the functionality of
familiar CHEMKIN-II, plus additional
capability (non-ideal phases,
multiphase equilibrium,
electrochemistry…)

Cantera is multilingual

n Cantera can be used from several
popular programming / problem-
solving environments

n Interactive / scripting environments
(MATLAB, Python) for rapid problem
solution and software prototyping

n Scripts can be easily translated into
Fortran 90, C, or C++.

n Python interface simplifies integration
with other CMDF tools

MATLAB Toolbox

Python Package

C++ Class Library

C function library

Fortran 90 module

Simple, high-level, object-oriented interface

>> gas = GRI30;

>> set(gas, ‘T’, 300.0, ‘P’, oneatm, ‘X’, ‘CH4:1.0, O2::2, N2:3.76’););

>> equilibrate(gas,’HP’);

>> temperature(gas)

ans =

2.220222916787240e+03

Multiphase equilibrium is also easily formulated and solved

from Cantera import *

phases = importPhases('KOH.cti',
['K_solid',
'K_liquid', 'KOH_a', 'KOH_b',
'KOH_liquid', 'K2O2_solid',
'K2O_solid', 'KO2_solid',
'ice', 'liquid_water','KOH_plasma'])

mix = Mixture(phases)

f = open('equil_koh.csv','w')
writeCSV(f,['T']+mix.speciesNames())

for n in range(500):
t = 350.0 + 10.0*n
mix.set(T= t, P = OneAtm, Moles="K:1.03, H2:2.12,

O2:0.9")
mix.equilibrate("TP",maxsteps=1000,loglevel=0)
writeCSV(f,[t]+ list(mix.speciesMoles()))

f.close()

from Cantera import *

phases = importPhases('KOH.cti',
['K_solid',
'K_liquid', 'KOH_a', 'KOH_b',
'KOH_liquid', 'K2O2_solid',
'K2O_solid', 'KO2_solid',
'ice', 'liquid_water','KOH_plasma'])

mix = Mixture(phases)

f = open('equil_koh.csv','w')
writeCSV(f,['T']+mix.speciesNames())

for n in range(500):
t = 350.0 + 10.0*n
mix.set(T= t, P = OneAtm, Moles="K:1.03, H2:2.12,

O2:0.9")
mix.equilibrate("TP",maxsteps=1000,loglevel=0)
writeCSV(f,[t]+ list(mix.speciesMoles()))

f.close()

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1000 2000 3000 4000 5000 6000

 K(cr)

 K(L)

 KOH(a)

 KOH(b)

 KOH(L)
 K2O2(s)

 K2O(s)

 KO2(s)

 H2O(s)

 H2O(L)

 Electron

 H
 H+

 H-

 HO2

 H2

 H2+

 H2-

 H2O

 H2O+
 H2O2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1000 2000 3000 4000 5000 6000

 K(cr)

 K(L)

 KOH(a)

 KOH(b)

 KOH(L)
 K2O2(s)

 K2O(s)

 KO2(s)

 H2O(s)

 H2O(L)

 Electron

 H
 H+

 H-

 HO2

 H2

 H2+

 H2-

 H2O

 H2O+
 H2O2

Cantera has a similar ‘look and feel’ in all environments

gas = importPhase('gri30.cti');
setState_TPX(gas,300.0,OneAtm,'CH4:1,O2:2,N2:7.52');
equilibrate(gas,'HP');
disp(gas)

program equil
use cantera
type(gas_t) gas
gas = IdealGasMix('gri30.inp')
call setState_TPX(gas, 300.0,OneAtm,'CH4:1,O2:2,N2:7.52')
call equilibrate(gas,'HP')
call printSummary(gas)
end

from Cantera import *
gas = importPhase('gri30.cti')
gas.setState_TPX(300.0,OneAtm,'CH4:1,O2:2,N2:7.52')
gas.equilibrate('HP')
print gas

MATLAB

Python

Fortran 90

Reaction Path Analysis

Reaction path diagrams can be generated
at any point in a simulation

Stirred Reactor Models

n Generic transient stirred
reactor model can be used to
build many different batch and
continuous reactors

n Mass flow rates, heat loss,
volume change may all be
varied as functions of time

n Reactors can be linked to
create complex process
models with sensors and
closed-loop control

Reactors may be connected in arbitrary networks

Reservoirs provide
specified inputs

Each reactor may use a
different mixture model
or reaction mechanism

Flow control devices with
closed-loop (PID)
controllers

Can assemble many
different processes from
a small set of
components

All inputs may be time-
dependent

Reservoirs provide
specified inputs

Each reactor may use a
different mixture model
or reaction mechanism

Flow control devices with
closed-loop (PID)
controllers

Can assemble many
different processes from
a small set of
components

All inputs may be time-
dependent

z0 L

One-Dimensional Flames

Conterflow premixed or non-premixed flames

Catalytic Combustion

n Mechanism of
Deutschmann (1995)

n 9.5% methane in air
n Platinum surface
n Tin = 300 K
n Tsurface = 900 K
n 10 cm separation

All interfaces use a common C++ kernel

MATLAB Toolbox

Python Package

C++ Class Library

C function library

Fortran 90 module

Interface
Library

C-callable
functions

Cantera C++
Kernel

The Kernel

n C++ class library

n Designed for efficiency
– Property caching
– Virtual methods used sparingly
– Templates used to allow inlining at compile time
– Standard Template Library container classes used
– CPU-intensive code hand-optimized

n Uses standard open-source numerical libraries
– BLAS, LAPACK, CVODE

�Commo class hierarchy for all phase types (gases, solids,
surface phases, …)

State

Constituents

Phase ThermoPhase

Begin with a simple class that only
knows thermodynamic state data
(T, ρ, mass fractions) + molecular
weights

Attributes of constituent
elements and species (name,
mass, elemental composition,
charge)

Adds methods to
nsave/restore state
nspecify composition using strings:
“CH4:1.0, O2:2.1, N2:3.76’

Adds “placeholder” virtual functions for
thermo properties. Defines the iinterface
for concrete classes representing specific
phase types.

Derives from both State and Constituents

Still no thermo properties (other than temperature
and density). These require knowledge of EOS.

What can it do?
nget/set temperature and density
nget/set mass and mole fractions
ncompute useful functions of composition

Chemkin-II compatibility

n Converter for Chemkin mechanism files into Cantera CTI
format

n Thermodynamic, kinetic, and transport models
implemented in Chemkin-II are also implemented in
Cantera (and others not in Chemkin-II)

n Very straightforward to write a Fortran-callable library with
same interface as the Chemkin-II libraries, allowing easy
porting of existing applications

Example: A Cantera look-alike for the Chemkin-II library
subroutine CKWYP

subroutine ctwyp(p,t,y,ickwrk,rckwrk,wdot)
implicit double precision (a-h,o-z)
double precision y(*), rckwrk(*), wdot(*)
integer ickwrk(*)

c set the state
psi = 0.1*p
call setState_TPY(t, psi, y)

c get the net production rates
call getNetProductionRates(wdot)

c convert SI -> cgs
nsp = nSpecies()
do k = 1, nsp

wdot(k) = 1.0d3*wdot(k)
end do
return
end

convert cgs to SI units

compute the production rates

set the state using T, P, Y

convert results from SI to cgs
and return

Current Status

n Web-based user’s group with nearly 500 members

n Membership still growing rapidly

n 15 - 20 downloads from Sourceforge per day

n Used in combustion courses at Caltech, Berkeley, Stanford, …

n Likely that Cantera will be used in the next version of Fluent for
property evaluation, kinetic rates, and chemical equilibrium

n Interest at Sandia in porting some very large reacting flow codes to
Cantera

Where to from here?

n Current capabilities are adequate for many users

n New capabilities on the horizon
– Electrochemistry (fuel cells, corrosion)
– Equations of state for ionic liquids (Debye-Huckel)
– A sectional aerosol model with surface chemistry

n Current development model must change
– Changes / enhancements to the code must consider impact on all users
– Mechanism needed to propose, discuss, and implement changes

n Providing support for a growing user community is becoming an issue

A Diverse User Community

n Users
– Students, combustion researchers,

engineers
– May be familiar with engineering tools

like MATLAB
– Don’t know (or want to learn) C++
– Relatively small calculations

n User Requirements
– “hand holding” to install software on PC
– foolproof binary installers
– support for Windows OS
– interfaces for MATLAB and scripting

languages
– a simple, intuitive user interface

n Developers / power users
– require access to source code
– unix-like (linux/Mac) OS
– want to call from their own

codes
– large-scale simulation

n Developer Requirements
– efficient libraries
– call from C++, C, and/or

Fortran
– documented source code

Standards

n Cantera should be able to make use of other tools being developed
elsewhere

n For example (hypothetical !) a user could type in Python

fullmech = getBestModel(src = ‘Prime’, type=‘CH4/air flame’, …)
reduced_mech = fullmech.reduce(method = ‘RIOT’, max_species = 10, …)

n Not hard to do. Python has capabilities to send/receive data over the
web, including filling out web forms

n Would be better, however, if XML standards existed to mediate the
exchange of data

