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J. Rossbach, Deutsches Elektronen-Synchrotron DESY 

P. Schmüser, II. Institut für Experimentalphysik, Universität Hamburg, F.R. Germany  

Abstract 

The main subject of this introductory course is transverse optics in cyclic high energy 
accelerators. It is based on three one-hour lectures on "Basic transverse optics" given at the 

CERN Accelerator Schools (P. Schmüser, 1986 [5], 1988, 1990, and J. Rossbach, 1992). 
Although the emphasis is on periodic solutions and their stability, application of the formalism to 

non-periodic structures is also treated. We have not expanded the material beyond what can be 
covered in 3 lectures, but the proofs are done more carefully and some examples and details have 

been added which might be useful in practice.  

After a brief introduction to the concepts of both weak and strong focusing of relativistic particle 

beams, types of magnetic lenses are discussed, followed by a careful treatment of the multipole 

expansion of transverse magnetic fields. Linear transverse single-particle dynamics is treated 
both in terms of transfer matrices and betatron oscillations. Transfer matrices of the most 

common accelerator lattice modules are explicitly given, including a brief introduction to 
quadrupole doublet imaging. Dispersion is treated, but no linear coupling. The concept of beam 

emittance, including Liouville's Theorem, is discussed from different points of view. Also effects 
of linear field errors, stability criteria and chromaticity are dealt with. FODO cells are treated in 

various respects. Finally, strong and weak focusing are compared quantitatively.  

1  INTRODUCTION 

In any kind of accelerator there is exactly one curve - the design orbit - on which ideally all 
particles should move, see Fig. 1. If this design orbit is curved, which may be required for many 

reasons, bending forces are needed. 
 

 
 

Figure 1: To guide particles on a curved design orbit, bending elements are required 

 

In reality, most particles of the beam will deviate slightly from the design orbit. In order to keep 

these deviations small on the whole way (which might be as long as 10
11

 km in a storage ring), 
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focusing forces are required. Both bending and focusing forces can be accomplished with 
electromagnetic fields. The Lorentz force is  

F = e ( E + v × B) 

For velocities c� � , a moderate magnetic field of 1 Tesla corresponds to a huge electric field of 

3 ·108 V/m. Therefore only transverse magnetic fields are considered.  

Now consider the total energy E of a particle:  
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Relativistic mechanics describes its rate of change in the presence of an external force by 

  

 

Since v is perpendicular to v×B, the energy and the relativistic mass 2 2

0
= / 1- /m m c�  are not 

changed in static magnetic fields. So the equation of motion is  

v = 

e

m

v × B�            (1.1) 

 

The particles have to make a large number of revolutions in a circular accelerator or storage ring. 

Stability of motion is an important criterion and puts stringent requirements on the magnetic 
field in the vicinity of the equilibrium orbit. Depending on the magnitude of the focusing forces 

we can distinguish between weak and strong focusing.  

The first machines were built with weak focusing and a guide field which does not depend on the 

azimuthal angle. If B is independent of the azimuth angle � the equilibrium orbit is a circle of 

radius � = mυ/ eB which we choose to be in the plane z = 0. The motion is stable if for small 
deviations of the particles from this orbit restoring forces arise which lead to oscillations around 

the orbit. These are called betatron oscillations.  

Consider the motion in the horizontal plane z = 0 containing the equilibrium orbit (Fig. 2). 

Stability requires that the Lorentz force is smaller than the centrifugal force for r < � and larger 

than it for r > �  
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For small deviations from the equilibrium orbit we have  
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with B� = B z(�). In Equation (1.4) we have introduced the field index n 

  

0

z

r

B
n

B r
�

�

�

�� �
� � � ��� 	

           1.5) 

   

Inserting (1.3) and (1.4) into (1.2) we obtain the condition n < 1.  

 

Figure 2: Circular design orbit and coordinates used to describe particle trajectories 

It is worth noting that Eq. (1.2) is satisfied even with n � 0 , that is with a homogeneous field. 
This reflects the fact, that in a homogeneous field all plane orbits are circles, so that particles 

diverging from one point will meet again after 180
� of revolution (see Fig. 3).  

 

Figure 3: Geometrical focusing in a homogeneous magnetic field. All particles starting at P1 

with slightly different angles � move on circles with the same radii and meet again at P2. With 
respect to the design orbit, this looks like focusing, which can be seen more clearly from the 
right-hand part of the figure where the design orbit has been developed into a straight line. The 

maximum deviation from the design orbit (i.e. the amplitude of betatron oscillations) is easily 

estimated at ��·�. Thus for a typical beam divergence of � = 1 mrad it will be 1 mm at � = 1 m 

but as large as 1000 mm in a high energy ring with � = 1000 m. 

 

This is called geometrical focusing, and it is an essential contribution to the weak focusing in the 
horizontal plane. It is, however, not sufficient:  
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Consider a particle in a homogeneous field with initial conditions such that it moves on a circle 

in the horizontal plane z � 0. If it now gets an infinitely small kick into the vertical direction, it 

will spiral away to infinity and will be lost. To achieve stability in the vertical plane we need a 
restoring force  

F z = � C · z         ( C = const.) 

 

and therefore a horizontal field component  

B x = � C�· z 

 

Now from � ×B = 0:    �Bx/�z = �Bz/�x = �Bz/�r. So B z has to decrease with increasing r, see 

Fig. 4. �B z/� r < 0 is equivalent to a positive field index, n > 0.  

 

Figure 4: Shape of magnetic field around design orbit 

Stability in both horizontal and vertical motion is achieved if the field index fulfills the 

inequalities  

                                             0 < n < 1      (1.6) 

The restoring forces are linear in the deviations x and z from the equilibrium orbit, if x and z are 

small. We therefore obtain harmonic oscillations. The differential equations will not be derived 
here, because they are special cases of the equations in section 3.  
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with 
0 0

/ .  / 2
o

eB m� � �
�

� � �  is the revolution frequency (cyclotron frequency) of the 

particles. Since 0 < n < 1 we see that in a weakly-focusing machine the frequency of betatron 
oscillations is lower than the revolution frequency, i.e. there is less than one oscillation per 

revolution.  

0,
1   

x z
n f n

�
� � � � � �          (1.8) 

The principle of weak focusing has one serious drawback: Since the betatron oscillation 

wavelength is larger than the circumference of the machine one gets large deviations from the 
orbit if the circumference is large. The magnet apertures must be very big. The apertures can be 

drastically reduced if one applies strong focusing (�n� much larger than 1). This is impossible in a 
machine which has a guide and focusing field independent of the azimuthal angle, since in that 
case the condition 0 < n < 1 has to hold, as we have just shown. It is, however, possible if we 

split up the machine into a series of magnetic sectors in which in alternating order the magnetic 
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field increases strongly with increasing radius ( n << �1) or decreases strongly with increasing 
radius  

( n >> +1) (see Fig. 5).  

 

Figure 5: Alternating-gradient focusing 

An alternating series of focusing and defocusing lenses leads to an overall focusing because the 

focusing lenses are, on the average, traversed at larger distance from the axis than the defocusing 
ones. This is shown in Fig. 6. In section 3 we shall see that focusing is indeed obtained in both 

planes.  

 

Figure 6: An alternating series of focusing and defocusing lenses leads to overall focusing if the 
distances between the lenses are not too large. 

 

The Brookhaven AGS and the CERN PS were the first large alternating-gradient synchrotrons. 
In the PS the field index is n = 288 and there are 6.2 betatron oscillations per revolution. Note 

that Eq. (1.8) is not applicable to strong focusing.  

 

2  ACCELERATOR MAGNETS 

Many of the older alternating gradient synchrotrons like the CERN proton synchrotron PS or the 
DESY electron synchrotron have been built with "combined-function" magnets, i.e. magnets 

which combine a dipole field for deflection and a quadrupole field for focusing. The new large 
accelerators and storage rings are equipped with "separated-function" magnets: dipoles for 

deflection, quadrupoles for focusing. These allow higher particle energies because the iron yoke 
of a pure dipole magnet saturates at higher field levels than the yoke of a combined-function 

“synchrotron" magnet and moreover there is more flexibility in optimizing the optical properties 
of the machine.

1
 

                                                
1
 In circular electron accelerators, combined-function magnets have another big disadvantage as compared to 

separated-function magnets. The electrons suffer a permanent energy loss because of the emission of synchrotron 

radiation which is compensated by the energy gain in the accelerating cavities. In a separated-function electron 

machine both effects together lead to a damping of the horizontal and vertical betatron oscillations. In a pure 
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Traditionally, soft iron of high permeability is used to concentrate the field into the small region 
where it is needed. This also reduces electric power consumption and easily allows to guarantee 

high field quality. In those cases where the required field strength is either very small (B << 0.1 
T) or above the saturation level (B > 2 T), "air coil" magnets are used. Some remarks relevant for 

the construction of these magnets are found at the very end of this section. 

a) Dipole magnet  

A magnet with flat pole shoes generates a homogeneous field B� (Fig. 7).  

 

 

Figure 7: Schematic view of a dipole magnet, showing the path of integration to compute the 

field in the gap. 

 

The field is computed from the formula  

�� H ·ds = hH� + l HE = nI 
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For � r >> 1 we obtain  

0

0

nI
B

h

�
�                                 h = gap    height                                                (2.1) 

 

Formula (2.1) is only approximate. In particular it neglects fringe fields and iron saturation.  

The radius of curvature for a particle of charge e and momentum p is given by  

� �

� �
01 0

1
0.2998

GeV/c

B TeB
m

p p�

�� � � �� �            (2.2) 

 

                                                                                                                                                       
combined-function machine, however, only the vertical betatron oscillation is damped whereas the horizontal 

oscillation will blow up (see the lectures by R. Walker, these proceedings). 
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b) Solenoid lens  

A relatively simple magnetic lens arises from the magnetic field of a rotationally symmetric coil, 

see Fig. 8.  

 

Figure 8: Particle trajectories and field lines in a "thin" lens formed by the solenoidal field of a 

coil (according to Bergmann/Schäfer: Optik) 

Due to the Maxwell equation divB  = 0, the magnetic field, which is purely longitudinal in the 

inner part of the coil, must contain radial components in the outer part. While particles moving 

exactly on the axis do not experience any force, the others suffer an azimuthal acceleration due 
to the radial component while entering and leaving the lens. Because of the azimuthal motion 

there is a radial force in the longitudinal field. As required for imaging, this force is, indeed, 
proportional to the radial distance r if r does not change too much during the passage of the lens. 

To increase the field close to the axis and to concentrate it into a small area, the coil is usually 

surrounded by an iron yoke. The focal length 
sol

�  is given by  

2

1

2

s

sol

eB
ds

p

� �
� � �� � �
�           (2.3) 

In contrast to optical lenses, the image is rotated with respect to the object. As seen from Eq. 

(2.3), 
sol

� increases with the square of the momentum p. Therefore a solenoid lens is effective 

for small momenta only. At p >> 1 MeV/c , a quadrupole magnet is a much more effective lens, 
see the next section. 

c) Quadrupole magnet  

Quadrupole magnets have four iron pole shoes with hyperbolic contour (Fig. 9).  

 

Figure 9: Cross-section of a quadrupole magnet. (Figs. 9,10,12  from K. Wille, Maria Laach 

lectures.) 



 8

With the polarity shown, the horizontal component of the Lorentz force on a positively charged 
particle, moving into the plane of the drawing, is directed towards the axis, the vertical 

component is directed away from the axis. The magnet shown is thus horizontally focusing, 
vertically defocusing. The opposite holds when the current direction, the particle charge or its 

direction of motion is reversed.  

The field is linear in the deviation from the axis:  

B z = � gx   ,      B x = � gz         (2.4) 

In the air space of the magnet which contains neither iron nor current conductors we have the 
Maxwell equation  

�×B = 0 

Here the field can be written as the gradient of a potential  

B = � �V     with    V(x,z) = gxz 

 

The equipotential lines are the hyperbolas xz = const. The field lines are perpendicular to them. 

If the relative permeability of the iron is large, � r >> 1, iron pole shoes with hyperbolic contour 

generate a rather pure quadrupole field (2.4).  

The gradient g and the current I in the coils can be related by the integral theorem  

�� H ·ds = nI . 

The path of integration is shown in Fig. 10.  

 

Figure 10: Path of integration used to compute the quadrupole gradient as a function of the 
current 

� �
2 0

0 1 2

H H H
R

E
nI ds H r dr ds ds� � � � � �� � � ��  

On the first path H(r) = gr/��. The second integral is very small for � r >> 1. The third integral 

vanishes identically since H �ds. So we get in good approximation  

R

0

0

1
  nI g r dr

�
� �                              2 2

r = x z�  

 



 9

                            0

2

2 nI
g

R

�
�         (2.6) 

 

In analogy to the bending strength 1/� of a dipole magnet (see Eq. (2.2)), it is convenient to 
relate the field gradient to its optical effect. To this end, the field gradient is normalized to the 

momentum of the particle, thus defining the quadrupole strength  

eg
k

�
�  

Numerically  

� �

� �
2

/ m
m 0.2998 

GeV/

g T
k

c�
� � �� �          (2.7) 

If l denotes the length of the quadrupole, its focal length f is given by  

1
k l

f
� �            (2.8) 

Generally, a lens with f >> l is called a "thin lens" -irrespective of the absolute value of l. An 
interesting property of the quadrupole is that the horizontal force component depends only on the 

horizontal position and not on the vertical position of the particle trajectory. Similarly, the 
vertical component of the Lorentz force depends only on the vertical position.  

F x = eυB z( x,z) = � eυgx 

F z = � eυB x( x,z) = eυgz         (2.9) 
 

The important consequence is that in a so-called linear machine, containing only dipole and 
quadrupole fields, the horizontal and vertical betatron oscillations are completely decoupled. 

This is of great importance for an e+e�  storage ring where the vertical betatron oscillation 
usually has a much smaller amplitude than the horizontal oscillation. This decoupling would be 

lost if quadrupole magnets were rotated by some angle around their longitudinal axis. With those 
rotated quadrupoles a flat beam would not remain flat. 

Therefore: Don't rotate quadrupoles unless you know what you are doing!  

d) "Synchrotron" magnet  

As mentioned earlier, this magnet, sketched in Fig. 11, combines a dipole and a quadrupole 
magnet.  

 

Figure 11: Cross-section of a horizontally focusing synchrotron magnet (from K. Steffen, Orsay 

lectures [4]) 
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It can be considered part of a quadrupole which is traversed at a distance d = B��/g from the axis. 
The field can be derived from the potential  

V(x,z) = � B� z + g · xz        (2.10) 
 

The bending strength 1/� = e B��/p and the quadrupole strength k = eg/p can be combined into 
the dimensionless "field index" n, see Eq. (1.5)  

n = k ·�
2
          (2.11) 

 

e) Sextupole magnets  

The focal length of a quadrupole depends on the particle momentum. Sextupole magnets (Fig. 

12) are used to correct the resulting "chromatic" errors. A sextupole generates a nonlinear field  

� �2 21

2
z

B g x z�� �        

Bx = g�x · z           (2.12) 
 

 
The field can be written as gradient of the potential  

� � 2 31 1
,

2 3
V x z g x z z

� ��� � �� �
� 	

 

A momentum-independent sextupole strength is defined by  

� �

2

-3

0 0

T/m
,   m 0.2998

GeV/

geg
m m

c� �

� � �� � �� �� �� �       (2.13) 

 

g� is related to the current in the coils by  

g� = 6�� nI/R3 
 

 

Figure 12: Sextupole magnet 
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f) General multipole expansion  

In the literature you may find various kinds of multipole expansions for the guide field: 

expansion of the magnetic field B, expansion of the magnetic vector potential A, expansion of 

the scalar potential, and using cylindrical as well as cartesian coordinates. People use whatever is 
most appropriate for the specific problem, but the physics content is always the same as will be 

shown in the following.  

In this paragraph we denote the vertical coordinate by y instead of z because we want to keep the 

conventional notation z = x + iy for complex numbers.  

The length of modern accelerator magnets is usually much larger than their bore radius. The end 

field contribution is then rather small and the magnetic field has to a good approximation only 
transverse components. (This is of course not the case for the large solenoids in the experimental 

areas which need a special treatment. The same applies for wigglers and undulators which are 
special magnets for generating synchrotron radiation.)  

For two-dimensional fields one can apply the theory of analytic functions. From  

div B = 0 
 

it follows that a vector potential A exists such that  
 

B = rot A          (2.14) 
 

Because of the transversality of the field, the vector potential has only a component As in the 
longitudinal direction s. In vacuum, for example inside the beam pipe, we have furthermore (for 

static fields)  
 

rot B = 0 
 

This implies that B can also be written as the gradient of a scalar potential V:  
 

B = � grad V          (2.15) 
 
Combining both equations (2.14, 2.15) we get:  

 

s

x

AV
B

x y

��
� � �

� �
  s

y

AV
B

y x

��
� � � �

� �
     (2.16) 

 
Now we define a complex potential function of z = x + iy by  

 

A� (z) = As (x,y) + i V(x,y) 

 
The equations (2.16) are just the Cauchy-Riemann conditions for the real and imaginary part of 

an analytic function. So the complex potential is an analytic function and can be expanded in a 
power series 

 � �
0

n

n

n

A z z�

�

�

���    �n = �n + i �n     (2.18) 

 

with �n, �n real constants.  
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From complex analysis we know that this series expansion converges for all z inside a circle   �z � 
< rc . The radius of convergence rc is the closest distance between the origin of the expansion 

and the iron yoke or the coil where the Eqs. (2.16) break down and A� (z) is no more analytic, see 
Fig. 13.  

 

Figure 13: The multipole expansion with respect to z = 0 is only valid inside the circle rc (radius 

of convergence). 

 

Cylindrical coordinate representation  

For superconducting magnets, it is practical to express the field in cylindrical coordinates (r,	,s), 
see Fig. 14:  

 

x = r cos	        y = r sin	       z
n
 = r

n
 ·e

in�
 = r

n
(cos n	�+i sin n	)   (2.19) 

 

 

Figure 14: Cylindrical coordinate system used in the multipole expansion. 

 

The scalar potential is given by the imaginary part of Eq. (2.18)  

V(r,	) =
0n

�

�

� (�n cos n	+ �n sin n	) rn      (2.20) 

Similarly, we get from the real part of Eq. (2.18)  

 

As(r,	) =
0n

�

�

� (�n cos n	� �n sin n	) r
n      

(2.21) 
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Taking the gradient of �V(r,	), we get the multipole expansion of the azimuthal and radial field 
components, respectively  

 

B� = �
1

1

n

V

r �

�

�

�
� �

�
�  n(�n cos n	��n sin n	) rn�1 

 

Br = �
1n

�

�

�  n(�n cos n	+�n sin n	) r
n�1

 

 

Now it is convenient to define a `reference radius' r0 for the multipole expansion and to denote 
the magnitude of the main field component of the magnet in question by Bmain. A useful choice 

for r0 is the largest conceivable deviation of beam particles from the design orbit (25 mm in 
HERA, that is the inner radius of the beam pipe). Furthermore we introduce the ’normal’ 

multipole coefficients bn and the ‘skew’ coefficients an by 
  

1

0

main

nn

n

n
b r

B

�
�

� �  an = + 1

0

main

nn
n

r
B

�
�       (2.22) 

 

Then the multipole expansions read (note that a0, b0 are set to zero as they don't contribute to the 
magnetic field)  

 

V (r,	)  = �Bmain 0

1 0

cos sin 

n

n n

n

a b r
r n n

n n r
� �

�

�

� �� �
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� �� �
�       (2.23) 

As (r,	)  = �Bmain
0

1 0

cos sin 

n

n n

n

b a r
r n n

n n r
� �

�

�

� �� �
� � �� �
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�       (2.24)�

  

B��(r,	) = Bmain � �
1

1 0

cos sin 

n

n n

n

r
b n a n

r
� �

�

�

�

� �
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� �
�     (2.25) 

Br (r,	)  = Bmain � �
1

1 0

cos sin 

n

n n

n

r
a n b n

r
� �

�

�

�

� �
� � � �

� �
�     (2.26) 

 

Remember that these multipole expansions are only valid within a circle of radius rc containing 
neither iron nor current! For an ideal 2n-pole magnet we have bn=1 and all other an,bn = 0. We 

call  
 

n = 1 Dipole 
n = 2 Quadrupole 

n = 3 Sextupole 
n = 4 Qoctupole 

n = 5 Decapole 
n = 6 Dodecapole or 12-pole 

   

It is instructive to consider B� + iBr :  

B� + iBr = Bmain � � � �
1

1 0

cos  sin cos  sin 

n

n n

n

r
b n i n ia n i n

r
� � � �

�

�

�

� �
� � �� �� � 	 


� �
�  
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B� + iBr = Bmain

1

1 0

( )

n

in

n n

n

r
b ia e

r

�

�

�

�

� �
�� �

� �
�          (2.27) 

 
Thus  

(�B�)n = � �2 2 1 2 2

main

0

( )n
r n n

n

r
B B B a b

r
�

�

� � �       (2.28) 

 

i.e. the magnitude of the 2n pole field component does not depend on the azimuth and scales 

with the (n�1)th power of r. Equation (2.28) also illustrates a simple interpretation of the 

fractional multipole field coefficients an,  bn : They are just the relative field contribution of the 
nth multipole to the main field at the reference radius r0 . This is the reason why the coefficients 

�n,  �n have been normalized with Eqs. (2.22).  

Conventional accelerator magnets with iron pole shoes are limited to dipole fields of about 2 T 
and quadrupole gradients of about 20 T/m. Significantly higher values ( > 6 T, > 100 T/m) are 

possible with superconducting magnets. In these magnets the field distribution is entirely 
determined by the conductor arrangement and the coils have to be built with extreme accuracy to 

keep field distortions below the required level of 10
�4

. Figure 15a shows schematically the 
layout of a superconducting dipole.  

In iron-free magnets the field distribution generated by an azimuthal current distribution 

described by 
0

( ) cos( )dI I n d� � ��   is given by (see e.g. Ref. [7])  

1

0 0

0 0

1

0 0

0 0

sin( )
2

cos( )
2

n

r

n

I r
B n

r r

I r
B n

r r
�

�
�

�
�

�

�

� �
� � � �

� �

� �
� � � �

� �

 

Ideally, the current as a function of the azimuthal angle 	 should follow a cos	-distribution to 

generate a pure dipole field and a cos2	 (cos3	) distribution for a quadrupole (sextupole) field 
(Figs. 15b,c,d). Since these ideal distributions are technically difficult to realize one 

approximates them by an arrangement of current shells. The cylindrical coordinate 
representation is particularly useful for magnet design from current shells. Figure 16 shows a 

cross section through the HERA dipole coil. 

Another application of the cylindrical coordinate representation is the technique of measurement 

of the multipole components with a coil rotating in the field: The nth Fourier component of the 

induced voltage is proportional to 2 2

n n
a b� while its phase is related to an/bn.  

In a good dipole or quadrupole magnet the unwanted multipole coefficients a n, b n are typically a 

few 10�4 or less.  

Finally it is noted that within the cylindrical coordinate representation one easily understands 

which multipole components are forbidden if specific symmetry properties of the field are 
assumed. For instance, for a quadrupole with perfect constructional symmetry only odd 

harmonics of the 4-pole are allowed. Or, as another example, if mirror symmetry with respect to 

the x � s plane is assumed, all skew components are forbidden since B� must behave purely cos-
like. A similar reasoning shows that any normal 2n-pole magnet transforms into a skew 2n-pole 

magnet if rotated by 
/2n .  
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Figure 15: a) Schematic view of a superconducting dipole.  
b), c), d): current distributions for pure dipole, quadrupole and sextupole fields and the 

corresponding yoke profiles of conventional magnets. 

 

 



 16

 

Figure 16: Cross section of the superconducting HERA dipole coil. The inner current shell has 

64 windings, the outer shell 40. The limiting angles of the shells and the longitudinal wedges are 
chosen such that the computed higher multipole fields are less than 10-4 of the dipole field. The 

nominal field of 4.68 T is achieved with a current of 5025 A. The coil is confined by precise 
aluminium clamps which sustain the magnetic forces and define the exact geometry. The clamps 

are surrounded by a cylindrical iron yoke (not shown) contributing 22% of the field. The cross 
section of the superconducting cable is shown in an enlarged view. 

 

Cartesian coordinates  

In cartesian coordinates, Eq. (2.18) reads 

 

As (x,y) + i V(x,y) =
0

( )( )n n

n n n

n n o

z i x iy� � �
� �

� �

� � �� �     (2.29) 

 

Separation of real and imaginary part and use of Eq. (2.22) yields  

As (x,y) = �
main

0
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To get the cartesian components of the magnetic field we now have to take the gradient of 

�V(x,y) in cartesian coordinates, see Eq. (2.16)  
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Another useful combination of Eqs. (2.32) and (2.33) is  

By + i Bx = �
z

�

�
(As + i V) = �

1n

n
�

�

�  (�n + i �n) (x+iy)n�1 

 

By + i Bx = Bmain

1n

�

�

� (bn � ian)(
1

0 0

)n
x y

i
r r

�

�  

 
 

Here are two applications of the cartesian representation of multipoles:  

�� If the motion of particles is described in cartesian coordinates, the contribution of each 

individual multipole to the equation of motion is easily identified. As stated before, the 

coefficients bn are called the "normal" multipole coefficients, an are the "skew" 
coefficients. In magnets containing normal coefficients only, a flat beam (i.e. no vertical 

extension) remains flat forever, since for y � 0 there is Bx � 0 , i.e. no vertical force. Thus, 
there is no coupling of horizontal motion into the vertical. 

�� Equation (2.31) is useful in conventional lens design work with iron pole shoes. It 
describes the pole contours of dipole-(n = 1), quadrupole-(n = 2), sextupole-(n = 3), 

octupole-(n = 4), etc., magnets, because the pole contour is a line of constant magnetic 
potential. The pole contour of a normal quadrupole (b2), for instance, is given by the 

hyperbola x ·y = const (see Fig. 9 and Eq. (2.5)). 
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Finally, we show explicitly the field distribution of the most important multipole components:  
 

Normal dipole (n = 1):    b1·Bmain = Bvert     (horizontally bending)  

B��(r,	)= Bvert·cos	   Br (r,	)= Bvert·sin	 
Bx (x,y) = 0    By (x,y) = Bvert        

 

Skew dipole (n = 1):    a1·Bmain = Bhor     (vertically bending) 

B��(r,	)= Bhor·sin	   Br (r,	)=�Bhor·cos	 

Bx (x,y) = �Bhor   By (x,y) = 0 

 

Normal quadrupole (n = 2):   b2·Bmain  = �g·r0     (where g is the gradient) 

B��(r,	) = �g r cos2	   Br (r,	) = �g r sin2	�

Bx(x,y)  = � g y   By (x,y) = � g x 

 

Skew quadrupole (n = 2):   a2·Bmain  = � g· r0     (quadrupole rotated by 45�) 

B��(r,	) = � g r sin2	  Br (r,	)= g r cos2� 

Bx (x,y)  = g x    By (x,y)= � g y 

 

Normal sextupole (n = 3):    b3·Bmain  = ½ g��·r0
2
  

B��(r,	)= ½g�r
2
 cos3�  Br (r,	)= ½ g��r

2
 sin3	

 

Bx (x,y)  =g�xy   By (x,y)=  ½g��(x2
�y2) 

 

3  PARTICLE MOTION IN A CIRCULAR ACCELERATOR 

3.1  Trajectory equations 

We consider first a machine with combined-function magnets and neglect the drift spaces 
between the magnets. The design orbit is then a circle. It is easy to generalize the results to 

machines with separated-function magnets.  

The design orbit is assumed to be in the horizontal plane. We use cylindrical coordinates, r, 	, z. 

The dipole field is assumed to point in the positive z direction. Then positively charged particles 
move in a clockwise direction, negatively charged particles counterclockwise (see Fig. 17).  

 

 

Figure 17: Coordinate system for particle motion in a circular accelerator 



 19

Let us follow the motion of an electron. Together with the particle a system of three unit vectors 

ur,   u� and uz is moved around. The radius vector of the particle is  

R = R� + ru r + zu z                     R� = const. 
 

Now for a small d	  

du r = d	u�,    du� = � d	ur,    duz = 0 
 

So  

 = 
r r z

r r z� �R u u u� � � �  

    

r z
r r z

�
� � � �u u u

�� �  

 

the acceleration is  

� � � �2
 = 2

r z
r r r r z

�
� � � � � � �R u u u�� � � ��� � � ��  

Now  

� � � � � � = - e  =
z r r z r z

m e r B zB zB rB rB r B
� � �

� �� � � � � � � �� �R v × B u u u�� � �� �� �     (3.1)  

 

(Note our definition 
0

m m �� .) In the following we assume B� = 0 and obtain  

� �2 ( , ,
z

m r r er r z

mz er gz

� � � � �� ��

� � �

� ���

���

        (3.2) 

In the special case of combined-function magnets the field components derived from the 

potential (2.10) are  

B z = B0 � gx   ,      B r = B x = � gz           (3.3) 
 

Inserting (3.3) into (3.2) and using r = �+ x with � = const, we get  

 

� � � �
0

m x r er B gx
�

� � � � �� ���  

mz er gz� � ����  

υ� = r��  is the azimuthal component of the particle velocity. It is much larger than the transverse 

components υr and υz, so � = r��  � υ. At this point it is convenient to replace the time variable t 

by the arc length s along the design orbit  

s = υt,   
2

2

2
,   

d x
x x x

ds
� �� ��� ���  

  0
1

''
eB eg

x x
r m m� �

� � �  



 20

'' eg
z z

m�
� �  

 

Now mv = p = p� 
0

1
p

p

� ��
�� �

� �
where p� is the design momentum.  

Further 
1 1

1
x

r � �

� �
� �� �

� �
for x << � and p� = 0

0

0 0

1
,   ,   

eB eg
eB k

p p�
� �   

To first order in the small quantities x and
0

p

p

�
 we obtain 

2 0

1 1
''

'' 0

p
x k x

p

z kz

� �

� � �
� � �� �
� 	


 �

      (3.4) 

These are the basic equations for the particle trajectory x(s), z(s) in linear approximation.  

It is easy to see that the equations (3.4) are also valid for a separated-function machine, provided 

we define � as the local radius of curvature and g as the local gradient. In a dipole magnet the 
design orbit is part of a circle. The gradient is zero, so the equations hold with k = 0. In a 
quadrupole the central orbit is a straight line. The force on the electron is  

 

    

   

z

x

mx e B e gx

mz e B e gz

� �

� �

� � �

� � �

��

��

 

 

so          

0

'' 0
                  

'' 0

x kx eg eg
k

z kz p m�

� �

� �

� �

 

 

So Eqs. (3.4) are valid with 
1

�
 = 0.  

The term 
2

1
x

�
 in (3.4) describes the "weak focusing" of a bending magnet. In the very large 

high-energy accelerators like the CERN LHC or HERA it can be neglected in comparison with 
the "strong focusing" term k given by the quadrupoles. 

Example HERA proton ring: k = 0.033 m�2,  
2

1

�
 = 2.9 ·10�6m�2.  

We want to point out that even in the case of purely linear magnetic fields the equations of 

motion are intrinsically nonlinear due to the curved coordinate system. Especially for 
accelerators with small bending radius, nonlinear corrections to Eq. (3.4) have to be taken into 

account.  
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3.2  Solution of trajectory equations in terms of principal trajectories 

In general, the bending strength 
1

�
and the focusing strength k are functions of the path length s 

along the reference orbit. The equation for the horizontal motion can be written as  

x" + K(s) x =
2

0

1 1
                        ( ) ( )

( )

p
K s k s

p s� �

� ��
� � � �� 	


 �
      (3.5) 

 

The general solution x(s) is the sum of the complete solution xh of the homogeneous equation 

and a particular solution xi of the inhomogeneous equation 

x(s) = xh(s) + xi(s) 

 
with   xh" + K(s) xh  = 0 

xi"  + K(s) xi  = 
0

1 p

p�

�
 

 

Since �p/ p� is assumed to be constant, it is obvious that if xi is a solution for a given �p/p����

n·xi will be a solution for n ·�p/p�. Therefore it is useful to normalize xi with respect to �p/p0:  

          
0

( )
/

i
x

D s
p p

�
�

�

The general solution now reads  

'

0 0

0

( ) ( ) ( ) ( )
p

x s C s x S s x D s
p

�
� � �         (3.6) 

Here
0
x , '

0
x �are the initial values of xh(s) and xh��(s) at s = s��� and C(s) and S(s) are two 

independent solutions of the homogeneous equation  

C" + K(s) C = 0,        S" + K(s) S = 0 

 

For C(s) and S(s) to be linearly independent, the Wronski determinant W has to meet the 

condition  

 

 0
' '

C S
W

C S
� �  

 

The derivative of the Wronskian vanishes identically  

( ' ') '' '' ( ) 0
d d

CS SC W CS SC K CS SC
ds ds

� � � � � � � �    

 

So the value of W is determined everywhere by the initial conditions at s = s0. We choose  

 
' '

0 0 0 0
1,  0 ;     0,  1C C S S� � � �        (3.7) 
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The solutions satisfying these initial conditions are called the "Cosinelike" and the "Sinelike" 
trajectories and they result in W = 1 .  

D(s) is the "Dispersion" trajectory, defined as a particular solution of the following 

inhomogeneous equation  

1
"( ) ( ) ( )

( )
D s K s D s

s�
� �            (3.8) 

It describes the momentum-dependent part of the motion. Here we require the initial conditions  

'

0 0
0D D� �  

because we assume (quite arbitrarily) that particles of different energy are not separated in space 
at the beginning. 

Remark: The closed dispersion trajectory defined in chapter 5 satisfies different, namely periodic, boundary 
conditions.  

x(s) and x�(s) are related to their initial values by a linear transformation  

0

   

  

  

o
s s

x C S x Dp

x C S x Dp

� � � � � � � ��
� �� � � � � � � �� � � � �	 
 	 
 	 
 	 


         (3.9) 

 

Equation (3.9) can also be written as  

0
0 0 s

      

        

0   0    1

s

x C S D x

x C S D x

p p

p p

� � � �
� � � �� �� � � �� �� � � � �� � � � �� �
� � � �� �� �� 	� � � �
� � � �
� 	 � 	

        (3.10) 

The dispersion trajectory can be calculated from the cosinelike and the sinelike trajectories:  

0 0

1 1
( ) ( )  ( ) ( ) ( )

( ) ( )

s s

s s

D s S s C t dt C s S t dt
t t

� �� �
� �

       (3.11) 

To prove this relation we show that D(s) as given by (3.11) fulfils the equation (3.8) with the 

initial conditions D� = D�� = 0.  

1

1 1

1
  ( )

1
( ) ( ) ( )

( )

D S Cdt C Sdt

C S
D S dt C dt CS SC

D s K s D s
s

� � �� �

�� �� �� � �� � � �

�� � � �

� �

� �

� �

� � �

�

�����

 

The vertical motion is of course described by an equation like (3.9) but with the last term 
missing.  

 

3.3  Transformation matrices of accelerator magnets 

The matrix notation of the solution of the equations of motion is particularly useful if K(s) is 
piecewise constant, because with K = const the matrix elements can be expressed analytically. 
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The solution for the complete "lattice" of optical elements is then just the product of the 
individual matrices in the desired sequence, see Fig. 18. The transfer matrices of the most 

important magnets are discussed in the following. They may be used as building bricks to 
assemble the complete magnet lattice.  

 

Figure 18: The complete transfer matrix of this sequence of magnetic elements is the matrix 
product Mtot=M8·M7·M6·M5·M4·M3·M2·M1 . Each of the matrices M1 ... M8 decribes a section with 

K(s) = const. 

 

a) Combined-function magnet  

Although not much used anymore, this magnet is treated first since dipole and quadrupole 
magnets can be considered special cases of a synchrotron magnet.  

We assume that the field is independent of s inside the magnet and drops abruptly to zero at the 
ends (hard-edge model). The principal trajectories C(s), S(s) solve the equation  

2

 for  

0     1
 for  

K k y z

y Ky
K k y x

�

� ��
�

�� � � � � � � ��
�

                                       

       

With � = s K  the solutions are inside the magnet  

1
cos              sin

    
K

  

sin       cos

C S

C S

K

� �

� �

� �
� �� �

� � �� �� �� � � �� �	� �

           for K > 0 (focusing)      (3.12a) 

1
cosh               sinh

  S

  

 sinh         cosh

C
K

C S

K

� �

� �

� �
� �� �

� � �� �� �� � � �� �
� �

      for K < 0 (defocusing)    (3.12b) 

 

  S 1  

  0  1

C s

C S

� � � �
�� � � �� �� � � �

     for K = 0 (drift space)   (3.12c)  

The determinant is indeed unity: CS�� SC� = 1.  
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The dispersion is for K > 0  

3

0 0

( )
s

C S
D s S dt C dt

� �
� �� �  

        21 1
 sin  cos (cos -1)

K K
� � �

� �
� �  

1
( ) (1 cos )D s

K
�

�
� �  

For 
1

0 :    ( ) (1 cosh )K D s
K

�
�

� � � �  

1
(1 cos )

1
sin

KD

D

K

�
�

�

�

� �
	 
� �

� � � ��� �� � �� � 	� �
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         for K > 0     (3.13a) 

1
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sinh
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K

�
�
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�

� �
� � �� �

� � � ��� � � ��	 
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  for K < 0    (3.13b) 

0

0

D

D

� � � �
�� � � ��� � � �

             for K = 0    (3.13c) 

 

Thus, Eqs. (3.12) and (3.13) are in 3×3 notation: 

0

1 1
cosh  sinh (1 cosh )

1
 sinh cosh sinh

0 0 1

K

KK

K

K
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�

� � �

�
�
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� � �� �
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M  
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1 1
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K

1
sin cos sin

0 0 1

K

K

K

K

� � �
�

� � �

�
�

� �
� �� �

� �
� �
� �� � �
� �
� �
� �
� �
� 	
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To get the transformation matrix of the complete magnet one has to substitute the variable s by 

the length l of the magnet.  

 

b) Drift space  

1
0,   0k

�
� �    M

 x = M z = 

1       0   

0   1   0

0   0   1

l� �
� �
� �
� �
� �

     (3.14) 

 

c) Quadrupole Magnet  

The dispersion (3.13) vanishes since 
1

0
�
� .  

With l k� � the transformation matrices are for k > 0  

 

1
cosh sinh 0

k

k sinh cosh 0

0 0 1

x

� �

� �

� �
� �
� �
� �

� � �
� �
� �
� �
� �

M        (3.15) 

1
cos sin 0

k

- k sin cos 0

0 0 1

z

� �

� �

� �
� �
� �
� �

� � �
� �
� �
� �
� �

M  

 
These matrices describe horizontal defocusing, vertical focusing.  

For k < 0, the matrices M x and M z are interchanged and we get horizontal focusing, vertical 
defocusing.  

 

d) Thin-lens approximation  

In many practical cases, the focal length f of the quadrupole magnet will be much larger than the 

length of the lens:  

1
f l

kl
� �  

Then the transfer matrices can be approximated by  
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1    0   0

1
1   0

0   0   1

x

f

� �
� �
� ��
� �
� �� �
� �

M          (3.16) 

 

  1     0   0

1
 1    0

  0    0    1

z

f

� �
� �
� �� �
� �
� �� �
� �

M         (3.17) 

 
Note that these matrices describe a lens of zero length, i.e. they are derived from Eqs. (3.14) 

using l� 0 while keeping k ·l = const. The true length l of the lens has to be recovered by two 
drift spaces l/2 on either side, e.g.  

 
2

1 0
    1    0    0 2 41      0 1      0

2 2
1 1

0    1   0     1   0 0    1   0 1 0
2

0    0   1 0    0   1
  0      0   1 0 0 1

z

l l
ll l

f f

l

f f f

� �
� �� �� � � �� � � �� � � �� �

� �� � � �� �� � � � �� �� � � �� �
� �� � � �� �� � � �� � � �� �� � � � � �� �
� �

M    (3.18) 

One might ask why the approximation has not been made by expanding sin��, cos��, etc. in 

Taylor series and neglecting higher powers of �. However terminating the Taylor series at some 
power results in a transfer matrix whose determinant is not unity. For instance, in third order we 

obtain  

2

1 0
2 6

1
1 0

2

0 0 1

z

l l
l

f f

l

f f

� �
� �� �

� �
� �

� � �� �
� �
� �
� �� �
� �

M  

 

which does not fulfil det M = 1. It will be shown later that this would violate Liouville's 
Theorem of phase-space conservation.  

For accelerators in the TeV range, where 1/�2 << �k� << 1/l2, the thin-lens approximation is 
excellent for the matrix description of the entire accelerator.  

 

e) Dipole sector magnet  

The matrices (3.12), (3.13) with k = 0 describe a "hard edge" dipole, i.e. the magnet ends are 

perpendicular to the circular trajectory (Fig. 19).  
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Figure 19: Dipole sector magnet 

The transformation matrices are with � = 
l

�
 

cos          sin     (1 cos )
1       0

1
- sin      cos           sin  ,    0   1   0

0   0   1
  0                0               1

x z

l
� � � � �

� � �
�

� ��
� �� �
� �� �� � � �� � � �� � � �� �

� �

M M    (3.19) 

 

 

f) Rectangular dipole magnet  

In practice, dipole magnets are often built straight with the magnet end plates not perpendicular 

to the central trajectory. A rectangular magnet can be derived from a sector magnet by 

superimposing at the entrance and exit a "magnetic wedge" of angle � = �/2, as shown in 

Fig. 20.  

 

Figure 20: Rectangular dipole magnet and horizontally defocusing magnetic wedge 

 

The deflection angle in the magnetic wedge is  

tanl x x

f

�
�

� �

�
� � �  

It acts as a thin defocusing lens with 1/f = (tan�)/� in the horizontal plane, as a focusing length 
with the same strength in the vertical plane. The horizontal transformation matrix for a 
rectangular magnet is  
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1 0 0

1
tan 1 0

0 0 1

x
�

�

� �
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M
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1
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For � << 1,   � = �/2:  

cos          sin       0
1     sin          (1-cos )

1
0          1              2tan /2     - sin      cos        0 

0          0                   1
 0                  0          1

x z

� � �
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�

�
� �
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� �

�

M M

�
� �
� �
� �
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�

  (3.20) 

 

Note that Mx is exact for � = �/2 while � << 1 has been used for Mz only. We conclude that in a 
rectangular magnet the weak horizontal focusing of a sector magnet is exactly compensated by 

the defocusing at the entrance and exit face. The magnet acquires, however, a weak vertical 
focusing of the same strength.  

 

g) Quadrupole doublet  

The transformation matrix of a system of dipoles, quadrupoles and drift spaces is obtained by 

multiplying the matrices of each element in the correct order. An important example is a 
quadrupole doublet consisting of a focusing quadrupole, a drift space and a defocusing 

quadrupole. Figure 21 shows two trajectories (1,2) suggesting a tendency of both horizontal and 
vertical focusing in this kind of arrangement.  

 

Figure 21: A quadrupole doublet consisting of a horizontally and a vertically focusing 

quadrupole magnet. Trajectories 1 and 2 suggest that there is a tendency of simultaneous 
focusing in both the horizontal and vertical directions. 

 

The focusing action arises because trajectories entering parallel to the axis have a larger 

amplitude in the focusing than in the defocusing lens. Quadrupole doublets are indeed the 

simplest means of high energy beam focusing and imaging. We shall now derive the conditions 
for simultaneous imaging in both horizontal and vertical planes, treating the quadrupoles in the 

thin-lens approximation and assuming ffoc = � fdefoc = f for simplicity. The horizontal transfer 
matrix of the doublet is (for meaning of symbols see Fig. 21)  
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doub,x 2

1 0
 1     0   0    1     0    0 

1        0

1 1
    1   0 0    1   0    1    0 1+ 0

0    0   1
 0     0    1    0     0    1 0 0 1

l
l

f
l

l l

f f ff

� �
�� �� � � �

� �� �� � � �
� �� �� � � �� � � �� �� �� � � �� � � �� � � �� �� � � � � �� � � �
� �
� �

M   (3.21) 

 

The vertical transfer matrix is obtained if f is replaced by �f:  

doub,z 2

  1+           0

   1-     0

  0         0       1

l
l

f

l l

ff

� �
� �
� �
� �

� �� �
� �
� �
� �
� �

M        (3.22) 

 

The matrix element M21 = C� = �l/f
2
 is called the overall refractive power of the system and it is 

seen to be focusing in both planes. Somewhat sloppily one could say that a beam coming from 

infinity (i.e. all particles perfectly parallel to the s-axis, 
0

0x� � ) will be focused in both planes, 

as indicated by trajectories 1 and 2 in Fig. 21. The effective focal length fdoub for these particles 
is  

fdoub = 
2f

l
            (3.23) 

Trajectory 3 in Fig. 21, however, illustrates that there are trajectories as well which are not at all 

bent towards the beam axis. For practical applications one might therefore ask: What happens to 
particles emerging from a point A at a finite distance a from the first lens? Optical imaging 

requires that there is a point B at a distance b behind the second lens where all particles emerging 
from A will converge. The horizontal transfer matrix from A to B is  

doub,

1     0 1     0

0   1  0 0   1  0

0   0  1 0   0  1

x x

b a� � � �
� � � �

� �� � � �
� � � �
� � � �

M M

2 2

2 2

1-  -            0

                  1                    0

   0                              0                          1

l lb lb la lab
a b l

f f f f f

l l la

f f f

� �
� � � � �� �

� �
� �
� � �� �

� �
� �
� �
� �

  (3.24) 

 

Again, Mz is obtained if f is replaced by �f:  
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2 2 2

2 2

1      -         0

                      1- -                       0

       0                             0                             1

z

l lb lb la lab
a b l

f ff f f

l l la

ff f

� �
� � � � � �� �

� �
� �

� �� �
� �
� �
� �
� 	

M     (3.25) 

 

Imaging from A to B requires M12 = S � 0. Because of  det M = 1, the matrix can then be written 
in the form  

M = 

   0    0

1
    0

0     0    1

m

C
m

� �
� �
� ��
� �
� �
� �

        (3.26) 

 

m is called magnification of object A to image B. Obviously 

xB = m ·xA                (irrespective of 
A
x�  !)         (3.27) 

Remark: If also M2 1 = C� = 0 (i.e. zero overall refractive power), the system is called a telescopic system. 

 

The condition S � 0 is satisfied if  

2

2
1

a l la

b f f f

la lf

f f

� �

�

� �

  for Mx       (3.28) 

and  

2

2
1

b l lb

a f f f

lb lf

f f

� �

�

� �

  for Mz       (3.29) 

There are two ways to interprete Eqs. (3.27-3.29):  

�� If the parameter set f,l,a,b is a solution in the horizontal plane, then the set f,l,b,a is a 

solution in the vertical plane, i.e. the r ô les of a and b are interchanged. This means that 

in general horizontal and vertical images are in different planes. This is called 
"astigmatic"focusing. 
Example: Consider l/f = 1 and a/f = 3. Then b/f = 1 and m

x
 = �1 for imaging in the horizontal plane while 

b/f = 7/3 and m
z
 = �1/3 for imaging in the vertical plane. The vertical solution "conjugate" to the horizontal 

one would be l/f = 1, a/f = 1, b/f = 3, and m
z
 = �1. The latter one means, of course, that not only the 

horizontal and vertical images are in different distances from the doublet but also the respective objects. 

�� To get the horizontal and vertical images into the same plane ("stigmatic" focusing), a = 
b is required. Then 
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1

x

z

f a
m

f a m

�
� �

�

   stigmatic focusing       (3.30) 

�� Equal horizontal and vertical magnifications mx = mz are obviously impossible with 

stigmatic focusing, using quadrupole doublets. Note that, while ffoc = �fdefoc has been 

assumed for Eqs. (3.21-3.30), this latter statement applies for all kinds of quadrupole 
doublets. 
Example: l/f = 4/3, a/f = b/f = 2 yields stigmatic focusing with m

x
 = �3 and m

z
 = �1/3. 

Figure 22 illustrates particle trajectories in a stigmatic focusing quadrupole doublet.  

In circular accelerators and for beam transport along a transfer channel we are, in general, not 
interested in imaging at all. Instead, we require small (or at least finite) beam envelopes for any 

kind of particle source, i.e. for any location of the object plane. It will be shown in section 4.7 
that, to achieve focusing in an alternating series of F and D quadrupoles, the separation between 

two quadrupoles must not be larger than twice the focal length  

l < 2 �f|  . 

 

 

Figure 22: A stigmatic focusing quadrupole doublet showing particle trajectories that all start at 
the center of the object (xA = zA = 0). 

 

h) Accelerating section  

Acceleration in the longitudinal direction is beyond the scope of this article. However, there is 

also an effect on the transverse motion, which is now briefly addressed.  

Consider a section of length l with constant electric field Es in the longitudinal direction. The 

total momentum p of an ultrarelativistic particle (υ � c = const) then changes according to  

0
const ( )

s s

dp e e
E p s p E s

ds c c
� � � � � �  
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p� = p(s = 0) is the momentum at the entrance of the section. The transverse motion of an 
ultrarelativistic particle is described by (y = x or z) 

  

( )
( ) 0

y y

d d p s d dy
p p s

ds ds c ds ds
�

� � � �
� � �� � � �

� � � �
        (3.31) 

 
which is a different type of differential equation than (3.5), because p(s) is not constant any 

more. A first integral yields 
  

0 0

0 0

0

( )  const ,     thus ( )

s

y pdy dy
p s y p y s

eds ds
p E s

c

�
� �� � � �

�

     (3.32) 

Integrating once more we obtain  
 

y(s) = 0

0 0

0

ln 1
s

s

cp eE
y y s

eE cp

� �
�� � �� �

� 	
          (3.33) 

 
With Eqs. (3.32, 3.33) and putting s = l the transfer matrix is  

0

0

0

0

1       ln 1+

 0               

x z

p p
l

p p

p

p p

� �� ��
�� �� �

� � �� �	 	 	
� �
� �� �
 �� �

M M M        (3.34) 

 
 

where �p = 
s

e
E l

c
�  is the momentum gain in the accelerating section. The main complication 

with this transfer matrix is that its determinant is not unity:  
 

det 0

0

p
M

p p
�

� �
            (3.35) 

 
 

This is due to the fact that the equation of motion contains a first-derivative term, and it reflects 
the effect of adiabatic damping (see end of subsection 4.4). Instead of (3.34), one often uses a 

normalized matrix 

 

0

0

0 0

0 0

1       ln 1+
1

det 
 0               

x z

p p
l

p p

p p

p p p p

� � �

� �� ��
�� �� �

� � �� �	 	 	 	
� �
� �� �
 � 
 �� �

M
M M M

M

    (3.36) 

 

which has det M� = 1. This trick saves much of the formalism to be derived in the following 

sections, but if it is used one has to keep in mind, that in this case the normalized emittance is a 
conserved quantity and not the usual emittance, see Eq. (4.34). A similar complication arises if 

dispersion is included in the 3 ×3 matrix version of Eq. (3.34).  
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4  BETATRON OSCILLATIONS 

In this section, we shall first treat circular accelerators, because the formalism can be derived in a 
most stringent way for a periodic lattice. At the end (section 4.8) we will shed some light on the 

treatment of transfer lines or nonperiodic structures.  

4.1  Stability criterion 

We assume that the circular accelerator has a median plane, taken to be the horizontal plane 

z = 0, and that the magnetic guide and focusing fields are perpendicular to this plane. We further 
assume that there is a closed curve in this plane, called equilibrium orbit, on which a particle 

with reference momentum p� can move for an arbitrary number of revolutions. A point P on an 
arbitrary particle trajectory is characterized by the coordinates s, x and z defined by Fig. 2. The 

differential equations for x(s) and z(s) in linear approximation have been derived in section 3.  

2

0

1 1

0

p
x k x

p p

z kz

�

� � �
�� � � �� �

	 


�� � �

 

 

k(s) and �(s) are periodic functions of s because the orbit is a closed curve. In the following we 

consider only particles of momentum p = p�, i.e. �p = 0.  

Then both equations read  

y" + K(s) y = 0          (4.1) 

K(s + L) = K(s)        

K(s) is a periodic function. The period L may be as large as the circumference C of the 

accelerator, but the accelerator may be composed of N identical sections or "cells" with    
C=N·L. In that case K(s) has the cell length L as a period. 

Remark: All large circular accelerators and storage rings possess indeed a periodic cell structure in the 

"regular" arcs. The straight sections usually deviate from the periodicity, for instance to accommodate 

interaction regions or wiggler magnets. These sections are matched to the arcs in such a way that the 
periodicity of the beta function (see below) is not disturbed.  

The differential equation (4.1) is called Hill's equation. For the special case 

 

K(s) = const. > 0 

 

it describes a harmonic oscillation with two independent solutions  

� � � �cos   and   sinKs Ks . 

In the general case K = K(s) we define the cosinelike and sinelike trajectories (3.7) and can 
express any solution y(s) of Eq. (4.1) in the form  

 

0 0
( ) ( ) ( )y s y C s y S s�� �  
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We have already shown that y and y� at the point s can be obtained from y�,   y�� by a matrix 
multiplication  

0

0
( / )

s s

y y
s s

y y

� � � �
�� � � �� �� � � �
M            (4.2) 

 

with  

0

( )   ( )
( / )

( )  ( )

C s S s
s s

C s S s

� �
� � �� �� �

M  

 

and  

0 0

0 0

( )   ( ) 1  0

( )  ( ) 0  1

C s S s

C s S s

� � � �
�� � � �� � � �� �

 

 

The transfer matrix for two successive sections of magnets and drift spaces can be computed by 

matrix multiplication  

 

M(s2/ s�) = M(s2/s1) ·M(s1/ s�) 

Proof of Eq. (4.3):  

call C� (s) and S� (s) the principal trajectories with reference point s�  

 

i.e.   
0 0

0 0

( )   ( ) 1  0

( )  ( ) 0  1

C s S s

C s S s

� � � �
�� � � �� � � �� �

 

 
Then 

M(s1/ s�) =
0 1 0 1

0 1 0 1

( )   ( )

( )  ( )

C s S s

C s S s

� �
� �� �� �

 

 

For arbitrary s1 � s0, the principal trajectories C1(s), S1(s) with reference point s1 are in general 

different from C0 (s), S��s) (see Fig. 23) 

 

Figure 23: Cosine- and sinelike trajectories relative to different reference points s� and s1.  
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Since C1(s) and S1(s) are two linearly independent solutions, we can write  

 

0 0 1 1 0 1 1

0 0 1 1 0 1 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

C s C s C s C s S s

S s S s C s S s S s

�� �

�� �
 

Inserting s = s2 we obtain Eq. (4.3).  

Of particular interest is the transfer matrix for a period L of the accelerator structure. We write it 
as  

M(s) � M(s + L/s)           (4.4) 
 

The transfer matrix for a full revolution is  

M(s + NL/s) = (M(s))
 N 

and for n turns  

( M(s)) n · N 

A necessary and sufficient condition for stable motion is that the elements of the matrix M
 n · N

 

remain bounded for n � �. To derive a condition for this we consider the eigenvalues of the 
matrix M.  

 

    

y
Y Y Y

y
�

� �
� � � ��� �

M  

The eigenvalues are the solutions of the determinant equation  

det (M � 	I) = 0            (4.5) 

 

Let us write 
  

  

a b

c d

� �
� � �
� �

M . Then Eq. (4.5) reads  

	
2
 � 	
(a + d) +  (ad � bc) = 0         ( 4.5a) 

 

Now det M = ad � bc = 1 (see section 3.2). Without loss of generality we may write  

cos� =  
1

2
 trace  M =

1

2
(a + d)         (4.6) 

Thus 2
2 cos 1 0� � �� � �  

The new quantity � is real, if 
1

2
� a+d � < 1 and complex or imaginary for 

1

2
� a+d � < 1. 

The two solutions of (4.5a) are  

	1 = cos�+ isin� = e i�   ,      	2 = cos�� isin� = e� i����� � � � � ����	 
 

Let us now assume that �a+d � 
 2; then cos� 
 1 and sin� 
 0.  

In that case the matrix M can be expressed in a very useful form (Twiss-matrix):  
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cos sin� �� �M I J ��� � � � � � � � � ����	 

 

Here I = 
1  0

0  1

� �
� �
� �

  is the unit matrix and J = 
    

-   -

� �

� �

� �
� �
� �

 with  

2 sin

/ sin

/ sin

a d
a

b

c

�

� �

� �

�

�

�

� �



 
 
 
 
 
 
 
 
 
 ����	 

 

From det M = 1 we get the relation  

2
1�� �� �            (4.10) 

 
The matrix J has determinant 1, trace 0 and moreover the property  

2
1 0

0 1

�� �
� � �� ��� �

J I            (4.11) 

 

The combination I cos�+ J sin� has properties similar to the complex number  

1 cos sin
i
e i
�

� �� � � � ;   in particular for any �1,   �2  

 

( I cos�1 + J sin�1) ( I cos�2 + J sin�2) = I cos (�1 + �2) + J sin (�1 + �2) 

 

The n-th power of M is  

M
 n = I cos(n�) + J sin(n�)          (4.12) 

 

From this relation we see immediately that the matrix elements of M
n for n �
� remain 

bounded if and only if � is real: 

 

            (4.13) 

For real �, the matrix elements of M
 n oscillate but remain bounded for any n. Furthermore, 

� = real guarantees that �,,� are also real quantities. For complex or imaginary �, on the other 

hand, cos( )n�  and sin( )n�  increase exponentially and the elements of Mn do the same so that 

the motion becomes unbounded.  

It should be noted that the trace of M and therefore the parameter � are independent of the 

reference point s. This can be seen as follows:  

2

2 1 2 2 2 1

( )

( / )  ( / ) ( / )

s

s L s s L s s s� � �

M

M M M
�������

  

 

On the other hand  

Stability  � trace M � < 2  �  real 
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2 1 1

2 1 2 1 1 1

( / ) ( )

( / )  ( / ) ( / )

s s s

s L s s L s L s L s� � � � �

M M

M M M
����������������

 

So M(s2) differs from M(s1) by a similarity transformation  

M(s2) = M(s2/ s1) M(s1) (M(s2/ s1))
�1           (4.14) 

 

Since the trace is not changed in such a transformation we have  

� (s2) = � (s1) 

i.e. � is independent of s.  

The transfer matrix M (s) as a whole does depend on the reference point s. In particular the 

elements of the matrix J: �,  and � are periodic functions of s with period L.  

1 0 ( ) ( ) cos sin sin
( ) cos sin

0 1 ( ) ( ) sin cos sin

                                     ( ) ( ),   ( ) ( ),   ( ) ( )

                                      

s s
s

s s

s L s s L s s L s

� � � � � � �
� �

� � � � � � �

� � � � � �

�� � � � � �
� � �� � � � � �

� � � �� 	 � 	 � 	

� � � � � �

M

                     is independent of .s�

  (4.15) 

 

We have now succeeded in replacing the four matrix elements a,b,c,d fulfilling detM = 

ad � bc = 1 by four parameters �, , �, � satisfying ���
2
=1. After the transfer matrix of the 

entire ring has been obtained by multiplication of individual matrices as described in section 3, 

the quantities �, , �, � are easily calculated by Eqs. (4.6) and (4.9) at any reference point s. But 
what do we win? The advantage is that these parameters allow a simple description of the 

motion in terms of harmonic-oscillator language. This will be shown in the following sections.  

 

4.2  Solution of the Hill equation 

Floquet Theorem  

In section 3 we have solved the homogeneous equation of motion in a piecewise manner (with 

K(s) = const in each piece) and have combined them using matrix algebra. We shall now present 
a closed form solution of the transverse oscillations. From this we will gain an improved 

understanding of betatron oscillations. The equation  

 

( ) 0 with ( ) ( )y K s y K s L K s�� � � � �  

has two independent solutions  

/ /

1 1 2 2
( ) ( ),   ( ) ( )i s L i s L

y s e p s y s e p s
� �

� �         (4.16) 

 

� is called the characteristic coefficient of the differential equation and is given by  

1
cos trace ( )

2
s� � M  

p1(s) and p2(s) are periodic functions of s  

p i (s + L) = p i (s),        i = 1,2 
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The solutions are bounded if � is real, i.e. if the trace of the transfer matrix over the magnet 
period of length L is less than 2.  

The proof of Floquet's theorem proceeds in several steps.  

a) We show that two special solutions y1, y2 exist with the property  

y i (s + L) = m i · y i (s)                      m i = const. 

Proof: Take two arbitrary independent solutions g1 (s), g2 (s) and consider the new functions  

h i (s) = g i (s + L),        i = 1,2. 

Because of the periodicity of K(s) the hi(s) are also solutions. Therefore a nonsingular matrix A 

exists with  

1 1 1

2 2 2s s L s

h g g

h g g
�

� � � � � �
� �� � � � � �

� � � � � �
A  

One can find a similarity transformation C which diagonalizes A  

11

2

  0

0    

m

m

�

� �
� � � �

� �
CAC B  

 
and define  

1 1

2 2s s

y g

y g

� � � �
�� � � �

� � � �
C  

Then 

1 1 1

2 2 2

1 1 11

2 2 2

                              

s L s L s

s s

y g g

y g g

y m y

y m y

� �

�

� � � � � �
� �� � � � � �

� � � � � �

� � � �
� �� � � �

� � � �

C CA

CAC

 

 

b) Now we establish a relation between A and the transfer matrix M(s) = M(s + L/s). From  

1 1 1 1

2 2 2 2

 we get 

s L s s L s

g g g g

g g g g
� �

� �� � � � � � � �
� �� � � � � � � �� �� � � � � � � �
A A  

Both equations can be combined in a single matrix equation  

1  2 1 2

1 2 1 2

  
 

  g   

T

s L s

g g g g

g g g
�

� � � �
� �� � � �� � � �� 	 � 	

A  

 

A
T is the transposed matrix of A.  

From the definition of the transfer matrix we have on the other hand  
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1  2 1 2

1 2 1 2( )

  
( / )  

  g   
s L ss

g g g g
s L s

g g g
�

� � � �
� �� � � �� � � �� 	 � 	

M

M
�����

 

 

So  

1 21

2

  
( )  with 

  

T

s

g g
A G M s G G

g g

�

� �
� � � �� �� �

 

 

Since the matrices A
 T

 and M(s) are connected by a similarity transformation they have the same 

eigenvalues: �1 = m1, �2 = m2.  
So  

y i (s + L) = �i yi (s)          i = 1,2. 

 

Now put  

�1 = e
 i�

 

(� may be real or complex).  

From det M = �1 ·�2 = 1 follows  

�2 = e �i� and cos����
1

2
(�1 + �2) 

                              = 
1

2
trace�� 

 

Finally we make the ansatz  

y1 (s) = e+i� s/L p1 (s) ,      y2 (s) = e� i� s/L p2 (s) 
 

It is then easy to see that the functions p1(s), p2(s) are periodic: p i (s+L) = p i(s). This completes 
the proof of Floquet's theorem.  

 

4.3  The beta function 

The elements of the transfer matrix  

M(s) � M(s + L/s) =
11 12

21 22

( )  ( )

( )  ( )

m s m s

m s m s

� �
� �
� �

 

 

are clearly periodic functions of s  

m ik (s+L) = m ik (s) 

 

The trace of M and therefore the characteristic coefficient � of Hill's equation are independent  

of s  
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cos� =
1

2
 traceM =

1

2
(m11 + m22) 

 

If we write M(s) in the Twiss form we see that the s-dependence is in the matrix J:  

M(s) = I cos���+ 
( )      (s)

( )  ( )

s

s s

� �

� �

� �
� �� �� �

 sin��

We want to show that �(s) and �(s) can be related to the "beta function" �(s). From the 

periodicity of M(s):  

� (s+L) = � (s) 

The condition  det M(s) = 1 allows to eliminate ��(s) (see Eq. (4.10)):  

 

21 ( )
( )

( )

s

s

s

�
�

�

�
�           (4.18) 

In order to express �(s) through the beta function (actually its derivative) we first derive first-
order differential equations for the two eigenfunctions y1, y2 of the Hill equation. From  

 

iM( )
s L s s

y y y
s e

y y y

��

�

� � � � � �
� �� � � � � �� � �� � � � � �

 

we obtain  

� �( ) cos ( ) ( ) sin ( )(cos sin )y s y s y s y s� � � � � ��� � � �  

y�+ y�� = � iy 

y i

y

�

�

� � �
�           (4.19) 

 

This last relation is valid with the positive sign for y1(s) (Eq. (4.16)) and with negative sign for 
y2(s).  

Let us take the equation of y1 and differentiate it logarithmically (we write y instead of y1).  

 

y y

y y i

� �

� �

��� � �	
	 � 	

� 	
 

y" = � Ky        (Hill    equation) 

 

 (from (4.19)).
y y K

K
y y i

�

�

��
� � � �

� � �
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y y K i

y y i i

� � � �

� � � �

�� � � �� �
� � � � � �

� � �
 

 

� � � �

� � � �
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2 2
1 2 0

K i i

K i

� � � � � �

� � �� � � � �

� �� � � � � � �

� � �� � � � � � �

 

The elements of M(s) are real. Therefore we get  

1
( ) ( )

2
s s� � �� � �� � � � � � � � � ��	
�� 

and  

2 2
1 0K� � �� � �� �� � � � � ��. 

 

Using (4.20) to eliminate � and ��  from the last equation we obtain the following nonlinear 
differential equation for the beta function  

2 21 1
1

2 4
K�� � ��� �� � �            (4.21) 

 

We have now succeeded in expressing the elements of the transfer matrix M(s) in terms of a 

single function �(s), its derivative ��(s), and a phase parameter �. In the following we shall see 
that the solutions of Hill's equation can also be written in terms of the beta function. This 

illustrates the basic r ô le of this function.  

According to Floquet's theorem there are two linearly independent solutions y1, y2 of Hill's 

equation which can be written as a phase factor /i s L
e

�� times a periodic function p1(s), p2(s). 

These solutions fulfil the first-order differential equation (4.19)  

1

2
i

y

y

�

�

�� �
�
�  

After integration we get  

i ( )

1,2 ( ) ( )

1
with ( ) ,    const.

( )

s

y s a s e

s a
s

� �
�

�� � �

�

�

    (4.22) 

 

The most general solution of the Hill equation is a pseudo-harmonic oscillation; amplitude and 

wavelength depend on the coordinate s and are both given in terms of the beta function:  

 

amplitude    � ( );   ( ) 2 ( )s s s� � ��� �� � � � � � ��	
�� 

The phase function �(s) is also computed from �(s)  
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� (s) =
( )o

s

s

dt

t��          (4.24) 

 

Now we can also compute the characteristic coefficient � of Hill's equation.  

i ( )

1
( ) ( )

s L
y s L a s L e�

� � �
� � �  

 

� (s+L) = �(s)                (see    (4.17)) 
 

( )
( ) ( ) ( )o o

s L s s L

s s s

dt dt dt
s L

t t t� � �

� �

� � � � �� � �  

So  

y1 (s+L) = y1 (s) · exp
( )

s L

s

dt

t�

�

�  

 

Using (4.16) we find           (4.25) 

 

� =
( )

s L

s

dt

t�

�

�          

� is the phase advance per period (of length L).  

The Q value (often denotes also as ν) is defined as the number of betatron oscillations per 

revolution. If the accelerator has N periods, Q is given by  

Q =
1

2 2 ( )

N ds

s

�

� � �
� ��          (4.26) 

 

In the above derivations it has been assumed that �(s) vanishes nowhere. This is guaranteed if 

�cos�� < 1 because in that case �, �, � are real and therefore the equation ��� �
2 = 1 requires 

� � 0.  

Remark: Note that the symbol �� does not represent a line integral as defined in the frame of vector analysis. In 

accelerator physics it is, instead, frequently used to symbolize an integral over the full circumference of the circular 

accelerator.  

Equation (4.26) means that, as a rule of thumb, the Q-value is given by the mean bending radius 

divided by the mean beta function.  

A particle trajectory is described by a real solution of Hill's equation:  

( ) ( ) cos( ( ) )y s a s s� �� � �                      (4.27) 

From �� = 
1

�
, that is d�

1

( )s�
 = ds = 

2

( )s

�

�
ds , we see again that the local wavelength of this 

quasi-harmonic wave is �(s) = 2	�(s). Since in high energy accelerators the betatron wavelength 

is typically of the order of several 10 m, � is of the same order of magnitude.  
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The derivative of y(s) is  

� �( )  cos( ( ) ) sin( ( ) )
a

y s s s� � �
�

� � � � � � � � ���� � � � � � ��	
�� 

� = �
1

2
� �  


 is an arbitrary constant phase.  

Now we consider a family of trajectories with the same amplitude a but with different phases 
. 

At a fixed value of s we plot the vector  

( )
( )

( )

y s
Y s

y s

� �
� � ��� �

 

as a function of the phase angle 
 in the (y, y�)-phase space (horizontal phase space (x,x�), vertical 

phase space (z,z�)).  
The equations  

� �

 cos ( )

sin( - ) cos( )

y a

a
y

� �

� � �
�

� � �

� � � � � � �
           (4.29) 

 

are a parametric representation of an ellipse in the (y,y�) plane. If 
 varies between 0 and 2	, the 

point 
y

Y
y

� �
� � ��� �

 moves around this ellipse (Fig. 24).  

 

Figure 24: Phase-space ellipse for a family of particle trajectories with the same amplitude a but 

different phase angles 
1, 
2, 
3, ... For trajectories with a smaller amplitude b one obtains a 
correspondingly smaller ellipse. 

Alternatively we can consider only one particle and follow this particle for many successive 

revolutions. Then its phase-space coordinates at a fixed 
1

s s�  also map out the phase-space 

ellipse, because for each turn in the accelerator the point (y, y�) makes a noninteger number of Q 
turns in the phase plane (Fig. 25).  
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Figure 25: Phase-space ellipse for one particle after many turns in the accelerator. For each 
revolution of the particle, the point (y, y’) makes Q turns in the phase plane (e.g. 6.2 turns in the 

case of the CERN PS). 

 

4.4  Emittance and beam envelope 

The area of the phase-space ellipse is an important quantity. It is given by  

area    =   	 a2                       (4.30) 
 

We want to show that the area remains invariant when we transform the particle trajectories 
through the accelerator.  

The ellipse equation is, in cartesian coordinate representation,  

� y2 + 2� yy� + � y�2 = a2           (4.31) 
 

This can be seen by inserting y, y� from Eq. (4.29) and using ��� �
2
 = 1.  

We want to show now that both sides of Eq. (4.31) remain constant when we transform y and y� 
through the accelerator. This constant is called the  

     Courant�Snyder  invariant 

� �

2 2

2 2

2 const

1
or  ( ) const

y yy y

y y y

� � �

� �
�

� �� � �

�� � �
     (4.32) 

Proof: let y(s) be an arbitrary real trajectory and y1(s) the first eigenfunction (4.16) of Hill's 

equation. We form the Wronskian determinant  

W = yy�1 � y�y1 

1 1 1 1
( ) 0

dW
W yy y y K yy yy

ds
� �� ��� � � � � � �  
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since both y, y1 fulfil Hill's equation. So W = const.  

y1 fulfils the Eq. (4.19):  
1 1

i
y y

�

�

�
� �  . Inserting this into the expression for W yields 

1

i
W y y y const

�

�

� ��
�� � �� �

� 	
.  

2

2

1 1 2

1 a
WW y y y y y const

��

� �

� �� �
�� �� � � �� �� �� 	� 	

  

Now from Eq. (4.22):         y1 �� ,

i
e� �         y1y1

�

 ���  

So we get        � �2 21
( )y y y const� �

�
�� � � .     

From the Courant-Snyder invariant we get the result that the area of the phase-space ellipse is 

invariant. The shape and orientation of the ellipse change when moving through the accelerator. 

In the center of a quadrupole of a regular FODO lattice the slope �� of the beta function is zero. 

Thus the main axes of the ellipse coincide with the y and y� axes (Fig. 26). (The term "FODO" 
lattice describes a periodic sequence of focusing and defocusing quadupole magnets, with dipole 
magnets or drift spaces -denoted by "O"- between them, see Fig. 29.)  

Let us now consider a particle beam centered around the reference orbit (y,y�) = (0,0) and assume 

that the particle trajectories fill the (yy�) phase space at a certain point s (e.g. the injection point) 
up to the phase ellipse with amplitude a. Then we know that all trajectories will remain inside or 

on the phase ellipse when the particles move around the accelerator. Since the area is invariant 
we get the important result that the phase-space density in the vicinity of any phase-space 

trajectory is invariant (Liouville's theorem). This is true under the condition that the particle 
energy is kept constant and that stochastic effects like beam-gas scattering or synchrotron 

radiation are neglected.  

 

Figure 26: Phase space ellipse in the center of a focusing or defocusing quadrupole magnet 

(assuming a periodic FODO lattice). 
 

Since the area of the ellipse enclosing the beam in phase space is such an important quantity one 

introduces a new notion, the emittance �  

area of ellipse = 	·��� � � � � � � ��	��� 
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When the particles are accelerated, the emittance decreases inversely proportional to the 
momentum. This can be understood intuitively from the observation that only the longitudinal 

component of the momentum vector is increased in the accelerating cavities whereas the 
transverse components remain invariant, so that the beam divergence shrinks. This phenomenon 

is often called adiabatic damping which is somewhat misleading since no dissipative effect is 
involved. The energy dependence of the emittance can be derived in a rigorous way within the 

Hamiltonian formalism. The key point is that the canonically conjugate momenta of the position 

variables x and z are not the slopes x�=dx/ds,  z�=dz/ds but rather the transverse momenta px,  pz. 

The phase-space trajectory in the (x,px) plane, corresponding to the emittance ellipse, is of course 

also an ellipse since
0x

p p x�� . The area is � �0N
m c� �� � . Here we have defined the normalized 

emittance by 

 

0

0

N

p

m c
� �

� �
� � �
� �

           (4.34) 

 
For proton and heavy-ion beams, and for electrons in linacs, the normalized emittance is the 

quantity that stays constant during acceleration. It remains even invariant when the beam is 
passed from an ion source through an entire chain of pre-accelerators into a large storage ring, 

provided the transitions are properly matched (see section 4.8).  

In electron-positron storage rings, the (stochastic) emission of synchrotron radiation and the 

subsequent re-acceleration are the dominant factors determining the beam dimensions. In an 
ideal flat ring with complete decoupling of horizontal and vertical motion, the vertical emittance 

tends to zero while the horizontal emittance grows with the square of the energy. This is treated 
in more detail in the lectures by R. Walker, these proceedings.  

Using the emittance � we can write for a particle trajectory on the ellipse that encloses the beam  

 

 ( ) ( ) cos( ( ) )y s s s�� �� � �         (4.35) 

The beam envelope is  

max
( ) ( ) ( )E s y s s� �� �          (4.36) 

 

The beam divergence is  

 

 
2

max

1 ( )
( ) ( ) ( )

( )

s
A s y s s

s

�
� � �

�

�
�� � �       (4.37) 

These quantities are shown in Fig. 27.  

Wherever � = 0, the beam envelope E(s) has a local minimum ("waist") or maximum: 

( ) / 0
d

E s
ds

�� �� � � .At such a position, the beam divergence is A(s) = /� � . This offers 

another simple interpretation of the beta function at a beam waist: The beta function is just the 
ratio of beam size to beam divergence:  
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�(beam  waist) =
( )

( ) /

E s

A s

� �

� �

�

�        (4.38) 

Since � is typically of the order of meters, a beam of a few mm diameter will typically have a 

divergence of a milliradian.  

Finally the equation of the ellipse enclosing the beam is  

2 2
2y yy y� � � �� �� � � � � � � � ��	��� 

 

Figure 27: Beam envelope and divergence 

Remark: There is a possible confusion here, since � is often defined as the area rather than the (area)/�. To avoid 

such confusion, one often quotes numbers like (10 �)mm·mrad. With our definition of the emittance this implies � = 

10 mm·mrad. In the alternative definition one would have � = 31.4  mm·mrad. Moreover, there are different 
conventions in the definition of the emittance for electron or proton beams, respectively. Traditionally, the electron 

emittance is defined for one standard deviation of the phase-space distribution function while for protons two 

standard deviations are used.  

 

4.5  Transformation of �, �, � 

The phase ellipse at a point s is characterized by the parameters �(s), �(s), �(s) and the emittance 

�. It is important to know the beam envelope and divergence at each location of the accelerator. 

Therefore it is of great interest to know how to transform �, �, �  through the optical system.  

We evaluate the invariant � at a reference point s� and an arbitrary other point s.  

2 2 2 2

0 0 0 0 0 0 0
2 2y yy y y y y y� � � � � � �� � � �� � � � � �  

Using the principal trajectories we can relate y(s), y�(s) to y� = y(s�), y�� = y�(s�) 

 
0

0

   S

  

yy C

y C S y

� �� � � �
� � �� � � �� � � �� � � � � �

 

The inverse transformation matrix is  

 

S   
 because of 1.

  

S C S

C C C S

� �� �
�� �� � ��� 	
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So  

0

0

2 2 2 2

0 0 0
( ) 2 ( )( ) ( ) 2

y S y Sy

y C y Cy

S y Sy S y Sy C y Cy C y Cy y yy y� � � � � � �

� �� �

� � �� � �

� � � � � � � � � �� � � � � � � � � � � �

 

Comparing the coefficients yields:  

2 2

0 0 0

0 0 0

2 2

0 0 0

( ) 2

( ) ( )

( ) 2

s C SC S

s CC SC S C SS

s C S C S

� � � �

� � � �

� � � �

� � �

� � � �� � � � �

� � � �� � �

 

In matrix notation  

 
2 2

0

0

2

0

         2            

        

2        2          

C SC S

CC SC S C SS

C S C S

��

� �

� �

� �� � �� �
� � � �� � � � � �� � � �� � � �� �

� � � �� �� � � ��	 
 	 
	 


        (4.40) 

By means of this matrix equation one can transform the beta function piecewise through the 

magnets and drift spaces. It is useful to start at a symmetry point s� of the machine where the 

derivative of � vanishes:  

0 0

'

0 0 0

0

0

1
0           0

2
1

� �

� � �

�

�

� �
� �� � � �� �

� � � � � �� �
� �� �

� � � �
� �
� �

 

In a drift space we get  

� (s) = �� � 2�� s + �� s
2  ,            �(s) = �� � �� s  ,          �(s) = ���

If now s� is a symmetry point like the interaction point of a colliding-beam storage ring we have 

 
2

0

0 0

0

( )      and, using Eq. (4.42),      cot( )
s

s

s

�
� � �

�
� � �� � �      (4.41) 

In order to get high luminosity one needs a small beam size at the interaction point (IP) and thus 

�� as small as possible. Due to Eq. (4.41) then � becomes large in the quadrupoles next to the IP. 
Therefore one needs large aperture quadrupoles, located as close to the IP as possible. This in 
turn means that the focusing strength must be large. The limiting factor in these so called "mini-

beta schemes" turns out to be, in most cases, the large chromatic errors of the quadrupole 
magnets involved, see section 5.3 [9].  

We have already seen that the beta function has the same periodicity as Hill's equation:  

y" + K(s) y = 0 

K(s+L) = K(s),��(s+L) = �(s) 

The solutions (4.27), i.e. the particle trajectories, however, are in general not periodic (Fig. 28). 

On the contrary, an integer Q value, i.e. an integer number of betatron oscillations per 

revolution, has to be carefully avoided because otherwise a small perturbation at a certain point 
s = s1 would be seen by the particle at every passage with the same betatron phase angle. This 
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would lead to a resonance-like increase in the betatron amplitude and finally to a loss of the 
particle.  

 

 

Figure 28: a) A regular FODO lattice of focusing and defocusing lenses b) Beta function. 

c) Cosine-like trajectory for s = 0. d) Sine-like trajectory for s = 0. e) One trajectory on several 
successive revolutions.  

(According to M. Sands, The Physic of Electron Storage Rings, SLAC-121). 
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4.6  Principal trajectories in terms of amplitude and phase function 

We denote with C(s) and S(s) the cosinelike and sinelike trajectories relative to the start point 

s = s� : 

C(s�)  = 1   S(s�)  = 0 

C�(s�) = 0   S�(s�) = 1 

Both can be represented by the form (4.27) of a real trajectory  

� �0 0

0 0

( ) ( ) cos( ( ) ) sin( ( ) )

with   ( )  etc.

C s s a s b s

s

�� � �� � � ��

� � �

 

� � � �
1

2

0 0 0 0

1
( ) cos( ) sin( ) sin( ) cos( )

2
C s a b a b� � �

�

� � �� � �� � � �� � � � �� � � �� �  

From C(s�) = 1,     C�(s�) = 0 we get  

0

0

0 0

1
,   a b a

�
�

� �
� � �  

 

S(s) can be computed similarly. The transformation matrix becomes  

0 0

0

0

0 0

0

(cos sin ) sin
( )    ( )

( )  ( ) 1
(( ) cos (1 )sin ) (cos sin )

C s S s

C s S s

�
� ��

�

�
� � �� �

�� �

� �
�� � �� ��� �

� � � �
�� � � �	 	
 � � �� �� � � �� �� � ��� �

 �

(4.42) 

 

with      �� = �(s) � �(s�) 

 

An interesting special case is the transformation matrix for one revolution. For simplicity we 

start at a symmetry point  

0 0 0
 :   0 ,  0s s � ��� � �  

Then  

0

0

cos2           sin2
   

1
sin2     cos2  

Q Q
C S

Q QC S

� � �

� �
�

� �
� � � ��� � � ��� �� 	 � �

� 	

      (4.42a) 

 

 

4.7  Transformation through a FODO cell 

Most high energy accelerators or storage rings have a periodic sequence of quadrupole magnets 
of alternating polarity in the arcs, see Fig. 29. The dipole magnets are put in between. Here we 

want to discuss the optical properties of a "FODO" cell disregarding the bending magnets (they 
are treated as drift spaces). The more general case will be considered in section 6.  
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Figure 29: FODO cell 

We work in the "thin-lens" approximation, see section 3.3d.  

0
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The transformation matrix of the cell is  

M = M F · M O · M D · M O 
2

2

2 2

1+    
2 4

  1
22 4

L L
L

f f

L L L

ff f

� �
�� �

� ��
� �
� � �� �� �

� 	

M            (4.43) 

If we compare this to the Twiss representation (4.15) of the transformation matrix over one 

period we obtain  

2

2

2

1
cos trace 1

2 8

cos 1 2sin
2

sin
2 4

L

f

L

f

�

�
�

�

� � �

� �

�

M

         (4.44) 

This equation allows one to compute the phase advance per cell from the cell length and the 

focal length of the quadrupoles.  

Stability requires (see (4.13)): �cos �� < 1  

i.e.              L/ 4f < 1  Stability:   / 4f L�       (4.45) 

For a phase advance of 90� per cell  

1

22

L
f � �  
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Example: HERA proton ring  

L = 47 m ,      k � 0.033 m�2,   lquad � 1.9 m 
2

16.4 m ,  90 ,   / sin 80.7m (in focusing quadrupole, see Eq. (6.4))
4

L
f L

f
� � �

� �
� � � � � �� �

	 

 

The limiting case L = 4f  of (4.45) has a simple interpretation. It is well known from optics that 

an object at a distance a=2f  from a focusing lens has its image at b=2f. A regular arrangement of 
focusing lenses with gaps L=4f in between provides thus a sequence of point-to-point imaging 

(Fig. 30). Defocusing lenses that are inserted at these image points have no effect at all because 
they are traversed on the axis. If however the lens system is moved further apart (L > 4f), this is 

no more true and the divergence of the light or particle beam is increased by every defocusing 
lens.  

As another example of the application of FODO cells, Fig. 31 illustrates the evolution of the 
phase space ellipse in a very simple circular accelerator consisting of just one FODO cell.  

 

 

Figure 30: Point-to-point imaging in an arrangement of focusing lenses with distances L = 4f. 

The defocusing lenses have no effect if a point-like object is located exactly on the axis at 
distance 2f from a focusing lens. 

 

4.8  Non-periodic beam optics 

In the previous sections, the Twiss parameters �, �, �, � have been derived for a periodic, 
circular accelerator. The condition of periodicity was essential for the definition of the beta 
function, see Eq. (4.17). Quite often, however, a particle beam moves only once along a beam 

transfer line, but one is nonetheless interested in quantities like beam envelopes and beam 

divergence. We will now show that the quantities �, �, �, � are useful in beam transfer lines as 

well. It will turn out that the main difference is that in transfer lines the beta function is no longer 
uniquely determined by the transfer matrix, but also depends on initial conditions which have to 

be specified in an adequate way.  

There is a very simple Gedankenexperiment to show that the Twiss parameters are useful in 

transfer lines as well: consider a circular accelerator containing the transfer line as a part of its 
lattice. Then it is obvious that the optics in the transfer section can be described in terms of 

Twiss parameters. Now one has to realize that the Twiss parameters in the transfer section will 
depend on the complete revolution matrix. Thus, since there is large arbitrariness in how the 

transfer line is complemented, the Twiss parameters in the transfer line are not at all well 
defined. On the other hand Eq. (4.40) shows, that the Twiss parameters are perfectly known in 

the whole transfer line if only � and � are determined somehow at the entrance of the line. How 
can this be done reasonably?  
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Figure 31: Phase-space dynamics in a simple circular accelerator consisting of one FODO cell. 
The two 180° bending magnets are assumed to be located in the drift spaces. Their weak 

focusing contribution is neglected. The periodicity of , ,a � � is reflected by the fact that the 

phase-space ellipse is transformed into itself after each turn. An individual particle trajectory, 

however, which starts, for instance, somewhere on the ellipse at the exit of the focusing 
quadrupole (small circle), is seen to move on the ellipse from turn to turn as determined by the 

phase angle � . Thus, an individual particle trajectory is not periodic, while the envelope of a 

whole beam is. 

 

Figure 32: A particle beam is often reasonably well described by a two dimensional Gaussian 

distribution in phase space. The lines of constant phase-space density are then ellipses. Since the 
phase-space density decreases only slowly with amplitude, the phase-space area containing all 

particles might be hard to determine (experimentally as well as theoretically). Also, it is not the 

quantity relevant for most of the applications. Therefore, the emittance is defined as 1/� times 
the phase-space area containing a certain fraction of the particles (e.g. 90 %). 
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Since � and � are related to the beam divergence and beam envelope, a sensible approach is to 

derive the initial conditions of � and � from the actual phase space distribution of the beam 
entering the transfer line. In Fig. 32 we have sketched such a distribution.  

The lines of constant phase space density are often well fitted by properly parametrized ellipses. 

(An ellipse is indeed one of the most simple parametrizations one can think of; the main reason for choosing an 

ellipse, however, will readily be seen.) 1/� times the area of the ellipse containing a certain fraction of 
the particles (say 90 %) is called the beam emittance. The most general ellipse parametrization in 

phase space is given by (y = x  or  z) 

  

�y2 + 2 �y y�+ �y�2 = a2        (4.46) 
 

Since only three free parameters are needed, we can impose another condition:  
 

��� �2 = 1          (4.47) 
 

With this normalization of the parameters �, �, �, the parameter a has the simple meaning that 

�a2
 is the ellipse area, thus 

  

a
2 = � = emittance          (4.48) 

 

It is obvious from Eqs. (4.46-4.48) that our beam ellipse parameters �, �, �, a satisfy the same 

equations as the Twiss parameters defined for a circular accelerator, see Eqs. (4.18, 4.30, 4.31). 

In a circular accelerator, however, �, �, � are completely determined by the magnet optics and 

the condition of periodicity while beam properties are not at all involved (only � is chosen to fit 

the actual beam size). In a transfer line optics, on the other hand, we can choose �, ��, � at the 
entrance to fit best the incoming beam.  

From then on the optics calculation proceeds the same way as in the circular accelerator:  

Linear optics performs a linear transformation of phase-space coordinates,  

 

1 0

1 0 0

   
( / )

  

y y C S y
M s s

y y C S y

� � � � � �� �
� �� � � � � �� �� � � � �� � � � � �� �

      (4.49) 

 

The beam ellipse at the entrance s� is therefore transformed into another ellipse at s1: 
 

2 2 2 2 2 2

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
2 2y y y y a y y y y a� � � � � �� � � �� � � � � � �     (4.50) 

 

Using Eq. (4.49) this can be written in the well known form (see Eq. (4.40))  

 
2 2

01

1 0

2 2

1 0

          2          

    

        2       
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C S C S

��

� �

� �

� �� � �� �
� �� �� � � � � �� � � �� �� �� �

� � � �� �� � � ��	 
 	 
	 


       (4.51) 

 

Using det M = 1  it is easy to prove that  
2

1 1 1
1� � �� �  
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i.e. 2

1
a�  still means the phase-space area. By virtue of Eq. (4.50)  

2 2

0 0 1 1
a a� �� � �  

 

i.e. beam emittance is preserved.  

Compared to the previous sections, there is nothing new with Eqs. (4.46-4.51). It is just the 

interpretation of the Twiss parameters which makes a difference.  

 

 

5  MOTION OF PARTICLES WITH MOMENTUM 

DEVIATION 

The central design orbit of a circular accelerator is a closed curve that goes through the center of 

all quadrupoles (assuming that the magnets are well aligned). This orbit is a possible particle 

trajectory: particles with nominal momentum p� starting at some point with zero displacement 

and zero slope will move on the design orbit for an arbitrary number of revolutions. However, 

particles with p = p� starting with non-vanishing initial conditions will conduct betatron 
oscillations about the orbit. Their path around the ring does not close onto itself since the Q-

value is non-integer.  

Now we consider a particle with a larger momentum p > p�. The design orbit is no more a 

possible trajectory for this particle. This is easy to understand for a weakly focusing machine (or 
in a homogeneous field): particles with larger momentum need a circle of larger radius on which 

they can move indefinitely (see Fig. 33).  

 

Figure 33: Closed orbit for particles with momentum p 	 p� in a weakly (a) and strongly (b) 

focusing circular accelerator. 

 

If they do not start on exactly that circle, they will perform betatron oscillations about this new, 

larger circle which therefore is the reference orbit for the particles with the given momentum 

deviation dp = p � p�. Since its radial distance x(s,dp/p�) from the design orbit is proportional to 
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dp/p�, it is practical to divide by the momentum deviation and define the closed dispersion orbit 
D(s) by the equation 

 
0 0

( , ) ( )
dp dp

x s D s
p p

� �  

In a machine with weak focusing, D(s) is of course a constant. In strongly focusing machines 
such an orbit exists, too, but it looks a lot more complicated. The focusing quadrupoles do not 

permit the particles to deviate too much from the central orbit and bend the trajectory towards 
the central orbit whereas the defocusing quadrupoles bend it away. It is then easy to understand 

that the closed dispersion orbit has its maximum deviation from the design orbit in the center of 
the focusing quadrupoles and its minimum deviation in the defocusing quadrupoles. This is 

sketched in Fig. 33 b.  

In the following we want to derive the mathematical expression for the closed dispersion orbit.  

 

5.1  Closed orbit for � p � 0 

A particle with �p = p � p� � 0 satisfies the inhomogeneous Hill equation for the horizontal 
motion  

0

1
( )

p
x K s x

p�

�
�� � �           (5.1) 

 

The total deviation of the particle from the reference orbit of the machine can be written as  

x(s) = xD(s) + x�(s)          (5.2) 

 

Here
0

( ) ( )
D

p
x s D s

p

�
� � describes the deviation of the closed orbit for off-momentum particles 

with a fixed �p from the reference orbit; x�(s) describes the betatron oscillation around this 
closed dispersion orbit.  

D(s) is the "periodic dispersion". It satisfies just the same differential equation as the dispersion 

trajectory in section 3.2:  

D" + K(s) D=
1

( )s�
           (5.3) 

 

But now we impose periodic boundary conditions  

D(s+C) = D(s),   D�(s+C) = D�(s) 

C = N L is the circumference of the machine.  

The periodic dispersion is often denoted as 
(s).  

In general, also the equation for the vertical coordinate z contains a nonvanishing right hand side, 
e.g. due to field and alignment errors in the magnets. We therefore consider more generally the 

equation  
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y" + K(s) y = F(s)          (5.5) 
 

K(s) and 1/�(s) have the period L but in general F(s) has only the period C = NL, e.g. if we have 
one magnet error.  

We look for a periodic solution of the inhomogeneous equation (5.5). The general solution is  

y(s) = a C(s) + b S(s) + u(s)         (5.6) 
 

u(s) is a special solution of the inhomogeneous equation. It is given by (cf. (3.11))  

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )
s s

s s

u s S s F t C t dt C s F t S t dt� �� �       (5.7) 

The reference point s = s� is arbitrary; C(s) and S(s) are the cosinelike and sinelike trajectories 

referred to this point s�.  

Our goal is to find a periodic solution of the type (5.6)  

Y(s+C) = Y(s),       Y�(s+C) = Y�(s)       (5.8) 

 

Since s� is arbitrary we can evaluate the conditions (5.8) at s = s� to compute the unknown 

constants a and b.  

ac1 + bs1 + u1= ac� + bs� + u��

ac�1 + bs�1 + u�1= ac�� + bs�� + u�� 

Here  

c� = C(s�)  = 1     ,  c�� = C�(s�) = 0 

c1 = C(s� + C)    ,  c�1 = C�(s� + C) 

u� = 0,  u�� = 0    ,  u1  = u(s� + C)       etc. 

 

We obtain 

1 1 1 1

1 1 1 1

( 1)

( 1)( 1)

s u s u

a

c s c s

� �� �
�

� �� � �
  

 

The denominator is  

�

1 1 1 1 1

2

1 2cos2

1 ( ) ( )

1 det M trace M 4sin ( Q)
Q

c s s c c s

�

�

� � �� � � �

� � � �
�����

 

 

Here      M =
0 0

0 0

( )   ( )
 

´( )  ( )

C s C S s C

C s C S s C

� �� �
� ��� �� �

 is the transformation matrix for one revolution. 

The numerator is  
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� � � �1 1 1 1 1 1
( 1)s s FC c FS s s FC c FS� � �� � � �� � � �  

� �0

0

abbreviation: ( ) ( )
s C

s

FS F t S t dt
�

�� �  

1 1 1 1 1 1

det M 1

. ( )Num c s c s FS c FS s FC

�

� �� � � �� � ������

     (see Eq.(4.42)) 

c1= C(s� + C) = cos2�Q +�� sin2�Q 

s1= �� sin2�Q 

� �

� �

� �

0

0

0

0

0

0

0 0

0 0
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� � � �

�

�

�
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�

�
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Now a = Y(s�). The point s� was chosen arbitrarily. Therefore we get for the closed trajectory 

� �

� �

( )
( ) ( ) ( )cos ( ) ( )

2sin

( )
( ) ( )cos ( ) ( )

2sin

s C

s

s
Y s t F t t s Q dt

Q

s
t F t t s Q dt

Q

�
� �

�

�
� �

�

�

� � �� �

� � �� �

�

��

     (5.9) 

 

Note that in the first equation t > s is required, i.e. the integration has to start at s, while in the 
second one this restriction does not apply.  

The closed periodic dispersion function is obtained for
0

1
( ) :

( )

p
F t

t p�

�
� �   

� �
( ) ( )

( ) ( ) cos ( ) ( )
2sin ( )

s t
D s s t s Q dt

Q t

� �
� �

� �
� � � �� ���     (5.10) 

 

These equations exhibit an essential instability of a circular accelerator: a finite dispersion exists 

only if the number of betatron oscillations per revolution Q is different from an integer. Consider 

an integer Q and look at a certain dipole. A particle with �p will receive a different kick angle 

than the reference particle with p = p�. Since Q is integer, these angular deviations add up 
coherently from turn to turn, and soon the particle hits the vacuum chamber.  

While Eqs. (5.9) and (5.10) are very useful for understanding the overall oscillatory behaviour of 

closed orbits in the presence of dipole errors or momentum errors, numerical calculations will be 

easier if matrix formalism is applied. This is provided by Eq. (3.10), since
0

( ) ( )
D

p
x s s

p
�

�
� � is a 

possible particle trajectory (we use now D,  D� for the dispersion trajectory part of the transfer 

matrix and �, �� for the periodic dispersion).  
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This means: � and �� are eigenvector components of the revolution matrix M for the eigenvalue 
1. (We leave the proof that the 3 ×3 matrix M always has an eigenvalue 1 as an exercise.)  

Explicitly, the last equation implies  

 

2

(1 ) (1 )

2 4sin

S D SD S D SD

C S Q
�

�
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� �

�� �
 

2
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4sin

C D C D

Q
�

�

� �� �
� �  

Again it is seen that integer Q values are to be avoided. Once � and �� have been determined at 

one point s�, the values at any other point s are calculated by a simple matrix multiplication:  

0

0
( / )

1 1
s s

M s s

� �

� �

� � � �
� � � �� ��� � � �
� � � �
� � � �

 

 

Momentum compaction  

A particle with �p/p� > 0 travels on a revolution a longer distance than the reference particle    

(�p = 0). 

 

 

Consider a particle moving on the closed dispersion trajectory. 

0

( ) ( )
D

p
x s D s

p

�
�  

The circumference for this particle is  
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C� =
( )

1 D
x s

ds
�
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 �� �

� 	
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C s
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�
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The quantity � is the relative change in orbit length divided by the relative momentum deviation. 

It is called "momentum compaction factor", which is a rather misleading notion. A rough 
estimate in terms of the horizontal Q-value is given by  


 �
2

1

x
Q

 

 

5.2  Dispersion in transfer lines 

In transfer lines, the dispersion function is also derived from Eqs. (5.6) and (5.7), but periodicity 

cannot be assumed anymore. Instead, initial conditions are derived from the beam properties at 
the entrance of the transfer lines. If here a significant correlation exists between the phase space 

coordinates of the particles and their respective momenta, appropriate initial conditions are  
2 2

0 0

i

;    = ; 
i i i i

i i

i i
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p p p p
D x D x

p p p p
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� � � �
 

where < > i denotes averaging over the whole ensemble of particles at the entrance.  

The dispersion as a function of the position s is then  

D(s) = D� C(s) + D�� S(s) + S(s)
0

1

( )

s

s t�
� C(t) dt �C(s) 

0

1

( )

s

s t�
� S(t) dt      (5.13) 

 

If no such correlation is known at the entrance, one usually chooses D� = D�� = 0, see Eq. (3.11). 
A transfer line is called non-dispersive if 

D� = D�� = 0,    
0
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dt
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It is instructive to consider also the generalization of the momentum compaction factor. The 

relative change in orbit length per relative momentum deviation is given by  
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Finally we consider the relative change in time of flight per relative momentum deviation:  
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This quantity is sometimes denoted by �(s,s�). If �(s,s�) = 0 , the transfer line is called 
isochronous, because then the time of flight does not depend on momentum. For ultrarelativistic 

particles (
2

1

�
  0), there is no difference between � and �.  

A more strict definition of a transfer line to be “isochronous” would include not only the 

contribution of off-energy particles to the time of flight but also the contribution of betatron-
oscillations. The condition that the time of flight is independent of energy and initial conditions 

requires, in addition to 
0 0

( ) ( )
0, also  0,   0

( ) ( )

s s

s s

C t S t
dt dt

t t
� � � �

� �
� � . 

In storage rings, the quantity 
1

tr
� �

�

defines the “transition energy” 2

0tr
m c� , i. e. the energy 

for which �becomes zero and longitudinal focusing is lost. 

 

 

5.3  Influence of field errors 

In this section we want to touch very briefly the effect of a dipole or quadrupole error.  

 

a) Dipole error  

If Bz = B� + �B     or    B x = �B, we have an additional, s-dependent Lorentz force. This leads 
again to an equation of the type (5.5). The periodic closed orbit is given by (5.9) with 

0

( ) ( )
e

F t B t
p

� �  . In order to have bounded motion the Q value must be non integer, Q � n. We 

see that even for particles with reference momentum 
0
p  an integer Q value is forbidden, since 

small field errors are always present.  

The main source of orbit errors in accelerators is the displacement of quadrupoles from the 

design orbit. Correction dipoles are needed to correct the orbit. Eq. (5.9) tells us that their effect 
is largest if they are placed at points with a large beta function. So a horizontally deflecting 

correction dipole should be placed close to a horizontally focusing quadrupole and a vertically 
deflecting correction dipole close to a vertically focusing quadrupole.  

 

b) Quadrupole errors  

Let K�(s) be the design quadrupole strength, �K(s) the error. For a particle with �p = 0 we have  

y" + (K�(s) + �K(s)) y = 0 

Call M� the transformation matrix for a revolution in the undisturbed machine  

M� = I cos�� + J sin���

�� = 2�Q�

Suppose the error occurs only at s = s1 over a short length ds1 and let M denote the 

transformation matrix for the disturbed machine.  
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We get  

M = mm�
�1

M��

Here m� is the matrix of the section of length ds1 in the undisturbed case, m the matrix in the 
disturbed case  

� �0

0 1 1 0 1 1 1

               1                       0         1         0
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m m  

Simple matrix algebra yields    1
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��� 	
mm ,     thus, using Eq. (4.15) : 
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If the perturbation is distributed around the ring, we get  

0

0

sin
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2
s K s ds

�
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Now, for small �� , 
0 0 0 0 0
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� � �
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A gradient error therefore leads to a shift in the Q value          

1
( ) ( )

4
Q s K s ds�

�
� � ���          (5.14) 

The Q shift is proportional to both the magnitude of the gradient error and the beta function at 
the location of the error.  

A gradient error changes the beta function itself. Without proof we state the result  

��(s) =
( )

( )
2sin(2 )

s
ß t

Q

�

� �� �K(t) cos (2 ��(t) � �(s)�� 2�Q) dt      (5.15) 

 

Again the change of the beta function is proportional to the magnitude of the perturbation and 
the amplitude of the beta function itself at the point of the perturbation.  

Gradient errors in the interaction region quadrupoles are therefore most dangerous. The second 

important result is that �� remains only finite if Q is different from a half-integer number 

(sin(2�Q) in the denominator).  

The observation that dipole errors lead to integer resonances, quadrupole errors to resonances at 

half-integer Q values indicates that sextupole fields excite resonances at third-integer Q values. 
This is in fact the case but not the subject of the present introductory course.2 Moreover, one has 

                                                
2
 Resonances are discussed in detail in E. Wilson's lectures at this and the previous accelerator schools (see e.g. the 

proceedings of the 1984 accelerator school, CERN 85-19). 
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in general a coupling between horizontal and vertical betatron oscillations due to sextupoles or 
misalignment of magnets (skew quadrupole fields, see the table at the end of section 2f) etc. This 

leads to a more general condition  

mQx + nQz � l             (5.16) 

 

(m, n, l integer numbers; m, n small)  

The working point (Q x, Q z) has to be chosen in a reasonable distance from the resonance lines 

(Fig. 34)  

 

Figure 34: Resonance diagram up to fourth order. Some of the resonance lines have been 
identified explicitly. 

 

5.4  Chromaticity 

Particles with �p � 0 are focused differently in the quadrupoles. This leads to a shift of the Q 
value. From  

eg
K

p
�  

we get  

0

0 0 0

dK eg p p
K p K

dp p p p

� �
� � � � � � � �  

Formally this is the same as a gradient error. We can therefore use (5.14) to calculate the Q shift  
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0 0
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p p
Q s K s ds

p p
� �
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� �
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s K s� �

�
� � ��          ������ 

� is called the chromaticity of the machine. For a linear magnet lattice it is always negative. The 

main contribution to the chromaticity comes from quadrupoles which are strongly excited and 

where the � function is large (e.g. interaction region quadrupoles).  

In big accelerators the chromaticity arising from the linear lattice (also called the "linear" or 

"natural" chromaticity) is a large quantity (e.g. � � �60 in the HERA storage rings). Then, the 

"tune" spread due to the finite momentum band becomes so large that some part of the beam 
unavoidably hits dangerous resonance lines. In the HERA case, for instance, a beam with a 

relative momentum spread of only �10
�3

 would cover a tune range of 0.12 ! For this reason, and 
in order to avoid the so-called "head-tail" instability, one has to compensate the chromaticity. 
This can be achieved with sextupoles. The sextupole magnets have to be placed at locations 

where the closed dispersion orbit D(s) is nonzero, (Fig. 35).  

 

Figure 35: Dispersion trajectory in a sextupole magnet 

 

Consider a particle with �p � 0 moving without betatron oscillation on the closed dispersion 
trajectory.  

0

( ) ( )
D

p
x s D s

p

�
�  

Now put a sextupole magnet at a place with D(s) � 0.  

The sextupole field at x = xD in the horizontal plane z = 0 is  

Bz =
1

2
 g�x2              (5.18) 
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Figure 36: Force on electrons in a sextupole magnet 

Particles moving with �p = 0 on the reference orbit are not influenced. With the polarity shown 

in Fig. 35, the sextupole deflects electrons with �p > 0 towards the central orbit and electrons 

with �p < 0 away from it (Fig. 36). It is therefore clear that the closed dispersion orbit (5.10), 

which was computed for a "linear" machine with only dipole and quadrupole magnets, will 
change when sextupoles are switched on, in particular if momentum deviations are large. The 

dispersion orbit of the "nonlinear" machine can be determined by an iterative procedure.  

Now consider a particle that conducts betatron oscillations around that orbit. We want to show 

that the sextupole acts like a position-dependent quadrupole and influences both horizontal and 
vertical motion.  

Let �p > 0 and consider small deviations ,x z� � from the closed dispersion trajectory  

x   = xD + x�  

z   = 0   + z�  

To first order in the small quantities ,x z� � :  

0

( )
x D

p
B g x z g D s z

p

� ��
� �� � � �

	 

� �  

Bz �      2

causes deflection of
closed dispersion orbit 

1

2
D

g x�

���

  +
0

( )
p

g D s x
p

� ��
�� �

� �
�          (5.19) 

 

Thus the sextupole acts like a quadrupole whose strength increases linearly with �p. The 
equivalent quadrupole strength is  

0 0

( )D
eg x p

m D s
p p

� �
� �          (5.20) 

0

eg
m

p

�
� (Eq.  (2.13)) 

 

In a regular FODO lattice, two families of sextupoles are needed, (horizontally) focusing ones 

near the F quadrupoles and defocusing ones near the D quadrupoles. By a proper choice of their 
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strengths one can achieve simultaneous compensation of the horizontal and vertical 
chromaticities. 

� � � �
, ,

1 1
( ) ( ) ( ) ( )  ;  ( ) ( ) ( ) ( )

4 4
comp x x x comp y x y

k s m s D s s ds k s m s D s s ds� � � �
� �

� � � � � � �� �� � �(5.21) 

The sextupole compensation of the chromaticity is unavoidable in large rings but has unfortunate 
consequences: one introduces non-linear fields and a coupling between horizontal and vertical 

motion (see (2.12)). These adverse effects can be minimized by using a large number of 
sextupoles with moderate strength, distributed around the ring, rather than a few very strong 

sextupoles.  

 

6  COMPARISON OF STRONG AND WEAK FOCUSING 

6.1  Simplified model of strong focusing 

In this chapter we follow closely K. Steffen's lectures at the Orsay accelerator school. We 
consider a FODO channel and make the following simplifying assumptions: 

1. The weak focusing of the bending magnets is neglected since the radius of curvature is much 

larger than the focal length of the quadrupoles. (HERA p-ring:  � = 584  m,  f =16.4  m) 

2. We neglect the short drift spaces between dipoles and quadrupoles. 

3. F and D quadrupoles have the same strength 1/f and are treated as thin lenses (l q   0). 

 

The simplified model depends only on three parameters  

l = L/2 half cell length � dipole length 

1

2
bending strength;           	 = .

l

�
 

1 1

2f f
� � �

�
strength of half quadrupole 

Its periodic solution and individual particle trajectories have been illustrated in Figs. 28, 30, 31. 

We now want to explicitly calculate the Twiss parameters as a function of l, �, f. We compute 
the transformation through a half cell from the middle of the F quadrupole to the middle of the D 

quadrupole (Fig. 37)  

 

Figure 37: Half cell 
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M(s1/ s�) =

 1     0   1     0
1   sin

    1 1
  1   10       1

f f

� � � �
� �� � � �
� �� � � ��� �� � � �� �� � � �

� �
 

              
1

2
D-quad.      

1

2
F-quad. 

1 0

2

1 sin     sin

( / )

- sin   1 sin

f
s s

f f

� �
�� ��

� ��
� �

�� �� �	 


M

�
� � �

� �
� �

� � � � � � � ����� 

The transformation through the next half cell to the middle of the next F quadrupole at s2 = s1 + l 

is simply obtained by replacing f� by �f� in (6.1).  

So the transfer matrix for the whole cell is  

M(s�)= M(s� + L/s�) = M(s2/s1) ·M(s1/s�) 

M(s�)=

2 2

2 2

2

2 2 2

2 2 2

2 3 2

1 2 sin                     2 sin 2 sin

2 sin 2 sin       1 2 sin

f f

f f f

� �
� � � �

� � �
� � �

� �
� �� �� �� �

� �
� � �� �� �� � �� 	

 

 

cos� =
1

2
 trace  M = 

2

2

2
1 2 sin

f

�
��

�
         (6.2) 

Now  

	 =
l

�
<< 1 ,    so  sin	 �

l

�
;
1

f �
=

1

2 f
 

 

cos� = 1 �
2 2

2 2

1 1
1

2 8

l L

f f
� � �����

1
sin

2 2

l

f

�
�  

 

So in the approximation sin� � 	 we get the same result for the phase advance in a FODO cell as 
in section 4.7 where we treated the bending magnets as drift spaces. The present treatment offers 

additional information. In the middle of an F quadrupole the beta function assumes its maximum 

value �̂ , in the middle of a D quadrupole its minimum value �
�

. The slope �� is zero here, so 

� = 0 and 
 = 1/�. The matrix (4.42), applied to the transformation s�  s1, is therefore (with 

�� = �/2)  

 

ˆ ˆ/  cos    cos
   

      1 ˆsin    / cos  2
ˆ

C S

C S

� ��� ��
� �� �

� �� �� �� �� � 	 �� ��
 � � �� �

 �

� � ��
�

� �
��

� �

�

�

        (6.3) 

 

Rectangular 

dipole 
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From the equality of the matrices (6.1) and (6.3) it follows  

2

1 sin

ˆ /

1 sin

ˆ /

S f

C

f

S
f

C

�
�

� �
�

�

� �

�
� �
� �

�
�

�� �
�

�

�

 

 

Now f� = 2f and from (6.2) 
f

�

�
sin	 = sin

2

�
� 

4

L l

f f
�

�
.This allows to compute �̂ and �

�

 as 

functions of �  

1 sin
42ˆ 2

sin 4

1 sin
42 2  

sin 4

1 sinˆ ˆ
2 ;      

2 sin
1 sin

2

f L
L f

f L

f L
L f

f L

L

�
�

� �

�

�
�

� �

�

�
�

� � �

�

�

�
�

�

�
�

�
� � �

�
� ��

�

�

�

        (6.4) 

 

We see that our basic assumption �cos� � < 1, that is sin� � 0 , is necessary to get a finite value 

for  �̂ .  

For 0 < � < �:       sin
2

�
< 1,      

4

L

f
 < 1 (see (4.45)). For a given cell length L, the phase 

advance with the smallest �̂   requires the least beam aperture. We obtain it by differentiating 

(6.4):  

From
ˆd

d

�

�
= 0             it   follows            sin2 2 sin 1

2 2

� �� �
� �� �

� �  

 

� = 76.35� 

In practice, phase advances per cell are typically 60� to 90�.  

To transform the dispersion through the half cell we have to compute the 3×3 transfer matrix.  

 

half cell

1     0    0 1   sin     (1-cos 1        0   0
      

1 1
      1    0 0      1            2tan

2
0    0   1

0      0               10     0    1

C S D

C S D
f f

� � � �

�

� �� �
� � � �� �
� � � �� �� � � � �� � � �� �� �� � � �� �� 	 � �

� 	� 	

 1    0

0        0    1

1 1
                                 D quad.            dipole                      F quad.

2 2

� �
� �
� �
� �
� �� �
� 	
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2

half cell

1- sin             sin                  (1 cos )    

      

    sin        1+ sin        (1-cos ) 2tan     
2

0    0   1
    0                          0         

f
C S D

C S D
f f f

�
�

� �
� �� � � � � �� � � � �� �
	 


�
� � � � �

� � � �
� � �

                     1

                                        .

� �
� �
� �
� �
� �
� �
� �
� �
	 


 

 

Now in the center of the F-quad: D(s�) = D̂ , D��s0) = 0 and in the center of the D-quad: 

D(s1) =D
�

, D�(s1) = 0  

So  

0 01 1

1 1 0 0

half cell 

ˆ           

    0    0    0

0    0   1 0    0   1 0    0   1

                                        .

C S DC S D C S D

C S C S C S

� �� � � �
� �� � � �� � � � � �� � �� � � �

� � � �� �
� �� � � �

�

 

 

This yields two equations for D̂  and D
�

. The result is  

 

2

2

2

2

1
1 sin

2 2ˆ

sin
2

1
1 sin

2 2

sin
2

l
D

l
D

�

��

�

��

�

�

�

�

�

               (6.5) 

 

The highest and lowest values of the beta function and the dispersion are plotted in Fig. 38 as a 

function of the phase advance �. . 
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Figure 38: The extreme values of � and D as functions of the phase advance � in the cell 

It is instructive to compute � and D as functions of s within the half cell. For simplicity we set 

s� = 0. Starting from the center of the F-quad at s� = 0 we first have to apply the matrix equation 

(4.40) for a half quadrupole to compute �, �, 
 at the exit of the F-quad and then the same 
equation for a bending magnet of length s with 0 < s < l.  

exit F-quad

2 2

ˆ
1         0       0 ˆ

ˆ1
      1      0    0

ˆ1/
ˆ1 2 1

       1
ˆ

f f

f f f

� �� �
� �� �
� �� � � �� � � �� �� �� � � �� �� �� �� � � �� �� � � �� �

� � � �� �� �
� �� � 	� � � �� � �� � � �

�
� �

�
�

� �
�

�

 

                       matrix (4.40)      center of 

                       for ½ quad          F-quad 

 

Now for a bending magnet of length s  

   1   sin 1   
   (for 1)

  0      1 0  1

C S s s

C S

� �
�

�

� � � � � �
� � �� � � � � �� �� 	 � 	 � 	

�  

 

so  
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2

2

ˆ      
( ) 1   -2    

ˆ
( )   0    1   -          

( ) 0    0    1
ˆ 1

ˆ

s s s

s s
f

s

f

�
�

�
�

�
�

�

� �
� �
� �� �� � � �� �� � � �� � �� � �� �� � � �� � � �� �
� �	� ��� �

 

                 matrix (4.40) 

                for dipole 

We get  

� (s) = 2

2

ˆ ˆ 1
ˆ 2

ˆ
s s

f f

� �
�

�

� �
� � �� �� �� �� 	

             (6.6) 

  �(s) = �̂  for    s = 0,   ( )s� ��

�

 for    s = l. 

 

The dispersion D(s) is obtained using the transformation matrices (3.15) and (3.20).  

 

0 0

0 0

exit F-quad

1        0       0    ˆ          
1

       1      0                  0

0    0    1 0    0     1
0        0      1

C S DC S D

C S D C S
f
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                                        ½ F- quad            values in center of F-quad 
 

2

exit

1
1                       

( )   ( )    ( )       2

( )  ( )   ( ) 0        1      /       

    0        0       1 0        0      1 0    0    1

s
s

C s S s D s C S D

C s S s D s s C S D

� �
� �

� � � �� �
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� �
� �

�

�

F-quad

 

                                            matrix (3.20)  

                      for 	 = 1
s

�
�  

The result is  

D(s) =
2

1
ˆ 1

2

s s
D

f �

� �
� �� ��� 	

           (6.7) 

 

� D(s� = 0) = ,D�      D(s = l) =D
�
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In an accelerator, where the arcs consist of identical FODO cells, the momentum compaction 
factor is  


 = � �
2 2

2

ˆ1 ( ) 1 2 1 1ˆ
2 ( ) 2 2 2 sin

2

D s D D l f
ds D D

R s R R R R

��

�� � � � � �

��
� � � � � � ��

�

�

�  

 

2

C
R

�

�  is the average machine radius including the straight sections. 

 

For example  

� =
2 2

4f f

R R� �

�
� � 1.4 ·10

�3
     for the HERA proton ring      (6.8) 

 

The chromaticity can be estimated as follows (cf. Eq. (5.17)):  

1
( ) ( )

4
s K s ds� � �� �

� �
 

In a focusing quadrupole:  

ˆ,� ��     K(s) �s =
1

f
 (�s denotes the length of the quad); 

In a defocusing quadrupole:  

,� ��

�

  K �s = - 
1

f
 

Therefore, the chromaticity caused by the regular cell structure of the accelerator is  

� � � � �
1 1 ˆ tan
4 2

N
N

f

�
� �

� �
� � �

�

           N    =   number  of  cells 

 

Each FODO cell contributes 
1
tan .

2

�

�
�  

In the HERA proton ring, the contribution of the arcs is N = 104 , �̂  � 80 m, �
�

� 20 m, f � 16 m; 

so �arcs � � 30.  

The interaction region quadrupoles contribute a large amount to the total chromaticity since there 

�(s) and K(s) are both large. The chromaticity of the straight sections in the HERA proton ring 

(including the interaction regions) amounts to �straight  sections � �30. Thus the total linear 

chromaticity of the HERA proton ring is �HERA � �60.  

For a particle with a momentum error of �p/p� = 5 ·10 �4 this would imply a tune shift of 

�Q = �0.03 if no sextupoles were present.  
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6.2  Stability diagram 

In principle one can choose different strengths for the focusing and the defocusing quadrupoles.  
Call  

1

l

f �
= F > 0,     and              �

2

0
l

D
f

� �
�

�

Then for the horizontal motion, we have(cf. Eq. (3.21))  

half cell 

    1                         
   

1
  ( )      1

F l
C S

C S F D FD D
l

�� �
� � � ��� � � �� � � � � �� �	 


	 


       (6.10) 

This matrix has to be equal to the matrix (6.3). In particular  

�C�S = F � D + FD = sin
2

2

x
�

 

For the vertical motion, one simply has to interchange F and D in (6.10)  

D � F + FD = sin
2

2

z
�

 

Now 0 � sin
2

2

�
� 1 has to hold in both cases. The criterion for stability in both planes is 

therefore  

0 � F�D + FD � 1 

0 � F�D + FD � 1 

The limits of the stable region are  

sin
2

x
�

= 0 � F =
1

D

D�

                                                            sin
2

z
�

 0 � D =
1

F

F�

 

sin
2

x
�

= 1 � F = 1                                                                   sin
2

z
�

= 1 � D = 1 

The stable region has the appearance of a necktie (Fig. 39).  

 

Figure 39: Stability diagram for different strengths of focusing and defocusing quadrupoles 
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6.3  Weak focusing with constant gradient 

Let us assume a continuous ring magnet with the magnetic field independent of s. The focusing 
strengths  

Kz= k 

Kx=
2

1
k

�

� �
�� �

� �
             (6.11) 

can be made both positive, if k is smaller than the "weak focusing term" 
2

1
.

�
  

We choose a small gradient g  

Bz(x) = B� � gx           (6.12) 
 

Then the field index n, defined in Eq. (1.5), is  

n = � 20

0 0 0

z
B g

k k
B x B eB

� �� �
�

�
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�
          (6.13) 

Kx =
2

1
,

n

�

�

                   Kz =
2

n

�
         (6.14) 

 

 

From the conditions Kx > 0,    Kz > 0 for focusing in both planes we recover our old result 

Eq. (1.6): 0 < n < 1.  

The transfer matrix for one revolution is for the horizontal motion  

     cos         sin    (1 cos )
11

        
1 1

       sin       cos         sin
1

0     0     1
       0                     0                  1

nn
C S D

n
C S D

n

� �
�� ���� �� �

� ��� �� � � � �� �� � �� �� �
� 	 � �

� �� �
� 	

� �
� � �

� � �
�

     (6.15) 

 

The matrix (6.15) does not depend on the start point s. If we equate it to the (3×3)-extension of 

the matrix (4.42), we see that � does not depend on s and therefore � = � 
1

2
� �  = 0.  

We get  

�x = 
1 n

�

�

= const 

Qx = 1 n�              (6.16) 

The number of betatron oscillations per turn is less than 1.  

The dispersion is  
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D =
1 n

�

�

 = const            (6.17) 

 

The closed dispersion curve is simply a circle which is concentric with the reference orbit r = �. 
The momentum compaction factor is therefore  

� = 
1 1

2 1

D
ds

n�� �
�

�
��   

 

For the vertical plane, we replace 1�n by n  

�z =
n

�
= const 

Qz = n              (6.18) 

For n = 
1

2
we have �x = �z = 2�  and D = 2 �. The following table compares weakly and 

strongly focusing machines for � = 25  m and � = 400  m. The weakly focusing machine requires 
extremely large apertures especially to accommodate the energy spread of the beam. In the 

strongly focusing case, a phase advance of 60
�
 per cell has been chosen. 

 

  
  a)    25 m                                             b)           400 m

            =   5 m                                                              20 ml l

� �

�

� �
 

 

weak foc.          strong foc.                                   weak foc.                   strong foc. 

�  = 35 m           �̂ = 17 m         ��������m                 �̂ = 69 m 

D = 50 m           D̂ =   5 m                                   D = 800  m                D̂  =  5 m 
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