
Battle with the Unseen –
Understanding Rootkits on Windows

Eric Uday Kumar
Authentium

USA

Abstract

Rootkits are increasingly being used by today’s malware to attack the Windows NT based platforms. Their prevalence
marks the dawn of “stealth”. The term “rootkit” has come to be associated with a program that conceals its activities from
the underlying operating system using stealth techniques. Rootkits are now being used by malware authors as a new arsenal
in their weaponry to aide and abet their malware programs. Their proliferated use can be seen among worms, Trojans,
backdoors, keyloggers, spyware, adware and a wide range of such malicious programs that are collectively being termed as
“crimeware” or “snoopware”. The primary goal of such malicious programs is to maintain an undetectable presence on the
victim machine for a long period of time and to covertly carry on their activity. Malware authors couldn’t have asked for
more, rootkits are the best thing that could have happened to them.

In this paper we discuss emerging trends in rootkit technology for the Windows NT based platform and offer a perspective
on their future. We will shed light on some of the popular user mode and kernel mode rootkits. Later, the future of rootkit
technology will be discussed. From a view to counteract this threat we also discuss emerging trends and tools in rootkit detec-
tion technology.

While an attacker needs to find a single hole to breach security in a system, the attacked needs to plug all plausible avenues
of attack. The paper discusses preventive measures to guard these avenues of attack by understanding the ways of the attacker.
Nonetheless, to stay abreast of malware authors, rootkit detection techniques have to constantly evolve, as new techniques to
“subvert” the Windows kernel are devised.

AVAR 2006 - AucklAnd

Introduction – Understanding the Battle

“A rootkit is a set of software tools intended to conceal
running processes, files or system data, thereby helping
an intruder to maintain access to a system whilst avoid-
ing detection” (the Wikipedia definition for a rootkit
[82]). According to Mark Russinovich, a rootkit is sim-
ply a cloaking device [28]. According to Greg Hoglund a
rootkit is a tool to maintain un-restricted and un-detect-
able presence for a long time [29]. Rootkits existed in the
UNIX world long before they migrated to the Windows
world. The word itself is derived from “root” – the most
powerful user on a UNIX based machine, which is simi-
lar to the built-in Administrator account in Windows.
The first public Windows rootkit called NTRootkit,
was published in 1999 by Greg Hoglund [19]. Rootkits
have recently received a great deal of media attention
as researchers have realized that they represent the next
battleground in the malware war [28]. This publicity has
both alerted end users to the dangers of rootkits as well
as popularized the power of rootkits to the malware com-
munity.

Rootkits work on the principal of “modification”. They
either modify execution paths or modify the underlying
operating system structures. This is typically done by ex-
ploiting operating system extensibility. They survive by
employing stealth and hide a compromise by making the
system “lie to you”. The primary goal of a rootkit remains
to hide the true activities of its spurious, third party us-
ers.

The essential rootkit components might perform some or
all of the following:

Modify system authentication process to elevate
privileges or facilitate backdoor access.

Modify intrusion detection system so that it ignores
key event signatures.

Masquerade as a benign system application and dis-
play expected reports.

Monitor and modify system logs to ensure that cer-
tain activities do not get logged.

The purpose of a rootkit is to maintain an un-restricted
and un-detectable presence on an already compromised
victim machine for a long period of time. For this, the at-
tacker has to first compromise the system and then in or-
der to maintain access and conceal activity drop a rootkit.
An attacker could employ social-engineering via instant
messengers or peer-to-peer (P2P) networks to distribute

■

■

■

■

a rootkit [5]. Tricking users into executing malicious code
through Trojan horses or social engineering is often the
simplest approach. Other avenues of attack could be to
exploit known vulnerabilities in libraries against which
certain client software are linked or if possible, the client
software itself could be breached via a buffer-overflow
attack. Browser vulnerabilities are increasingly being ex-
ploited to facilitate “drive-by” downloads. Trojan horses,
worms, and spyware distributed via these channels act as
delivery mechanisms or carriers for rootkits [6]. Another
approach could be via a remote hack to exploit vulner-
abilities that range anywhere from buffer overflows and
dictionary passwords to lack of security hot fixes [7]. Af-
ter breaking into the computer the hacker will install the
rootkit, erase all evidence and vanish until it is time to
access the host again. The remote vulnerability may be
discovered and patched in time, but the rootkit may lie
hidden on the system for long periods of time, which al-
lows persistent host access.

The graph in Figure-1 is a clear indicative of the increasing
use of rootkits among malware targeting Windows NT
based systems.

Figure-1. Prevalence of rootkits in malware. Source [1].

The wide usage of rootkits in today’s malware is attribut-
ed to their ease of availability via the web. They are down-
loadable as ready to use rootkits or as source code for
those who want to compile custom rootkits. www.rootkit.
com is arguably the largest source for new and emerging
rootkit techniques. It is a central meeting point for both
rootkit developers and security professionals who could
use this information to educate themselves and learn the
ways of the attacker in order to develop anti-rootkit tech-
niques.

Another reason to which the use of rootkits in today’s
malware can be attributed is “a shift in intent of writing
malware”. Viruses and worms are no longer written to
prove skill or to draw attention but rather as a means to
bank the green bucks! This shift in intention or rather the
commercialization of malicious intentions has greatly in-
creased the creation and proliferation of “crime-ware” (or
snoop-ware such as spyware, keyloggers, backdoors etc.)

AVAR 2006 - AucklAnd

[8]. These applications demand the use of stealth in order
to “own the box” for as long as possible without being de-
tected and without being able to be traced back to.

Understanding the Battlefield – Kernel mode
vs. User mode

The Windows NT based architecture clearly separates
the user mode code (Ring 3) from the underlying kernel
mode code (Ring 0). This is to keep any buggy or mali-
cious user mode applications from crashing or compro-
mising the kernel. User mode applications are less privi-
leged and access the system’s resources like registry, file
system, memory etc. via the Win32 API. Kernel mode
is the mode of execution in the processor that grants
access to entire system memory and all the processor’s
instructions. The architecture provides extensibility of
kernel functionality by allowing device drivers to load in
the kernel. This allows third party device drivers to ac-
cess low level kernel functions and objects and interface
with hardware. Windows will tag memory pages speci-
fying which mode is required to access the memory, but
Windows does not protect memory in kernel mode from
other threads running in kernel mode [9]. Hence, any ma-
licious or buggy device driver running in kernel mode can
quickly compromise the integrity and stability of a system
sometimes resulting in system crash (popularly known as
Blue Screen of Death or BSoD). Windows only supports
these two modes of execution today, although Intel and
AMD CPUs actually support four privilege modes or
rings in their chips to protect system code and data from
being overwritten by code of a lesser privilege.

Behind the Scenes

Windows was designed to be largely independent of the
underlying computer hardware and compatible with oth-
er operating environments. It is also flexible so that an up-
grade to the underlying operating system does not require
application developers to completely rewrite their code.
Windows does this by implementing the Win32 subsys-
tem as a Dynamic Link Library (DLL). This provides an
Application Programming Interface to the system ser-
vices that reside in kernel memory. By using this API, ap-
plication developers can write software that will survive
most operating system upgrades. Usually, these applica-
tions do not call the Windows system services directly;
instead, they go through one of these implemented APIs.
The Win32 subsystem is composed of kernel32.dll,
user32.dll, gdi32.dll, and advapi32.dll.
Ntdll.dll is a special system support library that the
Win32 subsystem DLLs use [11].

When an application in user mode requests for say a list-
ing of files on the disk, this is usually accomplished by
invoking the Win32 APIs FindFirstFile() and
FindNextFile() exported by kernel32.dll. The ac-
tual steps that take place beneath the operating system in
kernel mode are shown in Figure-2.

Figure-2. Various steps involved in completing an API call
such as FindNextFile(). Source [10].

The FindNextFile()function calls the NtQuery-
DirectoryFile() Native API function in ntdll.
dll. The user mode NtQueryDirectoryFile()
function invokes the corresponding NtQueryDirec-
toryFile() system service either by executing the
software interrupt ‘INT 0x2e’ or the SYSENTER in-
struction. This depends on the version of Windows. In
Windows 2000 and earlier versions of NT based oper-
ating systems, software interrupts are used to call kernel
mode code from user mode. When an interrupt occurs,
the CPU checks the Interrupt Descriptor Table (IDT)
to determine what function should handle that event and
then executes that function. For the above example, the
user mode NtQueryDirectoryFile() function
in ntdll.dll moves a DWORD into the EAX reg-
ister that specifies which system service is to be invoked
and then executes the ‘INT 0x2e’ software interrupt.
The processor uses ‘0x2e’ as an offset into the IDT to
locate the code responsible for handling the interrupt.
This entry specifies the address of the “System Service
Dispatcher” (also known as KiSystemService),
which is the code responsible for handling system service
calls. The CPU loads the address of KiSystemSer-
vice into the instruction pointer and the dispatcher ex-
ecutes. In Windows XP and newer version of NT based
operating systems, the mechanism involved in invoking
KiSystemService is different. In these operat-
ing systems, the user mode NtQueryDirectory-

AVAR 2006 - AucklAnd

File() function in ntdll.dll directly executes the
SYSENTER instruction which is provided by the CPU’s
instruction set to facilitate direct execution of a system
service. On execution of this instruction the CPU checks
the model-specific register IA32 _ SYSENTER _
EIP (for Intel 32-bit processors) where the address of
KiSystemService is stored. The value of this reg-
ister is loaded into the instruction pointer and the dis-
patcher executes.

The job of KiSystemService is to determine the
requested system service and execute it. This it does by
retrieving the value placed in EAX by the user mode Nt-
QueryDirectoryFile() function in ntdll.dll,
and using this as an offset in the System Service Dispatch
Table (or System Service Descriptor Table, SSDT) to
look up the address of the requested service. The SSDT
contains addresses of all system services available on the
system. The dispatcher gets the address of the NtQue-
ryDirectoryFile() kernel mode function (which
is implemented in ntoskrnl.exe) and then calls it.
This function in turn communicates with the I/O man-
ager to complete the request. The I/O manager will even-
tually communicate with a file system driver to carry out
the requested operation.

Windows allows filter drivers to be installed in the driver
stack (Figure-3). Hence in this case, each request would
pass through a number of installed filesystem filter drivers
before reaching the filesystem driver itself. Eventually the
request reaches the disk unless the requested information
is cached [9].

I/O Subsystem

I/O Request
Packet (IRP)

Upper driver

Filter driver

Lower driver

Hardware
Device

Figure-3. Layered filter architecture. Source [11].

Access to most resources like memory, drivers, registry,
processes, and threads from user mode code typically fol-
lows a path similar to the one outlined above, which is

usually via the SSDT. Rootkits have a variety of locations
where they can intercept a resource request and alter it.
With this they may choose to alter execution paths or
simply alter the results returned by a request. For exam-
ple, a rootkit could intercept a request for a process listing
and simply remove any processes associated with itself or
any of the malicious programs it is trying to hide. Root-
kits go about this interception by placing execution path
“hooks”. The following sections discuss the most frequent
places where hooks can be placed.

Understanding the ways of the Enemy –
Hooks and Patches

It is important to understand how rootkits work in order
to develop effective anti-rootkit techniques. The follow-
ing sections discuss some of the major attack points by a
rootkit.

Hooking in user mode – IAT and EAT Hooks

A common method of placing user-land hooks is by
modifying the Import Address Table (IAT) or Export
Address Table (EAT) of a program (PE executable) or
library (Dynamic Link Library or DLL). Each execut-
able has an IAT that contains a list of imported libraries
as well as the functions used from each library. When an
executable is loaded in memory, each of these libraries in
the IAT is also loaded and the address of every function
used from each library is populated in the IAT. A call to a
library function will pass through the IAT. Common en-
tries in the IAT are functions exported by kernel32.
dll and ntdll.dll or socket functions exported by
ws2 _ 32.dll, etc. Kernel device drivers also import
functions from other binaries in kernel memory such as
ntoskrnl.exe and hal.dll. Similarly, DLLs have
an EAT that contains the entry points for all functions
provide by it. A rootkit could modify the IAT or EAT to
intercept calls to particular functions. For example, a call
to FindNextFile() function could be intercepted
by modifying an applications IAT or kernel32.dll’s
EAT in memory to point to the rootkit code. But, it is
to be noted that each process gets its own virtual address
space and in order to change an applications IAT or EAT,
the rootkit must cross process boundaries. The intricacies
of how this is done have been elaborately explained in
[12, 13].

user mode Inline Hooks

An inline function hook replaces several bytes in the
original function. This involves substituting the first few
instructions of the target function with an unconditional
JMP instruction to the rootkit code. This idea has been

AVAR 2006 - AucklAnd

adopted from Microsoft’s research called “Detours” [14].
Here, the rootkit code is called the detour function. The
detour function then calls a trampoline function that
executes the first few instructions that were overwritten
in the original function. The trampoline then executes a
JMP back to the location in the original function after the
overwritten bytes. When the original function eventually
executes a RET instruction, control is transferred back to
the detour function (because this is the last return address
on top of execution stack). The detour function, in this
case the rootkit code, can alter the results from the origi-
nal function and return the tampered results to the call-
ing function. This is shown in Figure-4. Now, many Win-
dows API functions begin with a standard preamble:

Code Bytes Assembly
8bff mov edi, edi
55 push ebp
8bec mov ebp, esp

The rootkit saves these bytes in the trampoline function
and overwrites them with a JMP to the rootkit code. No-
tice that the first five bytes can be safely overwritten be-
cause it is the same number of bytes required for many
types of jumps or for a call instruction, and it is on an even
instruction boundary.

Code Bytes Assembly
e9 xx xx xx xx jmp xxxxxxxx

Here “xx xx xx xx” is the address of the beginning
of rootkit code. Now the rootkit executes a JMP to the
trampoline function. Examples of rootkits that use this
technique are HackerDefender [15] and Vanquish [16].
But, inline function hooking has many legitimate uses
as do most rootkit techniques. Microsoft usage of inline
hooking is called “hot patching,” which allows a system to
be patched without rebooting.

Figure-4. Insertion of user mode inline hook using a
detour. Source [10].

In order to install inline hooks, a process’s memory needs

to be modified. This is done by injecting code into the
process’s address space and this injected code would do
the necessary modifications. Code injection can be ac-
complished by using Win32 APIs such as WritePro-
cessMemory(), CreateRemoteThread(), and
SetThreadContext() [17]. Code is injected in
the target process’s memory using the WritePro-
cessMemory() API and then executed in the target
process using CreateRemoteThread() [23]. Al-
ternatively, SetThreadContext() can be used to
change the context of a thread in the target process. The
context of a thread includes the values for all the thread’s
CPU registers, including the instruction pointer. Using
SetThreadContext(), these registers’ values can be
modified and execution of the thread in the target process
can be hijacked by the rootkit [24]. The rootkit could in-
ject its code into every running process and monitor for
any new processes being created to inject its code in them
as well.

A classic example of a user mode rootkit that exploits
these APIs is NTIllusion [57]. The rootkit makes use of
these principles to hijack Windows XP privileges from a
non-administrative account. The rootkit is injected into
the context of a system-wide resource such as the TASK-
MAN.EXE or EXPLORER.EXE processes. Due to this,
the rootkit now has increased privilages for restricted
function calls and can also look into system API calls.
NTIllusion rootkit demonstrates that even a user-mode
rootkit can achieve full administrative access while main-
taining complete stealth

User mode inline hooks are easily detected by wide range
of security products such as personal firewalls, applica-
tion firewalls and host based intrusion prevention sys-
tems (HIPS) due to process injection. Nonetheless, their
simplicity of implementation has earned them the reputa-
tion of the most widely being used in the wild.

kernel mode IdT Hook

Each CPU has an IDT and the IDT contains pointers to
Interrupt Service Routines (ISRs). A kernel mode rootkit
could overwrite the ‘0x2e’ entry of the IDT allowing it
to intercept system calls. However this is not in the best
interest of the rootkit due to the following disadvantages
of IDT hooking:

This interrupt is used only by older version of
Windows (Windows 2000 and such) for system
calls and hence this approach is not very portable.

While the results from kernel mode are returned
back to user mode, execution does not traverse via
the IDT for the rootkit to alter them.

■

■

AVAR 2006 - AucklAnd

Since only one IDT exists for each processor, it
becomes complicated in case of multi-processor
machines.

kernel mode SYSEnTER Hook

A kernel mode rootkit could overwrite the value in
IA32 _ SYSENTER _ EIP register (model specific
register in case of Intel IA32 processors) with its own
entry point address. This again is not portable to older
versions of Windows that do not use the SYSENTER in-
struction.

kernel mode SSdT Hook

From section 2.1 we know that the job of System Service
Dispatcher (or KiSystemService) is to look up in
the SSDT the address of a requested system service. In or-
der to intercept every call to a particular system service, a
rootkit could simply replace the service’s SSDT entry with
the address of rootkit code. Upon successful interception
the rootkit code could call the original system service and
alter the results returned by it to hide files/folder, process-
es, registry entries, open ports etc. This technique is more
powerful because it installs a system wide hook that af-
fects every process rather than a single program like in the
case of IAT hooks. SSDT hooking is very popular among
both the malicious and legitimate programs. It is widely
used by host-base security software to enforce restrictions
toward accessing certain system resources.

kernel code Patching – Inline hooking in kernel
mode

A kernel mode rootkit could insert its code into kernel
functions by patching the function. One way of doing this
is by placing an inline hook just as in user mode functions.
For example, the NtQueryDirectoryFile() kernel
mode function in ntoskrnl.exe could be patched
in order to hide directory and file listings. Kernel code
patching presents more challenges since it is required to
first get the address of the kernel function to be patched
in memory during run-time. This becomes difficult be-
cause none of these functions are exported, so there is no
easy way to get their entry point addresses and hence re-
quires complex methods to read certain kernel data struc-
tures or objects to retrieve this information. Also it has to
be ensured that the inserted rootkit code is in non-paged
memory. Non-paged memory is always loaded into physi-
cal memory, whereas page-able memory can be temporar-
ily moved out to disk. If the rootkit code is in page-able
memory and is paged out to disk when called, a page fault
will occur, and if not handled by an appropriate page fault
handler, can result in a system crash.

Though not very popular as some of the other stealth

■ techniques, runtime patching of kernel code has still been
explored and implemented by rootkit authors. Examples
are MigBot [18] and NTRootkit [19]. This technique
could be difficult to detect due to the large number of
places that kernel code can be patched.

kernel mode layered Filter drivers

Windows provides layered driver architecture. This al-
lows developers to layer on top of the existing drivers in
order to extend the functionalities of the underlying driv-
er without needing to rewrite it (Figure-3). For example,
virus scanners implement a file filter driver to scan files as
they are opened. The file drivers provided by the operat-
ing system pass the results up to the virus scanner’s file
filter driver which then scans the file. A rootkit can use
this layered architecture to its own good. For example, a
rootkit could install a filesystem filter driver that would
intercept any attempts to access the filesystem in order to
alter file access and enumeration. Also a rootkit could in-
stall a network filter driver within the networking stack
allowing it to conceal network activity as well as allow a
low level backdoor to be implanted. For example, a root-
kit called KLog is available that installs a layered driver
into the keyboard driver stack in order to sniff keystrokes
[20].

kernel mode Hooks to drivers

Each device driver in kernel mode has a function table
which is initialized when the driver is installed. The table
is a structure called DRIVER _ OBJECT. This table lists
the addresses of functions that handle various types of I/
O requests. In order to communicate with a driver, an I/
O Request Packet (IRP) is passed to one of the functions
referenced in the driver’s function table. A rootkit could
target this function table and replace one of the function
addresses with address to its own entry point. The rootkit
code will effectively intercept all IRP requests sent to the
driver via the replaced driver function. The rootkit could
implement an IRP completion routine allowing it to call
the original driver function, and when the I/O request
completes, have the IRP completion routine modify the
results of the I/O request. Imagination is only the limit
as to how this interception technique could be used to
conceal malicious activity.

kernel mode data Manipulation – dkOM

In order to hide malicious resources on a compromised
system, a rootkit could either intercept the requests to
access the resources or manipulate the underlying data
maintained by the operating system to track resources. In
this section we will explore kernel mode data manipula-

AVAR 2006 - AucklAnd

tion.

A kernel mode rootkit could modify the underlying
kernel objects; effectively subverting what the operat-
ing system believes exists on the system. For example,
by modifying a token object, the rootkit can alter “who”
the operating system believes performed a certain action,
thereby subverting any logging. This technique has been
termed as Direct Kernel Object Manipulation (DKOM).
The FU rootkit [21] is the first proof-of-concept imple-
mentation that uses DKOM tricks to modify the kernel
object that represents the processes on the system. When
a user application queries the operating system for the list
of processes through an API, Windows walks the dou-
bly-linked list of process objects (EPROCESS structure)
and returns the appropriate information. FU unlinks the
process object of the process it is hiding. This does not
affect execution of the now hidden process as it is still al-
located CPU cycles. This is because, in Windows, threads
are scheduled to execute and not processes, and the un-
linked process’s threads information is still maintained
in the scheduler list. Since, FU was written as a proof-of-
concept, it makes no attempt to hide itself, and also does
not include a remote communication channel. FU can
hide processes and device drivers and can also elevate the
privilege and groups of any Windows process token. Due
to its ingenuity, the FU rootkit has been integrated in a
variety of malware such as Sdbot, Rbot, Fanbot, as well as
spyware programs [22, 25].

Getting into the kernel

The most common approach to get rootkit code from
user mode to kernel mode is by installing a kernel mode
driver. A kernel mode driver can be installed using the
Service Control Manager (SCM) API which requires
appropriate registry key modifications. It can otherwise
be installed by directly calling the low-level Native APIs
ZwLoadDriver or ZwSetSystemInformation
[18]. Once the rootkit driver is loaded, it can install its
hooks, patch kernel code or manipulate kernel objects
and may choose to unload the driver after its DriverEntry
routine has been installed making its detection harder.

An alternative method of getting rootkit code into ker-
nel is by using “\Device\PhysicalMemory”. In
Windows version prior to Windows 2003, user mode ap-
plications running as “SYSTEM” could directly modify
physical memory via the “\Device\PhysicalMem-
ory” section object [26]. This technique does not need
any kernel mode driver to be installed. Two worms in the
wild, Fanbot and MyFip have been seen to use this tech-
nique coupled with the DKOM trick to hide their mali-
cious processes [25].

Another technique would be to exploit kernel vulnerabil-
ities to get code into the kernel [27]. For example, a buf-
fer overflow in a kernel driver could allow an attacker to
execute arbitrary code with Ring 0 privileges. Although,
at the time of writing this document, there is no proof-
of-concept code or implementation that exploits such
vulnerabilities.

A not so widely observed technique in order to enter the
kernel mode right from an application (user mode), is
to set up a call gate descriptor in the Global Descriptor
Table (GDT), so that an application can enter the kernel
via the call gate. The Wikipedia definition for a “call gate”
is: “Call gate is a mechanism in intel x86 architecture for
changing privilege level of CPU when it executes a pre-
defined function call.” [42] However, once user-mode
code is not allowed to access GDT, a kernel-mode driver
can be loaded just to set up the call gate descriptor and
then unload it [38]. There is also a method to do this
without using a kernel-mode driver [39]. At least one ma-
licious program in the wild has been discovered using this
approach [41]. F-Secure calls this Gurong.A. Gurong.A
uses the physical memory device as its initial injection
vector to install a call gate to the Global Descriptor Table
(GDT) that resides in system address space. This means is
that through the call gate Gurong.A can execute parts of
its code in privilege level 0 (kernel mode) without adding
any additional code to the system address space.

Another rootkit observed in the wild that fits in the
“stealth by design” malicious code [58] category is Rus-
tock.A [59]. This malware is stealthy enough to remain
undetected by many rootkit detectors uch as RootkitRev-
ealer, BlackLight and IceSword. Rustock.A has no process
to be detected because its malicious code runs inside the
driver and in kernel threads. It additionally uses NTFS
Alternate Data Stream (ADS) to hide its driver into the
“\System32:<random-number>” ADS. This ADS
cannot be enumerated since it is protected by the rootkit.
Rustock.A does not hook directly any native API and also
removes its entries from many kernel structures including
the Services Control Manager, Object manager, and the
loaded module list so that this enumeration fails. The SYS
driver is polymorphic and changes its code from sample
to sample. In addition to these, the rootkit also scans for
specific strings in loaded programs to detect rootkid de-
tection tools in order to avoid detection.

The makings of a kernel mode IRC-bot is indicative of the
trend which malware authors are trying to adopt, which
is incorporating stealth into malware [63]. The creator,
Tibbar (“Rabbit” spelled backwards), claims that his in-
novation surpasses the standard Windows rootkits in its
ability to crossover [61]. Most Windows-based rootkits

AVAR 2006 - AucklAnd

hide in device drivers, and then depend on outside, user
mode applications to get anything done. This creates sev-
eral disadvantages to the rootkit developers since the user
mode application may be limited to the security rights
granted to the user, the application may not be present or
accessible on the victim machine and any user mode ac-
tivity is easily detectable than kernel mode activity. Since
this IRC-bot carries its IRC application inside the kernel
driver it remains less susceptible to being detected. Tibbar
extended the TDI (Transport Driver Interface) sockets
library posted by Valerino [62]. The library can be used
to bypass typical TDI firewalls but not NDIS (Network
Driver Interface) firewalls.

Preparing for Battle – Rootkit Detection
Techniques

Rootkits are becoming more and more prevalent among
Windows based malware and easily accessible via the web
and through on-line collaborated efforts. Available now
are Stealth-creation kits like Nuclear-Rootkit [83] which
has a user interface and simply requires a file or directo-
ry name and with a click uses various stealth techniques
to custom binary code that hides the files, directories,
ports, processes and registry entries. Another popular
kernel mode rootkit is the AFX Rootkit 2005 by Aphex
[60]. Current version of AFX hide processes, handles,
modules, files & folders, registry keys & values, services,
TCP/UDP sockets and System tray icons. The need for
effective rootkit detection tools has been met by equally
advanced techniques and some of these techniques are
discussed below.

Signature based detection

Signature scanning has traditionally been applied to file-
system and memory. This technique is effective only for
known malicious programs. Unless signature scanning
is combined with some more advanced detection tech-
niques and heuristics, they are of not much use to detect
rootkits. Also, while a rootkit is installing itself it could at-
tack the scanner and disable it. Furthermore if a signature
scan is carried on an already rootkit-ed system, the rootkit
would hide its malicious file/folders and processes any-
way. However, most public kernel rootkits are susceptible
to signature scans of kernel memory. These are typically
kernel drivers and hence reside in non-paged memory.
Very few, if any, make an effort to obfuscate their code.
Thus, a scan of kernel memory should trivially identify
most public kernel rootkits regardless of their underlying
stealth tricks [31]. But this is only applicable to already
known public rootkits, because signature based detec-
tion is, by definition, useless against malware for which

a known signature does not exist. Finally, signature based
detection methods are useless against Virtual Memory
Manager (VMM) hooking rootkits like Shadow Walker
which are capable of controlling the memory reads of a
scanner application. [30].

Integrity checks using Heuristics – PatchFinder,
System Virginity Verifier

Early UNIX based rootkits modified critical system bina-
ries. In order to detect this anomaly integrity-based check-
ers such as Tripwire were used. The tool had to be run on a
clean system to establish a trusted baseline. This baseline
included checksums for all system files. At a later stage, a
system could be re-scanned for all system file checksums
and any discrepancy in checksums would conclude pos-
sible signs of compromise. Eventually rootkit technology
shifted from simply replacing files to targeting process
and kernel memory. Integrity checkers by themselves are
rendered useless in these cases.

A recent approach of combining integrity-based detection
with heuristics in order to detect certain types of rootkits
was presented by Joanna Rutkowska as a proof-of-concept
tool called PatchFinder [32]. Her method is based on run-
time execution path profiling, also called Execution Path
Analysis (EPA). The idea of Patchfinder is based upon the
observation that a rootkit must add code to a given execu-
tion path (for example, to filter the results returned by a
hooked service). An initial baseline (number of instruc-
tions executed) is established for the system by tracing
the controlled execution of certain system services. Rut-
kowska uses the “single step” feature of the x86 processor
to perform this instruction counting. When code is run
in “single step” mode, the processor halts execution and
calls a special Interrupt Service Routine (ISR) after each
instruction is executed. The instruction count is updated
in this routine. Later, the same traces can be performed to
check if any hooked services return a value greater than
the baseline value. Due to the complexity of Windows,
execution paths of system services can vary from one call
to another which results in a non-deterministic behavior.
This problem is dealt with by statically constructing a
histogram and empirically comparing the results. Never-
theless, PatchFinder can be prone to false positives. Also,
the technique is vulnerable to rootkits which realize that
they are being traced. At least one instance of a proof-of-
concept code exists that demonstrates a means to defeat
PatchFinder [33].

Another such tool, also built by Joanna Rutkowska as
a proof-of-concept is called System Virginity Verifier
(SVV) [34]. It checks the integrity of operating system
data structures such as the IAT, EAT, SSDT and IRP ta-

AVAR 2006 - AucklAnd

bles. It also incorporates some advanced heuristics to help
deal with false positives resulting from benign hooking
by legitimate applications such as antivirus scanners and
personal firewalls. SVV does a diff on the code sections
of system libraries and drivers in memory to the corre-
sponding binary files on disk to determine any discrep-
ancies. The baseline here is the binary on disk (obtained
during a prior scan of the clean system). SVV takes into
consideration any changes that would occur when code
from binary file is loaded into memory (such as relocation
information), and considers any other changes to be sus-
picious. This allows SVV to identify hooks and patched
code. In some cases, SVV also allows hooks restoration.

However, since both SVV and PatchFinder look for
changes to code, they would fail to detect rootkits that
apply DKOM techniques to manipulate data.

cross View based detection – RootkitReveler,
Blacklight, GhostBuster, klister

Cross View based detection is based on gathering infor-
mation from two different views and then comparing the
results for discripencies. Data is first requested via high
level (or user level) APIs and then the same data is again
gathered using low level functions. For example, a detec-
tor could enumerate the files in a filesystem from user
mode using the Win32 APIs and then enumerate the
same information in kernel mode using a filesystem filter
driver that directly communicates with the hard disk. If
a rootkit were hiding certain files using user mode hooks
or by hooking the SSDT, these discrepancies would show
up in the cross view based diff. Rootkit Reveler uses this
technique to identify hidden files/folders and registry
keys [35]. It targets what are called “persistent rootkits”
i.e. rootkits that survive between reboots. It assumes that
a persistent rootkit has to be present somewhere on disk
and in the registry. Rootkit Reveler does a low-level scan
by parsing the raw filesystem structure on the disk and
the bare files that comprise the registry hive. Rootkit Re-
vealer can be subverted by a rootkit that blocks or diverts
access to disk volumes or the registry files. It also suffers
from false positives if files or registry keys are created, de-
leted, or otherwise altered between the high level and the
low level enumeration. This is true for all cross view based
techniques.

A rootkit detection tool from F-Secure called BlackLight
uses cross view based diff technique to detect rootkits. It
is freely available via their website [36]. It is aimed at un-
covering processes and files hidden by rootkits. Initially,
BlackLight uses a Process ID Brute force (PIDB) ap-
proach to loop through all possible PIDs calling Open-

Process() on the PIDs in the range of 0x0 to 0x4E1C
[37]. It keeps a list of all processes it is able to open using
the PIDB method and then calls CreateToolhelp-
32Snapshot(), which gives BlackLight a second list of
processes. It then compares the two lists, to see if there
are any processes in the PIDB list that are not in the list
returned by the CreateToolhelp32Snapshot()
function. If there is any discrepancy, these processes are
considered hidden and reported to the user. Using this ap-
proach, BlackLight can successfully uncover a rootkit that
uses the DKOM trick to hide itself. But the FuTo proof-
of-concept rootkit [37] came up with a work around in
order to break BlackLight’s detection of DKOM. This it
basically does by manipulating the Handle Table kernel
structure that maintains the indexes to handles which the
kernel/object manager uses to translate a handle to and
object. Both BlackLight and IceSword-1.12 use the Han-
dle Table detection method and are hence circumvented
by FuTo.

Microsoft too has a rootkit detection project called Strid-
er Ghostbuster [43]. Their approach to the cross view
based detection is to compare the results of an online scan
to an offline scan. To detect hidden files, the GhostBuster
tool performs the high-level scan using either the Find-
FirstFile(), FindNextFile() APIs or the “dir
/s /b” command, and then performs the low-level scan
by reading the Master File Table (MFT), which is the core
of the NFTS volume structure, and other NTFS metada-
ta directly. A comparison of the two scans reveals hidden
files. There could be accompanied false positive such as
some benign software bugs may generate filenames that
are too long, or files may be created in the very small time
window between when the high- and low-level scans are
taken. For the outside-the-box solution, the tool scans the
potentially infected hard drive from a clean WinPE CD
boot [46] (or optionally use the BartPE CD boot [47]),
using either the Win32 APIs, the “dir /s /b” com-
mand, or the low-level scanning code, and compares the
result with the inside high-level scan [44, 45].

GhostBuster can also detect hidden registry entries. The
Windows registry is a centralized, hierarchical store for
configuration data containing name-value pairs. A regis-
try key is like a file-system folder and can contain one or
more registry items (or values). The registry is composed
of several “hives”, each of which is backed by a file [9].
Auto-Start Extensibility Points (ASEPs) [48] are places
where applications can “hook” to get automatically start-
ed. Most of the ASEPs reside in the registry. For example,
the HKLM\SYSTEM\CurrentControlSet\Ser-
vices is a registry key for auto-starting drivers and ser-
vices. Rootkits tend to hide their ASEP hooks. Another
form of registry hiding exploit is in the way Win32 API

AVAR 2006 - AucklAnd

and the Native API interpret registry entry names. Reg-
istry entries created with the Native API can be hidden
from most of the registry editors that use the Win32 API
by embedding NULL characters as part of the name. Yet
another form of registry hiding exploit is the use of long
names that allow certain entries to become invisible. Gos-
tBuster can detect these type of hidings as well [44].

In order to detect hidden registry key entries, GhostBuster
uses either the standard Win32 registry enumeration
APIs or the RegEdit program for the high level scan of all
ASEP hooks. Since each registry hive is simply a file with
a well-defined schema [9], the low level scan copies and
parses each hive file directly to retrieve all ASEP hooks
thus bypassing the APIs. For the outside scan, Ghost-
Buster mounts registry hive files from the potentially
infected system drive under the live registry loaded from
the WinPE CD, and uses the Win32 APIs or RegEdit to
scan all ASEP hooks to extract the truth [44].

To detect hidden processes, GhostBuster does a inside-
the-box high-level scan using the NtQuerySystem-
Information() API in ntdll.dll, and uses a
driver to perform the low-level scan by traversing the
Active Process List. A diff between these two scans can
reveal API-intercepting rootkits, but it cannot detect pro-
cesses hidden through DKOM because the low-level scan
does not contain the “truth”. Outside-the-box scanning of
volatile resources such as processes and modules requires
an additional step of making the image of the relevant
memory address space available outside. GhostBuster ob-
tains a “truth approximation” by inducing a blue screen
(i.e., kernel crash) to generate a memory dump file, and
applying similar kernel data structure traversal code to the
dump file to perform the outside-the-box scan.

A GhostBuster extension is also implemented in the form
of a DLL and this DLL is injected into every running
process and perform the scans and diff from inside each
process, essentially turning every process into a Ghost-
Buster. This is to thwart targeted attacks on GhostBuster.

Klister is another proof-of-concept rootkit detection tool
developed by Joanna Rutkowska [32]. Klister is Windows
2000 specific only but demonstrates a method useful for
detecting rootkits that use DKOM techniques to hide
processes, like FU [21]. Klister exploits this redundancy
in OS data structures to detect processes hidden by the
DKOM trick. By comparing the active process list with
the dispatch queues, it is possible to identify discrepan-
cies.

Although the cross view approach seems to be state-of-
the-art in current rootkit detection methodologies, the

approach is still vulnerable to existing rootkit attack meth-
odologies. Its success greatly depends upon its implemen-
tation, specifically the method which is used to obtain the
“low level” view of the system. Thus, the strongest imple-
mentation of a cross view approach should only rely upon
direct communication with the disk controller [49].

Hook detection – VIcE, ApiHookcheck, SdTRe-
store

Most popular rootkits being used by today’s malware ex-
tensively use hooking techniques. HackerDefender, the
popular rootkit among hackers uses the SSDT hooking
technique. In order to detect SSDT hooks, an approach
similar to SVV can be used. Each entry of the SSDT in
memory can be compared with the value of that entry
from the SSDT in ntoskrnl.exe. A discrepancy can
be identified as a hook in SSDT. In order to detect IRP
hooks in kernel mode drivers, the IRP major function ta-
ble (DRIVER _ OBJECT) can be enumerated to ensure
that the function address in each entry is within the ad-
dress space of that driver. A discrepancy here can be iden-
tified as a hook in the routine’s table entry. Similarly, both
the IAT and EAT can be enumerated to ensure that each
address table entry points to an address within the correct
DLL’s memory. For example, if an application imports
FindFirstFile() from kernel32.dll, but the
application’s IAT entry for FindFirstFile() does
not point to an address within kernel32.dll memory, is
indicative that the IAT entry is hooked. In order to detect
inline hooks, a simple check can be done to at the begin-
ning of functions for an unconditional JMP instruction.
But this is not a reliable detection method because a root-
kit could insert the JMP instruction somewhere in the
middle of a function and evade detection. An effective
approach would be to scan the entire function for JMP
instructions that transfer control outside the applications
or library’s address space. This approach could be prone
to false positives though.

VICE (Virtual Intruder Capture Engine) is a popular
hook detection tool [50]. It is a standalone program that
installs a device driver to analyze both user mode applica-
tions and the operating system kernel. The current version
of VICE has been targeted and subverted by at least one
public rootkit [15]. Rootkits have attacked VICE by de-
tecting its process name if running, and cease to hook.
Some other hook detection tools have been released by
SIG^2 such as ApiHookCheck [51] for user mode hook
detection, and SDTRestore [52] for detecting and restor-
ing SDT hooks.

Hooks are not only exploited by rootkits, but are also le-
gitimately used by a large variety of security software in
order to perform security checks and enforce policies.

AVAR 2006 - AucklAnd

Microsoft itself offers “hooks” in the form of hot patching
and DLL forwarding. Hence a hook detection approach
to finding rootkits can be severely prone to false positives.
Their use makes it difficult to differentiate between a ma-
licious hook and a benign, legitimate hook. Therefore
detected hooks need to be researched further before con-
cluding the presence of a rootkit.

Tools combining different techniques – IceSword,
kProccheck, RAIdE, Helios

Since most rootkit detection tools are freely available,
these can be reverse-engineered by the attacker in order
to device a method to circumvent them. While most of
these tools use strong anti-debugging techniques (such
as BlackLight), it may still be possible for rootkit au-
thors to break them (e.g. the FuTo DKOM rootkit [37]).
Some rootkit authors are also applying signature-based
approaches to detect the presence of a rootkit detection
tool. An example of this is the commercial version of the
popular HackerDefender rootkit which comes with an
anti-detection engine that attempts to identify rootkit
detectors using binary signatures [15]. Such a commercial
version called HackerDefender Gold was until recently
available for 500 euros and has also been found on com-
promised machines [53].

In order to overcome disadvantages with individual root-
kit detection tools, there are now tools being developed
that use all possible detection techniques, combined in
one single tool. IceSword, for example is one such tool
[54] that allows detection of hidden files/folders, pro-
cesses, registry entries, TCP/UDP ports, kernel modules
that have been hidden using SSDT hooks or DKOM.
There is also a tool available from SIG^2 called KProc-
Check that combines hook detection and cross view com-
parison methods [55]. KProcCheck can detect a hidden
process by traversing the Handle Table list or the Sched-
uler Thread List. This tool allows detection of rootkits
such as FuTo that was capable of evading BlackLight and
IceSword. Another tool that combines several detection
techniques is called RAIDE (Rootkit Analysis Identifi-
cation Elimination) which was recently presented at the
BlackHat Europe 2006 conference by James Butler [56].
RAIDE is capable of detecting several types of hooks and
also removing them. It can also detect processes hidden
using DKOM tricks. RAIDE uses shared memory seg-
ments to pass information to the kernel instead of com-
municating via IOCTLs. Shared memory contains only
encrypted data and the communications use randomly
named events. This immunizes RAIDE from several anti-
detection techniques. RAIDE was also demonstrated to
detect Shadow Walker, FuTo, HackerDefender. It uses
a memory signature scanning method in order to find

EPROCESS blocks hidden by FUTo. RAIDE can also,
in most cases, restore inline hooks, and re-link hidden
processes into the linked list of EPROCESS structures,
making them visible again.

Helios is another advanced malware detection tool that
uses behavior based detection to flag malware and root-
kits [66]. It is in beta stage but is quite elaborate in its
findings showing hooks in system APIs and such.

Hardware based Rootkit detection

A hardware based solution such as Copilot [64] can be
installed on a computer as a PCI card which can monitor
operating system and kernel integrity. Since Copilot does
not relay on the compromised host, it remains indepen-
dent from the operating system by using its own CPU and
accessing memory directly using DMA (Direct Memory
Access). It can even have its own network interface allow-
ing it to remotely report its findings without having to go
through the host operating system.

Securing the Fort – Prevention

Depending solely upon rootkit detection tools is not suf-
ficient to counter the growing threat of rootkits. Hack-
ers working mutually on numerous rootkit projects are
able to modify implementations to defeat detectors faster
than corporations can offer a change. Due to the nature of
this battle, the fight against rootkits requires fundamen-
tal changes to how detection engines integrate with the
operating system. A layered, defense-in-depth approach
is the best method of preventing a host from receiving
an unwanted rootkit installation in the first place [65].
A proactive defensive measure would be to employ net-
work firewalls as well as activate and properly configure
host based firewalls. Physical access to network and hosts
should be controlled. It is imperative to keep current on
operating system patches as well as anti-virus software
with latest updated viral definitions. It is better to use
multiple malware detectors to protect against different
attack vectors. It is very important to have strong au-
thentication procedures for system access and to usually
operate with minimal privileges. Software should only
be installed from known “clean” sources and read-only
checksums should be generated of critical system files.
The system must be properly installed and configured to
establish a “known clean” baseline. Once a host is on-line
and operational, its integrity must be monitored through
comparative analysis to known records, scheduled system
scans and behavioral observation. It is important to ob-
serve of system behavior to detect an infection such as sys-
tem logs, network activity, or errant CPU usage. Install-

AVAR 2006 - AucklAnd

ing a Host based Intrusion prevention system (HIPS) can
flag any un-authorized system integrity tampering.

An ongoing Battle – The Future of Rootkits

The battle between emerging rootkit techniques and anti-
rootkit techniques is a continuing arms-race. Rootkit de-
tection techniques seem to co-evolve as newer rootkits
continue to evolve. New proof-of-concept rootkits are
approaching the lowest levels of a computer system like
the BIOS and chipsets in order to gain complete control
of the system [68]. So are rootkit detection techniques
evolving to be incorporated into computer hardware
(such as the prototype CoPilot [64]) to combat them.
Processor hardware manufacturing giants, like Intel and
AMD, are showing greater importance to computer secu-
rity, by pursuing projects intended to incorporate hard-
ware based security solutions in their respective proces-
sor families [69, 70]. Other interesting proof-of-concept
rootkits are eEye’s BootRoot [74] that would execute af-
ter the BIOS but before the operating system, enabling
complete control of over disk access and other resources.
Another proof-of-concept called Shadow Walker [30]
that aims to control the “view” that the operating system
has on certain regions of memory so as to allow the root-
kit to hide itself. The proof-of-concept rootkits are now
exploiting the growing popularity of Virtual Machine
(VM) architecture to implant themselves within a Virtual
Machine Monitor (VMM) and control the unsuspecting
host operating system. Three such concepts are SubVirt
[75], Blue Pill [76], and Vitriol [77]. The idea of SubVirt
is for a malicious kernel module to modify the boot se-
quence such that on the next reboot the original operating
system loads inside a virtual PC granting the underlying
malicious VMM total control. The idea of the Blue Pill is
to implant a thin hypervisor (or VMM) beneath the un-
suspecting host by utilizing AMD’s Pacifica virtualization
technology. The idea of Vitriol is similar to the Blue Pill
in the sense that the rootkit hypervisor is installed while
running in Ring 0 and then the running OS is migrated
into a VM. Vitriol was presented as a VM rootkit for Ma-
cOS X using Intel VT-x technology (Intel’s virtualization
technology) on an Intel Dual Core Duo/Solo processor.
This has all been possible due to Intel’s and AMD’s initia-
tive to integrate virtualization at the hardware level, into
their processors. These are Intel’s VT-x [78] technology
and AMD’s Pacifica technology [79]. Rootkit technol-
ogy is expanding its horizon beyond operating systems.
Proof-of-concept presentations of rootkits attacking fire-
walls [80] and databases [81] have also been seen.

kernel Hardening

Microsoft’s initiative to incorporate new security fea-
tures into its upcoming operating system kernel, 64-bit
Windows Vista, sure comes as a sign of relief [67], but
malware authors will soon find ways to break it. The ad-
ditional kernel enhancements impose that only trusted or
signed drivers are loaded into the Windows Vista 64-bit
kernel. This goes beyond the normal user-based security
model and even prevents administrators from loading
unsigned device drivers in to the operating system. But
recently, Joanna Rutkowska in her presentation at Black-
Hat 2006 [71] bypassed this restriction and was able to
load an unsigned driver into the Vista x64 Beta 2 kernel,
without requiring a reboot. She claims that her technique
would still work on 64-bit Windows Vista RC1 but the
avenue of attack has been blocked in 64-bit Vista RC2
[72]. Another noticeable kernel enhancement in Vista is
“kernel Patch Protection” implemented as “PatchGuard”.
This was introduced in an effort to protect the integrity of
the Windows kernel from buggy or malicious third party
kernel mode programs from compromising the integrity
of the kernel [73]. But it has been shown that PatchGuard
can be bypassed as well [40, 84]. Sadly, this is an ongo-
ing battle, where it has become imperative for security
researchers to think proactively ahead.

legitimate uses of Rootkits

A rootkit is not a virus, worm or an exploit, but can be
used in conjunction with one. Broadly speaking, rootkit
is a technology. The intent with which this technology is
used determines their malicious or otherwise legitimate
purpose. However, it may not be termed as a “rootkit.” The
same technology used by rootkits is also used in security
software such as firewalls and host based intrusion pre-
vention systems (HIPS) to extend the protection of the
operating system. An example of this is hooking the sys-
tem call table in order to detect changes to the Windows
Registry. Also, in order to enforce a company’s IT policy,
corporations can use software to monitor their workers.
Again, such corporate monitoring software uses stealth to
hide its actions from the user so the user cannot remove
it. Law enforcement can use rootkit technology to gather
evidence on a suspect without the suspect’s knowledge.
Rootkit technology can also be used to protect critical
personal data on a computer from an attacker or hacker.
The technology is a double-edged sword. An example
of this is while Sony BMG used the XCP rootkit from
First4Internet to enforce Digital Rights Management
(DRM) on its music CDs [2, 3], there were CD-emula-
tion utilities such as Alcohol and Daemon Tools that also
used rootkit techniques to defeat DRM [4]. Rootkits are
a powerful technology and in the coming years their use
for both malicious and non-malicious purpose will grow
tremendously.

AVAR 2006 - AucklAnd

Conclusion

In this paper we have discussed how rootkits exploit the
extensibility of the Windows operating system to ‘sub-
vert’ the Windows kernel. The proliferated use of rootkits
among today’s malware has also been discussed. We also
discussed several emerging rootkit detection techniques
and tools. All of these point toward the ongoing arms race
between rootkit technology and anti-rootkit techniques.
In order to stay abreast of rootkit authors, rootkit detec-
tion technologies have to constantly evolve, and in order
to keep malware at bay, pro-active and preventive mea-
sures should be taken from being ‘subverted’ in the first
place.

References

Graph source: Monastyrsky A.; Sapronov K.; Ma-
shevsky Y. (2005). Kaspersky Lab http://www.vi-
ruslist.com/en/analysis?pubid=168740859

Mark’s Sysinternals Blog: “Sony, Rootkits and Dig-
ital Rights Management Gone Too Far”. http://
www.sysinternals.com/blog/2005/10/sony-root-
kits-and-digital-rights.html

IT Hub: “Sony DRM Uses Rootkit Techniques”.
http://security.ithub.com/article/Sony+DRM+
Uses+Rootkit+Techniques/164166_1.aspx

Mark’s Sysinternals Blog: “Using Rootkits to De-
feat Digital Rights Management”. http://www.
sysinternals.com/blog/2006/02/using-rootkits-
to-defeat-digital.html

eWeek article: “Rootkit Takes Aim at AOL”. http://
www.eweek.com/article2/0,1895,1879157,00.
asp

Symantec description - Hacktool.Rootkit: exploits
unpatched browser vulnerabilities. http://securi-
tyresponse1.symantec.com/sarc/sarc.nsf/html/
hacktool.rootkit.html

LURHQ “Malware exploiting vulnerabilities
– threat analysis”. http://www.lurhq.com/re-
search_threat.html

InfoWorld: “Malware’s commercialization driving
security challenge” http://www.infoworld.com/
article/06/06/13/79259_HNmalwarestuff_
1.html

1.

2.

3.

4.

5.

6.

7.

8.

Russinovich, M.E. Solomon, D.A. “Microsoft
Windows Internals, Fourth Edition: Microsoft
Windows Server ™ 2003, Windows XP, and Win-
dows 2000.” Microsoft Press; 4th edition. Decem-
ber 8, 2004.

Figures source: “Inside Windows Rootkits”. http://
www.vigilantminds.com/files/inside_windows_
rootkits.pdf

“Windows rootkits of 2005, part one”, James But-
ler, Sherri Sparks 2005-11-04 http://www.securi-
tyfocus.com/infocus/1850

Richter, Jeffrey. “Load Your 32-bit DLL into An-
other Process’s Address Space Using INJLIB.” Mi-
crosoft Systems Journal Volume 9 Number 5.

Pietrek, Matt. “Learn System-Level Win32® Cod-
ing Techniques by Writing an API Spy Program.”
Microsoft Systems Journal Volume 9 Number 12.

Hunt, Galen C. and Doug Brubacker, “Detours:
Binary Interception of Win32 Functions” Proceed-
ings of the 3rd USENIX Windows NT Sympo-
sium, July 1999, pp. 135-43.

“Hacker Defender” by Holy Father. http://hxdef.
czweb.org/

Vanquish rootkit http://www.rootkit.com/news-
read.php?newsid=35

Code Project: “API hooking revealed”. http://
www.codeproject.com/system/hooksys.asp

“MigBot – Kcode Patching”, by Greg Hoglund
h t t p s : / / w w w. r o o t k i t . c o m / n e w s r e a d .
php?newsid=152

“A REAL NTRootkit, Patching the NT Kernel”,
Greg Hoglund, Phrack, Vol.9, Issue55. http://
www.phrack.org/archives/55/P55-05

KLog rootkit. http://www.rootkit.com/project.
php?id=21

FU rootkit: http://www.blackhat.com/presenta-
tions/win-usa-04/bh-win-04-butler.pdf

eWeek article: “Where are Rootkits Coming From?”,
By Ryan Naraine, December 7, 2005. http://www.
eweek.com/article2/0,1895,1897728,00.asp

“DLL injection tutorial”. http://www.edgeofno-
where.cc/viewtopic.php?p=2483118

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

AVAR 2006 - AucklAnd

“DLL Injection and function interception tuto-
rial”, By CrankHank http://www.codeproject.
com/dll/DLL_Injection_tutorial.asp

“When malware meets rootkits”, by Elia Florio,
Symantec Security Response, Ireland, 2005-12-
01, http://www.virusbtn.com/virusbulletin/ar-
chive/2005/12/vb200512-malware-meets-root-
kits

Crazylord, Playing with Windows /dev/(k)mem,
Phrack #58, Article 16, http://www.phrack.org/
archives/59/p59-0x10.txt

“Remote Windows Kernel Exploitation - Step into
the Ring 0”, by Barnaby Jack http://research.eeye.
com/html/Papers/download/StepIntoTheRing.
pdf

“Unearthing Root Kits”, Mark Russinovich, June
2005, http://www.windowsitpro.com/Article/
ArticleID/46266/46266.html?Ad=1

“Rootkits – Subverting the Windows Kernel”, by
Greg Hoglund and James Butler, Addison Wes-
ley, June 2005.

Butler, James and Sparks, Sherri. “Shadow Walker:
Raising The Bar For Windows Rootkit Detection”,
http://www.blackhat.com/presentations/bh-jp-
05/bh-jp-05-sparks-butler.pdf

“Windows rootkits of 2005, part three”, James But-
ler, Sherri Sparks, 2006-01-05 http://www.secu-
rityfocus.com/infocus/1854

Rutkowska, Joanna. “Detecting Windows
Server Compromises with Patchfinder 2”, Jan
2004. http://www.invisiblethings.org/papers/
rootkits_detection_with_patchfinder2.pdf
Tool available at http://www.invisiblethings.org/
tools/PF2/patchfinder_w2k_2.12

Edgar Barbosa, “Avoiding Windows Rootkit De-
tection (Defeating PatchFinder)”, February 2004.
http://www.yates2k.net/bypassEPA.pdf

System Virginity Verifier (SVV)
http://www.invisiblethings.org/papers/hitb05_
virginity_verifier.ppt

Rootkit Reveler. http://www.sysinternals.com/
Utilities/RookitReveler.html

BlackLight. http://www.europe.f-secure.com/ex-

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

clude/blacklight/

FUTo, http://www.uninformed.org/
?v=3&a=7&t=pdf

“Undocumented Windows NT®” (Paperback), by
Prasad Dabak, Sandeep Phadke, Milind Borate.

Code Project article: Entering kernel without
hooking or driver. http://www.codeproject.com/
script/articles/list_articles.asp?userid=846502

“Bypassing PatchGuard on Win-
dows x64, Dec 1, 2005
http://www.uninformed.org/?v=3&a=3&t=pdf

F-Secure Blog: From Russia with rootkit, http://
www.f-secure.com/weblog/archives/archive-
032006.html#00000838

Wikipedia definition, Call Gate, http://
en.wikipedia.org/wiki/Call_gate

Strider Ghostbuster, http://research.microsoft.
com/rootkit

“Detecting Stealth Software with Strider Ghost-
Buster”, Yi-Min Wang, Doug Beck, Binh Vo, Rous-
si Roussev, and Chad Verbowski, Proceedings of
the 2005 International Conference on Depend-
able Systems and Networks (DSN’05) http://
ieeexplore.ieee.org/iel5/9904/31476/01467811.
pdf

Strider GhostBuster: Why It’s A Bad Idea For
Stealth Software To Hide Files, Yi-Min Wang;
Binh Vo; Roussi Roussev; Chad Verbowski; Aar-
on Johnson, July 2004 http://research.microsoft.
com/research/pubs/view.aspx?type=Technical%
20Report&id=775

Microsoft knowledge base article, How to create a
custom startup WinPE CD-ROM in Windows XP,
http://support.microsoft.com/?kbid=303891

BartPE: http://www.nu2.nu/pebuilder/

“Gatekeeper: Monitoring Auto-Start Extensibility
Points (ASEPs) for Spyware Management, Yi-Min
Wang, Roussi Roussev, Chad Verbowski, Aaron
Johnson, Ming-Wei Wu, Yennun Huang, and Sy-
Yen Kuo, 2004 LISA XVIII – November 14-19,
2004 – Atlanta, GA, http://research.microsoft.
com/sm/strider/Strider_Gatekeeper_Usenix_
LISA_2004.pdf

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

AVAR 2006 - AucklAnd

“Thoughts about Cross-View based Rootkit Detec-
tion”, June 2005, Rutkowska, Joanna, http://
www.invisiblethings.org/papers/crossview_de-
tection_thoughts.pdf

Butler, James, “VICE - Catch the hookers!” Black
Hat, Las Vegas, July, 2004. http://www.blackhat.
com/presentations/bh-usa-04/bh-us-04-butler/
bh-us-04-butler.pdf

ApiHookCheck by SIG^2: http://www.security.
org.sg/code/apihookcheck.html

SDTRestore by SIG^2: http://www.security.org.
sig/code/sdtrestore.html

http://www.f-secure.com/weblog/archives/ar-
chive-102005.html#00000675

IceSword:
http://xfocus.net/tools/200509/1085.html

Win2K Kernel Hidden Process/Module Check-
er, KprocCheck by SIG^2 http://www.security.
org.sg/code/kproccheck.html.

“RAIDE: Rootkit Analysis Identification Elimina-
tion”. http://www.blackhat.com/presentations/
bh-europe-06/bh-eu-06-Silberman-Butler.pdf

“NTIllusion: A Portable Win32 Userland Root-
kit”, Kodmaker@sysshell.org, Phrack Volume
0x0b, Issue 0x3e, Phile #0x0c of 0x10 http://www.
l0t3k.net/biblio/magazine/en/phrack/0062/
p62-0x0c_Win32_Portable_Userland_Rootkit.
txt

“Stealth by design malware”, http://www.invisi-
blethings.org/papers/rutkowska_bheurope2006.
ppt

“Backdoor.Rustock.A” – Symantec, http://www.
symantec.com/enterprise/security_response/we-
blog/2006/06/raising_the_bar_rustocka_advan.
html

AFX-Rootkit by Aphex, http://www.iamaphex.
net

Tibbar blog: http://tibbar.blog.co.uk/2006/02/

TDI socket library, Valerino, http://www.root-
kit.com/newsread.php?newsid=416

Kernel mode IRC-bot, Tibbar, http://tibbar.
blog .co.uk/2006/04/06/kernel_mode_IR-

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Cbot~708256

“Copilot - a Coprocessor-based Kernel Runtime
Integrity Monitor, Nick L. Petroni, Jr. Timo-
thy Fraser, Jesus Molina, William A. Arbaugh,
www.usenix.org/events/sec04/tech/full_papers/
petroni/petroni_html/main.html

Dillard, Kurt. How Can I Detect And Remove
Rootkits From Windows? SearchWindowsSe-
curity.com, May 2005, http://searchwin-
dowssecurity.techtarget.com/originalContent/
0,289142,sid45_gci1086474,00.html

HELIOS, http://helios.miel-labs.com/

Windows vista security enhancements,
http://www.download.microsoft.com/down-
l o a d / c / 2 / 9 / c 2 9 3 5 f 8 3 - 1 a 1 0 - 4 e 4 a - a 1 3 7 -
c1db829637f5/WindowsVistaSecurityWP.doc

ACPI BIOS Rootkit, NGS Security, http://www.
blackhat.com/presentations/bh-europe-06/bh-
eu-06-Heasman.pdf

“AMD chips to gain security, virtualization fea-
tures”, November 15, 2004 http://www.info-
world.com/article/04/11/15/HNamdvirtual_
1.html

“Intel to develop hardware rootkit detection chip”,
IT Observer, 8 December 2005 http://www.it-
observer.com/articles.php?id=977

“Subverting Vista Kernel for Fun and Profit”
http://blackhat.com/presentations/bh-usa-06/
BH-US-06-Rutkowska.pdf

Invisiblethings.org Blog:
http://theinvisiblethings.blogspot.com/

“Kernel Patch Protection: Frequently Asked Ques-
tions, Published: January 19, 2006, Updated: Oc-
tober 3, 2006, http://www.microsoft.com/whdc/
driver/kernel/64bitpatch_FAQ.mspx

eEye BootRoot, http://www.blackhat.com/pre-
sentations/bh-usa-05/bh-us-05-soeder.pdf

“SubVirt: Implementing malware with virtual ma-
chines”, Samuel T. King, Peter M. Chen, Yi-Min
Wang, Chad Verbowski, Helen J. Wang, Jacob R.
Lorch, http://www.eecs.umich.edu/virtual/pa-
pers/king06.pdf

“Introducing Blue Pill: http://theinvisiblethings.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

AVAR 2006 - AucklAnd

blogspot.com/2006/06/introducing-blue-pill.
html

“Hardware Virtualization Rootkits”, http://www.
blackhat.com/presentations/bh-usa-06/BH-US-
06-Zovi.pdf

“Intel Virtualization technology” http://www.in-
tel.com/business/bss/products/server/virtualiza-
tion.htm

“AMD Virtualization Technology Solves Virtual-
ization Challenges” http://www.devx.com/amd/
Article/30186

“Rootkits: Attacking Personal Firewalls, Alexander
Terenshkin” http://www.blackhat.com/presenta-
tions/bh-usa-06/BH-US-06-Tereshkin.pdf

“Database rootkits, Red database security”, Alex-
ander Kornbrust, 01-Apr-2005, http://www.red-
database-security.com/wp/db_rootkits_us.pdf

Wikipedia definition - Rootkit
http://en.wikipedia.org/wiki/Rootkit

Nuclear-Rootkit http://www.megasecurity.org/
trojans/n/nuclear/Nuclearrootkit1.0_a.html

The Register article: “Security firm punctures
Vista’s Patchguard” http://www.theregister.
co.uk/2006/10/27/patchguard_row_analysis/

77.

78.

79.

80.

81.

82.

83.

84.

AVAR 2006 - AucklAnd

AVAR 2006 - AucklAnd

AVAR 2006 - AucklAnd

AVAR 2006 - AucklAnd

