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Abstract

Rootkits are increasingly being used by today’s malware to attack the Windows NT based platforms. Their prevalence 
marks the dawn of “stealth”. The term “rootkit” has come to be associated with a program that conceals its activities from 
the underlying operating system using stealth techniques. Rootkits are now being used by malware authors as a new arsenal 
in their weaponry to aide and abet their malware programs. Their proliferated use can be seen among worms, Trojans, 
backdoors, keyloggers, spyware, adware and a wide range of such malicious programs that are collectively being termed as 
“crimeware” or “snoopware”. The primary goal of such malicious programs is to maintain an undetectable presence on the 
victim machine for a long period of time and to covertly carry on their activity. Malware authors couldn’t have asked for 
more, rootkits are the best thing that could have happened to them.

In this paper we discuss emerging trends in rootkit technology for the Windows NT based platform and offer a perspective 
on their future. We will shed light on some of the popular user mode and kernel mode rootkits. Later, the future of rootkit 
technology will be discussed. From a view to counteract this threat we also discuss emerging trends and tools in rootkit detec-
tion technology. 

While an attacker needs to find a single hole to breach security in a system, the attacked needs to plug all plausible avenues 
of attack. The paper discusses preventive measures to guard these avenues of attack by understanding the ways of the attacker. 
Nonetheless, to stay abreast of malware authors, rootkit detection techniques have to constantly evolve, as new techniques to 
“subvert” the Windows kernel are devised.
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Introduction – Understanding the Battle

“A rootkit is a set of software tools intended to conceal 
running processes, files or system data, thereby helping 
an intruder to maintain access to a system whilst avoid-
ing detection” (the Wikipedia definition for a rootkit 
[82]). According to Mark Russinovich, a rootkit is sim-
ply a cloaking device [28]. According to Greg Hoglund a 
rootkit is a tool to maintain un-restricted and un-detect-
able presence for a long time [29]. Rootkits existed in the 
UNIX world long before they migrated to the Windows 
world. The word itself is derived from “root” – the most 
powerful user on a UNIX based machine, which is simi-
lar to the built-in Administrator account in Windows. 
The first public Windows rootkit called NTRootkit, 
was published in 1999 by Greg Hoglund [19]. Rootkits 
have recently received a great deal of media attention 
as researchers have realized that they represent the next 
battleground in the malware war [28]. This publicity has 
both alerted end users to the dangers of rootkits as well 
as popularized the power of rootkits to the malware com-
munity.

Rootkits work on the principal of “modification”. They 
either modify execution paths or modify the underlying 
operating system structures. This is typically done by ex-
ploiting operating system extensibility. They survive by 
employing stealth and hide a compromise by making the 
system “lie to you”. The primary goal of a rootkit remains 
to hide the true activities of its spurious, third party us-
ers.

The essential rootkit components might perform some or 
all of the following:

Modify system authentication process to elevate 
privileges or facilitate backdoor access.

Modify intrusion detection system so that it ignores 
key event signatures.

Masquerade as a benign system application and dis-
play expected reports. 

Monitor and modify system logs to ensure that cer-
tain activities do not get logged.

The purpose of a rootkit is to maintain an un-restricted 
and un-detectable presence on an already compromised 
victim machine for a long period of time. For this, the at-
tacker has to first compromise the system and then in or-
der to maintain access and conceal activity drop a rootkit. 
An attacker could employ social-engineering via instant 
messengers or peer-to-peer (P2P) networks to distribute 

■

■

■

■

a rootkit [5]. Tricking users into executing malicious code 
through Trojan horses or social engineering is often the 
simplest approach. Other avenues of attack could be to 
exploit known vulnerabilities in libraries against which 
certain client software are linked or if possible, the client 
software itself could be breached via a buffer-overflow 
attack. Browser vulnerabilities are increasingly being ex-
ploited to facilitate “drive-by” downloads. Trojan horses, 
worms, and spyware distributed via these channels act as 
delivery mechanisms or carriers for rootkits [6]. Another 
approach could be via a remote hack to exploit vulner-
abilities that range anywhere from buffer overflows and 
dictionary passwords to lack of security hot fixes [7]. Af-
ter breaking into the computer the hacker will install the 
rootkit, erase all evidence and vanish until it is time to 
access the host again. The remote vulnerability may be 
discovered and patched in time, but the rootkit may lie 
hidden on the system for long periods of time, which al-
lows persistent host access.

The graph in Figure-1 is a clear indicative of the increasing 
use of rootkits among malware targeting Windows NT 
based systems.

Figure-1. Prevalence of rootkits in malware. Source [1].

The wide usage of rootkits in today’s malware is attribut-
ed to their ease of availability via the web. They are down-
loadable as ready to use rootkits or as source code for 
those who want to compile custom rootkits. www.rootkit.
com is arguably the largest source for new and emerging 
rootkit techniques. It is a central meeting point for both 
rootkit developers and security professionals who could 
use this information to educate themselves and learn the 
ways of the attacker in order to develop anti-rootkit tech-
niques.

Another reason to which the use of rootkits in today’s 
malware can be attributed is “a shift in intent of writing 
malware”. Viruses and worms are no longer written to 
prove skill or to draw attention but rather as a means to 
bank the green bucks! This shift in intention or rather the 
commercialization of malicious intentions has greatly in-
creased the creation and proliferation of “crime-ware” (or 
snoop-ware such as spyware, keyloggers, backdoors etc.) 
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[8]. These applications demand the use of stealth in order 
to “own the box” for as long as possible without being de-
tected and without being able to be traced back to.

Understanding the Battlefield – Kernel mode 
vs. User mode

The Windows NT based architecture clearly separates 
the user mode code (Ring 3) from the underlying kernel 
mode code (Ring 0). This is to keep any buggy or mali-
cious user mode applications from crashing or compro-
mising the kernel. User mode applications are less privi-
leged and access the system’s resources like registry, file 
system, memory etc. via the Win32 API. Kernel mode 
is the mode of execution in the processor that grants 
access to entire system memory and all the processor’s 
instructions. The architecture provides extensibility of 
kernel functionality by allowing device drivers to load in 
the kernel. This allows third party device drivers to ac-
cess low level kernel functions and objects and interface 
with hardware. Windows will tag memory pages speci-
fying which mode is required to access the memory, but 
Windows does not protect memory in kernel mode from 
other threads running in kernel mode [9]. Hence, any ma-
licious or buggy device driver running in kernel mode can 
quickly compromise the integrity and stability of a system 
sometimes resulting in system crash (popularly known as 
Blue Screen of Death or BSoD). Windows only supports 
these two modes of execution today, although Intel and 
AMD CPUs actually support four privilege modes or 
rings in their chips to protect system code and data from 
being overwritten by code of a lesser privilege.

Behind the Scenes

Windows was designed to be largely independent of the 
underlying computer hardware and compatible with oth-
er operating environments. It is also flexible so that an up-
grade to the underlying operating system does not require 
application developers to completely rewrite their code. 
Windows does this by implementing the Win32 subsys-
tem as a Dynamic Link Library (DLL). This provides an 
Application Programming Interface to the system ser-
vices that reside in kernel memory. By using this API, ap-
plication developers can write software that will survive 
most operating system upgrades. Usually, these applica-
tions do not call the Windows system services directly; 
instead, they go through one of these implemented APIs. 
The Win32 subsystem is composed of kernel32.dll, 
user32.dll, gdi32.dll, and advapi32.dll. 
Ntdll.dll is a special system support library that the 
Win32 subsystem DLLs use [11].

When an application in user mode requests for say a list-
ing of files on the disk, this is usually accomplished by 
invoking the Win32 APIs FindFirstFile() and 
FindNextFile() exported by kernel32.dll. The ac-
tual steps that take place beneath the operating system in 
kernel mode are shown in Figure-2.

Figure-2. Various steps involved in completing an API call 
such as FindNextFile(). Source [10].

The FindNextFile()function calls the NtQuery-
DirectoryFile() Native API function in ntdll.
dll. The user mode NtQueryDirectoryFile() 
function invokes the corresponding NtQueryDirec-
toryFile() system service either by executing the 
software interrupt ‘INT 0x2e’ or the SYSENTER in-
struction. This depends on the version of Windows. In 
Windows 2000 and earlier versions of NT based oper-
ating systems, software interrupts are used to call kernel 
mode code from user mode. When an interrupt occurs, 
the CPU checks the Interrupt Descriptor Table (IDT) 
to determine what function should handle that event and 
then executes that function. For the above example, the 
user mode NtQueryDirectoryFile() function 
in ntdll.dll moves a DWORD into the EAX reg-
ister that specifies which system service is to be invoked 
and then executes the ‘INT 0x2e’ software interrupt. 
The processor uses ‘0x2e’ as an offset into the IDT to 
locate the code responsible for handling the interrupt. 
This entry specifies the address of the “System Service 
Dispatcher” (also known as KiSystemService), 
which is the code responsible for handling system service 
calls. The CPU loads the address of KiSystemSer-
vice into the instruction pointer and the dispatcher ex-
ecutes. In Windows XP and newer version of NT based 
operating systems, the mechanism involved in invoking 
KiSystemService is different. In these operat-
ing systems, the user mode NtQueryDirectory-
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File() function in ntdll.dll directly executes the 
SYSENTER instruction which is provided by the CPU’s 
instruction set to facilitate direct execution of a system 
service. On execution of this instruction the CPU checks 
the model-specific register IA32 _ SYSENTER _
EIP (for Intel 32-bit processors) where the address of  
KiSystemService is stored. The value of this reg-
ister is loaded into the instruction pointer and the dis-
patcher executes.

The job of KiSystemService is to determine the 
requested system service and execute it. This it does by 
retrieving the value placed in EAX by the user mode Nt-
QueryDirectoryFile() function in ntdll.dll, 
and using this as an offset in the System Service Dispatch 
Table (or System Service Descriptor Table, SSDT) to 
look up the address of the requested service. The SSDT 
contains addresses of all system services available on the 
system. The dispatcher gets the address of the NtQue-
ryDirectoryFile() kernel mode function (which 
is implemented in ntoskrnl.exe) and then calls it. 
This function in turn communicates with the I/O man-
ager to complete the request. The I/O manager will even-
tually communicate with a file system driver to carry out 
the requested operation.

Windows allows filter drivers to be installed in the driver 
stack (Figure-3). Hence in this case, each request would 
pass through a number of installed filesystem filter drivers 
before reaching the filesystem driver itself. Eventually the 
request reaches the disk unless the requested information 
is cached [9].

I/O Subsystem

I/O Request
Packet (IRP)

Upper driver

Filter driver

Lower driver

Hardware
Device

Figure-3. Layered filter architecture. Source [11].

Access to most resources like memory, drivers, registry, 
processes, and threads from user mode code typically fol-
lows a path similar to the one outlined above, which is 

usually via the SSDT. Rootkits have a variety of locations 
where they can intercept a resource request and alter it. 
With this they may choose to alter execution paths or 
simply alter the results returned by a request. For exam-
ple, a rootkit could intercept a request for a process listing 
and simply remove any processes associated with itself or 
any of the malicious programs it is trying to hide. Root-
kits go about this interception by placing execution path 
“hooks”.  The following sections discuss the most frequent 
places where hooks can be placed.

Understanding the ways of the Enemy – 
Hooks and Patches

It is important to understand how rootkits work in order 
to develop effective anti-rootkit techniques. The follow-
ing sections discuss some of the major attack points by a 
rootkit.

Hooking in user mode – IAT and EAT Hooks

A common method of placing user-land hooks is by 
modifying the Import Address Table (IAT) or Export 
Address Table (EAT) of a program (PE executable) or 
library (Dynamic Link Library or DLL). Each execut-
able has an IAT that contains a list of imported libraries 
as well as the functions used from each library. When an 
executable is loaded in memory, each of these libraries in 
the IAT is also loaded and the address of every function 
used from each library is populated in the IAT. A call to a 
library function will pass through the IAT. Common en-
tries in the IAT are functions exported by kernel32.
dll and ntdll.dll or socket functions exported by 
ws2 _ 32.dll, etc. Kernel device drivers also import 
functions from other binaries in kernel memory such as 
ntoskrnl.exe and hal.dll. Similarly, DLLs have 
an EAT that contains the entry points for all functions 
provide by it. A rootkit could modify the IAT or EAT to 
intercept calls to particular functions. For example, a call 
to FindNextFile() function could be intercepted 
by modifying an applications IAT or kernel32.dll’s 
EAT in memory to point to the rootkit code. But, it is 
to be noted that each process gets its own virtual address 
space and in order to change an applications IAT or EAT, 
the rootkit must cross process boundaries. The intricacies 
of how this is done have been elaborately explained in 
[12, 13].

user mode Inline Hooks

An inline function hook replaces several bytes in the 
original function. This involves substituting the first few 
instructions of the target function with an unconditional 
JMP instruction to the rootkit code. This idea has been 
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adopted from Microsoft’s research called “Detours” [14]. 
Here, the rootkit code is called the detour function. The 
detour function then calls a trampoline function that 
executes the first few instructions that were overwritten 
in the original function. The trampoline then executes a 
JMP back to the location in the original function after the 
overwritten bytes. When the original function eventually 
executes a RET instruction, control is transferred back to 
the detour function (because this is the last return address 
on top of execution stack). The detour function, in this 
case the rootkit code, can alter the results from the origi-
nal function and return the tampered results to the call-
ing function. This is shown in Figure-4. Now, many Win-
dows API functions begin with a standard preamble:

Code Bytes Assembly
8bff mov edi, edi
55 push ebp
8bec mov ebp, esp

 
The rootkit saves these bytes in the trampoline function 
and overwrites them with a JMP to the rootkit code. No-
tice that the first five bytes can be safely overwritten be-
cause it is the same number of bytes required for many 
types of jumps or for a call instruction, and it is on an even 
instruction boundary.

Code Bytes Assembly
e9 xx xx xx xx jmp xxxxxxxx

Here “xx xx xx xx” is the address of the beginning 
of rootkit code. Now the rootkit executes a JMP to the 
trampoline function. Examples of rootkits that use this 
technique are HackerDefender [15] and Vanquish [16]. 
But, inline function hooking has many legitimate uses 
as do most rootkit techniques. Microsoft usage of inline 
hooking is called “hot patching,” which allows a system to 
be patched without rebooting.

Figure-4. Insertion of user mode inline hook using a  
detour. Source [10].

In order to install inline hooks, a process’s memory needs 

to be modified. This is done by injecting code into the 
process’s address space and this injected code would do 
the necessary modifications. Code injection can be ac-
complished by using Win32 APIs such as WritePro-
cessMemory(), CreateRemoteThread(), and 
SetThreadContext() [17]. Code is injected in 
the target process’s memory using the WritePro-
cessMemory() API and then executed in the target 
process using CreateRemoteThread() [23]. Al-
ternatively, SetThreadContext() can be used to 
change the context of a thread in the target process. The 
context of a thread includes the values for all the thread’s 
CPU registers, including the instruction pointer. Using 
SetThreadContext(), these registers’ values can be 
modified and execution of the thread in the target process 
can be hijacked by the rootkit [24]. The rootkit could in-
ject its code into every running process and monitor for 
any new processes being created to inject its code in them 
as well.

A classic example of a user mode rootkit that exploits 
these APIs is NTIllusion [57]. The rootkit makes use of 
these principles to hijack Windows XP privileges from a 
non-administrative account. The rootkit is injected into 
the context of a system-wide resource such as the TASK-
MAN.EXE or EXPLORER.EXE processes. Due to this, 
the rootkit now has increased privilages for restricted 
function calls and can also look into system API calls. 
NTIllusion rootkit demonstrates that even a user-mode 
rootkit can achieve full administrative access while main-
taining complete stealth

User mode inline hooks are easily detected by wide range 
of security products such as personal firewalls, applica-
tion firewalls and host based intrusion prevention sys-
tems (HIPS) due to process injection. Nonetheless, their 
simplicity of implementation has earned them the reputa-
tion of the most widely being used in the wild.

kernel mode IdT Hook

Each CPU has an IDT and the IDT contains pointers to 
Interrupt Service Routines (ISRs). A kernel mode rootkit 
could overwrite the ‘0x2e’ entry of the IDT allowing it 
to intercept system calls. However this is not in the best 
interest of the rootkit due to the following disadvantages 
of IDT hooking:

This interrupt is used only by older version of  
Windows (Windows 2000 and such) for system 
calls and hence this approach is not very portable.

While the results from kernel mode are returned 
back to user mode, execution does not traverse via 
the IDT for the rootkit to alter them.

■

■
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Since only one IDT exists for each processor, it  
becomes complicated in case of multi-processor 
machines.

kernel mode SYSEnTER Hook

A kernel mode rootkit could overwrite the value in 
IA32 _ SYSENTER _ EIP register (model specific 
register in case of Intel IA32 processors) with its own 
entry point address. This again is not portable to older 
versions of Windows that do not use the SYSENTER in-
struction.

kernel mode SSdT Hook

From section 2.1 we know that the job of System Service 
Dispatcher (or KiSystemService) is to look up in 
the SSDT the address of a requested system service. In or-
der to intercept every call to a particular system service, a 
rootkit could simply replace the service’s SSDT entry with 
the address of rootkit code. Upon successful interception 
the rootkit code could call the original system service and 
alter the results returned by it to hide files/folder, process-
es, registry entries, open ports etc. This technique is more 
powerful because it installs a system wide hook that af-
fects every process rather than a single program like in the 
case of IAT hooks. SSDT hooking is very popular among 
both the malicious and legitimate programs. It is widely 
used by host-base security software to enforce restrictions 
toward accessing certain system resources.

kernel code Patching – Inline hooking in kernel 
mode

A kernel mode rootkit could insert its code into kernel 
functions by patching the function. One way of doing this 
is by placing an inline hook just as in user mode functions. 
For example, the NtQueryDirectoryFile() kernel 
mode function in ntoskrnl.exe could be patched 
in order to hide directory and file listings. Kernel code 
patching presents more challenges since it is required to 
first get the address of the kernel function to be patched 
in memory during run-time. This becomes difficult be-
cause none of these functions are exported, so there is no 
easy way to get their entry point addresses and hence re-
quires complex methods to read certain kernel data struc-
tures or objects to retrieve this information. Also it has to 
be ensured that the inserted rootkit code is in non-paged 
memory. Non-paged memory is always loaded into physi-
cal memory, whereas page-able memory can be temporar-
ily moved out to disk. If the rootkit code is in page-able 
memory and is paged out to disk when called, a page fault 
will occur, and if not handled by an appropriate page fault 
handler, can result in a system crash.

Though not very popular as some of the other stealth 

■ techniques, runtime patching of kernel code has still been 
explored and implemented by rootkit authors. Examples 
are MigBot [18] and NTRootkit [19]. This technique 
could be difficult to detect due to the large number of 
places that kernel code can be patched.

kernel mode layered Filter drivers

Windows provides layered driver architecture. This al-
lows developers to layer on top of the existing drivers in 
order to extend the functionalities of the underlying driv-
er without needing to rewrite it (Figure-3). For example, 
virus scanners implement a file filter driver to scan files as 
they are opened. The file drivers provided by the operat-
ing system pass the results up to the virus scanner’s file 
filter driver which then scans the file. A rootkit can use 
this layered architecture to its own good. For example, a 
rootkit could install a filesystem filter driver that would 
intercept any attempts to access the filesystem in order to 
alter file access and enumeration. Also a rootkit could in-
stall a network filter driver within the networking stack 
allowing it to conceal network activity as well as allow a 
low level backdoor to be implanted. For example, a root-
kit called KLog is available that installs a layered driver 
into the keyboard driver stack in order to sniff keystrokes 
[20].

kernel mode Hooks to drivers

Each device driver in kernel mode has a function table 
which is initialized when the driver is installed. The table 
is a structure called DRIVER _ OBJECT. This table lists 
the addresses of functions that handle various types of I/
O requests. In order to communicate with a driver, an I/
O Request Packet (IRP) is passed to one of the functions 
referenced in the driver’s function table. A rootkit could 
target this function table and replace one of the function 
addresses with address to its own entry point. The rootkit 
code will effectively intercept all IRP requests sent to the 
driver via the replaced driver function. The rootkit could 
implement an IRP completion routine allowing it to call 
the original driver function, and when the I/O request 
completes, have the IRP completion routine modify the 
results of the I/O request. Imagination is only the limit 
as to how this interception technique could be used to 
conceal malicious activity.

kernel mode data Manipulation – dkOM

In order to hide malicious resources on a compromised 
system, a rootkit could either intercept the requests to 
access the resources or manipulate the underlying data 
maintained by the operating system to track resources. In 
this section we will explore kernel mode data manipula-
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tion.

A kernel mode rootkit could modify the underlying 
kernel objects; effectively subverting what the operat-
ing system believes exists on the system. For example, 
by modifying a token object, the rootkit can alter “who” 
the operating system believes performed a certain action, 
thereby subverting any logging. This technique has been 
termed as Direct Kernel Object Manipulation (DKOM). 
The FU rootkit [21] is the first proof-of-concept imple-
mentation that uses DKOM tricks to modify the kernel 
object that represents the processes on the system. When 
a user application queries the operating system for the list 
of processes through an API, Windows walks the dou-
bly-linked list of process objects (EPROCESS structure) 
and returns the appropriate information. FU unlinks the 
process object of the process it is hiding. This does not 
affect execution of the now hidden process as it is still al-
located CPU cycles. This is because, in Windows, threads 
are scheduled to execute and not processes, and the un-
linked process’s threads information is still maintained 
in the scheduler list. Since, FU was written as a proof-of-
concept, it makes no attempt to hide itself, and also does 
not include a remote communication channel. FU can 
hide processes and device drivers and can also elevate the 
privilege and groups of any Windows process token. Due 
to its ingenuity, the FU rootkit has been integrated in a 
variety of malware such as Sdbot, Rbot, Fanbot, as well as 
spyware programs [22, 25].

Getting into the kernel

The most common approach to get rootkit code from 
user mode to kernel mode is by installing a kernel mode 
driver. A kernel mode driver can be installed using the 
Service Control Manager (SCM) API which requires 
appropriate registry key modifications. It can otherwise 
be installed by directly calling the low-level Native APIs 
ZwLoadDriver or ZwSetSystemInformation 
[18]. Once the rootkit driver is loaded, it can install its 
hooks, patch kernel code or manipulate kernel objects 
and may choose to unload the driver after its DriverEntry 
routine has been installed making its detection harder.

An alternative method of getting rootkit code into ker-
nel is by using “\Device\PhysicalMemory”. In 
Windows version prior to Windows 2003, user mode ap-
plications running as “SYSTEM” could directly modify 
physical memory via the “\Device\PhysicalMem-
ory” section object [26]. This technique does not need 
any kernel mode driver to be installed. Two worms in the 
wild, Fanbot and MyFip have been seen to use this tech-
nique coupled with the DKOM trick to hide their mali-
cious processes [25].

Another technique would be to exploit kernel vulnerabil-
ities to get code into the kernel [27]. For example, a buf-
fer overflow in a kernel driver could allow an attacker to 
execute arbitrary code with Ring 0 privileges. Although, 
at the time of writing this document, there is no proof-
of-concept code or implementation that exploits such 
vulnerabilities.

A not so widely observed technique in order to enter the 
kernel mode right from an application (user mode), is 
to set up a call gate descriptor in the Global Descriptor 
Table (GDT), so that an application can enter the kernel 
via the call gate. The Wikipedia definition for a “call gate” 
is: “Call gate is a mechanism in intel x86 architecture for 
changing privilege level of CPU when it executes a pre-
defined function call.” [42] However, once user-mode 
code is not allowed to access GDT, a kernel-mode driver 
can be loaded just to set up the call gate descriptor and 
then unload it [38]. There is also a method to do this 
without using a kernel-mode driver [39]. At least one ma-
licious program in the wild has been discovered using this 
approach [41]. F-Secure calls this Gurong.A. Gurong.A 
uses the physical memory device as its initial injection 
vector to install a call gate to the Global Descriptor Table 
(GDT) that resides in system address space. This means is 
that through the call gate Gurong.A can execute parts of 
its code in privilege level 0 (kernel mode) without adding 
any additional code to the system address space.

Another rootkit observed in the wild that fits in the 
“stealth by design” malicious code [58] category is Rus-
tock.A [59]. This malware is stealthy enough to remain 
undetected by many rootkit detectors uch as RootkitRev-
ealer, BlackLight and IceSword. Rustock.A has no process 
to be detected because its malicious code runs inside the 
driver and in kernel threads. It additionally uses NTFS 
Alternate Data Stream (ADS) to hide its driver into the 
“\System32:<random-number>” ADS. This ADS 
cannot be enumerated since it is protected by the rootkit. 
Rustock.A does not hook directly any native API and also 
removes its entries from many kernel structures including 
the Services Control Manager, Object manager, and the 
loaded module list so that this enumeration fails. The SYS 
driver is polymorphic and changes its code from sample 
to sample. In addition to these, the rootkit also scans for  
specific strings in loaded programs to detect rootkid de-
tection tools in order to avoid detection.

The makings of a kernel mode IRC-bot is indicative of the 
trend which malware authors are trying to adopt, which 
is incorporating stealth into malware [63]. The creator, 
Tibbar (“Rabbit” spelled backwards), claims that his in-
novation surpasses the standard Windows rootkits in its 
ability to crossover [61]. Most Windows-based rootkits 
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hide in device drivers, and then depend on outside, user 
mode applications to get anything done. This creates sev-
eral disadvantages to the rootkit developers since the user 
mode application may be limited to the security rights 
granted to the user, the application may not be present or 
accessible on the victim machine and any user mode ac-
tivity is easily detectable than kernel mode activity. Since 
this IRC-bot carries its IRC application inside the kernel 
driver it remains less susceptible to being detected. Tibbar 
extended the TDI (Transport Driver Interface) sockets 
library posted by Valerino [62]. The library can be used 
to bypass typical TDI firewalls but not NDIS (Network 
Driver Interface) firewalls.

Preparing for Battle – Rootkit Detection 
Techniques

Rootkits are becoming more and more prevalent among 
Windows based malware and easily accessible via the web 
and through on-line collaborated efforts. Available now 
are Stealth-creation kits like Nuclear-Rootkit [83] which 
has a user interface and simply requires a file or directo-
ry name and with a click uses various stealth techniques 
to custom binary code that hides the files, directories, 
ports, processes and registry entries. Another popular 
kernel mode rootkit is the AFX Rootkit 2005 by Aphex 
[60]. Current version of AFX hide processes, handles, 
modules, files & folders, registry keys & values, services, 
TCP/UDP sockets and System tray icons. The need for 
effective rootkit detection tools has been met by equally 
advanced techniques and some of these techniques are 
discussed below.

Signature based detection

Signature scanning has traditionally been applied to file-
system and memory. This technique is effective only for 
known malicious programs. Unless signature scanning 
is combined with some more advanced detection tech-
niques and heuristics, they are of not much use to detect 
rootkits. Also, while a rootkit is installing itself it could at-
tack the scanner and disable it. Furthermore if a signature 
scan is carried on an already rootkit-ed system, the rootkit 
would hide its malicious file/folders and processes any-
way. However, most public kernel rootkits are susceptible 
to signature scans of kernel memory. These are typically 
kernel drivers and hence reside in non-paged memory. 
Very few, if any, make an effort to obfuscate their code. 
Thus, a scan of kernel memory should trivially identify 
most public kernel rootkits regardless of their underlying 
stealth tricks [31]. But this is only applicable to already 
known public rootkits, because signature based detec-
tion is, by definition, useless against malware for which 

a known signature does not exist. Finally, signature based 
detection methods are useless against Virtual Memory 
Manager (VMM) hooking rootkits like Shadow Walker 
which are capable of controlling the memory reads of a 
scanner application. [30].

Integrity checks using Heuristics – PatchFinder, 
System Virginity Verifier

Early UNIX based rootkits modified critical system bina-
ries. In order to detect this anomaly integrity-based check-
ers such as Tripwire were used. The tool had to be run on a 
clean system to establish a trusted baseline. This baseline 
included checksums for all system files. At a later stage, a 
system could be re-scanned for all system file checksums 
and any discrepancy in checksums would conclude pos-
sible signs of compromise. Eventually rootkit technology 
shifted from simply replacing files to targeting process 
and kernel memory. Integrity checkers by themselves are 
rendered useless in these cases.

A recent approach of combining integrity-based detection 
with heuristics in order to detect certain types of rootkits 
was presented by Joanna Rutkowska as a proof-of-concept 
tool called PatchFinder [32]. Her method is based on run-
time execution path profiling, also called Execution Path 
Analysis (EPA). The idea of Patchfinder is based upon the 
observation that a rootkit must add code to a given execu-
tion path (for example, to filter the results returned by a 
hooked service). An initial baseline (number of instruc-
tions executed) is established for the system by tracing 
the controlled execution of certain system services. Rut-
kowska uses the “single step” feature of the x86 processor 
to perform this instruction counting. When code is run 
in “single step” mode, the processor halts execution and 
calls a special Interrupt Service Routine (ISR) after each 
instruction is executed. The instruction count is updated 
in this routine. Later, the same traces can be performed to 
check if any hooked services return a value greater than 
the baseline value. Due to the complexity of Windows, 
execution paths of system services can vary from one call 
to another which results in a non-deterministic behavior. 
This problem is dealt with by statically constructing a 
histogram and empirically comparing the results. Never-
theless, PatchFinder can be prone to false positives. Also, 
the technique is vulnerable to rootkits which realize that 
they are being traced. At least one instance of a proof-of-
concept code exists that demonstrates a means to defeat 
PatchFinder [33].

Another such tool, also built by Joanna Rutkowska as 
a proof-of-concept is called System Virginity Verifier 
(SVV) [34]. It checks the integrity of operating system 
data structures such as the IAT, EAT, SSDT and IRP ta-
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bles. It also incorporates some advanced heuristics to help 
deal with false positives resulting from benign hooking 
by legitimate applications such as antivirus scanners and 
personal firewalls. SVV does a diff on the code sections 
of system libraries and drivers in memory to the corre-
sponding binary files on disk to determine any discrep-
ancies. The baseline here is the binary on disk (obtained 
during a prior scan of the clean system). SVV takes into 
consideration any changes that would occur when code 
from binary file is loaded into memory (such as relocation 
information), and considers any other changes to be sus-
picious. This allows SVV to identify hooks and patched 
code. In some cases, SVV also allows hooks restoration.

However, since both SVV and PatchFinder look for 
changes to code, they would fail to detect rootkits that 
apply DKOM techniques to manipulate data.

cross View based detection – RootkitReveler, 
Blacklight, GhostBuster, klister

Cross View based detection is based on gathering infor-
mation from two different views and then comparing the 
results for discripencies. Data is first requested via high 
level (or user level) APIs and then the same data is again 
gathered using low level functions. For example, a detec-
tor could enumerate the files in a filesystem from user 
mode using the Win32 APIs and then enumerate the 
same information in kernel mode using a filesystem filter 
driver that directly communicates with the hard disk. If 
a rootkit were hiding certain files using user mode hooks 
or by hooking the SSDT, these discrepancies would show 
up in the cross view based diff. Rootkit Reveler uses this 
technique to identify hidden files/folders and registry 
keys [35]. It targets what are called “persistent rootkits” 
i.e. rootkits that survive between reboots. It assumes that 
a persistent rootkit has to be present somewhere on disk 
and in the registry. Rootkit Reveler does a low-level scan 
by parsing the raw filesystem structure on the disk and 
the bare files that comprise the registry hive. Rootkit Re-
vealer can be subverted by a rootkit that blocks or diverts 
access to disk volumes or the registry files. It also suffers 
from false positives if files or registry keys are created, de-
leted, or otherwise altered between the high level and the 
low level enumeration. This is true for all cross view based 
techniques.

A rootkit detection tool from F-Secure called BlackLight 
uses cross view based diff technique to detect rootkits. It 
is freely available via their website [36]. It is aimed at un-
covering processes and files hidden by rootkits. Initially, 
BlackLight uses a Process ID Brute force (PIDB) ap-
proach to loop through all possible PIDs calling Open-

Process() on the PIDs in the range of 0x0 to 0x4E1C 
[37]. It keeps a list of all processes it is able to open using 
the PIDB method and then calls CreateToolhelp-
32Snapshot(), which gives BlackLight a second list of 
processes. It then compares the two lists, to see if there 
are any processes in the PIDB list that are not in the list 
returned by the CreateToolhelp32Snapshot() 
function. If there is any discrepancy, these processes are 
considered hidden and reported to the user. Using this ap-
proach, BlackLight can successfully uncover a rootkit that 
uses the DKOM trick to hide itself. But the FuTo proof-
of-concept rootkit [37] came up with a work around in 
order to break BlackLight’s detection of DKOM. This it 
basically does by manipulating the Handle Table kernel 
structure that maintains the indexes to handles which the 
kernel/object manager uses to translate a handle to and 
object. Both BlackLight and IceSword-1.12 use the Han-
dle Table detection method and are hence circumvented 
by FuTo.

Microsoft too has a rootkit detection project called Strid-
er Ghostbuster [43]. Their approach to the cross view 
based detection is to compare the results of an online scan 
to an offline scan. To detect hidden files, the GhostBuster 
tool performs the high-level scan using either the Find-
FirstFile(), FindNextFile() APIs or the “dir 
/s /b” command, and then performs the low-level scan 
by reading the Master File Table (MFT), which is the core 
of the NFTS volume structure, and other NTFS metada-
ta directly. A comparison of the two scans reveals hidden 
files. There could be accompanied false positive such as 
some benign software bugs may generate filenames that 
are too long, or files may be created in the very small time 
window between when the high- and low-level scans are 
taken. For the outside-the-box solution, the tool scans the 
potentially infected hard drive from a clean WinPE CD 
boot [46] (or optionally use the BartPE CD boot [47] ), 
using either the Win32 APIs, the “dir /s /b” com-
mand, or the low-level scanning code, and compares the 
result with the inside high-level scan [44, 45].

GhostBuster can also detect hidden registry entries. The 
Windows registry is a centralized, hierarchical store for 
configuration data containing name-value pairs. A regis-
try key is like a file-system folder and can contain one or 
more registry items (or values). The registry is composed 
of several “hives”, each of which is backed by a file [9]. 
Auto-Start Extensibility Points (ASEPs) [48] are places 
where applications can “hook” to get automatically start-
ed. Most of the ASEPs reside in the registry. For example, 
the HKLM\SYSTEM\CurrentControlSet\Ser-
vices is a registry key for auto-starting drivers and ser-
vices. Rootkits tend to hide their ASEP hooks. Another 
form of registry hiding exploit is in the way Win32 API 
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and the Native API interpret registry entry names. Reg-
istry entries created with the Native API can be hidden 
from most of the registry editors that use the Win32 API 
by embedding NULL characters as part of the name. Yet 
another form of registry hiding exploit is the use of long 
names that allow certain entries to become invisible. Gos-
tBuster can detect these type of hidings as well [44].

In order to detect hidden registry key entries, GhostBuster 
uses either the standard Win32 registry enumeration 
APIs or the RegEdit program for the high level scan of all 
ASEP hooks. Since each registry hive is simply a file with 
a well-defined schema [9], the low level scan copies and 
parses each hive file directly to retrieve all ASEP hooks 
thus bypassing the APIs. For the outside scan, Ghost-
Buster mounts registry hive files from the potentially 
infected system drive under the live registry loaded from 
the WinPE CD, and uses the Win32 APIs or RegEdit to 
scan all ASEP hooks to extract the truth [44].

To detect hidden processes, GhostBuster does a inside-
the-box high-level scan using the NtQuerySystem-
Information() API in ntdll.dll, and uses a 
driver to perform the low-level scan by traversing the 
Active Process List. A diff between these two scans can 
reveal API-intercepting rootkits, but it cannot detect pro-
cesses hidden through DKOM because the low-level scan 
does not contain the “truth”. Outside-the-box scanning of 
volatile resources such as processes and modules requires 
an additional step of making the image of the relevant 
memory address space available outside. GhostBuster ob-
tains a “truth approximation” by inducing a blue screen 
(i.e., kernel crash) to generate a memory dump file, and 
applying similar kernel data structure traversal code to the 
dump file to perform the outside-the-box scan.

A GhostBuster extension is also implemented in the form 
of a DLL and this DLL is injected into every running 
process and perform the scans and diff from inside each 
process, essentially turning every process into a Ghost-
Buster. This is to thwart targeted attacks on GhostBuster.

Klister is another proof-of-concept rootkit detection tool 
developed by Joanna Rutkowska [32]. Klister is Windows 
2000 specific only but demonstrates a method useful for 
detecting rootkits that use DKOM techniques to hide 
processes, like FU [21]. Klister exploits this redundancy 
in OS data structures to detect processes hidden by the 
DKOM trick. By comparing the active process list with 
the dispatch queues, it is possible to identify discrepan-
cies.

Although the cross view approach seems to be state-of-
the-art in current rootkit detection methodologies, the 

approach is still vulnerable to existing rootkit attack meth-
odologies. Its success greatly depends upon its implemen-
tation, specifically the method which is used to obtain the 
“low level” view of the system. Thus, the strongest imple-
mentation of a cross view approach should only rely upon 
direct communication with the disk controller [49].

Hook detection – VIcE, ApiHookcheck, SdTRe-
store

Most popular rootkits being used by today’s malware ex-
tensively use hooking techniques. HackerDefender, the 
popular rootkit among hackers uses the SSDT hooking 
technique. In order to detect SSDT hooks, an approach 
similar to SVV can be used. Each entry of the SSDT in 
memory can be compared with the value of that entry 
from the SSDT in ntoskrnl.exe. A discrepancy can 
be identified as a hook in SSDT. In order to detect IRP 
hooks in kernel mode drivers, the IRP major function ta-
ble (DRIVER _ OBJECT) can be enumerated to ensure 
that the function address in each entry is within the ad-
dress space of that driver. A discrepancy here can be iden-
tified as a hook in the routine’s table entry. Similarly, both 
the IAT and EAT can be enumerated to ensure that each 
address table entry points to an address within the correct 
DLL’s memory. For example, if an application imports 
FindFirstFile() from kernel32.dll, but the 
application’s IAT entry for FindFirstFile() does 
not point to an address within kernel32.dll memory, is 
indicative that the IAT entry is hooked. In order to detect 
inline hooks, a simple check can be done to at the begin-
ning of functions for an unconditional JMP instruction. 
But this is not a reliable detection method because a root-
kit could insert the JMP instruction somewhere in the 
middle of a function and evade detection. An effective 
approach would be to scan the entire function for JMP 
instructions that transfer control outside the applications 
or library’s address space. This approach could be prone 
to false positives though.

VICE (Virtual Intruder Capture Engine) is a popular 
hook detection tool [50]. It is a standalone program that 
installs a device driver to analyze both user mode applica-
tions and the operating system kernel. The current version 
of VICE has been targeted and subverted by at least one 
public rootkit [15]. Rootkits have attacked VICE by de-
tecting its process name if running, and cease to hook. 
Some other hook detection tools have been released by 
SIG^2 such as ApiHookCheck [51] for user mode hook 
detection, and SDTRestore [52] for detecting and restor-
ing SDT hooks.

Hooks are not only exploited by rootkits, but are also le-
gitimately used by a large variety of security software in 
order to perform security checks and enforce policies. 
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Microsoft itself offers “hooks” in the form of hot patching 
and DLL forwarding. Hence a hook detection approach 
to finding rootkits can be severely prone to false positives. 
Their use makes it difficult to differentiate between a ma-
licious hook and a benign, legitimate hook. Therefore 
detected hooks need to be researched further before con-
cluding the presence of a rootkit.

Tools combining different techniques – IceSword, 
kProccheck, RAIdE, Helios

Since most rootkit detection tools are freely available, 
these can be reverse-engineered by the attacker in order 
to device a method to circumvent them. While most of 
these tools use strong anti-debugging techniques (such 
as BlackLight), it may still be possible for rootkit au-
thors to break them (e.g. the FuTo DKOM rootkit [37]). 
Some rootkit authors are also applying signature-based 
approaches to detect the presence of a rootkit detection 
tool. An example of this is the commercial version of the 
popular HackerDefender rootkit which comes with an 
anti-detection engine that attempts to identify rootkit 
detectors using binary signatures [15]. Such a commercial 
version called HackerDefender Gold was until recently 
available for 500 euros and has also been found on com-
promised machines [53].

In order to overcome disadvantages with individual root-
kit detection tools, there are now tools being developed 
that use all possible detection techniques, combined in 
one single tool. IceSword, for example is one such tool 
[54] that allows detection of hidden files/folders, pro-
cesses, registry entries, TCP/UDP ports, kernel modules 
that have been hidden using SSDT hooks or DKOM. 
There is also a tool available from SIG^2 called KProc-
Check that combines hook detection and cross view com-
parison methods [55]. KProcCheck can detect a hidden 
process by traversing the Handle Table list or the Sched-
uler Thread List. This tool allows detection of rootkits 
such as FuTo that was capable of evading BlackLight and 
IceSword. Another tool that combines several detection 
techniques is called RAIDE (Rootkit Analysis Identifi-
cation Elimination) which was recently presented at the 
BlackHat Europe 2006 conference by James Butler [56]. 
RAIDE is capable of detecting several types of hooks and 
also removing them. It can also detect processes hidden 
using DKOM tricks. RAIDE uses shared memory seg-
ments to pass information to the kernel instead of com-
municating via IOCTLs. Shared memory contains only 
encrypted data and the communications use randomly 
named events. This immunizes RAIDE from several anti-
detection techniques. RAIDE was also demonstrated to 
detect Shadow Walker, FuTo, HackerDefender. It uses 
a memory signature scanning method in order to find 

EPROCESS blocks hidden by FUTo. RAIDE can also, 
in most cases, restore inline hooks, and re-link hidden 
processes into the linked list of EPROCESS structures, 
making them visible again.

Helios is another advanced malware detection tool that 
uses behavior based detection to flag malware and root-
kits [66]. It is in beta stage but is quite elaborate in its 
findings showing hooks in system APIs and such. 

Hardware based Rootkit detection

A hardware based solution such as Copilot [64] can be 
installed on a computer as a PCI card which can monitor 
operating system and kernel integrity. Since Copilot does 
not relay on the compromised host, it remains indepen-
dent from the operating system by using its own CPU and 
accessing memory directly using DMA (Direct Memory 
Access). It can even have its own network interface allow-
ing it to remotely report its findings without having to go 
through the host operating system.

Securing the Fort – Prevention

Depending solely upon rootkit detection tools is not suf-
ficient to counter the growing threat of rootkits. Hack-
ers working mutually on numerous rootkit projects are 
able to modify implementations to defeat detectors faster 
than corporations can offer a change. Due to the nature of 
this battle, the fight against rootkits requires fundamen-
tal changes to how detection engines integrate with the 
operating system. A layered, defense-in-depth approach 
is the best method of preventing a host from receiving 
an unwanted rootkit installation in the first place [65]. 
A proactive defensive measure would be to employ net-
work firewalls as well as activate and properly configure 
host based firewalls. Physical access to network and hosts 
should be controlled. It is imperative to keep current on 
operating system patches as well as anti-virus software 
with latest updated viral definitions. It is better to use 
multiple malware detectors to protect against different 
attack vectors. It is very important to have strong au-
thentication procedures for system access and to usually 
operate with minimal privileges. Software should only 
be installed from known “clean” sources and read-only 
checksums should be generated of critical system files. 
The system must be properly installed and configured to 
establish a “known clean” baseline. Once a host is on-line 
and operational, its integrity must be monitored through 
comparative analysis to known records, scheduled system 
scans and behavioral observation. It is important to ob-
serve of system behavior to detect an infection such as sys-
tem logs, network activity, or errant CPU usage. Install-
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ing a Host based Intrusion prevention system (HIPS) can 
flag any un-authorized system integrity tampering.

An ongoing Battle – The Future of Rootkits

The battle between emerging rootkit techniques and anti-
rootkit techniques is a continuing arms-race. Rootkit de-
tection techniques seem to co-evolve as newer rootkits 
continue to evolve. New proof-of-concept rootkits are 
approaching the lowest levels of a computer system like 
the BIOS and chipsets in order to gain complete control 
of the system [68]. So are rootkit detection techniques 
evolving to be incorporated into computer hardware 
(such as the prototype CoPilot [64]) to combat them. 
Processor hardware manufacturing giants, like Intel and 
AMD, are showing greater importance to computer secu-
rity, by pursuing projects intended to incorporate hard-
ware based security solutions in their respective proces-
sor families [69, 70]. Other interesting proof-of-concept 
rootkits are eEye’s BootRoot [74] that would execute af-
ter the BIOS but before the operating system, enabling 
complete control of over disk access and other resources. 
Another proof-of-concept called Shadow Walker [30] 
that aims to control the “view” that the operating system 
has on certain regions of memory so as to allow the root-
kit to hide itself. The proof-of-concept rootkits are now 
exploiting the growing popularity of Virtual Machine 
(VM) architecture to implant themselves within a Virtual 
Machine Monitor (VMM) and control the unsuspecting 
host operating system. Three such concepts are SubVirt 
[75], Blue Pill [76], and Vitriol [77]. The idea of SubVirt 
is for a malicious kernel module to modify the boot se-
quence such that on the next reboot the original operating 
system loads inside a virtual PC granting the underlying 
malicious VMM total control. The idea of the Blue Pill is 
to implant a thin hypervisor (or VMM) beneath the un-
suspecting host by utilizing AMD’s Pacifica virtualization 
technology. The idea of Vitriol is similar to the Blue Pill 
in the sense that the rootkit hypervisor is installed while 
running in Ring 0 and then the running OS is migrated 
into a VM. Vitriol was presented as a VM rootkit for Ma-
cOS X using Intel VT-x technology (Intel’s virtualization 
technology) on an Intel Dual Core Duo/Solo processor. 
This has all been possible due to Intel’s and AMD’s initia-
tive to integrate virtualization at the hardware level, into 
their processors. These are Intel’s VT-x [78] technology 
and AMD’s Pacifica technology [79]. Rootkit technol-
ogy is expanding its horizon beyond operating systems. 
Proof-of-concept presentations of rootkits attacking fire-
walls [80] and databases [81] have also been seen.

kernel Hardening

Microsoft’s initiative to incorporate new security fea-
tures into its upcoming operating system kernel, 64-bit 
Windows Vista, sure comes as a sign of relief [67], but 
malware authors will soon find ways to break it. The ad-
ditional kernel enhancements impose that only trusted or 
signed drivers are loaded into the Windows Vista 64-bit 
kernel. This goes beyond the normal user-based security 
model and even prevents administrators from loading 
unsigned device drivers in to the operating system. But 
recently, Joanna Rutkowska in her presentation at Black-
Hat 2006 [71] bypassed this restriction and was able to 
load an unsigned driver into the Vista x64 Beta 2 kernel, 
without requiring a reboot. She claims that her technique 
would still work on 64-bit Windows Vista RC1 but the 
avenue of attack has been blocked in 64-bit Vista RC2 
[72]. Another noticeable kernel enhancement in Vista is 
“kernel Patch Protection” implemented as “PatchGuard”. 
This was introduced in an effort to protect the integrity of 
the Windows kernel from buggy or malicious third party 
kernel mode programs from compromising the integrity 
of the kernel [73]. But it has been shown that PatchGuard 
can be bypassed as well [40, 84]. Sadly, this is an ongo-
ing battle, where it has become imperative for security 
researchers to think proactively ahead.

legitimate uses of Rootkits

A rootkit is not a virus, worm or an exploit, but can be 
used in conjunction with one. Broadly speaking, rootkit 
is a technology. The intent with which this technology is 
used determines their malicious or otherwise legitimate 
purpose. However, it may not be termed as a “rootkit.” The 
same technology used by rootkits is also used in security 
software such as firewalls and host based intrusion pre-
vention systems (HIPS) to extend the protection of the 
operating system. An example of this is hooking the sys-
tem call table in order to detect changes to the Windows 
Registry. Also, in order to enforce a company’s IT policy, 
corporations can use software to monitor their workers. 
Again, such corporate monitoring software uses stealth to 
hide its actions from the user so the user cannot remove 
it. Law enforcement can use rootkit technology to gather 
evidence on a suspect without the suspect’s knowledge. 
Rootkit technology can also be used to protect critical 
personal data on a computer from an attacker or hacker. 
The technology is a double-edged sword. An example 
of this is while Sony BMG used the XCP rootkit from 
First4Internet to enforce Digital Rights Management 
(DRM) on its music CDs [2, 3], there were CD-emula-
tion utilities such as Alcohol and Daemon Tools that also 
used rootkit techniques to defeat DRM [4]. Rootkits are 
a powerful technology and in the coming years their use 
for both malicious and non-malicious purpose will grow 
tremendously.
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Conclusion

In this paper we have discussed how rootkits exploit the 
extensibility of the Windows operating system to ‘sub-
vert’ the Windows kernel. The proliferated use of rootkits 
among today’s malware has also been discussed. We also 
discussed several emerging rootkit detection techniques 
and tools. All of these point toward the ongoing arms race 
between rootkit technology and anti-rootkit techniques. 
In order to stay abreast of rootkit authors, rootkit detec-
tion technologies have to constantly evolve, and in order 
to keep malware at bay, pro-active and preventive mea-
sures should be taken from being ‘subverted’ in the first 
place.
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