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4.1 Introduction

The principle of least squares provides a general methodology for fitting straight-line models
to regression data. So far, we have fitted such models to any data for which scatterplots
between the response variable and the explanatory variables displayed anything resembling
straight-line relationships. But we have made no further effort to check the validity of the
assumptions of the models. For a multiple linear regression model

Yi = β0 + β1xi,1 + β2xi,2 + · · · + βkxi,k + εi, i = 1, . . . n,

we make the following four model assumptions:

(I) Independence: The response variables Yi are independent.

(II) Normality: The response variables Yi are normally distributed.

(III) Homoscedasticity: The response variables Yi all have the same variance σ2. (The
term homoscedasticity is from Greek and means ‘same variance’.)

(IV) Linearity: The true relationship between the mean of the response variable E[Y ] and
the explanatory variables x1, . . . , xk is a straight line.
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4.2 Residuals 2

Assumption (I) on independence of the response variables is subject to the design of the
study and the way the data have been collected. In this course, we shall assume that all data
have been collected independently; that is, we shall assume that Assumption (I) is satisfied.

In order to check the model assumptions, we shall need a new type of residuals: standard-

ised residuals. These are introduced in Section 4.2. The remaining sections are concerned
with methods for assessing the appropriateness of the model: Section 4.3 concerns the nor-
mality assumption, Section 4.4 the homoscedasticity and linearity assumptions, and Section
4.5 the linearity assumption in multiple regression. The module concludes with Section 4.6
which considers situations where a few points differ from the rest of the data.

4.2 Residuals

Rather than checking Assumptions (II)–(IV) on the response variables directly, it is convenient
to re-express the assumptions in terms of the random errors

εi = Yi − (β0 + β1xi,1 + β2xi,2 + · · · + βkxi,k) , i = 1, . . . , n, (4.1)

and check the assumptions on the random errors instead.

The following four assumptions on the random errors are equivalent to the assumptions
on the response variables.

(i) The random errors εi are independent.

(ii) The random errors εi are normally distributed.

(iii) The random errors εi have constant variance σ2.

(iv) The random errors εi have zero mean.

If assumptions (i)-(iv) are satisfied, the random errors εi are independent, identically
distributed random variables with distributions:

εi ∼ N(0, σ2), i = 1, . . . , n.

Thus, the random errors εi can be regarded as a random sample from a N(0, σ2) distribution.
We can check the assumptions on the random errors (and thereby the assumptions on the
response variables) by analysing an observed sample of the random errors. All we need are
observations of the random errors.

The obvious candidates for observations of the random errors are the fitted residuals: the
differences between the observed values y1, y2, . . . , yn of Y, and the values ŷ1, ŷ2, . . . , ŷn fitted
by the model, where

ŷi = β̂0 + β̂1xi,1 + β̂2xi,2 + · · · + β̂kxi,k, i = 1, 2, . . . , n, (4.2)
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4.2 Residuals 3

with β̂0, β̂1, . . . , β̂k denoting the least squares estimates of the regression parameters. That is,
the fitted residuals are given by

ε̂i = yi − ŷi

= yi − β̂0 − β̂1xi,1 − β̂2xi,2 − · · · − β̂kxi,k.

However, as we shall see in Subsection 4.2.1, these residuals are observations of random
variables–known as raw residuals–which are not independent, and which do not have the same
variance. In Subsection 4.2.2, the raw residuals are transformed into standardised residuals,
for which the issue of non-constant variance is overcome.

4.2.1 Raw residuals

The observed values ri of the raw residuals are given by the fitted residuals

ri = ε̂i = yi − β̂0 − β̂1xi,1 − β̂2xi,2 − · · · − β̂kxi,k, i = 1, . . . , n,

where β̂0, β̂1, . . . , β̂k are the least squares estimates of the regression parameters. The cor-
responding random variables, denoted by Ri, are obtained by substituting the observed yis
with the random variables Yi, and the least squares estimates of β0, β1, . . . , βk with the cor-
responding random variables: the least squares estimators. That is, the raw residuals are
given by

Ri = Yi − β̂0 − β̂1xi,1 − β̂2xi,2 − · · · − β̂kxi,k, i = 1, . . . , n, (4.3)

where β̂0, β̂1, . . . , β̂k are the least squares estimators of the regression parameters.

It can be shown (we shall not do it here) that the ith raw residual Ri has the distribution

Ri ∼ N
(

0, (1 − hii) × σ2
)

, i = 1, . . . , n, (4.4)

where hii is the ith diagonal element of the hat-matrix h given by

h =













h11 h12 · · · h1n

h21 h22

...
...

. . .
...

hn1 · · · · · · hnn













= x
(

xT x
)

−1
xT , (4.5)

where x is the design matrix

x =











1 x1,1 x1,2 · · · x1,k

1 x2,1 x2,2 · · · x2,k

...
...

...
...

1 xn,1 xn,2 · · · xn,k











.
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4.2 Residuals 4

The matrix h is called the hat-matrix, because it has the property that it ‘puts a hat on the
ys’, in the sense that the fitted values ŷ1, ŷ2, . . . , ŷn in (4.2) are found by matrix-multiplying
the hat-matrix on the vector of observed values y1, y2, . . . , yn:

hy = h











y1

y2

...
yn











= x
(

xT x
)

−1
xT y = ŷ =











ŷ1

ŷ2

...
ŷn











.

Here y denotes the column vector of response variables, as defined in Module 3.

You can see from (4.4) that the raw residuals have different variances. Also, notice that
none of the raw residuals have the variance we are looking for: σ2. It can be shown that all the
diagonal elements hii take values between 0 and 1: if hii is small, the variance (1 − hii)× σ2

is close to ‘right’ variance σ2; however, if hii is close to one, the variance (1 − hii) × σ2 is
much smaller than σ2.

A further problem with the raw residuals is that they are not independent. However, it
can be shown that if the values of the diagonal elements hii of the hat-matrix h are reasonably
small, the raw residuals are ‘nearly’ independent. We shall not go into further details with
this problem.

In summary, the raw residuals are not suitable for checking the assumptions on the ran-
dom errors. The random errors all have the same variance–the raw residuals have different
variances; the random errors have variance σ2–in general, none of the raw residuals have
variance σ2; the random errors are independent–the raw residuals are not.

4.2.2 Standardised residuals

The standardised residuals are designed to overcome the problem of different variances of the
raw residuals. The problem is solved by dividing each of the raw residuals by an appropriate
term.

Recall that the ith raw residual Ri has a N(0, (1 − hii) × σ2)-distribution. A standard
result on the normal distribution states that if X ∼ N(µ, σ2), then

aX ∼ N(aµ, a2σ2).

Therefore, if we multiply Ri by ai = 1/
√

1 − hii, we get the standardised residual, Si, with
distribution

Si =
Ri√

1 − hii

∼ N

(

0√
1 − hii

,
(1 − hii) × σ2

1 − hii

)

= N
(

0, σ2
)

.

That is, the standardised residuals S1, . . . , Sn are random variables with distributions

Si ∼ N
(

0, σ2
)

, i = 1, . . . , n. (4.6)
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The observed value si of the ith standardised residual is given by

si =
ri√

1 − hii

. (4.7)

The standardisation of the residuals has taken care of the issue of different variances, but
nothing has changed with regard to dependence between the residuals. It can be shown that
the dependence between the standardised residuals is exactly the same as the dependence
between the raw residuals. We shall not go into further details with this problem.

In summary, the standardised residuals are better suited than the raw residuals for check-
ing the assumptions on the random errors. The standardised residuals Si have the same
distributions as the random errors: N

(

0, σ2
)

. However, the standardised residuals are not,
in general, independent. But if the values of the diagonal elements hii of the hat-matrix h
are reasonably small, the standardised residuals are ‘nearly’ independent.

Note that most statistical computer packages (including SAS) calculate the standard-
ised residuals slightly differently from the standardised residuals defined in the module. In
most packages, each of the standardised residuals is divided by an estimate of the standard
error, to obtain variables which are approximately N (0, 1)-distributed, rather than N

(

0, σ2
)

-
distributed. However, since all the residuals are divided by the same value, the patterns in
residual plots and normal probability plots are identical whether one uses the un-scaled version
in (4.7) or the scaled version.

4.3 Normality

The first assumption we consider is Assumption (ii): the random errors εi are normally

distributed. Since the random errors can be regarded as a random sample from a N(0, σ2)
distribution, we can check Assumption (ii) by checking whether the standardised residuals si

might have come from a normal distribution. A normal probability plot of the standardised
residuals will give an indication of whether or not the assumption of normality of the random
errors is appropriate. Recall that a normal probability plot is found by plotting the quantiles
of the observed sample against the corresponding quantiles of a standard normal distribution
N(0, 1). If the normal probability plot shows a straight line, it is reasonable to assume that
the observed sample comes from a normal distribution. If, on the other hand, the points
deviate from a straight line, there is statistical evidence against the assumption that the
random errors are an independent sample from a normal distribution.

Example 4.1 Holiday cottages

Recall from Module 3 the data on sales prices, ages and livable areas of holiday cottages in
Odsherred, Denmark. It was suggested, in Module 3, that a multiple linear regression model
might describe the variation in the data well. The least squares line for the relationship
between sales price (Y ), age (x1), and livable area (x2), is given by

ŷ = −281.43 − 7.611x1 + 19.01x2.
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Figure 4.1: Normal probability plot of standardised residuals for Odsherred data

Figure 4.1 shows a normal probability plot of the residuals There are very few data points, so
one should be careful in concluding too much from the plot. Nevertheless, the points deviate
quite a bit from a straight line, so the normality assumption might not be satisfied for these
data.

Further details on this dataset can be found here.
♦

Example 4.2 Ice cream consumption

In Module 3, we considered how the ice cream consumption (Y ) is related to temperature
(x1), ice cream price (x2), average annual family income (x3), and the year (x4). In Module
3, a possible outlier was removed from the dataset before we fitted a multiple linear regression
model to the data. In this module, we consider the full dataset–including the outlying point.
The least squares line, relating the ice cream consumption to the four explanatory variables,
is given by

ŷ = 0.714 + 0.00315x1 − 1.29x2 − 0.00237x3 + 0.0508x4.

A normal probability plot of the standardised residuals is shown in Figure 4.2. The nor-
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Figure 4.2: Normal probability plot of standardised residuals for ice cream data

mal probability plot is not too far from a straight line. (Although the line is not entirely
convincing.) It seems that the normality assumption might be satisfied for these data.

Further details on this dataset can be found here.
♦

The two most common ways to deal with failure of the normality assumption are either to
transform the data into a new set of data for which the assumption is satisfied (transforming
data is discussed in Module 6), or to use a distribution different from the normal. A general
framework to dealing with non-normal (and/or non-linear) models is that of generalised linear

models. Generalised linear models are studied in ST112.

Note that, it can affect the normal probability plot if one or more of the other assumptions
are broken, for instance, if the response variables are dependent, or if the variances of the
response variables differ.

4.4 Homoscedasticity and linearity

The two assumptions Assumption (iii): the random errors εi have constant variation, and
Assumption (iv): the random errors εi have zero mean, can be checked at the same time. To
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4.4 Homoscedasticity and linearity 8

do this, we use a residual plot. A residual plot is a scatterplot of the standardised residuals
si against the fitted values ŷi = β̂0+β̂1xi,1+β̂2xi,2+· · ·+β̂kxi,k. Recall that the (standardised)
residuals are the deviations of the observations away from the fitted values. If Assumptions
(iii) and (iv) are satisfied we would expect the residuals to vary randomly around zero and
we would expect the spread of the residuals to be about the same throughout the plot.

Example 4.2(continued) Ice cream consumption

A residual plot for the data on the relationship between ice cream consumption and
temperature, ice cream price, average annual family income, and the year is shown in Figure
4.3. The points in the plot seem to be fluctuating randomly around zero in an un-patterned
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Figure 4.3: Residual plot for the ice cream data

fashion. Thus, the plot does not suggest violations of the assumptions of zero means and
constant variance of the random errors.

♦

In general, any systematic pattern in a residual plot suggests that one or more of As-
sumptions (i)–(iv) are violated. Since we have assumed independence of the random errors,
and since a normal probability plot is better for assessing the assumption of normality, we
shall concentrate on breaches of Assumptions (iii) and (iv). When looking for patterns in
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residual plots, there are three main features which are important. If the residuals seem to
increase or decrease in average magnitude with the fitted values, it is an indication that the
variance of the residuals is not constant. That is, Assumption (iii) is broken. If the points
in the plot lie on a curve around zero, rather than fluctuating randomly, it is an indication
that Assumption (iv) is broken. If a few points in the plot lie a long way from the rest of the
points, they might be outliers, that is, data points for which the model is not appropriate.
(Outliers are considered further in Section 4.6.) Figure 4.4 illustrates the most important
features to look for in a residual plot. Figure 4.4(a) shows a residual plot with no systematic
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Figure 4.4: Different features in residual plots

pattern. It seems that Assumptions (iii) and (iv) are satisfied for the data associated with
this residual plot. In Figure 4.4(b) there is a clear curved pattern: Assumption (iv) may be
broken. In Figure 4.4(c) the random variation of the residuals increases as the fitted values
increase. This pattern indicates that the variance σ2 is not constant. Finally, in Figure 4.4(d)
most of the residuals are randomly scattered around 0, but one observation has produced a
residual which is much larger than any of the other residuals. The point may be an outlier.

In Module 6, we shall consider ways to analyse data for which Assumption (iii) and/or
Assumption (iv) are broken.

Example 4.3 Wind power

In Module 1, we considered a study into how the direct current output from a wind power
generator changes with wind speed. A scatterplot of the data is reproduced in Figure 4.5.
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Figure 4.5: Direct current outpur against wind speed

The data points seem to lie along a slightly curved line, but it is not too far from a straight
line, so perhaps a simple linear regression model might be a reasonable model for the data
after all. The least squares line for the data is given by

ŷ = 0.131 + 0.241 x.

Figure 4.6 shows (a) a residual plot and (b) a normal probability plot for the data. The
normal probability plot in Figure 4.6 (b) is not very convincing: the residuals appear to come
from a skew distribution. However, it is the residual plot in Figure 4.6(a) that provides the
strongest argument against using a simple linear regression model for these data. There is a
very clear pattern in the residual plot: the residuals go from being negative to positive and
then negative again. Thus, it seems that Assumption (iv) is broken. In Module 6, we shall
return to this example and find a better model for the data.

Further details on this dataset can be found here.
♦

In the case of simple models (with only one explanatory variable), a residual plot is useful
for assessing both the assumption on constant variance of the response variables, and the
assumption that the relationship between the response variable and the explanatory variable
is a straight line. For example, in Example 4.3 the residual plot gives a very explicit indication
of how the model assumptions are broken: the relationship between wind speed and current
output is not a straight line–it is curved. However, when there are more than one explanatory
variable in the model, the residual plot is less informative regarding the linearity assumption.
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Figure 4.6: Wind power data: (a) residual plot, (b) probability plot.

For instance, although the scatterplot for the ice cream data in Figure 4.3 does not indicate
violations of the assumption that the mean response is of the form E[Y ] = β0 + β1x1 +
β2x2 + β3x3 + β4x4, it is still possible that one or two of the explanatory variables enter
the true relationship in a non-linear fashion. In general, when there are several explanatory
variables, a non-linear relationship between the response and one (or more) of the explanatory
variables can easily be concealed in a residual plot–in particular if the explanatory variables
are correlated. In order to check whether each of the explanatory variables enters the model
linearly, we need a different type of plot: partial residual plots. These are discussed in the
next section.

4.5 Linearity in multiple regression

In a multiple linear regression model, it is assumed that each of the explanatory variables
x1, . . . , xk affects the mean of the response in a linear way. That is, we assume that

E[Y ] = β0 + β1x1 + β2x2 + · · · + βkxk. (4.8)
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How can we check this assumption? An obvious suggestion would be to look for straight-line
relationships in scatterplots of the observed response variables against each of the explanatory
variables, one at the time.

Example 4.2(continued) Ice cream consumption

Scatterplots of the ice cream consumption against the four explanatory variables temper-
ature, ice cream price, average annual family income, and the year are displayed in Figure
4.7. There seems to be straight-line relationships between the ice cream consumption and
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Figure 4.7: Scatterplots of the ice cream consumption against the four explanatory variables

temperature, and between the ice cream consumption and the year. The two remaining plots
(against price and income) have a lot of scatter. The relationships might be straight-line, but
the plots are hardly convincing.

♦

When we investigate the scatterplots, we essentially consider each of the simple models

E[Y ] = β0 + β1x1,

E[Y ] = β0 + β2x2,

...

E[Y ] = β0 + βkxk,
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separately. For example, that the relationship between ice cream consumption and temper-
ature (ignoring all other variables) is a straight line, and the relationship between ice cream
consumption and average annual income (ignoring all other variables) is a straight line, etc.

But the assumption we wish to check is (4.8), rather than each of the simple models.
That is, for each l = 1, . . . , k we wish to check whether xl enters the model linearly, taking all

the other variables into account. If all the explanatory variables are uncorrelated, there is no
difference between checking (4.8) and checking the simple models separately. However, it is
usually the case that the explanatory variables are correlated. For instance, in Example 4.2
it is likely that the average annual income will increase from one year to the next; thus the
variables ‘income’ and ‘year’ are likely to be correlated.

The idea behind the method for checking whether xl enters linearly in (4.8), taking all the
other variables into account, is the following. We want to know how xl affects the response
variable, Y , if all the other explanatory variables x1, . . . , xl−1, xl+1, . . . , xk affect the response
variable linearly. That is, we consider the following form of the response variables

Yi ≈ β0 + β1xi,1 + · · · + βl−1xi,l−1 + pl (xi,l) + βl+1xi,l+1 + · · · + βkxi,k,

for some function pl (·) which we wish to determine. (If we can show that pl (·) is linear, the as-
sumption is satisfied for xl.) Since the true regression parameters β0, β1, . . . , βl−1, βl+1, . . . , βk

are unknown, we substitute by the least squares estimators β̂0, β̂1, . . . , β̂l−1, β̂l+1, . . . , β̂k, ob-
taining

Yi ≈ β̂0 + β̂1xi,1 + · · · + β̂l−1xi,l−1 + pl (xi,l) + β̂l+1xi,l+1 + · · · + β̂kxi,k. (4.9)

The next step is to use the definition of the raw residual Ri in (4.3): Ri = Yi − β̂0 − β̂1xi,1 −
β̂2xi,2 − · · · − β̂kxi,k. We can rewrite this as

Yi = β̂0 + β̂1xi,1 + · · · + β̂l−1xi,l−1 + β̂lxi,l + β̂l+1xi,l+1 + · · · + β̂kxi,k + Ri.

If we substitute this expression for Yi into (4.9) and cancel out, we get

pl (xi,l) ≈ β̂lxi,l + Ri.

That is, the true function pl (·) for how xl affects Y is approximately equal to

pl (xi,l) ≈ β̂lxi,l + Ri = Pi,l, i = 1, . . . , n. (4.10)

The terms Pi,l, i = 1, . . . , n, are called the lth partial residuals. (Note that, for each
explanatory variable, we get a new set of partial residuals: the 1st partial residuals refer
to x1, the 2nd to x2, etc.) The partial residuals are random variables since both the least
squares estimator β̂l and the raw residuals Ri are random variables. Observations of the
partial residuals are given by

pi,l = β̂lxi,l + ri, i = 1, . . . , n,
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where β̂l is the least squares estimate of βl.

We know from (4.10) that, for each i = 1, . . . , n, we have that pl (xi,l) ≈ Pi,l. Thus, if
we plot the values of the lth explanatory variable, x1,l, x2,l, . . . , xn,l, against the observed lth
partial residuals p1,l, p2,l, . . . , pn,l, the plot will indicate the true function pl (·). This plot is
called the lth partial residual plot. (Note that we get a different plot for each explanatory
variable: the 1st partial residual plot refers to x1, the 2nd to x2, etc.) If the partial residual
plot shows a straight line, it is an indication that the true relationship between the response
variable and the lth explanatory variable xl is straight-line, when all other variables are taken
into account. If the plot shows a non-linear relationship, it is an indication that xl affects the
response variable in a non-linear fashion.

Example 4.2(continued) Ice cream consumption

Figure 4.8 shows partial residual plots for each of the four explanatory variables in the ice
cream data. The four plots indicate clear relationships between the ice cream consumption
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Figure 4.8: Partial residual plots for the ice cream data

and each of the explanatory variables. The relationships seem to be more-or-less straight-line,
although there is some indication of possible slight curves in the plots against temperature
and income. Also, in the plot against temperature, a single point appears to deviate from the
trend of the rest of the points. This point could be an outlier.

You can see that the plots in Figure 4.8 are quite different from the scatterplots in Figure
4.7. This is because the partial residual plots take the other variables into account.
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♦

4.6 Outliers and leverage points

This section concerns situations where one or a few observations are different–in some way–
from the rest of the data. We distinguish between two ways a few points may differ from the
remaining points. A data point might lie far from the general trend in the rest of the data:
such a point is called an outlier. Outliers are discussed in Subsection 4.5.1.

Sometimes, a statistical analysis is very sensitive to a single (or a few) data point(s), in
the sense that if the value of this point is changed even slightly, the outcome of the analysis
alters greatly. Such points are called leverage points, and are discussed in Subsection 4.5.2.

4.6.1 Outliers

An outlier is an observation which differs from the main trend in the data. The reason might
be due to (unforeseen) special circumstances about the particular observation (for example,
imagine that one of the holiday cottages in Example 4.1 was designed by a famous architect–
adding extra value to the sales price), or it might be due to a measurement error. But there
is also the possibility that the unusual observation is simply due to random variation in the
data: since the data are observations of random variables, there will be some variation away
from the true relationship. Most points will lie closely around the true relationship, some will
lie a little away, and a few might lie a bit further away.

Suppose that a point lies a bit away from the main trend in the data, and that we wish
assess whether this is due to random variation in the data, or whether the observation actually
differs–in some way–from the rest of the data. There are various methods for doing this; here
we shall use studentised residuals.

The idea behind this method is as follows. If a data point lies far from the general trend
in the data, it is equivalent to the point having a large (raw) residual. Thus, we can re-phrase
the issue of whether a point lies too far from the main trend to have happened by chance, into
an issue of whether the corresponding residual is too large to have happened by chance. We
know from (4.4) that the ith raw residual Ri has a normal distribution with zero mean and
variance (1 − hii)× σ2; so, in order to check whether the observed value ri is too large to have
happened by chance, we can compare ri to the distribution of Ri: N

(

0, (1 − hii) × σ2
)

. This
is a basic statistical problem: we have a normal distribution with unknown variance (since
σ2 is unknown), and we wish to test whether or not the observation ri might have come from
this distribution. To do this, we use a t-test. The t-statistic is given by

Ti =
Ri

√

(1 − hii) σ̃2
i

=
Si

√

σ̃2
i

,

where σ̃2
i is an appropriate estimate of the variance of the standardised residual Si. It can be

shown that an appropriate unbiased estimate is given by σ̃2
i =

(

(n − k)S2 − S2
i

)

/ (n − k − 1),
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where S2 =
∑n

i=1

(

Yi − Ŷ
)2

/ (n − k). The test statistic Ti has a t (n − k − 1)-distribution.

That is,

Ti = Si

√

n − k − 1

(n − k)S2 − S2
i

∼ t (n − k − 1) , i = 1, . . . , n, . (4.11)

The variables Ti are called studentised residuals (because they are t-distributed; or, more
precisely, Student’s t-distributed). If the numerical value |ti| of a studentised residual is
(much) larger than the rest, it is an indication that the corresponding observation yi may be
an outlier.

There is no fixed value (or quantile) for which a point is an outlier if it exceeds this value
(quantile). If the model is correct, we expect around 5% of the studentised residuals to lie
outside the interval between the 2.5%- and 97.5%-quantiles of a t (n − k − 1)-distribution, 1%
to lie outside the interval between the 0.5%- and 99.5%-quantiles, and so on. For example,
an observation with a studentised residual corresponding to the 99.9%-quantile may be an
outlier, if the dataset only contains 20 observations, but it is not an outlier in a dataset of 1000
observations. We would expect around 0.1% of the residuals to exceed the 99.9%-quantile;
in a dataset of 20 observations, this corresponds to 0.02 observations out of the 20–it is very
unlikely, that an extreme residual like this would have occurred by chance. However, if the
dataset contains 1000 observations, we would expect 1 observation (0.1% of 1000) to have a
residual exceeding the 99.9%-quantile. Hence, the point is not an outlier–in fact, it would be
suspicious if there were no residuals around or beyond the 99.9%-quantile!

When a possible outlier is detected, one should always try and find out if there is a reason
why this point may be different from the rest. For example, is the particular measurement
taken by a different person, or on a different day/in a different place, or does the particular
subject differ in some way from the rest? In the example on ice cream sales, one data point lies
away from the trend–could this be because the particular period coincided with the summer
holidays? Or because there was a fun fair in the town? Or ...? Or could it simply be a
misprint? If you have collected the data yourself, or have access to additional information
about the data collection, you might be able to avoid the outlier (e.g. by correcting a misprint,
or introducing an extra explanatory variable). In this course, however, we cannot investigate
the background of outlying points, as there is no further information available on the collection
and validation of the datasets that are used.

In situations where no explanation can be found to why a point is outlying, one has to
decide whether to leave the corresponding observation in the dataset, or whether to omit the
observation, when the data are analysed. (Alternatively, it is sometimes possible to transform
the data in such a way that outlying points are pulled closer towards the general trend in the
transformed data. Transforming data is discussed in Module 6.) Whether an unexplained
outlier should be left in or omitted from the dataset depends both on its extremity and on its
leverage. The next subsection concerns leverage, and how to check for outliers and leverage
points in a diagnostic plot.

Note that sometimes studentised residuals are also used for checking normality of the
random errors (Assumption (ii)). But since the Tis in (4.11) are t-distributed rather than
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normally distributed, this is not strictly correct. (In order to assess this assumption using
the studentised residuals, the quantiles of the observed sample t1, t2, . . . , tn should be plotted
against the corresponding quantiles of an appropriate t-distribution.) However, if the dataset
is sufficiently large, the t-distribution is very close to a normal distribution, and the quantiles
are almost identical. Thus, for large datasets, one can use a normal probability plot as a good
approximation to a t-distribution probability plot.

4.6.2 Leverage points

A leverage point is a point for which the observed value of this particular point has a great
influence on the analysis. An illustration of a leverage point is shown in Figure 4.9: suppose
you have a cluster of data with x-values not too far apart; also, you have one observation
corresponding to an x-value further away. The value of this isolated point is disproportionately
influential on the least squares line: one might say that it works as a lever–if the value of
this observation is changed, the least squares line changes considerably (as illustrated in the
figure). In contrast, if the value of one of the points within the cluster is changed, the least
squares line will not be affected to the same extent.

x

y

2 3 4 5 6 7

2
3

4

Figure 4.9: A leverage point in regression

It can be shown that the diagonal element hii of the hat-matrix in (4.5) indicates the
amount of leverage, or influence, the ith observation has on the least squares line. The larger
the value of hii, the more influence the observation has on the least squares line. (Recall that
the largest value hii can take is 1.) It can be shown that the average value of the hiis is
(k + 1) /n; a rule of thumb says that an observation is a leverage point if it has a hat-diagonal

hii greater than 2 (k + 1) /n. Recall that the hat-matrix, h = x
(

xT x
)

−1
xT , only depends
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on the design matrix and not on the response variables Yi. That is, the observed value of
the response variable is irrelevant with regard to whether or not a point (xi, yi) is a leverage
point.

Note that leverage points do not necessarily constitute a problem. If the observation yi

corresponding to a leverage point lies close to the general trend in the data, the point is
called a good leverage point, and there is no reason to do anything about the data point.
However, if yi differs from the main trend–in particular, if yi corresponds to an outlier–the
point is called a bad leverage point, and should be removed from the dataset.

Example 4.2(continued) Ice cream consumption

In Figure 4.10 the studentised residuals are plotted against the values hii of the hat-matrix
for the ice cream data. The hiis are plotted along the horizontal axis. In this example k = 4
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Figure 4.10: Studentised residuals and hat-diagonals for the ice cream data

and n = 30, so 2 (k + 1) /n = 10/30 = 1/3, that is, the rule of thumb suggests that we should
investigate observations for which hii > 1/3. There is one observation with an hii around 1/3,
but since the studentised residual for the point is close to zero, it seems to be a good leverage
point. Two more points have high leverage (hii ≈ 0.29), one of which has a high studentised
residual (ti = 2.27, corresponding to the 98.4%-quantile). We could have considered omitting
this point from the dataset before analysing the data in Module 3.

There is one point in Figure 4.10 for which the studentised residual is a fair bit larger
than the rest (ti = 2.68, corresponding to the 99.6%-quantile); this point corresponds to the
outlier that was removed from this dataset in Module 3. (It is not a very extreme outlier and
it has low leverage, so we could have chosen to leave it in the dataset.)

♦
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4.7 Summary

The assumptions of multiple linear regression models are that the response variables are inde-
pendent normally distributed random variables with constant variance and means depending
linearly on the explanatory variables. These assumptions are equivalent to the random errors
being independent normally distributed random variables with zero mean and constant vari-
ance. The assumptions on the response variables are checked by assessing the assumptions
on the random errors. The normality assumption is checked by means of a normal prob-
ability plot of the standardised residuals. The assumption on constant variance is checked
by means of a residual plot of the standardised residuals. The linearity assumption can be
checked through partial residual plots. Finally, we can check for outliers by considering the
studentised residuals, and for leverage points by considering the diagonal elements of the
hat-matrix.

Keywords: model assumptions, independence assumption, normality assumption, ho-
moscedasticity assumption, linearity assumption, raw residual, hat-matrix, standardised resid-
ual, normal probability plot, residual plot, partial residual, partial residual plot, outlier, stu-
dentised residual, leverage point, good leverage point, bad leverage point.
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