

Copyright 1999 by The University of Texas at Austin

Requirements Evolution and

Reuse Using the Systems

Engineering Process Activities (SEPA)

K. S. Barber, T. Graser,
P. Grisham, S. Jernigan

The Laboratory for Intelligent Processes and Systems
Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX 78712

http://www.lips.utexas.edu
barber@mail.utexas.edu
phone: (512) 471-6152

fax: (512) 471-3652

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

Copyright 1999 by The University of Texas at Austin

1

Abstract

As more organizations attempt to reuse previous development efforts and
incorporate legacy systems, typical software development activities have
transitioned from unique ground-up coding efforts to the integration of new
code, legacy code, and COTS implementations. This transition has brought
on a whole new set of development issues, including resolving mismatches
between integrated components and tracing legacy and COTS components to
requirements. This paper presents the Systems Engineering Process
Activities (SEPA) methodology, developed to address these and other issues
in current software development practices. SEPA aids the reuse and
integration process by focusing on requirements integration and evolution,
while maintaining traceability to requirements gathered from domain experts
and end users. The SEPA methodology supports the development process in
three main areas: (i) requirements analysis prior to design; (ii) separation of
domain-based and application-based (i.e. implementation-specific)
requirements; and (iii) requirements analysis for component-based
development. The paper also presents a spectrum of research tools that are
currently being developed to address these main features of the SEPA
methodology followed by an example illustrating the application of SEPA in the
incident response domain to facilitate requirements management and foster
requirements reuse.

Technical Report

TR99-UT-LIPS-SEPA-05

August 15, 1999

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

 2

Requirements Evolution and Reuse Using the

Systems Engineering Process Activities (SEPA)

K. Suzanne Barber, Thomas J. Graser,

Paul S. Grisham, Stephen R. Jernigan

The Laboratory for Intelligent Processes and Systems
The University of Texas at Austin

Austin, TX 78712
voice: 512-471-6152 fax: 512-471-3316

barber@mail.utexas.edu

Abstract

As more organizations attempt to reuse previous development efforts and
incorporate legacy systems, typical software development activities have transitioned
from unique ground-up coding efforts to the integration of new code, legacy code,
and COTS implementations. This transition has brought on a whole new set of
development issues, including resolving mismatches between integrated components
and tracing legacy and COTS components to requirements. This paper presents the
Systems Engineering Process Activities (SEPA) methodology, developed to address
these and other issues in current software development practices. SEPA aids the
reuse and integration process by focusing on requirements integration and evolution,
while maintaining traceability to requirements gathered from domain experts and end
users. The SEPA methodology supports the development process in three main
areas: (i) requirements analysis prior to design; (ii) separation of domain-based and
application-based (i.e. implementation-specific) requirements; and (iii) requirements
analysis for component-based development. The paper also presents a spectrum of
research tools that are currently being developed to address these main features of the
SEPA methodology followed by an example illustrating the application of SEPA in
the incident response domain to facilitate requirements management and foster
requirements reuse.12

1 This research was supported in part by the Texas Higher Education Coordinating Board Advanced
Technology Program (ATP #003658452) and the Defense Advanced Research Projects Agency (DARPA).

2 The authors would like to acknowledge that contributions to the research presented in this paper were
made by former lab members Brian McGiverin and Srini Ramaswamy.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

3

1. Introduction

Despite the introduction of software development methodologies and CASE tools to
help alleviate the "Software Crisis," the development and maintenance of software is still
too expensive. In large part, the software crisis can be attributed to poorly defined and
managed requirements and insufficient reuse opportunities. When Alford reviewed
several Air Force projects, he found that "in nearly every software project which fails to
meet performance and cost goals, requirements inadequacies play a major and expensive
role in project failure" (Alford & Lawson, 1979). In addition, requirements inadequacies
reduce opportunities for software reuse, effectively increasing system development costs.
Even if requirements for a system have been adequately defined, reuse of the system
components is threatened when 1) the components are not associated with specific
requirements and 2) the requirements for a component are not evolved along side it
during the maintenance phase.

Maintenance alone accounts for nearly 70% of software development cost (Schach,
1993). The process of gathering, managing, and analyzing requirements has a direct
affect on the cost of maintenance. The need for maintenance can be chiefly attributed to
(i) the satisfaction of evolving user requirements and (ii) changes needed in a software
implementation to address requirements not addressed in the original delivery. The root
of the latter lies in poor requirements gathering and analysis and an poor translations from
requirements to system designs. Furthermore, inadequate verification and validation
often fail to detect delivered systems that fall short of their intended purpose. In most
domains, the evolution of user requirements is inevitable. Changes in requirements can
occur even before the initial release of the system. Needs continue to change after system
development as the benefits of new technologies are recognized and domain processes
evolve.

Since maintenance and system modification are inevitable, the software community has
focused on achieving greater reuse of software through the use of software components.
According to Caldieri, Gianluigi, and Basili, reuse saves time and resources and reduces
the risk of building in defects. Effective reuse from previous software development
efforts has the potential for increasing software productivity and quality an order of
magnitude (Caldieri, Gianluigi, & Basili, 1991). This implies that software developers
are becoming design and integration specialists by “building” complex software systems
with the help of commercial-off-the-shelf (COTS) software products. However, the cost
of installing and customizing COTS software, developing supplemental in-house software
components, and integrating such software systems with existing systems can be
enormous. A new thrust, termed Component-Based Software Engineering (CBSE), aims
to mitigate this cost and addresses the unique requirements of COTS-based development.
CBSE has been largely affected by the distributed nature and prevalence of the World
Wide Web, the acceptance of OO techniques, and the move toward client/server
environments (Brown, 1996).

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

4

With the advent of component-based software development, the need for integration
typically falls into one of the following scenarios:

1. COTS integration from multiple developers. The development environment has
moved beyond sole source component solutions. While industry standard protocols
have somewhat simplified integration, they have not completely eliminated the
difficulty faced when choosing among potential technologies. The complexity of
integration is aggravated when different components address fundamentally different
requirements, address similar requirements differently, run on different platforms, or
involve multiple protocols common in today’s distributed systems.

2. COTS integration with new customized portions. Systems are often a hybrid of COTS
portions and customized portions, where business logic is added to custom
components that take advantage of basic services (e.g. word processing, data storage)
provided by COTS components.

3. Integration of legacy, COTS, and new components. Many businesses have a large
investment in existing, legacy systems that have a proven record of enabling essential
business processes. It is often cost prohibitive to rebuild these systems, yet new
functionality must be incorporated.

Although the use of existing, well-tested components reduces the need for reinventing
the wheel, it adds to an already difficult integration effort. While systems built from
scratch have the advantage of being designed for integration in the system, the disparate
components integrated in today’s systems are not all designed with integration in mind.
Customers demand both, the features these components provide and the assurance they
will integrate seamlessly. Furthermore, given the ever-increasing complexity and scale
demanded of today’s systems, the move toward plug-compatible standards has little
chance of keeping up with the difficulties in integration resulting from new technologies
and complex requirements. The difficulty of integrating disparate components has been a
significant barrier to realizing code reuse on a large scale (Garlan, Allen, & Ockerbloom,
1995).

Considering the complexity of COTS integrations, each new system can often become
as much a new invention as if it had been created from scratch. Programmers often
assume that writing their own code is easier than integrating someone else' s code.
Typical issues aggravating the integration effort include the following:

• Current methodologies lack the ability to reuse requirements in determining if
intended end-user needs for a new system are similar to those of a previously
developed system or portions of new requirements are related to portions/components
of previously developed systems.

• Current methodologies do not emphasize the reuse of artifacts other than code
(analysis or design) from previous implementations.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

5

• It is a rare opportunity when new systems can be developed entirely from COTS
software components designed for seamless integration. The addition of "glue code"
is typically necessary to aid integration. While the use of COTS components may
reduce programming effort, this additional level of effort represents value added
which must be factored into the total cost in development.

Integration carries with it new challenges and cost considerations, including evaluating
the degree to which selected components will satisfy requirements and determining the
level of effort required to modify selected components for successful integration. By
focusing on code and software component reuse alone, large scale reuse may be
unachievable. To increase the opportunities for reuse, developers should consider reuse
of artifacts throughout the analysis, design, and implementation phases -- the
opportunities for reuse are vast and should not be limited to code alone. The U.S.
Department of Defense suggests that coding should only consume about 10% to 15% of
total software development time, so an emphasis on analysis and design reuse is more
profitable. While code reuse typically occurs only at lower-level system design artifacts,
analysis and design reuse often results in whole collections of related artifacts being
reused (Department of Defense, 1996). Methodologies can further increase odds for
reuse by identifying potential reuse at all system levels (e.g. entire system, subsystem,
code function) and among all participating elements (e.g. new development, legacy
systems, and COTS components).

The selection of any existing component for reuse or the development of a system
component should have an appropriate justification based on requirements, cost, and
schedule. The cost and complexity associated with system development and integration
reemphasize the need for gathering and analyzing client requirements. Although most
current methodologies recognize the need for this activity, requirement analysis is still
treated as a separate process that somehow occurs before “actual” software development.
Current object-oriented (OO) approaches provide little guidance for requirements
elicitation and refinement prior to developing an object model and thus poorly satisfy the
needs of component-based development.

Reuse on the requirements level provides a number of benefits, including the following:

1. motivation for selection of components: Requirements gathered and analyzed guide
the selection of optimal components for reuse. When requirements are transferred
between development efforts, the justification for selecting components in a new
development effort based on reused requirements brings with it the prior justification
associated with the originally selected components.

2. context for reuse decisions: Requirements tie directly back to information gathered
from domain experts and system users. Requirements are thus set in the context of
domain processes or specific implementation needs.

3. parametric constraints: Requirements come in many forms, including specific
parametric constraints (i.e. the system delivered must run at speed x) as well as

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

6

general "wish list" statements (e.g. the system’s interface should be user friendly) and
domain tasks and processes. Parametric constraints allow a first cut, static evaluation
to narrow the field of available components.

Although the leveraging of legacy systems comprises a large part of the demand for
reuse, the reusability of old systems is often difficult to evaluate by direct inspection.
Perhaps the rework effort can be determined through code evaluation and system
documentation. However, it can be difficult to determine the relative adherence of the
old implementation to newly gathered requirements. When originally under
development, requirements were likely gathered and analyzed for satisfaction by the old
implementation. Given that a requirements effort has already occurred, an alternative is
to determine which of the old requirements can transfer to satisfy new requirements rather
than take on a fresh evaluation of the old system.

When requirements are established, they reflect the needs of the domain, organization,
and specific implementation. However, these needs continue to evolve. Therefore, a
methodology and its associated tools should support a "requirements evolution" process.
Given that requirements guide the implementation process, it should be possible to trace
an implementation back to requirements. As requirements evolve, tool support can allow
the corresponding traces to implementations to be carried along, providing guidance as to
how the old implementation may satisfy new requirements. Further, the set of new
requirements which are not addressed by old requirements provide an indication as to the
degree of rework required (expressed in requirements) and guide additional development.

Three general approaches to requirement’s representation are applied today. The first
approach uses a long list of natural language "shall," "should," and "will" statements.
Tool support may include the ability to hyperlink particular requirements to later project
artifacts or the ability to gather requirements into a checklist. IEEE recommended
practice for Software Requirements Specifications (Std 830-1993) can be met by this
representation but the required maintenance can be significant for larger projects. Many
popular commercial case tools use this representation (e.g., RTM (Chipware, 1999),
SLATE (Technologies, 1999), and DOORS (QSS, 1998)). Palmer notes the difficulties
associated with maintaining traceability when apply these tools (Palmer, 1997).
Specifically, he notes that the elements to be traced must be manually identified and the
links between traceable elements must be manually established. Furthermore,
requirements in this representation can be hard to validate for completeness and
consistency. A second approach is to formal specify the requirements in hopes that a
theorem proving system can prove the correctness of the specification (Heitmeyer, Kirby,
& Labaw, 1997). However, the difficulties associated with creating correct formal
statements that cover all of the requirements typically limit these approaches to research
organizations. A final approach is to use semi-formal graphical models (e.g., E-R
diagrams, use-case diagrams, process traces) for representing requirements. The semi-
formal models can be readily created by knowledge engineers and verified by domain
experts. However, since any one graphical notation can’t show all aspects of a system,
multiple notations (models) are required and practitioners must be concerned with

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

7

overlap, inconsistencies, and omissions among the models. CASE tools, such as the ones
presented in this paper, can provide some level of validation and assist in the maintenance
of traceability information.

Figure 1 depicts the requirements evolution scenario and the traceability to
implementations under a comprehensive development methodology. Old Requirements
captured, analyzed, and verified are linked to an existing implementation, Old
Implementation. As New Requirements are captured, analyzed, and verified, they are
mapped to Old Requirements, thereby indirectly referencing components from the Old
Implementation. The mapping from New Requirements to Old Requirements may not
cover the complete set of New Requirements. In fact, Old Requirements may not even be
relevant in the New Requirements. Moreover, the Old Implementation may only partially
address the New Requirements, resulting in the need for evolving (modifying) the Old
Implementation. The remaining New Requirements spawn development of new
components (New Implementation), which when integrated with components from the
Old Implementation, result in a Delivered Product. While this approach appears
intuitive, the difficulty lies in matching requirements to implementations. To effectively
render this mapping requires implementations be expressed in a "meta-specificiation"
composed of the same language as the requirements themselves. Furthermore, this
specification should operate at an abstraction level that allows it to be independent of
implementation specifics (e.g. Component A requires an integer value while Component
B provides a float value), yet be expressive enough to capture a broad range of
requirements (e.g. component must perform domain Task X on Operating System Y with
Throughput Z). Defining this meta-specification at the appropriate level of abstract along
with careful management of Traceability Links from requirements to implementations
will encourage the reuse of whole collections of related artifacts from analysis and design.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

8

Old
Requirements

New
Requirements

Integrated
Components

Traceability
Links

Requirements
Evolution

Old
Implementation

New
Implementation

Delivered
Product

Figure 1: Requirements Evolution and Traceability

Given the requirements evolution process outlined above, the development cycle
becomes an issue of integration on two levels:

1. mapping, evolving, and integrating requirements previously gathered, analyzed, and
verified into new requirements and

2. integrating technologies inferred by the traceability links from integrated
requirements.

Figure 2 illustrates this two-level integration problem. Requirements are derived from
an array of sources from a previous development effort, available media (e.g., system
documentation), multiple domain experts, and multiple system users. Requirements
elicited from multiple sources often overlap and possibly contradict. Yet understanding
requirements involves incorporating multiple viewpoints, involving the capture, analysis,
and resolution of many ideas, perspectives, and relationships at varying levels of detail
(Kotonya & Sommerville, 1997). Once integrated, requirements guide the selection of
appropriate COTS components, legacy systems, and newly developed implementations.
Multiple system configurations may satisfy the same set of requirements, requiring
further tradeoff studies for evaluation. Resulting selections are then integrated into a
cohesive solution.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

9

Requirements

Technology

Across multiple sources

integrated requirements to
technology matches

Two-level Integration Problem

Different
Domain
Experts

Different
System
Users

Various
Infrastructures

Legacy
Implementations

Various COTS
Developers

Across multiple
technology solutions

Previous
Development

Efforts

Various Media used
for Requirements

Capture

Figure 2: Two-level Integration Problem

Along with identifying the need to develop, maintain, and integrate component-based
and legacy systems, researchers have also recognized the contribution of domain analysis
(Gomma, 1995; Perito-Diaz, 1990) and knowledge engineering (Alonso, 1996) in
complex software systems development. The Domain-Specific Software Architectures
(DSSA) engineering process was introduced in 1991 to promote a clear distinction
between domain and implementation requirements3 and provide a procedure to guide
developers from knowledge acquisition to design (Tracz, 1991; Tracz, 1993; Tracz,
1995). A case study using a domain specific approach to the reuse of requirements is
presented in (Lam, 1997). DSSA-ADAGE is a joint industry/university research effort
which was initiated to demonstrate the benefits of large-scale component-based software
reuse within the avionics domain by creating a process-oriented, software composition
environment that uses constraint-based reasoning to assist the user in application
generation and verification4 (Tracz, 1996). The DSSA process consists of domain
analysis, domain modeling, architecture specification, component documentation,
architecture specialization and component generation stages. In (Alonso, 1996), the
authors clearly identify and establish the need for modern-day methodologies to integrate
knowledge engineering into the software engineering lifecycle.

3 Implementation requirements are specific to a particular system instantiation, while domain
requirements are valid for all present and future instantitations. This distinction will be discussed further in
Section 3.2.5.

4 ADAGE stands for Avionics Domain Application Generation Environment.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

10

The Systems Engineering Process Activities (SEPA), as described in this paper, builds
upon both the DSSA methodology and popular object-oriented (OO) approaches by
focusing on knowledge engineering activities critical for effective domain analysis.
Similar to DSSA, SEPA highlights the need to distinguish between domain requirements
(e.g. the primary task of a Payroll Dept. is to issue payroll warrants) and application
requirements (e.g. all payroll warrants must be processed within 8 hours), while also
promoting the identification and specification of appropriate "domain components" and
corresponding "technology solutions." Domain components represent an object-oriented
partitioning of domain tasks (e.g. issue payroll warrants) across responsible parties (e.g.
"Payroll Issuer") without designating a particular implementation. To realize an actual
system implementation, the system designer must select appropriate technology solutions
based on application requirements to satisfy chosen domain components based on domain
requirements. A technology solution need not be a hardware or software implementation;
the most appropriate solution may be an individual playing the role of a domain
component (e.g. Fred Smith is best selection as a "Payroll Issuer" because he is able to
process all payroll in less than 8 hours).

Object-oriented development provides widely acknowledged benefits such as the reuse
of existing code, extensibility, and simplified maintenance. Object-oriented analysis
(OOA) focuses on “what” must be done while object-oriented design (OOD) focuses on
“how” it is done. The importance of this distinction is that “what” an object does is less
dynamic over time than “how” the object does it. SEPA borrows and extends this “what
vs. how” phenomenon to defining domain components and identifying applicable
technology solutions. Domain requirements are quite stable and relatively resilient to
technological changes, while application requirements are more dynamic and exhibit a
greater degree of vulnerability to changes in technology. In addition, SEPA emphasizes
the iterative refinement process typically espoused by different lifecycle approaches.

SEPA extends DSSA by formalizing the analysis and design methodology and
providing tool support throughout the process. For example, the SEPA tools aid the
process of gathering and representing requirements knowledge and accommodate the
coexistence of contrasting (and often conflicting) requirement perspectives. These
contrasting perspectives are subsequently unified and used to derive domain-based
components and specific application requirements. SEPA is further discussed in Sections
3 and 4.

For completeness purposes and to help underline the arguments presented in the
subsequent sections, Section 2 provides a brief overview of some features which are
strongly desired in a methodology intending to support requirements evolution and reuse.
With this background, Section 3 introduces the SEPA methodology and positions its
distinguishing characteristics among the features outlined in Section 2. The SEPA tools
are introduced in Section 4, followed by an example in Section 5 illustrating the

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

11

application of SEPA in the incident response domain.5 Section 5 is concluded with a
discussion highlighting selected SEPA contributions to requirements evolution and reuse
evident in the example. Section 5.7 then concludes the paper.

2. Methodology Features Necessary to Support Requirements
Evolution and Reuse

It is understood that different application domains will likely require appropriate fine-
tuning of methodologies to obtain the right “fit” (Glass, 1996) and that methodology
modifications are inevitable. It is also known that this is not an uncommon occurrence in
real-world projects (Glass, 1996; Hardy, 1995; Oskarrson, 1996; Vlasbom, Rijsenbriji, &
Glastra, 1995). However, it is essential that a methodology exists to collaborate
development, insure evaluation, and provide a support mechanism (e.g., documentation,
various graphical models for representation, guidance on what concepts to represent) for
complex, component-based software systems development. Therefore, despite
distinguishing discrete activities in the software lifecycle (such as requirements gathering,
specification, design, etc.), a methodology must allow consecutive or concurrent activities
to flow smoothly together. Each of the lifecycle activities does not exist in a vacuum;
interdependencies do exist (e.g., dependencies caused by the deliverables of one activity
used as the inputs of the following activity). A methodology needs to aid developers by
providing a smooth transition as requirements are acquired, modeled, and refined. It
should also assist the identification of new implementations with respect to currently
available technologies and ensure implementation selections address new and existing
requirements. A methodology should not force all activities of the development lifecycle
to be advanced in unison. Since there is no guarantee all requirements can be gathered,
analyzed, and verified in a single effort, the methodology must support the incremental
incorporation of new requirements with those already represented. Furthermore, the
methodology should support the inevitable rework cycles by upholding previous
decisions where they are still applicable. Thus, while it is possible for a methodology and
its supporting tools to address only part of the lifecycle, it should unquestionably direct
the team of system engineers throughout the entire lifecycle process.

A report by Grady (Grady, 1992) suggests that 50%-60% of the defects in a software
product are introduced during design, not implementation. While such statistical
information is oft repeated, frequent failure reports of adequately staffed and well-funded
software development efforts have served to emphasize the need for methodology support
for formal requirements gathering and analysis.

In this section, we briefly discuss some essential features of good software engineering
methodologies to adequately support requirements evolution and reuse, with an emphasis
on activities during requirements gathering and analysis. Callouts depicted in Figure 3

5 Detailed discussions of the operations of SEPA tools are beyond the scope of this paper.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

12

indicate where methodology features address the requirements evolution, traceability, and
integration issues discussed in Section 1.

Old
Requirements

New
Requirements

Integrated
Components

Traceability
Links

Requirements
Evolution

Old
Implementation

New
Implementation

Delivered
Product

Requirements

Technology

Two-level Integration Problem

Previous
Development

Efforts

Various Media used
for Requirements

Capture

Different
Domain
Experts

Different
System
Users

Various
Infrastructures

Legacy
Implementations

Various COTS
Developers

Support for
Communication

Among
Stakeholders

Support for
Requirements and
Design Evolution

Support for
Traceability

Support for
Component
Integration

Support for
Characterizing

System Objectives
Support for

Requirements and
Design Evolution

Support for
Stepwise

Verification

Figure 3: Methodology Features Necessary for Requirements Evolution and Reuse

2.1. Support for Requirements and Design Evolution

Cybulski suggests that requirements be viewed as an evolving negotiation among the
stakeholders (Cybulski, 1995). This negotiation results in the evolution of the client’s
“conceptual” requirements for the project. One factor often overlooked in many
methodologies is the continuous evolution of these “conceptual” requirements and
effective tools to support system engineers in capturing these changes. Another factor
that forces the design to evolve is the continual development of new technologies.
Methodologies that anticipate and support these evolution in requirements / technology
can avoid costly maintenance resulting from bringing the delivered technology product
inline with the client’s perceptions.

2.2. Support for Communication Among Stakeholders

The success of a development effort strongly depends on the ability of participants (i.e.
end users, developers, integrators) with varying backgrounds to express their views and
communicate effectively. In fact, the importance of communication between the system
stakeholders cannot be understated (Cybulski, 1995). A Savant Institute study (cited in

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

13

(Christel & Kang, 1992)) found that 56% of the errors in an installed system are the result
of poor communication. It is also stated that these errors were the most expensive to
correct, consuming up to 82% of the total development time. Thus, a methodology must
support the expression of diverse viewpoints, while providing adequate mechanisms for
reasoning with and coalescing requirements from, such views.

2.3. Support for Traceability

As stated in the previous paragraphs, the reality of complex system design dictates that
it is highly unlikely that all relevant information will be gathered and modeled correctly
in a single iteration. Therefore, it is necessary that new information and requirements
changes be identified and traced throughout the process. Methodologies that maintain
links from design features back to the requirements they address, along with information
about the original source (e.g., domain expert, end user) who specified those
requirements, can identify requirements problems early. This will help promote conflict
resolution by recording appropriate “rationale at issue” points for each conflict.
Traceability links between the components in a design and the requirements each
component fulfills provide a source for more complete explanations of design choices. A
methodology must therefore sufficiently support this progressive refinement and change
of requirements, while preserving the traceability of these requirements from and to
design artifacts.

2.4. Support for Component Integration

A component-based implementation is an integration of components designed to
operate as a cohesive whole. This implies that any integration issues encountered during
implementation are resolved. Resolution typically takes place during implementation
between implemented components rather than between the requirements and
specifications that describe components. An ideal methodology should support the
representation of these requirements prior to implementation to allow the designer to
evaluate implementation alternatives, such as decomposing functionality or rearranging
functionality among components.

More often than not, problems encountered during system integration have roots in
originally stated requirements. A methodology should not only provide a mechanism for
representing integration needs (dependencies between components), but also provide a
mechanism for tracing them to the original requirements. For example, system integration
issues are often based on data or event dependencies between components; one
component may require data or events from another component. By capturing such
requirements and dependencies earlier in the lifecycle, the designer may understand (and
possibly correct) integration problems prior to realizing the implementation.

2.5. Support for Characterizing System Objectives

To encourage long term reuse, a methodology should provide for the creation of a
system architecture comprised of implementation-independent components satisfying

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

14

domain requirements (e.g. domain data owned by a component, domain services provided
by a component, integration rules between components originating from data/event
dependencies). These domain-based components are highly reusable because (1) they are
relatively stable over time and (2) they can be satisfied by a variety of specific
implementations. A fundamental objective in building this type of system architecture is
to accommodate long-term architectural characteristics prioritized by the system
stakeholders, where priorities are defined in accordance with the overall goals of the
development effort. These overall goals are based on concerns such as: dynamics of the
domain, turnover of domain experts, availability of technology solutions, and the
likelihood of changes in application requirements.

2.6. Support for Stepwise Verification

Verification considerations are most often confined to checking an implementation
against the requirements specification document. However, verification should be
supported throughout the software lifecycle. Formal verification, in terms of proving the
correctness of the system deliverables, is neither appropriate, nor feasible during
requirements gathering. Therefore verification, as it pertains to this discussion, refers to
the process of feeding intermediate deliverables back to domain experts and end users
(the source of the requirements the deliverable intended to address) to verify the
correctness of those deliverables. Kramer asserts that “requirements may be
misunderstood because they are so complex that the client and practitioner have difficulty
focusing on one aspect at a time and perceiving interactions between requirements, or
because the specified system is impossible to visualize from the resulting specification”
(Kramer, Ng, Potts, & Whitehead, 1988).

In the requirements gathering and modeling activities, verification is often impeded by
the introduction of multiple domain knowledge (i.e. requirements) sources as well as the
size, structure, consistency and correctness of the requirements. To combat this, most
methodologies rely on a number of intuitive, graphical notations. These notations allow
the client to verify the requirements captured with greater ease. The application of a
variety of available notations helps the designer express specific aspects (e.g. data, events,
timing) of the requirements. Verification of the requirements in these notations resolves
fundamental problems early in the design process. However, the use of heterogeneous,
overlapping representations complicates the process of checking for consistency and
completeness when different notations represent similar concepts. This inconsistency
problem is exaggerated by the necessity that requirements must originate from a variety
of sources including both domain documents and stakeholders6. Given the amount of
information, it is difficult to identify the inconsistencies, much less verify that they were
resolved.

6 "Information gathered from only one group, or only one level, is likely to be biased by the level of
abstraction from which those people conceptualize the problem domain, their planning horizon, level of
expertise, personal preconceptions, goals, and responsibilities” (Christel & Kang, 1992).

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

15

Methodologies with appropriate tool support can aid in tracking and verifying the
details (e.g. performance concerns, architectural preferences, target system environment)
of a large project. This tracking and verifying should include the automatic verification
of component designs and characteristics of the system architecture against the necessary
properties as captured by the requirements.

3. The SEPA Methodology

Implementation
& Unit Testing

Integration

V1 ready

V2 ready

V3 ready

Requirements
Specification

Design

Analysis

Component
Integration

Knowledge Acquisition,
Modeling and Synthesis
(KMs)

Domain Modeling
Application Requirements Modeling
Identification New Technology Solutions

System Design

Existing Component Refinement
New Component Implementation
Component Testing

Reference Architecture Creation
Component Requirements Modeling

Registration of Current Technology Solutions

Risk Analysis

a: Spiral Model b: Modified Spiral

Figure 4: Lifecycle Illustration

In this section, activities that comprise the SEPA methodology are discussed. SEPA is
designed to leverage and extrapolate the advantages offered by several other design
methodologies, while emphasizing support for the following areas: (i) requirements
analysis prior to design; (ii) separation of domain and application (i.e. implementation-
specific) requirements; and (iii) requirements analysis for component-based development.
To better distinguish the SEPA methodology, these three important and distinguishing
characteristics of SEPA are addressed in the context of the required methodology features
presented in Section 2.

3.1. Overview of SEPA Activities

To understand the significance of SEPA activities, the SEPA structure is presented using
Boehms’ spiral model in Figure 4. Figure 4a illustrates Boehms’ spiral lifecycle model
for software development and Figure 4b shows a modified spiral model highlighting
activities emphasized by SEPA. However, SEPA activities are more aptly described by
the SEPA funnel structure as shown in Figure 5. It represents a spectrum of user
inputs/requirements that are continuously gathered, narrowed, refined, and structured into
a component-based system design specification. User inputs require refinement for a
number of reasons, including the need to: (i) merge inputs from multiple sources, (ii)
discard irrelevant information, and (iii) distinguish between inputs relating to system
implementation requirements and those relating to general domain knowledge.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

16

Current
Technology
Solutions

Knowledge Model Creation &
Synthesis

Knowledge Acquisition
(KA)

Component
Technology
Registration

System Technology
Component Selection &
System Configuration

Domain
Reqmts Class

Derivation

Application
Rqmts Class

Derivation

Separation of
Application

Requirements

KA transcripts

Unified KM

Application
Infrastructure
Reqmts Model

(AIRM)
Domain

Model (DM)

Technology
Solutions

Specifications

Ontology
Specification of

Infrastructure Ref
Arch Classes

(IRACs)

Domain
Reference

Architecture
Classes (DRACs)

App Technology Component
Specs wrt DRACs and IRACs

System Design
Specification

Domain
Requirements

Figure 5: The SEPA Funnel

The SEPA methodology emphasizes the separation of user requirements for a particular
application from the knowledge applicable to the general domain. Whether the
knowledge models are elicited simultaneously and then separated, or they are elicited
independently, an application cannot be created without gathering information about the
domain as a whole, along with the requirements of the specific application. During
knowledge modeling, Knowledge Engineers (KEs) employ knowledge models (KMs),
such as message sequence charts, task descriptions, etc., to graphically depict and
document knowledge acquired from domain experts and promote verification and
validation feedback cycles. A single KA session may result in several new KMs. During
the KA process, KEs are typically presented with two distinct types of information from
the domain expert: domain-specific and application-specific information. In an ideal
situation, the KE would have separate KA sessions with the domain expert for each of
these types of information. However, domain experts do not typically have this
abstracted view of their work and may find it difficult to provide such information.
Therefore, the preferred approach is to elicit information from domain experts in the
context of scenarios of operation (McGraw & Harbison, 1997), whether it relates to the
entire domain, current project, or past projects. This information is captured in KMs that
necessarily contain both domain-specific and application-specific information. The
translation from the KMs to the Domain Model (DM) only preserves the domain-specific
information. Similarly the Application Requirements Model (ARM) preserves any
application specific information. The DM is a unified homogenous model. Since the
representation for the DM may contain more information than can be viewed at any one
time, it results in multiple views. These views are often graphical and usually show
abstractions of the entities in the model rather than the complete details of the entities.
During the KM and DM stages, the KE repetitively refines and structures these views.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

17

The SEPA Reference Architecture (RA) must be completely domain-specific and
highly flexible for building similar systems in the future. This flexibility is achieved by
describing components in terms of “what” they do. The following criteria have been
identified for classification and representation of components: (i) Model of assigned
characteristic attributes and services. (ii) Abstraction of component behavior. (iii)
Constraints between the domain components resulting from data/service dependencies
and subsystem compositions. The Reference Architecture (RA) therefore gives a
repository of domain component classes, which are reusable in a “family” of domain
applications. One or more actual objects in an implementation may realize a single
component. As a result, these component definitions can outlive technology solutions
available during the analysis and design activities.

Implementation requirements are originally captured in KMs, which are then translated
into the Application Requirements Model (ARM). A System Design Specification is
constructed by selecting available technology solutions mapped to RA components.
Knowledge about application infrastructure and relationships to RA component classes
guide decisions in selecting “how” a domain service in the RA can be satisfied by
technology solutions in a particular application. The solutions may be chosen based on
any number of design trade-off concerns (e.g. cost, availability, ease of implementation,
etc.).

3.2. Distinguishing Characteristics

During requirements gathering for CBSE, it is essential to understand the interaction of
the system to the environment, organizational issues, interface standards and guidelines.
The SEPA methodology encourages commitment to requirements gathering and
subsequent analysis. A user-centered KA effort and subsequent modeling of the elicited
information dominate this stage.

In this section, the distinguishing SEPA characteristics are discussed in the context of
how they support the “good” methodological features presented in Section 2. Three
characteristics are emphasized in this discussion:

(i) requirements analysis prior to design,

(ii) the separation of domain and application requirements, and

(iii) requirements analysis for component-based development.

3.2.1. Support for Requirements and Design Evolution

The analysis process usually involves gathering requirements from a diverse group of
system users and administrators. The SEPA methodology encourages a number of KA
sessions with domain experts that are representative of all the contributing perspectives.
Following the KA sessions, the information that was elicited is captured in KMs in any
one of a number of graphical formats (e.g., process traces, collaboration diagrams, task

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

18

decompositions, etc.). These KMs naturally reflect the perspective, level of abstraction,
and terminology of the domain expert from whom the information was acquired. To be
useful to developers, the models need to be synthesized together to form a homogeneous
representation of the system requirements.

Unlike prototyping methods, SEPA does not lend itself to committing to
implementations early in the lifecycle. However, SEPA does not preclude the use of rapid
prototyping techniques when the domain is well understood. SEPA, along with its
supporting tools, helps in the identification of inconsistencies and incompleteness in the
KMs and synthesizes the KMs into a complete, consistent unification. During the
integration of KMs, the KE is asked to make several decisions, such as the relevance of
certain details, the proper levels of abstraction, and what to do about inconsistent facts.
The user, applying certain default heuristics (e.g., for the resolution of tasks defined with
pre / post-condition mismatches, detection of differences in terminology, etc.), guides the
integration process. User corrections are cached for future application and documentation
of the evolutionary process. Given the amount of decisions to be made to completely
integrate the entire set of KMs, it is unlikely to complete the synthesis of the DMs and
ARMs in one step. SEPA suggests the creation of models that include increasingly larger
subsets of the KMs. Each intermediary model must be consistent. If the subset of the
KMs that an intermediate model includes is chosen carefully, it can represent the domain
/ application from the perspective of a category of domain experts7. The union of all of
the intermediary models (and all of their KMs) will be a global portrayal of the domain,
as a unified KM.

By focusing on and developing the analysis process, the SEPA methodology has been
able to explicitly support requirements evolution. The SEPA methodology tool support
more formally documents this evolution process and eases management of requirements
artifacts and associated rationale during large and long-term projects(Rolland, 1994). The
following subsections discuss how the SEPA methodology addresses requirements
traceability, integration, and verification.

3.2.2. Support Communication Among Stakeholders

System stakeholders have varying notions on the purpose of requirements gathering and
these differences may lead to communication problems. Often, the requirements
gathering process is seen by the client as a negotiation process, wherein the last words
have lasting ramifications throughout the life of the product, including its design and
development stages. On the other hand, the developer would like for the requirements to
be fully developed and fixed, and views any new requirements as the clients’ change of
“mind”. However, these inevitable changes are often corrections that bring the written

7 Note that SEPA does not force / promote a specific ordering process. This can be specific to the domain
in which the process is being adopted. For example, an intermediary model may include all of the KMs
resulting from KA sessions with system administrators.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

19

requirements in-line with the conceptual requirements of the client. Another cause for the
breakdown in communication is the presentation form of the requirements. Developers
would ideally desire a complete formal specification document. Clients are often not
trained in formal language specifications and would often prefer to leave some of the
implementation details at the discretion of the developers. Natural language documents
are most frequently used to specify requirements; however natural language is often too
ambiguous8, or, in an attempt to make a precise statement, it is made incomprehensible to
the common reader9. The issues identified above are part of the “requirements gap” that
separates the developer and the client. SEPA focuses on early analysis and definition of
activity deliverables to directly bridge this gap. Specifically, this results in a better
understanding of the conceptual requirements of the user.

3.2.3. Support for Traceability

SEPA provides traceability from the DMs back to the domain experts that stated the
requirements. SEPA ensures that model synthesis, which occurs during DM creation,
automatically preserves and extends traceability links into new design artifacts. Later,
these traceability links can be leveraged to determine the necessary rework to be
performed to implement a requirements change. In the near future, SEPA will allow the
automatic propagation of slight changes in the KMs to the DMs.

3.2.4. Support for Component Integration

The promise of lower development costs and greater productivity, has resulted in the
software engineering community placing considerable emphasis on component-based
development and software architectures. Software architectures allow systems to be built
from reusable components, to evolve quickly, and to be analyzed reliably (Clements,
1996).

A SEPA deliverable, the Reference Architecture, is comprised of a collection of
domain-based component classes derived from information in the Domain Model. The
Reference Architecture (RA) provides a key link between analysis and implementation,
reflecting domain information found in the Domain Model and providing developers with
a template for identifying and developing new technologies for particular
implementations. In the process of creating the RA, the functional, procedural Domain
Model is transitioned to an object-oriented Reference Architecture composed of
technology independent domain components applicable to a "family" of applications in
the domain. While it is feasible to partition RA components along either functional or
object-oriented boundaries, an object-oriented approach promotes qualities such as

8 There are at least three different, reasonable interpretations for the following requirement “All the
accounts contain the same security control field”.

9 An informal survey of 23 computer engineering graduate students resulted in less than half who
correctly identified a formal, natural language specification for the minimum function.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

20

reusability, faster development, flexibility, scalability, maintainability, and better
correspondence to the domain being modeled (Graham, 1995). More importantly, by
following an object-oriented approach, the delineation of components based on “what”
services must be performed allows for flexibility and accommodates changes in “how” a
task is performed when components are instantiated. Changes in the technology which
perform a specific service will have minimal affect on the Reference Architecture if how
the technology functions is not represented in the Reference Architecture.

An RA component class is assigned responsibilities based on domain tasks; the
data/services required and provided by the component are declared according to the
requirements of those tasks. Component behavior is then defined such that the
component is able to satisfy all services provided. To accommodate this information,
SEPA Reference Architecture components are represented by three categories of
information (Graser, 1996): The Declarative Model (D-M) defines the attributes and
services contained within and offered by a component. The Behavioral Model (B-M)
defines the states of a component, the transitions between those states, and the events
which affect transitions. The Integration Model (I-M) defines the constraints and
dependencies between components, capturing integration requirements, potential
subsystem compositions and user integration preferences. The D-M, B-M, and I-M
combine to form a component definition based on "what" the component does, thus its
definition is able to outlive various technology solutions as they become available.

Since RA component definitions should reflect responsibilities extracted from DM
tasks, components must either be traceable to DM elements (e.g. tying an RA component
to a DM task resource and/or concept) or be based on rationale introduced by the architect
during construction of the RA (e.g. creating an abstract component from which other
components inherit common data). DM information, in turn, is traceable to KMs (those
KMs traceable to KA reports) and rationale introduced by the KE during DM
development. This type of traceability ensures complete coverage of DM tasks and
verification of the RA components. Furthermore, if changes are identified during system
architecting or design, traceability can aid in determining what information in the DM
may be affected, and whether new or modified component definitions require additional
KA.

During the creation of the System Design Specification in the System Design stage,
SEPA considers domain-based requirements modeled in the RA in conjunction with
application-based requirements from the CARM. By considering what a system should
be capable of delivering to end-users and how to deliver those capabilities in the context
of technology and business constraints, the designer may be able to eliminate integration
issues prior to implementation. Integration issues may take the form of implementation
dependencies (e.g. dependency on COTS components) or domain dependencies between
RA components (e.g. requiring domain data/service from another component). For
example, information in the RA Integration Model ensures each component is provided
all necessary data and services to perform selected tasks, while information in the CARM
provides selection criteria for candidate technologies solutions to instantiate selected

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

21

components. If resolution of these is postponed until implementation, the correction may
be more costly due to implementation commitments already made.

While some researchers advocate a phased approach to architectural design, experience
has shown that architecture development is highly iterative and requires some
prototyping, testing, measurement and analysis. The Software Engineering Institute
suggests architects are influenced by factors such as (i) Requirements of the system
(including required quality attributes). (ii) Requirements imposed by the organization
(perhaps implicitly). (iii) Experience of the architect – the results of previous decisions,
successful or not, will affect whether the architect reuses those strategies (Clements &
Northrop, 1996). Furthermore, each stakeholder of a software system – customer, user,
project manager, coder, tester, etc. – is concerned with different aspects of the system for
which the architecture is an important factor. The evaluation of an architecture is usually
focused not on its runtime aspects; but on qualities such as maintainability, including
portability, reusability, adaptability, and extensibility (Clements & Northrop, 1996).

A fundamental objective of the SEPA RA development activity is to produce an
optimal system architecture that exhibits qualities prioritized by the developer and system
client, where priorities are set in accordance with the overall goals of the development
effort (e.g., flexibility, extensibility, ease of installation, etc.). The overriding criteria,
which characterize a “good” architecture often, vary between domains. As stated earlier,
the developers select these criteria based on such concerns as: dynamics of the domain,
turnover of domain experts, availability of technology solutions, and likelihood of change
of application requirements. Given these concerns, criteria for a good architecture may
include extensibility of the RA; comprehensibility of the KMs, DM, and RA; ability to
adapt a system design specification for new technology offerings; and traceability of
application requirements. SEPA systematically applies object-oriented (OO) heuristics
and metrics to incrementally build a reference architecture reflecting developer goals.

An ideal design methodology will be flexible enough to incorporate rapid changes in
technology by allowing engineers to take advantage of the best available technology. To
achieve this flexibility, the SEPA methodology aids analysis without the biases and
restrictions of premature implementation choices. Later, during System Design, matches
are made between an appropriate technology solution to respective component
requirements, associated application requirements, and subsystem constraints. As in any
methodology, these matches are most valid when the requirements have been fully
specified.

3.2.5. Support for Characterizing System Objectives

The SEPA methodology emphasizes the separation of requirements associated with a
particular application from the requirements applicable to the domain in general.
Recognizing the relative permanence of domain requirements with respect to system
development, this emphasis on separation was made in an effort to facilitate reuse of
domain analysis and design artifacts. That is, SEPA focuses the bulk of its analysis and
design efforts on thoroughly modeling the set of abstract components in the domain.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

22

Then, by applying the application requirements to that model, the desired application can
be built. Moreover, the model can continue to be reused as a design template for building
future applications for the same domain.

Figure 6 illustrates the separation of these two concerns. These are (i) Gathering and
modeling domain information. (ii) Gathering and modeling specific application
requirements. In practice, however, only after sufficient knowledge is acquired, KA
reports generated, and KMs created to document the various views of information
acquired, does the KE begin to separate application requirements from domain
requirements. By making this distinction, the SEPA methodology is able to address the
constant evolution of system requirements by encouraging the following:

1) As KEs gather and identify more domain information, the domain model becomes
richer and more complete, gradually approaching an ideal DM. Due to the model’s
independence from application requirements and available technology solutions, it
can outlive current development efforts.

2) Throughout the lifecycle, application requirements inevitably and continually
change. These changes may be the result of the client and the developer reaching
better mutual understanding of the issues involved, or they may be due to the
introduction of new technology, thereby influencing design decisions. Since the
emphasis is to separate application requirements, the impact of making
modifications to the application requirements (regardless of the current status of the
development effort) can be minimized.

While resolving integration issues is a difficult problem, making the distinction
between application and domain requirements eases the resulting effects of the problem.
Although this distinction may not contribute to the complete detection of all integration
problems, it does help to guide their resolution when detected. Since such problems are

Application
Specific

Requirements

Domain
Specific
Requirements

Expert Knowledge

Component Based Design

Figure 6: SEPA Separation of Application and Domain Requirements

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

23

often the result of conflicting requirements, it is critical to understand the rationale behind
those requirements. While an application requirement may need to be renegotiated, a
domain requirement involves a more fundamental challenge – i.e. perhaps the domain
was misunderstood or this domain requirement will steer the development effort in a
particular direction. Thus, the distinction between application and domain requirements
greatly assists the development team with the resolution of integration issues, by
identifying the cause and severity of these conflicts.

The SEPA methodology’s tenet of separating application and domain requirements also
contributes to verification. While verifying a complete model of a complex domain is
difficult, the separation of requirements allows different experts to verify the portions that
they best understand. On the other hand, if these requirements are all captured together,
the question arises as to who verifies that necessary domain services were implemented.
Furthermore, it must be determined if the same person is qualified to verify whether each
of those domain services was implemented in accordance with the specific the application
requirements requested. However, when these requirements are represented
independently, a domain expert can verify compliance to domain services while an end-
user can verify satisfaction of application requirements.

3.2.6. Support for Stepwise Verification

In SEPA, the ability to perform early verification of the derived KMs and DMs guides
the development of the analysis process as well as the selection of artifact representations
(multiple, intuitive, graphical notations). During KA, transcripts on KA sessions are
verified with the domain experts to allow correction of mistakes, or to further elaborate
on unclear points. These transcripts are used in the creation of KMs that are submitted to
the domain expert for verification. After model integration, it can become unclear as to
which domain expert should verify a model. For instance, a domain expert that only
understands one of the contributing perspectives cannot verify models that capture
multiple perspectives. Therefore, these integrated DMs are verified through the
maintenance of strong ties back to contributing models that have been previously verified.
In situations where model integration requires the intervention of the KE, “rationale at
issue” points (Christel & Kang, 1992) are captured so that the source of any requirement
can be determined.

SEPA tools provide a number of graphical views (task hierarchy diagrams, concept
decomposition, Venn diagrams, etc.) to aid the knowledge engineer in modeling the
domain. Several tools have already shown that graphical models can be used as an
executable specification and to verify the conformance of current implementations (e.g.
ObjectGeode (Verilog, 1997), Telelogics (Telelogics, 1997), Statemate (Harel, 1990)).
Unlike other popular graphical notations, such as the UML (Rational, 1998b), the SEPA
representations are more tolerant to incorrect syntax and incompleteness that necessarily
occur during early knowledge modeling. By allowing these errors to occur and providing
support for detecting and fixing them later, the KE is encouraged to begin building KMs
earlier. This decreased amount of time elapsed between the KA session and the

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

24

subsequent modeling of information from that session provides stronger traceability and
promotes easier verification and client validation.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

25

4. SEPA Prototype Tools

Tool support cannot fully replace decisions and contributions provided by system
clients, users, system architects, integrators, and developers. However, it can guide KEs,
system architects, and developers through the development lifecycle while retaining
traceability, documenting rationale for decisions, identifying inconsistencies, and
applying metrics for evaluation. An important contribution of effective tool support is
managing the large quantity of information generated during the development lifecycle.

Knowledge Acquistion Manager (KAM)

Hybrid Domain Representation Archive (HyDRA)

SEPArator

Reference Architecture
Representation Environment

(RARE)

Tool for Application Requirements
Extraction and Technology

Specification (TARETS)

Requirements and Integration Verification Tool (RIVT)

Figure 7: SEPA Tools

In this section, the suite of tools being developed to support the SEPA methodology is
presented. The responsibilities for the various SEPA activities, as captured by the SEPA
funnel structure (introduced in Figure 5), have been allocated to the tool suite. Figure 7
illustrates the SEPA funnel overlaid with the tools that support the respective SEPA
activities.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

26

Browser and
Java

Clients

Procedural
SEPA Services

Reasoning
Services (CLIPS)

CORBA

Figure 8: SEPA Tool Architecture

Figure 8 depicts the general architecture for the SEPA tools. The decisions made in the
design of this architecture have taken into consideration a number of long-term
implementation goals. Some of the most compelling reasons include the following. (i)
Leveraging existing standards: avoid "reinventing the wheel" and use existing proven
technologies wherever appropriate. (ii) Scalability: facilitate the development of
additional SEPA tools and ensure that all tools in the suite are able to handle large,
complex projects. (iii) Portability: provide the ability to run on a variety of client
platforms. (iv) Accessibility: provide Internet accessibility to support large, geographically
distributed development teams. (v) Flexibility: provide the ability to integrate disparate
processing options (e.g. LISP, C++, COTS tools) to broaden the implementation options
which can be considered for each SEPA process. (vi) Integration: facilitate information
sharing among SEPA tools and integration with third party client tools.

Based on these issues, a CORBA-based architecture was chosen for the
implementation. The CORBA backbone provides the flexibility to select the appropriate
technology for each system component. For example, a web-based Java client was
selected to realize client side portability and accessibility. SEPA’s server side
components leverage COTS database solutions for object persistence as well as CLIPS
components for advanced reasoning.

The remainder of this section discusses the developmental status of these research tools
and illustrates some of their features that support the SEPA methodology.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

27

KAM

4.1. Knowledge Acquisition Manager (KAM)

The Knowledge Acquisition Manager (KAM) is a web based tool providing project
management and document management functions (e.g. versioning, access control,
change logs, etc.) for the Knowledge Acquisition (KA) process. KAM’s knowledge
acquisition project management facilities allow the knowledge engineers to (1) document
KA plans, (2) specify and maintain participant (e.g. domain experts, end users,
knowledge engineers) contact info and background profiles, (3) document intended KA
session objectives, (4) document elicitation scenarios, and (5) upload session reports
created in popular word processing or drawing programs which document the knowledge
acquired during session and (6) reference shelf hard copy documents acquired during the
KA session. Uploaded documents or referenced hard copy documents can be searched by
content, organization, and perspective. When a new session is scheduled or a new session
is documented and a report is uploaded, KAM can notify interested project participants
and receive feedback requesting the knowledge engineer acquire or clarify knowledge
about a particular area (e.g. "please clarify the contents of an incident report") or inquire
about knowledge captured in a specific report such may assist the knowledge engineer in
determining required follow-on sessions with the expert.

HyDRA

4.2. Hybrid Domain Representation Archive (HyDRA)

The Hybrid Domain Representation Archive (HyDRA) provides intelligent reasoning
functions that guide the user during the creation of knowledge models (KMs) and
unification of the KMs (Barber & Jernigan, 1999). Similar research efforts include
(Sommerville, Sawyer, & Viller, 1998),(Pohl, 1996),(Leite & Freeman, 1991), and
(Finkelstein, Gabbay, Hunter, Kramer, & Nuseibeh, 1994). HyDRA’s objectives are to:

1. Aid the Knowledge Engineer (KE) by providing tool support for KA and modeling.

2. Automate the transition from unstructured, incomplete requirements to formal,
complete, and consistent requirements.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

28

3. Maintain traceability through the necessary merging of requirements from varying
viewpoints.

The individual knowledge models need to be merged into a consistent, global model of
the domain that represents the combined viewpoints of all domain experts. Currently,
HyDRA provides a semi-formal and semi-automated mechanism through the iterative
process of model integration and requirements refinement. This integration process
identifies inconsistencies and incompleteness in the KMs.

As stated in Section 3, during the integration process, the user iteratively applies default
heuristic rules. Corrections to the default rules are cached for future application and
documentation of the integration process. Traceability is preserved across the integration
of knowledge models and assists in the definition and validation of requirements from
multiple knowledge sources.

Individual knowledge models are combined in incrementally larger and larger models.
While HyDRA’s primary deliverable is the one model that results from the combination
of all of the knowledge models, the intermediate models are also of value. For instance,
if an intermediate model is the result of all the knowledge acquisition sessions conducted
with a particular expert viewpoint (e.g. physician, nurse, etc.), then that model represents
the domain from that viewpoint. While these models were initially a byproduct of the
synthesis process, they represent new artifacts, viewpoint-based models, that are only
available through the automated synthesis. Viewpoint models are especially useful when
developing components, such as GUIs, that are specific to a single type of domain user.

The primary deliverable produced by HyDRA is a Unified KM (UKM) synthesized
across the viewpoints of multiple domain experts. Although the goal of a particular KA
session may be to focus on the elicitation of one type of knowledge over another, a typical
KA session may gather a broad spectrum of information. To reduce the risk of losing
relevant information, the KE typically avoids forcing the DE to filter or abstract
information. As such, the information gathered may contain domain knowledge, specific
application requirements, and/or information about specific technologies currently in use
(e.g., legacy systems). In future versions of HyDRA, the traceability links will be used to
verify modifications to the UKM against the source knowledge models.

SEPArator

4.3. SEPArator

The SEPArator assists the Knowledge Engineer in separating the domain requirements
from the application requirements in the UKM. After synthesis, the UKM will reflect

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

29

concepts from many different perspectives and may be too complex for a KE to navigate
and evaluate without assistance. SEPArator navigates the UKM and applies a set of
heuristics to classify requirements modeled in the UKM.

The domain requirements are the set of functional or data requirements shared by the
entire domain. The basic rule for identifying domain requirements is to locate tasks and
data identified by the Domain Experts. This task information is gathered together into the
Domain Model (DM). The DM is used by the system architect to create the domain
Reference Architecture, so it must contain enough information about the domain tasks to
generate a set of end-user services for the system.

Application requirements reflect the details of a system implementation or the
requirements of a particular client. In general, application requirements will be
performance constraints on domain entities (tasks, roles, resources, etc.) or constraints on
implementation choices. These requirements are gathered together into the Application
Requirements Model (ARM), and are used during technology registration and system
design to guide the creation of a system that satisfies the client’s requirements.

Performance constraints are quantitative requirements on the domain entities
irrespective of implementation strategy, e.g., speed constraints, numerical accuracy, etc.
Implementation or delivery constraints specify user requirements on the implementation
of the system or on the user interface with the system. For instance, a delivery constraint
might be that the payroll system must be developed for a specific hardware platform and
the system must interact with a particular legacy application. Another type of
implementation constraint refers to user interface requirements. For instance, a particular
application may be required to support federal accessibility guidelines, or adhere to the
interface defined in a prototype model.

During Knowledge Acquisition, Domain Experts may begin to give the Knowledge
Engineer information about specific technology solutions, such as COTS tools or legacy
applications. A technology specification template is available to the Knowledge Engineer
to assist in gathering application information during this phase. This structure of the
software specification template is based on the IEEE 830-1993 Recommended Practice
for Software Requirements Specification and extensive interaction with software
developers and integrators. SEPArator extracts the application specification information
from these models and makes it available to the technology registration tool in TARETS.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

30

RARE

4.4. Reference Architecture Representation Environment (RARE)

The Reference Architecture Representation Environment (RARE) semi-automatically
guides in the transition from the Domain Model (DM) produced by the SEPArator to a
Reference Architecture (RA) by systematically applying object-oriented (OO) heuristics,
software architecture heuristics, and quality metrics. The desirable qualities of object-
orientation, such as extensibility, reusability, comprehensibility, and maintainability,
come to fruition in an architecture as the result of prudent choices during the architecting
process.

Relying on a complete, consistent Domain Model (DM) provided by HyDRA and
SEPArator, the RARE process focuses on the allocation of domain tasks to responsible
object-oriented component classes, Domain Reference Architecture Classes (DRACs).
During the derivation process, RARE records the rationale supporting the architect’s
decisions. The resulting collection of DRACs comprise a domain-based, object-oriented
Reference Architecture (RA) traceable to stakeholder requirements and offering the
following benefits:

• Provides a blueprint for developers: The architecture provides a framework for
development and is partitioned into classes based on object-oriented principles,
providing well-established advantages such as design extensibility and reusability.
Since the architecture is founded in models capturing domain tasks rather than system
requirements, reusability is further enhanced because architecture services are
independent of specific implementations.

• Aids in domain understanding: For developers trying to gain an understanding of the
domain, architecture classes highlight domain tasks, performer roles and
responsibilities, and the relationships between performer roles.

• Identifies rules of composition among architecture classes: Domain tasks often
depend on each other for execution (e.g. it is necessary to receive data X before
producing event Y). Based on domain task dependencies, the RA represents
corresponding service and data dependency constraints between DRACs. When
developers build applications intended to satisfy specific DRAC services, rules of
composition utilize these constraints to highlight necessary implementation interfaces.

The DRAC representation is comprised of the following elements: (i) Declarative
Model (D-M) - data owned and services offered; (ii) Behavioral Model (B-M) - an
abstraction of component behavior represented as a state chart; and (iii) Integration Model

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

31

(I-M) - constraints between DRACs resulting from data/service dependencies and
subsystem compositions (rules of composition). Although the derivation of components
closely follows object-oriented principles, RA components are not necessarily realized
one-to-one by implementation objects. RA components are purposely specified on a
domain level to remain as independent from technology as possible. For example, three
class definitions in a C++ implementation may cooperate to satisfy a single RA domain
component; this represents just one of many possible implementations schemes.

Integration
Model

Declarative
Model

Behavioral
Model

Inheritance

Component
Interdependency

Inheritance Inheritance

Incident
Commander

HazMat
Commander

HazMat
Specialist

Offers
Service:
"Manage
Sector
Location"

Offers
Service:
"Establish
 Hot Zone"

Offers
Service:
"Estimate
 Casual-
 ties"

Service...
"Estimate
 Casualties"
 ...Required

Figure 9: RARE Component Class Representation

The RARE DRAC representation is illustrated in Figure 9, annotated with example
component classes and services from the incident response domain in bold italics. The
HazMat Commander, responsible for managing responders during a chemical or
biological release incident, inherits the "Manage Sector Location" service from the
Incident Commander component. In addition, the HazMat Commander offers the
"Establish Hot Zone" service, which is dependent on casualty estimate data provided by
the "Estimate Casualties" service in the HazMat Specialist component. This dependency
is represented in the combined Integration Models of the HazMat Commander and
HazMat Specialist DRACs

RA derivation is an iterative process, where successive iterations represent increasing
coverage of domain information and greater refinement of the RA based on user-
established goals. Typical architecture goals include extensibility, comprehensibility, and
maintainability, often reflecting the benefits associated with object-oriented approaches.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

32

RARE guides the architect towards these goals through the application of architecture
heuristics, architecture metrics, and heuristic strategies. These are described as follows:

• Architecture Heuristic: A "rule of thumb" compiled from expert experience on past
projects which assists the architect in making rational decisions in defining RA
components. One well-known object-oriented heuristic recommends reducing
coupling among components to encourage reuse (Riel, 1997).

• Architecture Metric: A measurement of a particular characteristic of an RA which
provides an indication whether the architect adhered to a given heuristic. Continuing
with the previous example, the DRAC inheritance hierarchy and/or number of
messages passed among DRACs would provide some evidence as to the degree of
coupling in the RA (Whitmire, 1997).

• Heuristic Strategy: A step-by-step procedure (sequence of actions) used to apply a
given heuristic. Following the "reduce coupling" example, a strategy might explicitly
state, "move service S1 from DRAC D1 to DRAC D2" to eliminate the need to
exchange data between DRACs D1 and D2.

TARETS

4.5. Tool for Application Requirements Extraction and Technology Specification
(TARETS)

The primary goal of TARETS is to:

1. create specifications of technology solutions (e.g. legacy systems, COTS
applications, application systems or components under development, or
planned systems or components) referred to as “technology registration”
documenting WHAT functionality and data the application delivers and
HOW the application is implemented.

2. model constraints for the delivery of those technology solutions. These
delivery constraints specify user, organization and site specific
implementation and installation constraints (e.g. user interface preferences for
a domain-related requirement to display casualty data as well as operating
system, memory, hardware platforms installation restrictions).

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

33

As the system designers and integrators seek determine which application
components or systems can be deployed in a particular system configuration for a specific
user installation site, they must determine:

• ability of applications to satisfy domain-related functional and data
requirements (specified in the Reference Architecture, see Section 4.4)

• state of application (legacy custom system, COTS application, under
development, planned)

• ability of application to met delivery expectations. Thus, the implementation
specifics about an application as well as the expectations of installation sites
must also be known.

TARETS holds information about an application with regard to all three aspects
of an application and the delivery expectations of potential user sites.

The process of registering a technology solution is initiated by the identification of
a new end-user application (application delivering services identified in the Reference
Architecture). TARETS can initiate registration by recognizing a reference to an
application in the AIRM (typically a resource required for domain related task), or a user
can introduce a new application to TARETS through the registration tool. The next step
will be to register the technology solution against the RA specifying WHAT functionality
and data the application delivers. If the application appears in the AIRM, some
preliminary information about the services offered may already be provided to promote
automated registration. If not, the user must select which RA services are offered and
which data or events are managed by the application. An application is registered to a
DRAC if it offers any service or manages any data or events in the specification of that
DRAC.

Once the end-user application has been identified, it must be classified according to a
taxonomy of technology solutions. TARETS features an ontology of technology
solutions to help facilitate the registration with regard to HOW the application is
implemented. Each class of technology solutions has its own infrastructure requirements.
Knowledge about the generic infrastructure requirements of technology solutions is
represented in the ontology as Infrastructure Reference Architecture Classes (IRACS).
For instance, the class of software instances known as “operating systems” require a piece
of equipment called a “computing platform” and often have specific requirements on
“instruction set” and “input/output devices.” Figure 10 shows a subset of the technology
solutions ontology. Using the information from the ontology, TARETS can interrogate
the user for more information about these infrastructure requirements. The requirements
captured in the ontology may not always be valid for the specific application, but they
provide a means of guiding the registration process.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

34

Person Equipment Software

Component

Computing
Platform

Application
Software

Operating
System

Runtime
Environment

System
Software

Device
Driver

Middleware
Software

Networking or
Messaging
Middleware

Database
Middleware

Figure 10: Subset of TARETS IRAC Ontology

Finally, information about additional application-specific constraints needs to be
captured in the technology specification. For instance, if there is a constraint that a task X
must be performed once every fifteen seconds, then the user must be asked a series of
questions designed to obtain the application’s ability to satisfy that constraint. For cases
of notional applications, the user is offered the opportunity to declare that the application
satisfies the constraint. In that case, the property becomes a part of the design
specification of that application.

Delivery expectations with regards to specific users, organizations or installation sites
are modeled as additional constraints related to services and data contained in the
Reference Architecture (e.g. performance constraints on DRAC services or UI display of
DRAC data) and installation infrastructure constraints specified and modeled using the
IRAC representation.

Specifying the application capabilities and delivery expectations using the same
representation constructs allows automated evaluations of compatibility.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

35

RIVT

4.6. Requirements Integration and Verification Tool (RIVT)

RIVT assists users (e.g. system architects, designers, and integrators) in (1) identifying
and evaluating application technologies against domain, application and system
infrastructure requirements and (2) evaluating the viability of integrated component
application configurations. The resulting System Design Specification (SDS) contains a
set of application component solutions, system infrastructure components (e.g. COTS
tools, middleware, and hardware), and the integration dependencies between respective
components and between components and the infrastructure. With the help of RIVT, the
user may identify multiple system specifications that adequately satisfy requirements.
These specifications provide guidance for further design and implementation decisions
and encourage trade-off analysis and evaluation.

As application components are selected from the Technology Solutions Repository
(TSR) and integrated into a prospective system design, rules are fired to ensure that their
addition to the design will not violate application and infrastructure constraints in the
CARM or DRAC interdependency requirements in the RA. The log of rules fired during
a design session yields an additional product of RIVT, a configuration design rationale.

In addition to supporting system integration activities, RIVT also provides a reporting
facility allowing users to browse the CARM, TSR, and RA, highlighting the relationships
between application and infrastructure requirements, application component solutions,
and domain functional and data requirements. With accessibility to the complete set of
requirements represented and applications registered, the RIVT reporting facility is
capable of supporting a number of analysis activities: (1) application impact change
analysis, (2) investigation of possibilities for requirements reuse, (3) verification of
configuration support for selected usage scenarios, and (4) evaluation of the viability of
proposed configurations.

5. SEPA Requirements Management and Reuse Example

SEPA is being applied in a number of domains. Among them is a Defense Advance
Research Project Agency (DARPA) initiative to develop information systems supporting
first responders (fire department, police, EMS) during emergency situations (e.g. fire,
natural disaster) and chemical/biological (chem/bio) warfare attacks that may occur at
large public events (e.g. rock concerts, political gatherings). In today’s emergency
response environment, most incident types are initially managed by "first responders".
The process by which the incident is managed is locally defined and evolves during the
course of the incident, based on pre-defined Standard Operating Procedures and local

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

36

resource availability. The system under development will have functionality including
responder task assignment and location tracking, casualty assessment, chem/bio agent
analysis, and post-incident reporting and analysis. A key mandate of the resulting system
is that it be flexible enough to support a wide variety of incident response facilities and
organizations. This mandate will demand a significant amount of application reuse and
system customizability. The requirements of each facility must be evaluated in the
context of the system and incident response domain and satisfied by associated
applications, making reuse at the requirements level the clear approach to multi-site
implementation.

5.1. Knowledge Acquisition

The first step in gathering requirements is to determine the viewpoints or perspectives
that must be considered when designing the system (Sommerville & Sawyer, 1997).
Sommerville suggests that these viewpoints be gathered into a stakeholder viewpoint
hierarchy. SEPA’s Knowledge Acquisition Manager (KAM) tool actually uses two
orthogonal hierarchies. The first hierarchy is used to describe the domain perspectives
(with leaf nodes such as HazMat Incident Commander or Fire Administrator). The
second hierarchy is used to describe the organizational perspectives (with leaf nodes such
as City Y Fire Department or City X Police Department). While the KAM tool uses both
perspectives simultaneously, this example will only use the shaded portion of the simple
domain viewpoint shown in Figure 11.

All Users

HazMat
Specialist

Fire Police EMT

Fire Incident
Commander

Fire Station
Administrator

HazMat Incident
Commander

Figure 11: Example domain viewpoint hierarchy

Domain experts for this project were selected so that a variety of expert viewpoints
were represented, which for our example includes fire personnel and hazardous material
specialists. The KAM tool was used to maintain contact information on project
participants and allowed these domain experts to be assigned to leaf nodes of two
hierarchies based on their domain perspective and organization perspective. KAM was
also used to schedule several KA Sessions with these experts and can record session
information such as session goals, times, dates, locations, participants, and KA
approaches. Although KEs used a variety of approaches to elicit domain and system
requirements, scenario analysis was the primary approach used to acquire of domain task,
performer, and timing information (Harbison, 1997). Other KA Sessions focused on
acquiring specific implementation requirements through prototype review, yielding
information about preferred look-and-feel as well as installation specifics such as required
operating system. The SEPA example which follows is rooted in the information
acquired from the sessions listed in Table 1.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

37

Table 1: KA Sessions for Incident Response Example

Session Expert /
Viewpoints

Location KA
Approach

Information
Gathered

1 Jim Hendrix
• Hazardous

Materials
Specialist

• HazMat
Incident
Commander

City X,
City Response

Center

Scenario
Analysis

Tasks, performers, and
resources for chem/bio
response

2 Sam Cook
• Fireman
• Fire Incident

Commander
• Fire Station

Administrator

City Y,
Fire Station 1

Scenario
Analysis

Tasks, performers, and
resources for fire
response

3 Bob Smith
• Fireman
• Fire Incident

Commander

City Y,
Fire Station 2

Prototype
Review

User Interface (UI)
requirements and
specification installation
needs for fire response

To document each session, Knowledge Engineers (KEs) created one or more KA
Session Reports, accompanied by supporting diagrams, videos, and supplemental
documents. KA Session Reports represent knowledge from domain and organization
perspectives associated with the domain experts involved in each session. Excerpts from
the session reports corresponding to the sessions in Table 1 are depicted in Figure 12 –
Figure 14.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

38

Figure 12: Incident Response KA Session 1 Report

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

39

Figure 13: Incident Response KA Session 2 Report

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

40

Figure 14: Incident Response KA Session 3 Report

Knowledge Engineers use KAM to (1) identify domain experts, (2) define domain and
organization viewpoints, (3) define an overall KA session plan, and (4) store the products
from each session. Figure 15 shows the KA session plan in KAM referring to the
sessions in Table 1.

The documents maintained in KAM are accessible by all project personnel through the
web. Project participants can perform content-based searches with filters based on the
domain and organization perspectives. Session reports, diagrams, videos, and
supplemental documents provide a foundation for requirements traceability.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

41

Figure 15: KA Session Plan for Incident Response Example

5.2. Knowledge Modeling

Information found in KA session reports and related documents is not structured,
making effective reasoning by a computer difficult. To transition KA artifacts to a
computational representation, the KE interprets the artifacts and creates structured
graphical and textual Knowledge Models (KMs) in HyDRA. While the ultimate goal is
to use the modeling capabilities of one or more of the commercially popular CASE tools,
integration difficulties and perceived shortfalls in traceability and change management
motivated the implementation of a few modeling tools within HyDRA. Currently, the KE
has the choice of a number of models, including data flow diagrams, task decomposition
diagrams, task templates, Venn diagrams, and entity-relationship diagrams (concept
maps). Appropriate knowledge models are selected based on the type of knowledge
acquired. For example, task decomposition diagrams provide an overall view of domain
tasks and subtasks, while a task template contains specifics about the data, timing, and
performance requirements for a specific task.

To facilitate the validation of KA artifacts with domain experts, each KA session yields
a standalone collection of knowledge models called a Model Space (MS). If information
from multiple experts was combined into a single knowledge model, the model would
reflect a hybrid of the viewpoints from those experts, and no single expert would be able
to validate and sign off on their contribution. Furthermore, the rationale used by the KE
in merging the information from multiple experts would not be captured, compromising
traceability.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

42

The resulting knowledge models generated from the sessions in Table 1 are
summarized in Table 2 below. Figure 16 - Figure 18 show screen shots of three sample
knowledge models. Figure 19 - Figure 24 highlight the important details of the remaining
example knowledge models in a condensed format.

Table 2: Knowledge Models from Incident Response Example

Knowledge Model Source
KA
Session

Data Represented

Venn Diagram
(Figure 18)

1 Attributes composing the "weather" concept.

Task Decomposition
(Figure 19)

1 Task decomposition for chem/bio incident response.

Task Templates
(Figure 20)

1 Selected task details for chem/bio incident response
tasks, including pre/post conditions, performer, and
input/output data.

Task Decomposition
(Figure 21)

2 Task decomposition for small fire incident response.

Task Templates
(Figure 22)

2 Selected task details for small fire incident response
tasks, including pre/post conditions, performer, and
input/output data.

Task Performance
Constraint Template
(Figure 23)

3 Prototype presented to expert is associated with
respective domain tasks as suggested implementation
approach.

System Constraint
Template (Figure
24)

3 Overriding system implementation constraints (e.g.
operating system).

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

43

Figure 16: Incident Response Task Decomposition Example in HyDRA

Figure 17: Incident Response Task Template Example in HyDRA

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

44

Figure 18: Incident Response Venn Diagram from KA Session 1 in HyDRA

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

45

Manage Responders
During Incident

1.0
Assess Impact of

Toxic Agent Release
2.0

Create After Action
Reports

3.0

Manage Sector
Location

1.1

Capture Weather
Information

2.1

Determine Agent Dispersion
and Possible Casualties

2.2

Create Incident Spill
Report

3.2

Gather Agent
Characteristics

2.2.1

Gather Weather and
Env. Parameters

2.2.2

Determine Population
Distribution

2.2.3

Create Dispersion
Plume
2.2.4

Estimate
Casualties

2.2.5

Replay Incident
3.1

Figure 19: Incident Response Task Decomposition from KA Session 1

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

46

Task: Manage Responders During Incident
 Precondition: During Incident
 Postcondition: not specified
 Performer: Incident Commander
 Data Input: not specified
 Data Output: not specified

Task: Assess Impact of Toxic Agent Release
 Precondition: During Incident
 Postcondition: not specified
 Performer: HazMat Specialist
 Data Input: not specified
 Data Output: not specified

Task: Create After Action Reports
 Precondition: After Incident
 Postcondition: not specified
 Performer: HazMat Specialist
 Data Input: not specified
 Data Output: not specified

Task: Capture Weather Information
 Precondition: not specified
 Postcondition: not specified
 Performer: not specified
 Data Input: not specified
 Data Output: not specified

Task: Gather Weather and Env Parameters
 Precondition: not specified
 Postcondition: not specified
 Performer: not specified
 Data Input: Weather
 Data Output: not specified

Figure 20: Incident Response Task Templates from KA Session 1

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

47

Establish Env. for
Local Installation

2.0

Create After Action
Reports

3.0

Maintain
Units and Shifts

2.1

Replay Incident
3.1

Manage Responders
During Incident

1.0

Manage Sector
Location

1.2

Assign Crew to Sector
1.1

Create Incident
Report

3.2

Figure 21: Incident Response Task Decomposition from KA Session 2

Task: Establish Env. for Local Installation
 Precondition: Before Incident
 Postcondition: not specified
 Performer: Fire Chief
 Data Input: not specified
 Data Output: not specified

Task: Create After Action Reports
 Precondition: After Incident
 Postcondition: not specified
 Performer: Fire Chief
 Data Input: not specified
 Data Output: not specified

Task: Manage Responders During Incident
 Precondition: During Incident
 Postcondition: not specified
 Performer: Incident Commander
 Data Input: not specified
 Data Output: not specified

Figure 22: Incident Response Task Templates from KA Session 2

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

48

Task: Manage Responders During Incident
 Interface Prototype:

 Prototype Description: Map-based approach for assigning
 responders to various incident hotspots and tracking their
 location as an incident progresses.

Figure 23: Incident Response Task Performance Constraint Template from KA
Session 2

Implementation ID: City Y Fire Dept.
 Constraints:
 Operating System: Windows NT

Figure 24: Incident Response System Constraint Template from KA Session 2

5.3. Knowledge Modeling Synthesis

To achieve a single, unified picture of requirements, HYDRA assists the KE in
synthesizing requirements gathered from multiple experts, following a hierarchy of
viewpoints defined for a domain. In this example, all models from "Hazardous Materials
Specialist" experts would be merged into a "Hazardous Materials Specialist" model space
(step 1 in Figure 25), and all models from "Incident Commander" experts would be
merged into an "Incident Commander" model space (step 2 in Figure 25). These models
space would subsequently be merged into a unified model space, the Unified Knowledge
Model (UKM) (step 3 in Figure 25).

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

49

KMs in
KA Session 1
Model Space

KMs in
KA Session 2
Model Space

KMs in
KA Session 3
Model Space

KMs in
Incident Commander

Model Space

KMs in
HazMat Specialist

Model Space

KMs in
Unified Knowledge

Model

2 1

3

Figure 25: Incident Response Knowledge Synthesis Process in HyDRA

As synthesis proceeds, HyDRA detects conflicts between the knowledge models and
presents the KE with possible resolutions. For example, when the ordering of two tasks
vary between two models, the KE must determine which usage to retain or to mark the
task unordered. As each decision is made, HyDRA ensures the KE’s rationale is captured.
Traceability is retained to record how model elements were changed or merged to
produce the resulting element. Details regarding the synthesis operation can be found in
(Barber & Jernigan, 1999).

Conflicts detected in this example along with their selected resolutions are:

1. Task with almost identical children: Task 3.0 in Figure 19 and task 3.0 in Figure 21
have the same name and share a common child. However, the other child (3.2) is
different. During the merge, HyDRA detects this situation and asks the KE if it
should (i) keep all three children, (ii) ignore one of the dissimilar children, or (iii)
merge the two dissimilar children into one task. In this case, the KE recognized that
these are the same task and asked HyDRA to merge the two dissimilar tasks into one
with the name "Create Incident Report". Alternatively, the difference between the
children of task 1.0, "Manage Responders During Incident", of the two task
decompositions will not create a problem if the task decomposition from the first KA
session, the session with only one child task, is marked with an open world semantics
or incomplete flag.

2. Type - usage conflict: The Venn diagram for "Weather" indicated the concepts in the
diagram were "states" (not shown in panel exposed in Figure 18). However, the
"Weather" concept was used in a task template knowledge model as a "resource".

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

50

HyDRA detects this usage as being in consistent with the type provided by the Venn
diagram. Since, the knowledge models were validated by the domain experts before
the merge, HyDRA cannot change them and preserve the validation. However, it can
ask if the user would like to ignore the conflict or ignore either the usage of
"Weather" in the task template or the type information from the Venn diagram.
Finally, the user has the choice of changing a source knowledge model, revalidating it
with the domain expert, and re-performing the merge process. In the example, the KE
choose to change the Venn Diagram so that it indicated that the concepts where
"information", a non-volitional, intangible, consumable kind of resource.

3. "Weather" not created: As part of the last steps of a merge, HyDRA attempts to
perform some completeness checks. In this case it finds that "Weather", as a
consumable resource, is not ever created before being used. In response, the KE adds
"Weather" as a Data Output on the "Capture Weather Information" task and re-
merges.

The knowledge models must be translated into a common representation during the
merging process. HyDRA uses a semantic net for this representation. Concepts become
nodes in the net. Figure 26 shows a portion of semantic net resulting from the "Incident
Commander" model space merge (step 2 in Figure 25). The concepts are connected to
each other via relations. Concepts and relations can inherit from an ontology of domain
unspecific concepts (e.g., mental task, non-consumable resource, post-condition) which
constrain their use in other relations (i.e., a concept that plays the role of a "performer"
must be an "agent").

The concepts shown in the Figure 26 are those most relevant to the "Create Dispersion
Plume" task. The type information and links to concepts in the ontology have been
hidden to make the figure more readable. The concepts in the upper right quadrant of the
picture result from the task decomposition shown in Figure 19. The "Weather"
decomposition from the Venn Diagram in Figure 18 can be see in the lower left. Just
above the "Weather" concepts is a decomposition of a state ("state853") that occurs when
the task is being executed. The decomposition denotes that two resources must be
available; the "Weather" resource and a "HazMat Specialist" who also happens to be the
task performer. The bottom right of the figure shows that the task has a postcondition
that the "Plume Characterization" resource is available and that the task occurs at the
"HazMat Command Post."

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

51

Figure 26: Incident Response Unified Knowledge Model in HyDRA

Following the synthesis operations depicted in Figure 25, the incident response UKM
would include concepts from the following knowledge models in its semantic net. The
merged task decomposition information in the UKM is illustrated in Figure 27 for clarity.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

52

Establish Env. for
Local Installation

1.0

Assess Impact of
Toxic Agent Release

4.0

Create After Action
Reports

3.0 Maintain
Units and Shifts

1.1

Capture Weather
Information

4.1

Determine Agent Dispersion
and Possible Casualties

4.2

Create Incident
Report

3.1

Gather Agent
Parameters

4.2.1

Gather Weather and
Env. Parameters

4.2.2

Determine Population
Distribution

4.2.3

Create Dispersion
Plume
4.2.4

Estimate
Casualties

4.2.5

Manage Responders
During Incident

2.0

Manage Sector
Location

2.2

Assign Crew to Sector

2.1

Replay Incident

3.2

Figure 27: Merged Incident Response Task Decomposition from UKM

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

53

5.4. Separation of Domain and Application Requirements

Once the UKM has been constructed, the SEPArator must separate domain and
application requirements. The domain content in the UKM, originally represented as
concept models (such as the Venn Diagram) and task-based models, is assembled to form
the Domain Model (DM). The content represented by the task performance constraint
models and the system constraint models are used during technology registration. If any
of the DEs had made specific reference to a particular technology solution (such as a
software application), specification templates for these entities would also be sent to the
technology registrar. In this example only domain requirements were elicited from KA
sessions 1 and 2. Application requirements were elicited from KA session 3.

5.5. Reference Architecture Derivation and Application Registration

The RARE tool assists in the translation from the function-based Domain Model (DM)
to an object-oriented domain Reference Architecture (RA). This translation involves the
creation of Domain Reference Architecture Classes (DRACs) and the allocation of tasks
from the DM to specific DRACs. The RA serves as a blueprint for developers, where
each DRAC is a specification containing domain data owned, domain services provided,
data and event exchange with other DRACs, and subsystem participation (see Section
4.4). In addition, the DRAC hierarchy and associations in the RA help guide developers
in finding the appropriate DRAC when registering their applications.

As class derivation and task mapping take place, rationale is captured and traceability
to DM tasks and other elements is established. A complete RA accommodates all leaf
tasks (having no subtasks) in the DM. New domain information (i.e. from further KA)
would not be introduced during this process without going through previous SEPA
phases. Domain tasks can be allocated among classes in a number of combinations. As
with traditional object-oriented development, the identification of classes is more of an
art than a science. To drive the allocation process, SEPA’s Reference Architecture
Representation Environment (RARE) follows a set of high-level goals prioritized by the
architect. Goals may have conflicting implications. For instance, the architect may select
reusability to be the highest priority, but the derivation heuristics associated with other
goals may conflict with those associated with reusability. In addition to the overriding
goal increase reusability, four other goals are at play for this project:

1. Aligning with performers in the domain: Many domain tasks will remain un-
automated, thus the collections of tasks should closely follow the tasks assigned to
domain performers (e.g. Incident Commander).

2. Aligning with existing COTS applications: To maximize reuse of existing COTS
applications capable of performing domain tasks, tasks should be grouped based on
those tasks associated with existing applications.

3. Increasing installation customizability: To increase customizability for each
installation, it is recommended to reduce the number of services offered by each

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

54

DRAC and thus increase the total number of DRACs. In general, a greater number of
smaller DRACs can be combined in more arrangements to support specific
installation requirements.

4. Aligning based on when tasks are typically performed during incident response:
Responders only concern themselves with a certain set of tasks during any particular
time period of an incident. For example, tasks such as assigning crews to shifts and
defining resources (e.g. fire trucks) are done outside of any particular incident. Tasks
in different time periods naturally have fewer coupling constraints than tasks in the
same time period. Therefore these large grained time periods provide guidance for
the assignment of tasks to DRACs so that inter-DRAC coupling and the number of
DRACs the responder must interact with during any given period are reduced.

The process of associating a new, existing, or proposed (notional) application with
DRAC data and functionality is referred to as “registration.” Since a primary goal of this
development effort is to reuse COTS tools when possible, registration involves both
COTS applications and newly developed applications. The applications under
consideration for this example are described as follows:

• FDManager v2.0 – A COTS application that provides a complete set of services to
support small and midrange incidents. These services include resource allocation and
responder assignment and tracking.

• IncidentReporter v2.0 – A newly developed application that provides analysis and
government-mandated reporting after an incident has completed.

• PlumeAnalyzer v1.0 – A COTS application used to predict casualties from a
chem/bio agent release based on agent characteristics, population distribution,
weather, and other environmental conditions.

• ResponderLocator v1.0 – A newly developed map-based application used to assign
tasks and locations to responders and monitor their location.

• WeatherMonitor v0.7 – A newly developed application that provides an interface for
collecting weather data and disseminating this data to multiple responders.

The following lists the RA DRACs derived from the incident management DM and
identifies the applications registered to DRAC services. Rationale is provided with each
DRAC to describe the basis for DRAC creation.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

55

DRAC 1: Administrator

Rationale for creation:

• Aligning based on when tasks are typically performed during incident
response: Collect all tasks performed outside of an incident.

DRAC Service Registered Applications

Maintain Units and Shifts FDManager v2.0

DRAC 2: Incident Manager

 Rationale for creation:

• Aligning with performers in the domain: The domain role of Incident
Commander is significant.

DRAC Service Registered Applications

Assign Crew to Sector FDManager v2.0

ResponderLocator v1.0

Manage Sector Location FDManager v2.0

ResponderLocator v1.0

DRAC 3: Weather Manager

 Rationale for creation:

• Increasing installation customizability: Weather data should be
independently managed from other types of data so data handlers can
be combined in different ways for different installations.

DRAC Service Registered Applications

Capture Weather Information WeatherMonitor v0.7

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

56

DRAC 4: After Incident Reporter

 Rationale:

• Aligning based on when tasks are typically performed during incident
response: Collect all services occurring after completion of an
incident.

DRAC Service Registered Applications

Create Incident Spill Report IncidentReporter v2.0

Replay Incident IncidentReporter v2.0

DRAC 5: HazMat Manager

 Rationale:

• Aligning with performers in the domain: Services follow those tasks
performed by HazMat Specialist in UKM.

• Aligning with existing COTS applications: Registered COTS application
"PlumeAnalyzer" is designed to provide these types of services.

DRAC Service Registered Applications

Gather Agent Parameters Human

Gather Weather and Env.
Parameters

Human

Determine Population Distribution Human

Create Dispersion Plume PlumeAnalyzer v1.0

Estimate Casualties PlumeAnalyzer v1.0

Associating an application to respective DRAC services is only part of the registration
picture. Later, during system design, the system integrator performs a brokering activity
based on “how” an application performs its functions as well as “what” domain tasks the
application provides. Thus, the application must also be characterized by specific
implementation features and infrastructure requirements.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

57

Taking into account both the DRAC and IRAC registrations, Figure 28 depicts both the
“what” and “how” registration for the FDManager v2.0 and ResponderLocator v1.0
applications listed above. An application is registered against both DRACs and IRACs.
Registering against a DRAC specifies "what" the application does; registering against an
IRAC specifies "how" it does it. The IRAC ontology (see Section 4.5) represents
domain-independent knowledge about generic infrastructure requirements.

TARETS assists the developer in traversing the IRAC ontology to ensure an application
is registered in a manner that describes it as completely as possible.

End-User Application:
 FD Manager 2.0

IRAC: Software Application
Name: FD Manager 2.0 executable

IRAC: Operating System
Type: Microsoft Windows 32-Bit OS

IRAC: Computing Platform
Processor Type: Intel Pentium
Class
Processor Speed: ≥ 90 MHz
Main Memory: ≥ 32 MB
Disk Storage: ≥ 5 MB
Display Device: 640x480x256

• Assign Crew to Sector
• Manage Sector Location

End-User Application:
 Responder Locator 1.0

IRAC: Software Application
Name: Responder Locator 1.0 executable

IRAC: Runtime Environment
Type: Java2 Runtime Environment

IRAC: Runtime Library
Name: XML Library 1.1.1

IRAC: Middleware Data Handler
Name: Incident Middleware 0.8

• Assign Crew to Sector

DRAC: Incident Manager

R
el

at
ed

 In
fr

as
tr

uc
tu

re

C
on

st
ra

in
ts

R
el

at
ed

 In
fr

as
tr

uc
tu

re

C
on

st
ra

in
ts

Figure 28: Incident Response Application Registration Example

5.6. System Design

With an understanding of the domain and infrastructure requirements for a particular
installation, the system designer performs the activity of system design by selecting
specific applications that together solve the client’s installation requirements.

As evident from the sample KA session reports above, the incident management
application is intended for two very different installations: City X and City Y. To
accommodate the requirements of each installation from a single set of registered

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

58

applications, SEPA’s domain and implementation requirements representations are
intended to aid the designer in identifying candidates for reuse.

Beginning with a blank slate, system design starts with a specification of “What domain
tasks should be automated at this installation?” SEPA tools help the designer to answer
this question independently of implementation concerns by perusing the domain model
and/or reference architecture to identify candidate tasks. Browsing the reference
architecture is often preferred since services are likely organized into DRACs that
correspond to familiar domain roles (e.g. Incident Commander role, HazMat Specialist
role).

For City X, the required domain functions based on KA (Figure 16) are:

• Manage Sector Location (synonym for the originally requested "Manage Division
Location")

• Create Dispersion Plume

• Estimate Casualties

• Create Incident Spill Report

• Gather Agent Parameters

• Gather Weather and Env. Parameters

• Determine Population Distribution

• Capture Weather Information

Once the set of DRACs that must be addressed are identified, the Requirements
Integration and Verification Tool (RIVT) can be used to identify registered applications
capable of performing the selected domain tasks.

Based on the domain services selected for City X, candidate applications suggested are:

• Manage Sector Location – FDManager v2.0 OR ResponderLocator v1.0

• Create Dispersion Plume – PlumeAnalyzer v1.0

• Estimate Casualties – PlumeAnalyzer v1.0

• Create Incident Spill Report – IncidentReporter v2.0

• Gather Agent Parameters – Manual Task

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

59

• Gather Weather and Env. Parameters – Manual Task

• Determine Population Distribution – Manual Task

• Capture Weather Information – WeatherMonitor 0.7

For City X, neither task constraints nor system constraints have been specified. Thus
the designer may select either FDManager v2.0 or ResponderLocator v1.0 to provide
"Manage Sector Location."

The designer narrows the set of candidate applications by imposing implementation
requirements. These requirements (constraints) are expressed in the same language as the
application registered infrastructure, the IRAC ontology. Having satisfied both domain
and implementation requirements for each application, the designer continues the
brokering process by attempting to integrate applications to ensure compatibility based on
their registration specifications.

Each of the registered applications is associated with one or more IRACs to describe
the infrastructure required for each application:

• FDManager v2.0

• Processor Type: Intel

• Processor Speed: ≥ 90 ΜΗz

• Disk-space: ≥ 5 MB

• Memory: ≥ 32 MB

• Display Size: 640x480x256

• requires-OS: { Windows NT Workstation v4.0 SP4 | Windows 95 | Windows
98 }

• ResponderLocator v1.0

• requires-OS: { Windows NT Workstation v4.0 SP4 | Windows 95 | Windows
98 }

• depends-on-application-framework: IncidentMiddleware v0.8

• uses-system-library: XMLLibrary v1.1.1

• executes-in-runtime-environment: JavaRuntimeEnvironment v1.2

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

60

• PlumeAnalyzer v1.0

• depends-on-related-software: { DSWE Plume Calculator | DITR Plume
Calculator }

• requires-OS: { Windows NT Workstation v4.0 SP4 | Windows 95 | Windows
98 }

• IncidentReporter v2.0

• requires-OS: { Windows NT Workstation v4.0 SP4 | Windows 95 | Windows
98 }

• depends-on-application-framework: IncidentMiddleware v0.8

• WeatherMonitor 0.7

• requires-OS: { Windows NT Workstation v4.0 SP4 | Windows 95 | Windows
98 }

• executes-in-runtime-environment: JavaRuntimeEnvironment v1.2

The integration process also highlights the need for supporting applications, such as
databases, word processors, and web servers. Related infrastructure applications may, in
turn, require additional applications:

• IncidentMiddleware v0.8 (required by IncidentReporter v2.0)

• uses-repository IncidentRepository 2.0

In contrast to the City X installation, options for the City Y installation are constrained
by the requested map-based user interface and the required operating system (Windows
NT). Applications used in the City X installation are reused for the City Y installation

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

61

based on their registration to required tasks, providing they satisfy the stated
infrastructure requirements. These requirements help narrow the selection, resulting in
the following application choices.

• Manage Units and Shifts – FDManager v2.0

• Assign Crew to Sector – ResponderLocator v1.0 (task is constrained by
requirement for map-based application)

• Manage Sector Location – ResponderLocator v1.0

• Replay Incident –IncidentReporter v2.0

In addition to supporting the brokering process, RIVT provides a query facility against
the information contained in IRAC, DRAC, and registration representations to support
impact and reuse analysis.

5.6.1. Impact analysis for new application development

In a domain as complex as Incident Management, the domain scope modeled will likely
need to grow to satisfy a larger customer base. Through KA, new domain tasks are added
in context with existing functionality. Relationships to existing tasks are determined
during knowledge model merging and filtered down to the RA as changes in data and
event exchange between DRAC services.

When new applications are under consideration, an initial analysis of the Reference
Architecture and currently registered applications can provide information regarding the
degree to which a proposed application will affect or be affected by other applications.
Functionality to be provided by the new application is identified in the RA. If the domain
task has not yet been represented in the RA, additional KA yields an expanded DM and
results in new RA services. Likely interaction among applications is evident through data
and event exchange between the DRACs that provide the functionality under
consideration. These interactions can identify (i) other applications already registered
which may require modification to correctly interface with the new application and (ii)
functionality which has not yet been automated but must now be automated if the
functionality under consideration is to be included in the system design.

5.6.2. Reuse of existing applications through requirements

The SEPA process and tools enable reuse of requirements through requirements
modeled in a computational representation. Implementation and domain requirements
represented in SEPA can be used in combination to determine the likelihood of reuse.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

62

As in the brokering examples described in the prior section, the first step in satisfying
the needs of an installation site is determining which domain tasks are to be supported.
Through application registration against the RA, these domain tasks reference
applications that become candidates for reuse. To identify domain functionality of
interest, the end user can take a number of approaches in posing questions to the RA.

• For users focused on particular domain data elements that would be affected

Elements that represent information resources in the DM are “owned” by DRACs in
the RA. RIVT can be used to determine what DRAC services utilize those data
elements and what applications are registered to those services.

• For users familiar with high-level domain tasks that are to be automated

High-level tasks in DM identify lower level tasks which are satisfied by DRAC
services in the RA. RIVT can be used to determine what applications are registered
to those services.

• For users intending to automate the tasks for a particular domain role (performer)

Tasks performed by a domain role are identified in the DM and those tasks are
satisfied by services in the DRACs. Furthermore, DRACs often closely align with
performer roles, thus collecting the services associated with a role. RIVT can be used
to determine what applications are registered to those services.

Once a selection of candidate applications is identified for reuse, infrastructure
requirements associated with registered applications provide additional information for
determining level of reuse. Questions that can be answered by the SEPA IRAC
representation include:

• What types of resources does the application require (e.g. hard disk, memory,
peripherals)?

• Does the application run in the chosen runtime environment (e.g. Java, Visual Basic
for Applications)?

• Does the application run under the chosen operating system?

• Will an application conflict with other candidate applications if integrated in a single
installation (e.g. the sum of memory required by two applications exceeds that offered
by the destination server)?

• Consider the pool of available application developers, is the application developed
using skills developers possess and technologies they are familiar with (e.g. Java,
Visual Basic)?

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

63

Figure 29 depicts a selected query screen in RIVT designed to answer these types of
questions. This screen provides the developer, end-user, or integrator with a high-level
picture of the relationships between RA services (domain tasks), DRACs, registered
applications, and installation sites. In the example shown, the service “Manage Sector
Location” has been selected. The DRAC offering this service is highlighted, Incident
Manager. In the third column, applications registered to the Incident Manager are
highlighted, FDManager v2.0 and ResponderLocator v1.0. The installation sites
requiring this service are highlighted, including both City X and City Y.

Figure 29: Example RIVT Query Interface for Requirements Reuse Analysis

5.7. SEPA Contributions to Requirements Evolution and Reuse

This section highlights selected SEPA contributions to requirements evolution and
reuse attributable to its emphasis on requirements analysis prior to design, separation of
domain and application requirements, and requirements analysis for component-based
development.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

64

• Traceability: SEPA’s emphasis on traceability throughout the requirements analysis
and refinement process allows SEPA to support queries against any artifacts in the
process (e.g. KMs, DM, RA, registered application) and relate those artifacts to other
artifacts in the process. For example, the domain expert may be more familiar with
high-level domain tasks than with specific application functions. A query to identify
applications supporting specific domain tasks would best be posed to the domain
model. These tasks, in turn, are traceable to DRAC services that are satisfied by
registered applications.

• Support for Multiple Viewpoints: Derivation of the Reference Architecture and all
subsequent system development depend on a single, unified representation of the
domain. On the other hand, experts representing individual domain viewpoints want
to be assured either that their interests are being captured in the resulting model or
that there is adequate justification for why their interests are not being represented.
HyDRA captures the original results from each KA session in a separate model space
(a collection of knowledge models). As artifacts from KA sessions are synthesized
into a unified model, traceability is retained and the rationale for each KE decision
during synthesis is recorded. One benefit afforded by this approach is that even after
the unified model is created, an expert can continue to browse domain tasks in their
own terminology and referencing unified tasks via traceability links. Furthermore, the
HyDRA synthesis process follows the viewpoint hierarchy, first unifying
requirements from experts holding the same viewpoint. This retains separate model
spaces representing the functional and data requirements associated with each
viewpoint.

• Computational Requirements Representation: Typical requirements management
approaches rely on tracing text fragments to design and development artifacts
(Chipware, 1999; QSS, 1998; Technologies, 1999). This flat "bucket of thou shalt"
representation supports only text string searches and provides little ability for
structured requirements types and complex relationships among various requirements
types (Palmer, 1997). The end result is a greater difficulty associating applications
features to originally stated requirements. For example, suppose a text requirement
stated "The application supporting the billing process shall run on a Windows NT
machine with no more than 128MB memory." A flat representation leads to some
difficulty:

• This statement actually suggests two different requirements: "Windows NT" and
"less than 128 MB."

• To determine if "128 MB memory" is satisfied requires a numeric representation
for comparison.

• Both these requirements act as constraints on the "billing process" task. Any
application registered to the "billing process" task should satisfy both the

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

65

"Windows NT" and "less than 128 MB" requirements.

• Separation between Domain and Infrastructure Requirements: To improve chances
for reuse, software methodologies often suggest that "what" a system must do should
be modeled independently of "how" the system should be implemented. The
presumption is that "what" is done in a domain changes far less often than "how" it is
accomplished, especially given frequent changes in technology (Tracz, 1991; Tracz,
1993; Tracz, 1995). Despite this advice, other requirements management tools do not
explicitly recognize this separation.

• Comprehensive Process Support for Requirements Refinement and Management:
Numerous requirements management tools are available for requirements analysis and
refinement, taking different approaches to requirements representation (Chipware,
1999; QSS, 1998; Technologies, 1999). An even greater number of tools support
object-oriented development after requirements have been elicited, validated, and
merged (SES, 1999; Verilog, 1997). Selected tool suites attempt to bridge
requirements identification with subsequent object-oriented analysis and development
(Rational, 1998a). SEPA provides an integrated suite that connects all artifacts
throughout requirements evolution via a common traceability representation. Without
this integration, the development process cannot be seamless, and the transition from
requirements capture, to requirements synthesis, to class derivation, to system design
(often performed by different people) becomes excessively difficult. Among the
consequences of this “break” in the process, some requirements may be ignored while
others may not be maintained in the long-term after implementation or as the domain
scope broadens.

• Infrastructure Requirements Represented in a Domain-Independent Ontology: The
separation of domain and infrastructure requirements is key to SEPA's approach to
maximum reuse. Further encouraging long-term reuse is SEPA's domain-independent
IRAC ontology for modeling infrastructure requirements. While there are many
approaches for characterizing infrastructure requirements, the IRAC ontology
provides consistency between projects and beyond initial implementation. Over time,
additional applications may be introduced that can be registered to existing domain
services in the RA. These new applications are registered utilizing the same IRAC
ontology as the originally registered applications, thus providing a consistent language
for comparing application features. The consistent representation also allows
applications to be selected based on a common feature, independent of domain
functions (e.g. find all applications that run on Windows NT).

As illustrated in the City Y installation example, the separate application requirements
representation simplifies the application selection process. Registered applications can be
selected based on their ability to perform domain tasks independently of their specific
implementation features or required infrastructure. Often multiple applications are
registered as being capable of providing the same DRAC service. Specific application
features or resource requirements can be used to narrow the set and the common
representation allows applications to be compared in a trade-off analysis.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

66

• Close Alignment of RA DRACs to COTS Applications: SEPA’s RARE tool guides
the derivation of DRACs from DM functional and data information based on a set of
goals prioritized by the architect. Among the goals significant to COTS reuse is the
emphasis on grouping domain tasks into DRACs based on close alignment with those
services existing COTS applications provide. This goal improves the likelihood a
COTS application will be registered completely to a DRAC (all services supported)
and increases opportunities to select COTS applications in whole based on desired
DRAC functionality.

6. Conclusions

The Systems Engineering Processing Activities (SEPA) being developed at the
University of Texas at Austin in the Laboratory for Intelligent Processes and Systems
(LIPS) seeks to improve the systems engineering process by providing a comprehensive
development methodology and a suite of supporting tools. SEPA focuses on support for
Component-based Software Engineering (CBSE). While available support for
implementation of component-based systems is strong, SEPA emphasizes the early
requirements gathering and analysis activities demanded by the CBSE process.

Distinguishing SEPA features include emphasis on the following.

1. Support for requirements analysis prior to design. Recognizing that many
modeling methodologies do not adequately support early analysis efforts, SEPA
emphasizes earlier activities to provide a sound foundation for component
derivation. Furthermore, attention paid to these early analysis activities facilitates
maintaining traceability and verification of deliverables. SEPA supports the
incremental gathering of requirements and the multiple perspectives acquired
from different domain experts typically found in large development efforts.

2. Separation of domain and application requirements. Domain-based requirements
focus on "what" a component does while application requirements emphasize
"how" a component must perform for a particular system implementation. The
importance of this distinction is that “what” a component does in a domain is
often less dynamic over time than “how” the component does since technologies
change over time and the "how" may be strongly dependent on the particular
technology solution selected.

3. Support for requirements analysis for component-based development. The analysis
of domain requirements in SEPA yields a Reference Architecture (RA) of
domain-based components responsible for services required to support domain
tasks. In addition to declarative and behavioral information, the SEPA domain-
based RA representation includes integration rules describing constraints and
dependencies between components. The RA produced by the SEPA process
represents domain requirements and is independent of specific implementations.
This allows it to be reused in a "family" of applications in the domain.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

67

To guide the developer in applying the unique features of the SEPA methodology, a
suite of tools is being developed to support each phase in the SEPA process:

• Knowledge Acquisition Manager: Provides project management and document
management functions to support the Knowledge Acquisition (KA) process.

• Hybrid Domain Representation Archive: Aids in representing and synthesizing the
information from Knowledge Acquisition reports into a single, functional Unified
Knowledge Model. The synthesis process merges domain information from
multiple experts while preserving traceability to KA.

• SEPArator: Separates the information present in the SEPA Unified Knowledge
Model into a Domain Model containing domain-based requirements, a
Technology Solutions Repository capturing legacy systems, and an Application
Requirements Model containing requirements for specific system
implementations.

• Reference Architecture Representation Environment (RARE): Guides the developer
in transitioning from a functional Domain Model to an object-oriented Reference
Architecture of domain-based components. As a domain-based model specifying
"what" components must do, the RA remains relatively stable over time and
provides a template for a "family" of application systems.

• Tool for Application Requirements Extraction and Technology Specification
(TARETS): Complements RARE by modeling application requirements and
technology solutions gathered from KA and represented in the Application
Requirements Model. Models are linked to Reference Architecture components
for subsequent use in generating a system design specification satisfying domain
and application requirements.

• Requirements Integration and Verification Tool (RIVT): Aids in the system design
function by combining application requirements and technology solutions
modeled in TARETS with domain requirements represented as components in the
Reference Architecture to satisfy all requirements for a given application and
provide a rationale for a given system design configuration.

7. References

Alford, M., & Lawson, J. (1979). Software Requirements Engineering Methodology
(Development) (RADC-TR-79-168): U.S. Air Force Rome Air Development Center.

Alonso, F., Juristo, N., Mate, J. L., Pazos, J. (1996). Software Engineering and
Knowledge Engineering: Towards a Common Life Cycle. Journal of Systems and
Software, 33, 65-79.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

68

Barber, K. S., & Jernigan, S. R. (1999, June 28-July 1). Changes in the model creation
process to ensure traceability and reuse. Paper presented at the International
Conference on Artificial Intelligence, Las Vegas, Nevada.

Brown, A. W. (1996). Foundations for Component-Based Software Engineering. In A.
W. Brown (Ed.), Component-based Software Engineering (pp. vii-x). Los Alamitos,
California: IEEE Computer Society Press.

Caldieri, Gianluigi, & Basili, V. R. (1991, February 1991). Identifying and Qualifying
Reusable Software Components. IEEE.

Chipware, I. (1999). icCONCEPT RTM- Requirements & Traceability Management
Tool, [Web site]. Marconi Systems Technology, Inc. Available:
http://www.mstus.com/.

Christel, M. G., & Kang, K. C. (1992). Issues in Requirements Elicitation (Technical
CMU/SEI-92-TR-12). Pittsburg, Pennsylvania: Carnegie Mellon University.

Clements, P. C. (1996). From Subroutines to Subsystems: Component based Software
Engineering. In A. W. Brown (Ed.), Component based Software Engineering (pp. 3-
6): IEEE Computer Society Press.

Clements, P. C., & Northrop, L. N. (1996). Software Architecture: An Executive
Overview. In A. W. Brown (Ed.), Component-based Software Engineering (pp. 55-
68). Los Alimitos, California: IEEE Computer Society Press.

Cybulski, J. L. (1995). Reusing Software Specifications by Analyzing Informal
Requirements Texts. .

Department of Defense, U. S. (1996). Guidelines for Successful Acquisition and
Management of Software-Intensive Systems : Department of the Air Force, Software
Technology Support Center.

Finkelstein, A. C. W., Gabbay, D., Hunter, A., Kramer, J., & Nuseibeh, B. (1994).
Inconsistency Handling in Multiperspective Specifications. IEEE Transactions on
Software Engineering, 20(8), 569-577.

Garlan, D., Allen, R., & Ockerbloom, J. (1995, April 1995). Architectural Mismatch or,
Why it’s hard to build systems out of existing parts. Paper presented at the 17th
International Conference on Software Engineering, Seattle, Washington.

Glass, R. L. (1996). Methodologies: Bend to Fit? Journal of Systems and Software, 35,
93-94.

Gomma, H. (1995). Reusable Software Requirements and Architectures for Families of
Systems. Journal of Systems and Software, 28, 189-202.

Grady, R. (1992). Practical Software Metrics for Projects Management and Process
Improvement. Englewood Cliffs: Prentice-Hall.

Graham, I. (1995). Migrating to object technology. Wokingham, England ; Reading,
Mass.: Addison-Wesley Pub. Co.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-05

69

Graser, T. J. (1996). Reference Architecture Representation Environment (RARE) - A
Reference Architecture Archive Promoting Component Reuse and Model Interaction.
Unpublished Masters, The University of Texas at Austin, Austin.

Harbison, K. (1997). Scenario-based Engineering Process .
http://caesar.uta.edu/caesar/process.html: Center for Advanced Egineering Systems
and Automated Research, The University of Texas at Arlington.

Hardy, C. J., Barrie, T. J., Edwards, H. M. (1995). The Use, Limitations and
Customization of Structured Systems Development Methods in the United Kingdom.
Information and Software Technology(September).

Harel, D. (1990). STATEMATE: A working environment for the development of
Complex Reactive Systems. In T. DeMarco & T. Lister (Eds.), Software State-of-the-
Art: Selected Papers (pp. 322-338). New York: Dorset House.

Heitmeyer, C., Kirby, J., Jr., & Labaw, B. (1997). Tools for formal specification,
verification, and validation of requirements. Paper presented at the 12th Annual
Conference on Computer Assurance (COMPASS ’97), Gaithersburg, MD.

Kotonya, G., & Sommerville, I. (1997). Requirements engineering with viewpoints. In R.
H. Thayer & M. Dorfman (Eds.), Software Requirements Engineering (pp. 150-163).
Los Alamitos, CA: IEEE Computer Society Press.

Kramer, J., Ng, K., Potts, C., & Whitehead, K. (1988). Tool Support for Requirements
Analysis. Software Engineering Journal, 3(3), 86-96.

Lam, W. (1997). Achieving Requirements Reuse: A Domain Specific Approach for
Avionics. Journal of Systems and Software, 38, 197-209.

Leite, J. C. S. d. P., & Freeman, P. A. (1991). Requirements Validation Through
Viewpoint Resolution. IEEE Transactions on Software Engineering, 17(12), 1253-
1269.

McGraw, K., & Harbison, K. (1997). User-centered Requirements. Mahwah: Lawrence
Erlbaum Associates, Publishers.

Oskarrson, O., Glass, R. L. (1996). An ISO 9000 Approach to Building Quality Software.
New Jersey: Prentice-Hall.

Palmer, J. D. (1997). Traceability. In R. H. Thayer & M. Dorfman (Eds.), Software
Requirements Engineering (pp. 364-374). Los Alamitos, CA: IEEE Computer Society
Press.

Perito-Diaz, R. (1990). Domain Analysis: An Introduction. ACM SIGSOFT Software
Engineering Notes, 15(2), 47-54.

Pohl, K. (1996, April 15-18, 1996). PRO-ART: Enabling Requirements Pre-Traceability.
Paper presented at the Second International Conference on Requirements
Engineering, Colorado Springs, Colorado.

QSS. (1998). DOORS 4.0 . http://www.qss.co.uk/DOORS4/: Quality Systems and
Software.

The Laboratory for Intelligent Processes and Systems TR99-UT-LIPS-SEPA-04

70

Rational. (1998a). Software Development, Component-Based, Programming Tools:
Rational . http://www.rational.com/: Rational.

Rational. (1998b). Unified Modeling Language . http://www.rational.com/uml: Rational
Software Corporation.

Riel, A. J. (1997). Object-Oriented Design Heuristics. Reading, MA: Addison-Wesley.

Rolland, C. (1994, April 18-22). Modeling the Evolution of Artifacts. Paper presented at
the The First International Conference on Requirements Engineering, Colorado
Springs, Colorado.

Schach, S. R. (1993). Software Engineering. (2nd ed.). Boston: Aksen Associates
Incorporated Publishers.

SES. (1999). SES/objectbench: object-oriented analysis, simulation and code-generation.
.

Sommerville, I., & Sawyer, P. (1997). Requirements engineering : a good practice guide.
New York: Wiley.

Sommerville, I., Sawyer, P., & Viller, S. (1998, April 6-10, 1998). Viewpoints for
requirements elicitation: a practical approach. Paper presented at the Third
International Conference on Requirements Engineering, Colorado Springs, Colorado.

Technologies, T. (1999). Slate REquire. Available: http://www.tdtech.com/.

Telelogics. (1997). ATM via SDL . www.telelogic.com: Telelogic.

Tracz, W. (1991, Novenber 18-20, 1991). An Outline for a Domain-Specific Software
Architecture Engineering Process. Paper presented at the Fourth Annual Workshop
on Software Reuse, Reston, VA.

Tracz, W., Coglianese, L., Young, P. (1993). A Domain Specific Software Engineering
Process Outline. ACM SIGSOFT Software Engineering Notes, 18(2), 40-49.

Tracz, W. (1995). DSSA (Domain Specific Software Architecture) Pedagogical Example.
ACM SIGSOFT Software Engineering Notes, 20(3), 49-62.

Tracz, W. (1996). Domain-Specific Software Architectures, Frequently Asked Questions :
Loral Federal Systems Company.

Verilog. (1997). Verilog ObjectGEODE . http://www.verilogusa.com/home.htm.

Vlasbom, G., Rijsenbriji, D., & Glastra, M. (1995). Flexibilization of the Methodology of
Systems Development. Information and Software Technology(November).

Whitmire, S. A. (1997). Object-Oriented Design Measurement. New York, NY: John
Wiley & Sons, Inc.

