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Counting items in a distributed system, and estimating the cardinality of multisets in particular,

is important for a large variety of applications and a fundamental building block for emerging

Internet-scale information systems. Examples of such applications range from optimizing query

access plans in peer-to-peer data sharing, to computing the significance (rank/score) of data items in

distributed information retrieval. The general formal problem addressed in this article is comput-

ing the network-wide distinct number of items with some property (e.g., distinct files with file name

containing “spiderman”) where each node in the network holds an arbitrary subset, possibly over-

lapping the subsets of other nodes. The key requirements that a viable approach must satisfy are:

(1) scalability towards very large network size, (2) efficiency regarding messaging overhead, (3) load

balance of storage and access, (4) accuracy of the cardinality estimation, and (5) simplicity and easy

integration in applications. This article contributes the DHS (Distributed Hash Sketches) method

for this problem setting: a distributed, scalable, efficient, and accurate multiset cardinality estima-

tor. DHS is based on hash sketches for probabilistic counting, but distributes the bits of each counter

across network nodes in a judicious manner based on principles of Distributed Hash Tables, paying

careful attention to fast access and aggregation as well as update costs. The article discusses various

design choices, exhibiting tunable trade-offs between estimation accuracy, hop-count efficiency, and

load distribution fairness. We further contribute a full-fledged, publicly available, open-source im-

plementation of all our methods, and a comprehensive experimental evaluation for various settings.
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1. INTRODUCTION

Peer-to-peer (P2P) networks came into existence as a means of sharing files
and/or CPU cycles among end-users. Over time, they evolved from the anarchy
of the early small-world architectures [Gnutella 2001; Yang and Garcia-Molina
2001], to the cutting-edge structured data networks of today. The main ad-
vance that made this feasible was the introduction of Distributed Hash Tables
(or DHTs) [Druschel and Rowstron 2001; Maymouknov and Mazières 2002;
Ratnasamy et al. 2001; Stoica et al. 2001]. The common denominator of all
these systems is their ability to scale to large numbers of nodes and to man-
age an even larger amount of data items, while providing probabilistic (under
node failures and skewed data/access distributions) guarantees for the attained
degree of efficiency, fault tolerance, and availability.

As a natural evolution of the widespread adoption of P2P technologies by end-
users and the enterprise alike, and the much desirable properties of structured
P2P overlays, the academic community has started considering the possibility of
using such networks as the substrate for widely distributed database and data
integration systems [Gupta et al. 2003; Harren et al. 2002; Huebsch et al. 2005,
2003; Ives et al. 2005; Koloniari and Pitoura 2004; Ng et al. 2003; Papadimos
et al. 2003; Triantafillou and Pitoura 2003]. Thus, peer-to-peer networks have
departed from their file/CPU-sharing origins and are rapidly evolving into a
powerful infrastructure, capable of supporting data management systems of
huge scale.

1.1 Motivation

In this new era of Internet-scale peer-to-peer data networks, the need for a dis-
tributed counting mechanism arises in many occasions. More often than not, the
quantity to be counted contains duplicates and the candidate algorithm must
provide duplicate insensitivity properties. For example, file-sharing peer-to-
peer systems often need to know the total number of distinct documents shared
by their users, without counting copies of the same (popular) document multiple
times; widely distributed peer-to-peer search engines need a method to evalu-
ate the significance of various keywords, expressed as the ratio of the number of
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distinct indexed documents containing each keyword to the total number of dis-
tinct indexed documents; conversely, Internet-scale information retrieval sys-
tems need a method to deduce the rank/score of various data items; sensor net-
works need methods to compute aggregates in a duplicate-insensitive manner
since multiple sensors may be sensing and reporting the same event; Internet-
scale database systems can harness such distributed counting mechanisms to
execute aggregate queries and to maintain statistics over stored/shared data,
en route to selectivity estimation and optimization algorithms for query access
plans; etc.

Furthermore, with wide distribution comes the need for completely decen-
tralized methods of performing traditionally centralized operations, and a lack
of knowledge with regard to overall/global system properties. As a consequence,
computing such metrics (e.g., number of documents in the network, sizes of
database relations, distributions of data values) in peer-to-peer systems, in a
scalable, efficient, and accurate manner, has long been neglected. We believe
the key constraints that any acceptable solution must satisfy consist of the
following.

(1) Efficiency. The number of nodes that need to be contacted for counting
purposes must be small in order to enjoy small latency and bandwidth
requirements.

(2) Scalability and Availability, Seemingly Contradicting the Efficiency Goal.
Arbitrarily large numbers of nodes may need to add elements to multiple
multisets, which dictates the need for a highly distributed solution, avoiding
single-point-based scalability, bottleneck, and availability problems.

(3) Access and Storage Load Balancing. Counting and related overheads should
be distributed fairly across all nodes.

(4) Accuracy. Tunable, robust (in the presence of dynamics and failures). This
is comprised of, and highly accurate cardinality estimation.

(5) Simplicity and Ease of Integration. Special, solution-specific indexing struc-
tures, and their required extra (routing) state to be maintained by nodes,
should be avoided.

(6) Duplicate (In)Sensitivity. The proposed solution must be able to count both
the total number of items as well as the number of unique items in multisets,
as outlined earlier.

1.2 Related Work

Distributed counting/aggregation solutions, as proposed by the peer-to-peer re-
search corpus so far, can be categorized in the following groups:

—rendezvous-based protocols;

—gossip-based protocols;

—broadcast/convergecast-type protocols; and

—sampling-based protocols.
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The first type of solution is the first that comes to mind when using a structured
overlay (DHT): Select a node in the overlay (e.g., by using the hash function(s)
of the DHT overlay) and use it to maintain the counter value (e.g., see the
distributed counting mechanism outlined in Flajolet and Martin [1985]). Also
in this category are hash-partitioned counters (where the counting space is
partitioned into disjoint intervals, with each such interval mapped to a (set
of) node(s) in the overlay) or “coordinator”-based solutions (abundant in sensor
networks and distributed data stream processing [Cormode and Garofalakis
2005; Hadjieleftheriou et al. 2005], where summaries of data are gathered at a
central aggregation point to be processed).

Solutions of this type suffer many shortcomings, most notably their very poor
scalability; having one node per counter means that this node will be contacted
on every update of, and on every query for, the current value of the counter,
resembling more of a centralized system. This violates constraint (2). More-
over, each of these counting nodes is subjected to a high access and storage
load, violating constraint (3), while it can be argued that such highly loaded
nodes will exhibit high response times, also violating constraint (1). Using a
(fixed) number of rendezvous nodes for each counter does not solve the prob-
lem, but merely mitigates the scalability issues to the cost of inserting items
to and/or querying the value of such a counter (as these grow linearly with
the number of rendezvous nodes engaged in the computation) while also vio-
lating constraint (1). Similar arguments hold for the case when multiple ren-
dezvous nodes have to be contacted as the result of simultaneously maintaining
multiple counters (i.e., counting multiple quantities at the same time). How-
ever, rendezvous-based solutions are quite popular in the literature, mainly due
to their simplicity and excellent hop-count performance in the single-counter
case.

The second type of solutions [Babaoǧlu et al. 2002; Jelasity and Montresor
2004; Kempe et al. 2003; Montresor et al. 2002] usually provide probabilistic
semantics of “eventual consistency” for their outcome; gossip-based protocols
are based on an iterative procedure, wherein every node exchanges information
with a (set of) its neighboring node(s) on every iteration. Eventual consistency
means that, in the presence of failures and dynamicity in the P2P overlay, the
algorithm will eventually converge to a stable state after the overlay has itself
stabilized. Although the bandwidth requirements of these approaches are low
when amortized over all nodes, the overall bandwidth consumption and hop-
count are usually very high. Moreover, the fact that all nodes have to actively
participate in a gossip-based computation (even if it is of no interest to them),
coupled with the multiround property of these solutions, violates constraint (1),
while their semantics violate constraint (4). Of course, in unstructured overlays
it is it not clear if it is possible to do better than this.

The third type of solution [Bawa et al. 2003, 2004; Considine et al. 2004; van
Renesse et al. 2003; Yalagandula and Dahlin 2004] is based on a two-round
procedure: (i) a broadcast phase, during which the querying node broadcasts
a query through the network, creating a (virtual) tree of nodes as the query
propagates in the overlay; and (ii) a convergecast phase, during which each
node sends its local part of the answer, along with answers received from nodes
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deeper down the tree, to its “parent” node. Solutions based on prebuilt tree
structures also belong in this group.

Of these works, Astrolabe [van Renesse et al. 2003] was among the first to
talk of aggregation in the peer-to-peer landscape; the authors proposed the cre-
ation and maintenance of a hierarchical, tree-like overlay, used to propagate
complex queries and their results through the peer-to-peer overlay. A similar
idea was proposed in Yalagandula and Dahlin [2004]. Bawa et al. [2003] pro-
posed building a (set of) multicast overlay tree(s) to propagate queries and
results back and forth, while using flood-like methods to send messages around
the network. Although these structures have nice properties and are capable of
computing aggregates in a wide scale, they are not fit for the creation and main-
tenance of multiple simultaneous counters/aggregates. Specifically, similarly to
rendezvous-based approaches, the cost of maintaining multiple counters simul-
taneously grows linearly with the number of such counters (e.g., when having to
maintain a different tree per counter). Furthermore, even with just one counter,
if the number of nodes containing items to be counted is in O(N ), then the count-
ing cost (total hop-count and number of messages) is also in O(N ). Moreover, it
could be argued that such solutions are a sort of “directed gossip,” since the core
functionality is very similar to that of gossip-based algorithms. This is with the
exception that during phase (ii), nodes only exchange information with their
parent and children nodes in the (virtual) tree. Consequently, these solutions
violate constraint (1), while most of them (with the exception of Bawa et al.
[2004]) also violate constraints (3) and (4).

The core idea of the last type of solution [Bharambe et al. 2004; Manku
2003] is to estimate the value of the counter in question by selectively querying
(sampling) a set of nodes in the network. Bharambe et al. [2004] attempt to com-
pute approximate histograms of system statistics by using random sampling
of nodes in the network. Manku [2003] estimates the number of nodes in the
overlay by also using a random sampling algorithm. There are some obstacles
in such approaches. First, there is no obvious way to generalize these tech-
niques to count arbitrary quantities (other than the ones they were designed
for). Second, sampling-based techniques are known to suffer from accuracy is-
sues [Chaudhuri et al. 1998], thus violating constraint (4). On the other hand, if
the sample is big enough [Chaudhuri et al. 1998] to guarantee a certain level of
confidence, then these solutions violate constraint (1). Lastly, sampling-based
techniques are usually duplicate-sensitive, violating constraint (6).

Hash sketches [Durand and Flajolet 2003; Flajolet and Martin 1985], to be
presented shortly, provide a distributable, duplicate-insensitive method of es-
timating the cardinality of multisets. All known works that manage to provide
duplicate-insensitive counting [Bawa et al. 2003, 2004; Considine et al. 2004]
use hash sketches. However, they all fall into the broadcast/convergecast cate-
gory of counting algorithms, with the disadvantages mentioned earlier. More-
over, in other sketching techniques, such as Alon et al. [1999, 1996]; Bar-Yossef
et al. [2002], Cormode and Muthukrishnan [2004], and Beyer et al. [2007],
relying on ordering of (hashed) data cannot be implemented in a completely
decentralized manner following the DHT paradigm, without resorting to a
rendezvous-style solution or gossip-based approach. Assume that each node
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constructs such a local synopsis. The question arises as to how to distribute
the items (be they bits, hashes, tuples, etc.) of the synopsis across nodes in the
overlay, so that this information is readily available to all other nodes without
burdening any one of them. Take, for example, the KMV synopsis of Beyer et al.
[2007]. Suppose that each node computes a local such synopsis. In order to com-
pute the global KMV synopsis, we have to somehow store this information in
the overlay for all nodes to know. Putting aside the choices of gossiping and ag-
gregation trees, for the reasons discussed before, the only other alternative (we
can think of) is a rendezvous-based approach where k nodes are each assigned
the task of storing the ith, (i = 1...k), smallest value in the KMV synopsis.

1.3 Contributions

In Ntarmos et al. [2006] we proposed Distributed Hash Sketches (or DHS): a
novel, fully decentralized mechanism capable of providing estimates on the car-
dinality of multisets of items in a structured peer-to-peer system. DHS is, to our
knowledge, the first truly distributed version of hash sketches, that is, a prob-
abilistic counting mechanism, as first proposed by Flajolet and Martin [1985]
and more recently by Durand and Flajolet [2003], along with the accompany-
ing algorithms and protocols for DHTs. Moreover, this is to our knowledge the
first distributed counting mechanism satisfying all six requirements presented
earlier.

One of the core design considerations and premises of the peer-to-peer para-
digm, of which DHT networks are a prime example, is completely decentralized
operation. Designing and implementing hash sketches over DTHs in an efficient
and scalable way, while abiding the aforesaid constraint, is a formidable task.
Salient properties of our solution are:

—balanced storage and access load;

—highly efficient operation, independent of the number of items and logarith-
mic in the number of nodes in the overlay;

—excellent scalability properties attained through the accomplishment of the
previous two goals;

—derivation of bounds on the error added by the distributed operation and
examination of its algorithmic implications;

—discussion and examination of the design space and presentation of new
methods, techniques, and algorithms to implement hash sketches in a dis-
tributed manner; and

—implementation and evaluation of DHS with respect to its estimation error,
overhead, and scalability properties.

The proposed design: (i) is DHT-agnostic in the sense that it can be deployed
over any peer-to-peer overlay conforming to the DHT abstraction; (ii) imposes
a balanced distribution of storage and access load on the DHT nodes; (iii) pro-
vides probabilistic guarantees regarding the correctness of the distributed im-
plementation in relation to the original, centralized algorithm, as well as ac-
curacy measures of the produced estimates in terms of their average error and

ACM Transactions on Computer Systems, Vol. 27, No. 1, Article 2, Publication date: February 2009.



Distributed Hash Sketches • 2:7

variance; (iv) allows for a trade-off between accuracy and cost of maintenance;
and (v) incurs low bandwidth, storage, and processing overheads when used for
counting the cardinality of widely distributed item multisets.

In this work, we discuss the approach in Ntarmos et al. [2006] in more detail.
We contribute a number of optimizations and new algorithms which introduce
dramatic performance improvements during all operations and in efficiency
and load distribution fairness. More specifically, in addition to the vanilla DHS
functionality, this work contributes the following.

(1) Improvements in the message routing protocol, in the form of:

(a) a recursive routing scheme, allowing for lower overall hop counts over
lower-latency network links; and

(b) a “shortcuts” mechanism, harnessing the entries in the nodes’ routing
tables, that essentially turns most of the DHS messages into single-hop
operations.

(2) Improvements in the bit-probing (query) algorithm; more specifically:

(a) a binary-search bit-probing algorithm as an alternative to the existing
sequential probing technique; and

(b) a bit-caching mechanism, coupled with recursive routing, that allows
for even lower query hop-counts and a better load distribution across
nodes in the overlay.

(3) Improvements in the data insertion algorithm, consisting of:

(a) a “bulk” insertion algorithm allowing multiple items to be inserted in a
single operation;

(b) a simple soft-state replication scheme with a low hop-count overhead,
allowing for better fault tolerance and an even lower query hop-count
cost; and

(c) an insertion/update algorithm based on piggybacking messages on both
DHS-specific and DHT routing table maintenance messages.

Last but not least, we contribute both a full-fledged implementation of the
proposed algorithms and protocols on top of FreePastry [FreePastry 2002],
a freely available implementation of the Pastry DHT overlay [Druschel and
Rowstron 2001]. Further, we provide an in-depth performance evaluation of all
aspects of the proposed algorithms and protocols using this substrate, which
offers new insights and explores trade-offs. The source code of the implemen-
tation (coined FreeDHS) is available on the World Wide Web [FreeDHS 2006]
for anyone to download and test.

1.4 Outline

The rest of this article proceeds as follows. Section 2 introduces the background
behind the design of DHS. Section 3 presents the architecture, algorithms,
and protocols of DHS, both describing the basic infrastructure of Ntarmos
et al. [2006] and discussing the novel methods, algorithms, and techniques
contributed by this work. Section 4 presents the results of our extensive per-
formance evaluation, and Section 5 concludes.
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2. BACKGROUND

This section presents the basic building blocks used in the design of DHS. First,
we give a brief introduction to Distributed Hash Tables and their functional-
ity and properties. Then, we discuss hash sketches as defined by Flajolet and
Martin [1985] and Durand and Flajolet [2003]. The fusion of these two threads
forms the fabric underlying DHS, to be presented in the next section.

2.1 Distributed Hash Tables

Distributed Hash Tables comprise a family of structured peer-to-peer network
overlays exposing a hash-table-like interface. The main advantage of DHTs over
older, unstructured P2P networks lies in their probabilistic (in the presence
of node failures and network dynamics) performance guarantees. Prominent
examples of DHTs include Pastry [Druschel and Rowstron 2001], Chord [Stoica
et al. 2001], CAN [Ratnasamy et al. 2001], Tapestry [Zhao et al. 2001], Kademlia
[Maymouknov and Mazières 2002], etc.

DHTs offer two basic primitives: insert(key, value) and lookup(key). Nodes are
assigned unique identifiers from a circular ID space and arranged according to a
predefined geometry and distance function [Gummadi et al. 2003]. Node IDs are
computed as either the secure hash of some node-specific piece of information
[Stoica et al. 2001; Druschel and Rowstron 2001] (e.g., the concatenation of the
IP address of the node and the port number on which the P2P application is
operating), or as the outcome of a pseudo-uniform random number generator
[Maymouknov and Mazières 2002].1 This results in a partitioning of the node-
ID space among nodes, so that each node is responsible for a well-defined set
(arc) of identifiers. Each item is also assigned a unique identifier from the same
ID space (usually by simply feeding the item to the same (cryptographic or
random) hash function used to generate the node IDs) and stored at the node
whose ID is closest to the item’s ID, according to the DHT’s distance function.

Each node in an N -node DHT maintains direct IP links to O(log(N )) other
nodes in appropriate positions in the overlay, as dictated by the DHT’s geometry,
so that routing between any two nodes takes O(log(N )) hops in the worst case.2

For any given node, these links are usually classified in two major categories:
(i) “fingers”, namely links to nodes with IDs far away in the ID space from
the ID of the current node; and (ii) “predecessors/successors”, namely links to
nodes immediately preceding/succeeding the current node in the node-ID space.
The former links are used to achieve O(log N )-hop lookups between any two
nodes, while the latter keep the DHT overlay connected. This information is
maintained through PING/PONG and/or periodic heartbeat messages, and up-
dated either when a node leaves—either gracefully or abruptly (e.g., because
the node has failed or gone offline, or there is a network partition or other low-
level failure)—or as part of a periodic process called stabilization. During the
stabilization period DHT nodes perform standard DHT lookups for the IDs cor-
responding to each of the positions in their routing table, with a total hop-count

1A PRNG can be used as a hash function by using the hash function input value as the seed to the

PRNG and (part of) the random sequence produced as the hash function output.
2All log(·) notation refers to base-2 logarithms.
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cost in O(log2 N ) per node (e.g., O(log N ) hops for each of the O(log N ) routing
table entries). Furthermore, for fault tolerance and increased availability, nodes
usually maintain a list of candidate links for every position in their routing ta-
ble, so that if one of these links fails it is replaced by a functional link from
the candidate list. Lastly, in several DHTs, nodes also keep a log of contact
information for nodes they have contacted as part of normal DHT operation
(e.g., data insertion, lookups, routing table maintenance, etc.) but which are
stored neither in the routing table nor in the replacement list. These links are
usually either hidden behind the big-O notation, as they are either a constant
factor times the normal O(log N )-size routing state (as is the case for nodes in
the candidate list) or ignored in the cost formula, as they do not contribute to
the maintenance cost but are only occasionally updated (as is the case for the
contact log links).

Lately, a new family of DHTs, namely locality- (or order)-preserving DHTs,
has emerged as an answer to the shortcomings of first-wave DHT networks in
dealing with queries other than equality ones. In general, due to the pseudoran-
dom output of cryptographic hash functions, each DHT node will be responsible
for storing a (possibly random) subset of values. This holds regardless of the
specific DHT employed and has grave implications for the efficiency of several
query types other than point (equality) queries. Simple range queries are a good
example of how the messaging overhead of traditional DHTs may deteriorate
to O(N ) in an N -node network: Given a range predicate constraint, the basic
(if not only) method of proceeding with such a query is to execute a point query
for each and every possible value in the requested range. Thus, for a query for
a range consisting of v values, this translates to O(v · log(N )) messages, which
is prohibitive in most situations. Locality-preserving DHTs [Aspnes and Shah
2003; Harvey et al. 2003; Triantafillou and Pitoura 2003; Aberer et al. 2005;
Pitoura et al. 2006] also possess the same hash-table-like interface as first-
wave DHTs, but store consecutive data values on adjacent nodes in the over-
lay (node IDs are still assigned in a pseudorandom manner). Given the same
v-value range query, the querying node just has to locate the node responsible
for the lower end of the range and then follow single-hop (successor) pointers
until it reaches the node responsible for the upper end of the range, gathering
matching tuples in the process. This roughly sums up to O(log(N ) + v) total
messages, which is far better than the previous figure for traditional DHTs.

The solutions proposed in this article apply equally well to any of the afore-
mentioned overlays, as long as they offer the basic insert(key, value)/lookup(key)
DHT API.

2.2 Hash Sketches

Durand and Flajolet [2003] presented an algorithm (coined superLogLog or
DF03 counting) and accompanying data structures allowing to estimate the
number of distinct items in a multiset D of data in a database, improving
on the pioneering work of Flajolet and Martin [1985] which introduced hash
sketches under the name of Probabilistic Counting with Stochastic Averaging
(coined PCSA or FM85). In brief, Durand and Flajolet [2003] reduced the space
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Fig. 1. Inserting items into a hash sketch: single-bitmap case.

complexity and relaxed the assumptions on the statistical properties of the
hash function of Flajolet and Martin [1985].3 The estimate obtained by both al-
gorithms is (virtually) unbiased, while the authors also provide upper bounds
on its standard deviation. The only assumption underlying hash sketches is the
existence of a pseudo-uniform hash function h() : D → [0, 1, . . . , 2λ), an assump-
tion also present in most (if not all) P2P-related research. Hash sketches have
been used in many application domains where counting distinct elements in
multisets is of some importance, such as approximate query answering in very
large databases [Krishnan 1995], data mining on the Internet graph [Palmer
et al. 2001; Michel et al. 2006], and stream processing [Ganguly et al. 2003;
Dobra et al. 2004].

A hash sketch consists of a bit vector B[·] of length λ, with all bits initially
set to 0, and a hash function h() as described earlier.

2.2.1 Super-LogLog Counting. Let ρ( y) : [0, 2λ) → [0, λ) be the position of
the least significant (leftmost) 1-bit in the binary representation of y ; that is,
ρ( y) = {min(i ≥ 0) : bit( y , i) �= 0}, y > 0, and ρ(0) = λ, where bit( y , i) denotes
the ith bit in the binary representation of y (bit-position 0 corresponds to the
least significant bit). In order to estimate the number I of distinct elements in
a multiset D, we apply ρ(h(d )) to all d ∈ D and record the results in the bitmap
vector B[0 . . . λ − 1] (see Figure 1). Since h() distributes values uniformly over
[0, 2λ), it follows that

P (ρ(h(d )) = i) = 2−i−1. (1)

Thus, when counting elements in an I -item multiset, B[0] will be set to 1 ap-
proximately I

2
times, B[1] approximately I

4
times, etc. This fact is rather intu-

itive: Imagine all I possible λ-bit numbers; the least significant bit (bit 0) will
be 1 for half of them (odd numbers); of the remaining I

2
numbers, half will have

bit 1 set, or I
4

overall, and so on.
Then, the quantity R(D) = maxd∈Dρ(h(d )) provides an estimation of the

value of log(I ), with an additive bias of 1.33 and a standard deviation of 1.87.
Thus, 2R estimates “logarithmically” I within 1.87 binary orders of magnitude.
However, the expectation of 2R is infinite and thus cannot be used to estimate

3The analysis leading to the equations used in this section is well beyond the scope of this article

and can be found in Flajolet and Martin [1985] and Durand and Flajolet [2003].
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Fig. 2. Inserting items into a hash sketch: multiple-bitmaps case.

I . To this extent, Durand and Flajolet [2003] propose the following technique
(similar to the stochastic averaging technique in Flajolet and Martin [1985]):
(i) Use a set of m = 2c different B〈i〉[·] vectors (c being a non-negative integer),
each resulting in a different R〈i〉 estimate; (ii) for each element d , select one
of these using the first c bits of h(d ); and (iii) update the selected vector and
compute R〈i〉 using the remaining bits of h(d ) (see Figure 2).

If M 〈i〉 is the (random) value of the parameter R for vector i, then the arith-
metic mean 1

β

∑β

i=1 M 〈i〉 is expected to approximate log( I
β

) plus an additive bias.

The estimate of I is then computed by the formula E(I ) = αβ · β · 2
1
β
·∑β

i=1 M 〈i〉
,

where αβ = (−β · 2
− 1

β −1
log(2)

· ∫ ∞
0

e−t · t− 1
β dt)−β [Durand and Flajolet 2003]. The au-

thors further propose a truncation rule, consisting of taking into account only
the β0 = 
θ0 · β� smallest M values. θ0 is a real number between 0 and 1, with
θ0 = 0.7 producing near-optimal results. With this modification, the estimate
formula becomes

E(I ) = α̃β · β0 · 2
1
β0

·∑∗ M 〈i〉
, (2)

where
∑∗ indicates the truncated sum, and the modified constant α̃β ensures

that the estimate remains unbiased (see Figure 3). The resulting estimate has
a standard deviation of 1.05√

β
, while the hash function must have a length of at

least

H0 = log (β) +
⌈

log

((
Imax

β

))
+ 3

⌉
, (3)

Imax being the maximum cardinality estimated.

2.2.2 PCSA Counting. The algorithm in Flajolet and Martin [1985] is
based on the same hashing scheme (i.e., using ρ(·)) and the same observations
as Durand and Flajolet [2003]. The PCSA algorithm differs from the super-
LogLog algorithm in the following ways: (i) Flajolet and Martin [1985] rely on
the existence of an explicit family of hash functions exhibiting ideal random
properties, while Durand and Flajolet [2003] have relaxed this assumption;
(ii) Flajolet and Martin [1985] set R to be the position of the leftmost 0-bit in
the bitmap B[·], as opposed to the position of the rightmost 1-bit in the bitmap
for Durand and Flajolet [2003]; (iii) Durand and Flajolet [2003] use on the or-
der of log log(max cardinality) bits per bitmap while Flajolet and Martin [1985]
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Fig. 3. Counting items using a hash sketch.

need on the order of log(max cardinality) bits per bitmap; (iv) the estimation in
Flajolet and Martin [1985] is computed as

E(I ) = 1

0.77351
· β · 2

1
β

∑β−1
0 M 〈i〉

; (4)

and (v) the bias and standard error of Flajolet and Martin [1985] are closely
approximated by 1 + 0.31/β and 0.78/

√
β, respectively. Note that the data in-

sertion algorithm is the same for both Durand and Flajolet [2003] and Flajolet
and Martin [1985] (with the sole difference in the assumptions on the hash
function).

Hash sketches exhibit a natural distributivity; the hash sketch of the union
of any number of sets can be computed from the hash sketches of these sets
by a simple bitwise OR of the corresponding bit vectors, given that all hash
sketches have the same number of bit vectors and length and that they have
been built using the same set of hash functions. Thus, if an initial set A is
spread across several hosts (e.g., across a peer-to-peer network), it is possible
to compute the global hash sketch for A from each of the locally computed hash
sketches corresponding to the subset of A that each peer is responsible for.

3. DISTRIBUTED HASH SKETCHES

Table I summarizes the notation we shall be using for the rest of this article
(small Greek letters denoting DHS-specific parameters, and capital Latin let-
ters being used for DHT-related parameters). We have implemented both the
superLogLog and the PCSA estimators within our framework [FreeDHS 2006].
Here we report only on the former for clarity of presentation and due to its bet-
ter analytical properties and runtime requirements. We shall first discuss hash
sketches using only a single B[·] vector (i.e., β = 1), extending our design to
multiple vectors later.

3.1 Mapping Hash Sketch Bit-Positions to DHT Nodes

3.1.1 The Naive Approach. Assume that our hash sketch consists of a sin-
gle λ-bit vector B[·]. A naive DHT-based implementation would assign each of
these λ positions to a node in the network (a so-called rendezvous approach,
also mentioned in Flajolet and Martin [1985]) and use these nodes to store
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Table I. Notation Summary

DHT Parameters

L : Length (in bits) of DHT keys (typically 160 bits)

N : Number of nodes in the overlay

I : Number of distinct items in the distributed multiset (maximum 280 items)

In : Number of distinct items contributed by node n

DHS Parameters

β : Number of DHS bitmaps (typically 256 bitmaps)

λ : Length (in bits) of DHS bitmaps (maximum 80 bits; typically 40 bits)

μ : Number of DHS metrics/dimensions (maximum 280 metrics)

τ : Maximum number of retries per DHS probe (typically 5)

α : Degree of replication of DHS data

σt ype: Size (in bytes) of DHS message type type

Fig. 4. Example of a rendezvous-based approach: Node 48 is designated as the rendezvous node

and all nodes send to it any relevant data they store.

bit values in a distributed manner (Figure 4). However, this design has many
serious flaws: (i) Only λ out of N (with λ � N ) nodes in the network are bur-
dened with the task of maintaining the values of the vector positions, leading
to a severe load imbalance for these nodes; (ii) due to Eq. (1) there is a se-
vere load imbalance even among these very nodes; and (iii) with (maximum)
2L items spread over λ nodes, the node join/leave operations for any of these
nodes would result in moving around information for 2L

λ
items—a prohibitive

cost, regardless of the size of the data maintained per item.
Obviously, the edge case of storing the complete hash sketch (i.e., all bit posi-

tions of all bitmaps) on a single rendezvous node for a given estimated quantity
is in an even worse state with regard to the aforesaid shortcomings, as a single
node will be burdened with all of the load (let alone becoming a single point
of failure and defeating the core premise of P2P overlays for decentralized op-
eration). Moreover, in order to compute the hash sketch estimate for multiple
quantities in a rendezvous-based scenario, we need to contact equally many
rendezvous nodes, thus facing an increase in the overall hop-count cost linear
to the number of estimated metrics. Obviously, distributing hash sketches over
a DHT needs to be approached from a completely different angle. Enter Dis-
tributed Hash Sketches: our highly efficient, scalable, and fully decentralized
solution to this problem.
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Fig. 5. Mapping of bit positions to nodes in the overlay: single bitmap/metric case.

Fig. 6. Mapping algorithm, randomly selecting an ID in the target bit arc and contacting the node

responsible for it.

3.1.2 The DHS Approach. We thus propose to partition the node-ID space,
[0, 2L), into λ consecutive, nonoverlapping intervals Ii = [thr(i), thr(i − 1)),
i ∈ [0, λ), where thr(i) = 2L−i−1. Using this partitioning, bit i of B[·] is mapped
to node IDs randomly (uniformly) chosen from Ii. In other words, for every DHS
operation (insertion, update, query, etc.) related to a specific bit position i of the
distributed hash sketch, nodes choose a random ID in Ii and contact the node
responsible for that ID. Figure 5 depicts this mapping and Figure 6 summarizes
the basic algorithm. The underlying DHT guarantees that there is at least one
node responsible for each possible ID and thus that all bit positions/arcs are
covered by at least one node.

Remember (Eq. (1)) that for an I -items multiset, bit i of the bitmap vector is
visited I · 2−i−1 times. With the λ-bit vectors used in DHS, this translates to a
maximum of (roughly) 2λ distinct items in any possible multiset, or a maximum
of 2λ−i−1 items being mapped to position i in the bitmap vector. Now, note that
the interval (arc) Ii for bit position i consists of |Ii| = 2L−i−1 IDs, resulting in a
balanced distribution of information across all nodes in the network. Further-
more, this mapping is the same for all estimated metrics and all bitmap vectors
of the distributed hash sketch. This allows us to set or check a given bit position
for multiple metrics and/or multiple vectors in a single operation, contacting
just one node in the corresponding ID-space arc.

3.1.3 Thresholding. It is common practice among works in estimation of
join sizes [Lipton et al. 1990; Lipton and Naughton 1995; Ganguly et al. 1996]
and of frequency moments in general [Alon et al. 1999] to consider a sanity
(lower) bound in the cardinality to be estimated. This mainly stems from the
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fact that estimating small quantities is much harder than estimating larger
ones, and the end result is significantly improved estimation error bounds. We
can also consider such a lower bound in our setting, and actually incorporate it
in the bit position mapping as follows. Assume we set a lower bound of CLB on
the input multiset cardinality. Based on Eq. (3), we consider only bit positions
above λ0 = log ( CLB

β
) − 3. Thus, we alter the mapping of bit positions to ID-

space arcs so that this bit position is mapped to the first half of the ring (as is
the case for bit position 0 in the normal mapping) and bits below this position
(less significant) are ignored. Specifically, this has the effect of assigning the
ith DHT interval to the (λ0 + i)th bit. As less frequent bits are mapped to larger
DHT intervals, this technique calls for either a coupling with the replication
technique of Section 3.3.5 or a higher retry limit (see Section 3.5.4). On the
other hand, there is the added bonus of better load distribution, due to the
offloading of higher (albeit less frequently visited) bit positions to larger DHT
intervals, and lower insertion and/or query hop-count costs, as less bits have to
be set/probed.

3.2 DHS Message Routing

This section discusses the message routing chores of DHS. First we present the
two basic message propagation protocols used when multiple bit positions of
the distributed hash sketch need to be contacted. We then describe a routing
optimization based on harnessing the entries in the routing tables of DHT nodes
to speed-up DHS operations.

3.2.1 Iterative vs. Recursive Message Routing. As we shall shortly see,
there are several DHS algorithms that require nodes corresponding to mul-
tiple bit positions to be contacted as part of a single higher-level DHS operation
(such as data insertion or computation of the actual distributed hash sketch
estimate). The issue arises then of how to route the messages for such a multi-
bit operation: either treat them as multiple singleton operations, iterating over
the set of bit positions and accessing appropriate nodes at a time, or as one big
operation to be processed in a single sweep around the node-ID circle.

The first scheme, coined Iterative Bit Routing (or IBR), follows the guidelines
of the routing algorithms described in the early DHT-related works, consisting
of iteratively visiting nodes closer to the target ID in order to retrieve the ad-
dress of the next node to be contacted, until the desired node is found. Assume
a source node ns wishes to execute a certain multibit DHS operation, for bit
positions stored in a bit vector. The source node then iterates over this vector,
and for each bit position it selects a random ID in the corresponding ID-space
arc and asks the node responsible for that ID to execute the requested opera-
tion. This scheme is depicted in Figure 7(a) and summarized in the pseudocode
algorithm of Figure 8.

Later research in the DHT routing field [Dabek et al. 2004; Rhea et al. 2004]
showed that iterative routing faces several performance and fault-tolerance is-
sues in real-world applications, and instead advocated recursive routing. We
thus have also implemented a Recursive Bit Routing scheme (RBR). In this
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Fig. 7. Example of DHS routing for multibit operations. Node 48 executes an operation accessing

bit positions 0, 1, and 2.

Fig. 8. Algorithm IBR: Iteratively execute a DHS operation op for multiple bit positions.

scheme, depicted in Figure 7(b) and summarized in Figure 9, First ns sorts, the
bits in ascending order and stores them in a bit vector. It then chooses a random
ID in the ID arc for the lower of these bits, and requests the node responsible for
that ID to execute the desired operation. The target node executes locally the
operation and recursively forwards its local result, along with the operation and
any other input data received so far, to a random ID in the arc for the next bit in
the bit vector. When all bit positions in the bit vector have been processed, the
last node in the recursion chain can either respond directly back to ns or return
the final result to the previous node in the recursion chain, thus (in essence) do-
ing a backward recursion all the way back to ns. The recursive message routing
scheme is more resilient to network partitions and other such low-level prob-
lems, while it also allows routing to take advantage of possible optimizations
in the local routing tables of nodes (e.g., Pastry and Kademlia choose among
candidate nodes for their routing tables based on link-level statistics, such as
minimum network latency and/or round-trip time). Moreover, it paves the way
for our caching-based optimization, to be presented later.

3.2.2 Routing Shortcuts. An interesting side-effect of the random selec-
tion step in the mapping of DHS bits to target node IDs (and in all of the
aforementioned routing algorithms), is that, for a given bit position, we do
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Fig. 9. Algorithm RBR: Recursively execute a DHS operation op for multiple bit positions. result
stores the partial result on each recursion.

not care about the exact node we will actually contact, as long as the ID-
space interval for which it is responsible overlaps or is contained in the ID-
space arc corresponding to the target bit. This allows us to harness the links
to quasirandom nodes in the overlay maintained in the DHT routing table,
candidate replacement list, and possible contact log data structures. Thus, in-
stead of selecting a random ID in the target bit arc and then doing a stan-
dard O(log N )-hops DHT lookup, we can first find all nodes in the afore-
said data structures whose ID is within the target arc and randomly select
one of them as the shortcut target node. If no such node exists, we revert
to the normal routing procedure of random ID selection and standard DHT
lookup for the next hop, and repeat the shortcut attempt on the target node.
This allows us to convert most DHT lookups to single- or two-hop operations
without any observable effect on the distribution of accesses to nodes in the
overlay.

3.3 DHS Insertion

We turn now to the algorithm used to insert items into the DHS. We shall first
discuss the single-item insertion procedure (or SII), used when items arrive
one at a time and we are interested in online computation (as is the case for
streaming applications). Then, we will present a “bulk” insertion scheme (or
BII), best suited for data-sharing and data management scenarios, as well as an
efficient, soft-state replication scheme. Last, we present a routing scheme that
piggybacks DHS messages on DHT maintenance traffic, thus almost completely
hiding the (already low) network cost for the DHS.
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Fig. 10. Example of a DHS-based approach: Nodes insert their tuples in the DHS and the load is

spread across the overlay.

3.3.1 Single-Item Insertion. Let o be an item to be inserted into the DHS.
We proceed as follows:

(1) Compute the checksum h(o) of o using the hash function of choice;

(2) feed the hash function output to the ρ(·) function to compute the bit position
i to be set;

(3) choose a random ID in the interval [thr(i), thr(i − 1)); and

(4) send a “single-set-bit” (SSB) message to the node responsible for that ID.

Figure 10 outlines this procedure. The SSB message consists of the duplet
<metric id ,bit>, where metric id is an identifier uniquely identifying the met-
ric to be estimated (e.g., part of the checksum of the name of the processed
multiset—say, “number of unique files in the overlay”—as computed by a cryp-
tographic hash function), and bit = i denotes the position in the distributed
vector of the bit that is to be set. As an example, for the worst case of 160 bits
for the metric id field (e.g., computed using SHA-1) and λ = 80 bits in the hash
sketch bitmap vector (thus 7 bits or ≈1 byte for the bit field), the size σSSB of
the payload of an SSB message is less than 22 bytes. In the average case, using
64-bit metric IDs and 40 bits per bitmap (i.e., λ = 40), thus allowing for up
to ≈ 1012 distinct items per metric and up to ≈ 1019 different metric id ’s, this
figure drops to 5 to 9 bytes per message.

The hop-count cost to insert an item in an N -node DHT/DHS is in O(log N )
( log N

2
expected [Stoica et al. 2001]) as guaranteed by the underlying DHT, trans-

lating to an overall O(σSSB · log N ) bandwidth consumption. For a one-million-
node overlay and the aforementioned worst-case numbers, this translates ap-
proximately to a worst-case network overhead of 20 hops (10 expected) and 440
overall bytes (220 bytes expected). Furthermore, note that, compared to the
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cost of actually inserting a data item in the DHT, the cost of a DHS insertion is
negligible; inserting an item in a DHT also takes O(log N ) hops, but requires
a more-or-less larger data transfer (should this be due to transferring of the
whole item inserted or just of a (set of) index tuple(s) or pointers to the source
node).

On the other end, a node receiving such a message:

(1) checks whether there is a local hash sketch stored for the given metric id ;

(2) if not, it creates a new, empty local hash sketch instance for this metric id ;

(3) sets the given bit position to 1; and

(4) resets the time out field of the given bit position.

3.3.2 Bulk Insertions. Single-item insertions are well suited for streaming
applications. However, they are a bad match for data-sharing/data management
applications. In such a setting, each node usually stores hundreds or thousands
of items, inserted all at once, and updated either seldomly or in batches. A
prominent example of this type of application is file sharing, where nodes share
all of their files at once, the value of each item (i.e., the contents of each file) is
almost never changed throughout its lifecycle, and updates (e.g., file additions or
deletions) are done in batches (usually by the P2P client, periodically checking
the shared directories for new or deleted files).

In such settings, sending out a separate message for each of a node’s items
makes no sense. For this type of application we advocate bulk insertions. Note
that the mapping scheme from bit positions to node IDs is the same for all
metrics; this has the very beneficial side-effect that any given bit position maps
to the same node-ID space interval for all metrics (see Figure 11), thus allowing
us to group together multiple SSB messages for different metrics, if they all set
the same bit position. Under this scenario, a node wishing to insert (a set of)
its items to the DHS will:

(1) create a local hash sketch instance for each metric in the input multiset;

(2) insert all items in the input multiset to the corresponding hash sketch;

(3) if using iterative bit routing:

(a) For each bit-position i set to 1 in any of the resulting sketches:

i. choose a random ID in the interval [thr(i), thr(i − 1)), and

ii. send a “bulk-set-bit” (BSB) message to the node responsible for that
ID.

(4) Else if using recursive bit routing:

(a) Choose a random ID in the interval corresponding to bit 0; and

(b) send a bulk-set-bit (BSB) message to the node responsible for that ID.
That node will then recursively forward the BSB message until all arcs
corresponding to set bit positions have been visited.

A BSB message for a given bit position i consists of a set of <metric id ,bit>
tuples, one for each distinct metric in the input data whose hash sketch after
step 2 in the previous outline has a 1 at bit position i. For μ metrics and any
given bit position, the size of this type of message is μ times the size of a
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Fig. 11. Mapping of bit positions to nodes in the overlay: multiple bitmaps/metrics case. Bit po-

sitions for all metrics and all bitmaps are mapped to the same node-ID arcs as in the single-

bitmap/single-metric case.

SSB message in the worst case (i.e., all μ metrics have a 1-bit at the given bit
position). Thus, overall, in order for a node to insert all of its In items using
one big bulk insertion, it will need to send out at most λ BSB messages (one for
every bit position), each being the equivalent in bytes of μ SSB messages in the
worst case (i.e., all λ bits of all μ metrics are set). This results in a worst-case
hop-count cost in O(λ · log N ); on the other hand, the expected hop-count cost
is log In · log N

2
since, with In items per node, only log In < λ bits should be set

on average. Nodes receiving such messages do the same procedure outlined in
the single-item case, only now updating their local augmented hash sketches
for all of the metrics included in the BSB message.

The two insertion schemes described before can naturally coexist in the same
DHS instance. Specifically, each node can insert items both ways and even in-
terchange between them. If, for example, DHS is used in a data-sharing setting
but a node wishes to insert or update just a handful of items, it may choose to
do so by multiple single-item operations, if the sum of the SSB message sizes is
less than that of the corresponding BSB message. Conversely, in a streaming
setting, a node may choose to group together multiple insertions/updates and
use bulk operations, if input data creation is bursty.

3.3.3 On Duplicate (In-)Sensitivity. Both of the preceding algorithms start
by computing the hash h(o) of (each) object o to be inserted into the DHS, then
feeding its outcome to the ρ(·) operator. This is in essence the step during which
we can define the quantity to be estimated later on. For sake of presentation,
assume that each object o consists of an identifier o.id , uniquely identifying
it, and a set of attributes o.attri (the identifier can also be computed from the
values of a set of the object’s attribute values). For example, in a music file-
sharing application the object identifiers could be the hash of each file, with its
attributes being its file name, the artist name, album, song title, year of issue,
etc. Further remember that each node n is identified by DHT ID n.id .

The input to the hash function in the first step of the insertion algorithm
defines what is being counted. If we use o.id as the input, we in essence esti-
mate the number of distinct o.id ’s in the overlay, thus computing the distinct
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number of files. On the other hand, we can use the concatenation of o.id and
n.id as the input to the hash function, thus also counting files that have been
replicated across nodes in the overlay. Furthermore, in order to account for
multiple copies of each object on each node, a random suffix can be added to
the previous concatenation, thus essentially making each object in the overlay
a unique one. This technique can be extended to arbitrary combinations of the
objects’ attributes depending on what is the quantity of interest, allowing for
both duplicate-sensitive and duplicate-insensitive counting.

3.3.4 DHS Updates/Deletions. We choose a soft-state approach for the
maintenance of DHS data: A time out field is attached to each bit position set to
1, defining a time-to-live interval for the given bit, and nodes periodically rein-
sert their items in the DHS. Deletion of data stored in a DHS is implicit: A bit
position not refreshed within the time out period is reset to 0. As a consequence,
the hash sketch instance mentioned in step 2 before is an augmented version of
the data structure mentioned in Section 2.2, consisting of the metric id plus a
set of β vectors. Each such vector is comprised of λ 32-bit integers.4 each denot-
ing the time out value of the corresponding bit position, with bit positions with
a time out value of 0 considered to be unset. We shall call this data structure
an augmented hash sketch for the rest of this article, to discern it from normal
hash sketches as described in Section 2.2. As an example, for the worst case of
160-bit metric id ’s and 80 bits per bitmap vector, such a hash sketch instance
will require 340 bytes of storage. Also, note that a node that has not been vis-
ited during item insertion (e.g., because it was not probed during the random
ID choosing step) will not store any data for the given metric.

The time out parameter can be viewed as the reciprocal of the aggregation
window in streaming settings, while for a data management system, it can be
selected depending on the ratio of insertions/updates to queries. The actual
value of this parameter is largely application-dependent and poses an interest-
ing trade-off.

Obviously, larger timeout values will result in less updates per time unit
needed to keep the DHS up-to-date. On the other hand, a smaller value will
allow for faster adaptation to abrupt fluctuations in the value of the metric esti-
mated, but will incur a higher maintenance cost as far as network resources are
concerned. In any case, as depicted by the aforementioned worst-case examples,
the per-node bandwidth and storage requirements of DHS are very low, thus
even a high update rate might translate to a negligible bandwidth consumption.

An interesting alternative is to allow nodes to set the time-to-live of their
own items. In order to accomplish this, we add an extra time out field to the
SSB/BSB messages. Each node can then autonomously choose a value for this
field on every item insertion. Target nodes will then “set” the requested bit in
their appropriate local hash sketch instance, by setting its time out value to the
maximum between its current value and the value supplied by the incoming
message. This addition increases σSSB to 26 bytes in the worst-case scenario
mentioned earlier, or to 9 to 13 bytes in the average case.

432-bits (=4 bytes) wide, following the time t data type of the POSIX.1 standard.
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3.3.5 Replicating in the Target Neighborhood. There are application do-
mains were fault tolerance and/or data availability is of greater importance
than sheer hop-count or bandwidth efficiency. Such applications definitely call
for replication of the DHS data. At this stage we have a number of options: We
can either rely on the underlying vanilla replication functionality, offered now
by most DHTs, or we can implement such a replication strategy of our own. In
the latter case, when inserting (or refreshing) a DHS bit, accessing a particular
node in the bit’s DHT interval, we also send the same SSB/BSB message to a
number of α successors/predecessors of this node within the appropriate bit arc,
using one-hop messages. For a replication factor of α, the worst-case hop-count
cost for the single-item insertion case is in O(log N + α) (expected log N

2
+ α);

for the bulk insertion case, this formula becomes O(λ · (log N + α)) (expected
log In · ( log N

2
+ α)). As we shall also see in the performance evaluation section,

such a replication scheme is also beneficial during the DHS querying phase, for
reasons to become clear shortly.

3.3.6 Piggybacking DHS Messages on DHT Maintenance Traffic. Remem-
ber that DHT nodes use PING/PONG messages and heartbeats to detect broken
links in their routing state information, and that they periodically rebuild their
routing tables as part of the stabilization protocol. In typical, widely deployed
real-world implementations of DHT overlays, these heartbeat messages are
sent out every 20 to 30 seconds per link, while the stabilization protocol is ex-
ecuted every 15 to 20 minutes. Building on the same observation as earlier,
DHS maintenance traffic piggybacking (MTP) “hides” DHS-related messages
inside DHT maintenance traffic. Depending on the usage pattern of a given
DHS deployment, DHS operations may take advantage of these communica-
tions and send their data along with such DHT maintenance messages. As we
have seen, DHS insertion/updates messages are of negligible size, so we expect
that such piggybacking on DHT maintenance packets will eventually make
DHS maintenance-free, without any significant increase in the overall network
usage.

3.4 Increasing DHS Accuracy

So far we have been dealing with single-bitmap hash sketches. However, the
estimates acquired by such simple sketches can typically be off the actual value
by a binary order of magnitude [Flajolet and Martin 1985; Durand and Flajolet
2003]. As mentioned in Section 2.2, the accuracy of the estimations acquired
from hash sketches improves with multiple bitmap vectors. Extending the pre-
vious algorithms for β > 1 (β being a power of 2) is straightforward. Insertion of
an item o is done by selecting one out of the β vectors using the lower log β bits
of h(o), then using the remaining λ−log β bits as the input to the ρ(·) function to
select the bit position i to be set in that specific bitmap. Note that we still do not
change the mapping scheme from bit positions to node IDs (see Figure 11); this
allows us to further group together SSB/BSB messages for different bitmaps if
they all set the same bit position.

The SSB message must now be extended with a vector id field, identifying
the index of the vector being updated for the given metric. For a maximum
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of 1024 vectors per hash sketch, the vector id field will be 10-bits wide, thus
σSSB will become ≈24 bytes (6 to 10 bytes in the average case with 256
bitmaps). Conversely, a BSB message for bit position i now consists of a set
of <metric id ,bit,<bit vector>> tuples. The latter is β-bits wide and contains
a 1 bit for every bitmap whose i’th bit is set. The worst-case size of this type of
message will then be 148 bytes per metric, if all 1024 bitmaps for the given met-
ric have a 1 at the given bit position. In the average case (i.e., 256 32- to 64-bit
bitmaps), on the other hand, σBSB will be ≈28bytes per metric. Lastly, the stor-
age requirement per estimated metric is multiplied by β, that is, ≈ 320kbytes
per augmented hash sketch in the worst case (160-bit metric IDs, 1024 80-bit
bitmaps), ≈65kbytes in the average case (32- to 64-bit metric IDs, 256 32 to
64-bit bitmaps).

Note that, since each item sets only a single bit, even with multiple bitmaps
per hash sketch, due to the stochastic averaging technique of Flajolet and
Martin [1985] and Durand and Flajolet [2003], the hop-count insertion cost re-
mains the same for both the single-item and bulk insertion cases, irrespective of
the number of bitmaps and/or metrics used. On the other hand, the bandwidth
cost is again independent of the number of bitmaps and/or metrics for the single-
item insertion case, and only slightly increases for the bulk insertion case.

3.5 Counting with DHS

With this infrastructure in place we will now focus on the design and imple-
mentation of the DHS estimation subsystem. First, we present algorithms for
gathering DHS bit data from nodes in the overlay, in order to reconstruct the
distributed hash sketch and compute the desired estimate. We then discuss
multidimensional counting (i.e., simultaneously estimating multiple cardinali-
ties) and present a simple bit-caching scheme, greatly reducing both the query
hop-count cost and the load on overlay nodes. We will also discuss the issues
arising from the random selection steps in the insertion algorithm and in bit
probing (to be presented shortly) and attempt a simple balls-and-bins theoret-
ical analysis.

Remember that estimating the number of distinct items in a multiset using
hash sketches consists of: (i) finding the positions R〈i〉 of the rightmost 1-bits
for super-LogLog, or of the leftmost 0-bits for PCSA, in B[·]; (ii) computing their
(truncated) arithmetic mean; and (iii) using Eq. (2) (super-LogLog) or Eq. (4)
(PCSA) to compute an estimate of the cardinality of the multiset in question.
The second and third steps are straightforward, provided we have dealt with
the first step.

3.5.1 Basic Bit Probing. For any given metric, checking for the status of
the bit positions of the corresponding distributed hash sketch follows the same
concept as item insertions; that is, a node wishing to check whether a bit is set
for a specific metric first selects a random ID in the ID-space arc corresponding
to that bit position, and then sends a “single-check-bit(s)” (SCB) message to the
node responsible for that ID. An SCB message consists of a <metric id ,bit> du-
plet, just like SSB messages. Nodes may choose to omit the bit field, in which
case they request any and all bit data for the given metric stored by the target
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Fig. 12. Algorithm for processing single-check-bit(s) messages.

node. The latter, on receiving the SCB message, executes the steps outlined in
Figure 12. In brief, the response either consists of a single bit, denoting the sta-
tus of the requested bit position for the first case, or includes a complete hash
sketch (computed by mapping time out values in the augmented hash sketches
back to bit values) for the PCSA estimator, or the positions of the most signifi-
cant 1-bits in the bitmap vectors for the superLogLog estimator. Furthermore,
the responding node includes in the answer the IDs corresponding to the lower
and upper limits of its area of responsibility. This information is then used for
the lifetime of the current query so as to avoid revisiting the same nodes during
the random selection step. A null response denotes that the target node stores
no information for the requested metric and/or bit. Nodes may also check for
the status of multiple metrics with a single bulk-check-bit(s) (BCB) message,
just like with bulk insertions and BSB messages. A BCB message consists of
a set of SCB messages, one for every metric of interest. Nodes may selectively
omit the bit field in any of the included SCB messages, with the same semantics
as earlier. Again, the target node executes the procedure outlined in Figure 12
for every metric in the BCB message.

3.5.2 Sequential vs. Binary-Search Bit Probing. The simplest algorithm to
find the R〈i〉 bit positions required for the computation of the hash sketch esti-
mate would be to visit each of the intervals corresponding to the λ bit positions
of the β distributed B〈i〉[·] bitmap vectors and check whether there is any item
recorded there. In a P2P environment, network cost (in terms of both hop count
and bandwidth consumption) is by far the major overhead factor, so such an
algorithm would be an overkill. It turns out, however, that we can save several
of these iterations by properly selecting the order in which bit positions are
probed. To this extent, we have identified and implemented two algorithms,
namely Sequential Bit Probing (or SBP) and Binary-search Bit Probing (or
BBP). As the names imply, in SBP bit positions are probed in numerical order,
while BBP follows a binary-search pattern.

For the PCSA estimator, R〈i〉, i ∈ [0, β) stores the positions of the lower nonset
bit for every bitmap, so an intuitive algorithm would be to sequentially probe
bit positions in ascending order, starting from bit 0 (least significant bit) and
proceeding towards bit position λ−1 (most significant bit), until there is at least
one 0-bit on every bitmap. On the other hand, for the superLogLog estimator,
we are interested in the positions of the higher 1-bits, so intuitively we would
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Fig. 13. Algorithm estimateSBP: Estimate the number of distinct elements in a multiset using

a DHS and sequential bit probing. R[β] stores the bit positions of the least significant 0-bits for

PCSA or of the most significant 1-bits for superLogLog counting, respectively.

proceed in the opposite direction: probing bit positions in descending order
starting from position λ − 1, until we either reach bit 0 or there is at least one
1-bit on every bitmap. Both algorithms work perfectly well in practice. However,
the latter one has a subtle flaw: It starts probing from the smaller of the bit arcs
(corresponding to bit position λ − 1), which typically consists of no more than a
handful of nodes (one or two in the worst case). This leads to a load imbalance
with regard to query processing (insertions and storage load balancing are not
affected), with the most loaded nodes sharing almost the same cumulative load
as would a rendezvous node. The PCSA estimator does not suffer from this,
as it first probes the larger of the arcs, thus spreading the load on much more
nodes (half of the total population), and terminates as early as possible.

To tackle this problem, we suggest changing the bit-probing algorithm so that
it starts from bit position 0 moving to higher bit positions for both estimators,
terminating when a bit position is found for which all vectors have a 0 bit (the
final Sequential Bit Probing algorithm for both the PCSA and superLogLog
estimators is summarized in Figure 13). The intuition behind this lies in the
following logical empirical observation: For a given bit position i and a hash
sketch implementation with β vectors B〈i〉[·], the probability that there is a
0-bit at position k of all β bitmaps (i.e. B〈m〉[k] = 0, ∀m ∈ [0, δ)) and that there
is a 1-bit at some position l > k is negligible for β � 1 and becomes even
lower for higher k (up to statistical fluctuations in the R〈i〉 values).5 Moreover,
specifically for the superLogLog estimator, even if such extremely rare cases do
exist (we have yet to find one after several millions of runs of the algorithms
over networks of various sizes and with input datasets of varying size, value
domain, and skewness), they should be discarded during the truncation step.

The second bit-probing algorithm, Binary-search Bit Probing, builds on the
same observation as before. The algorithm proceeds in three stages, outlined in
Figure 14. First, it probes bit positions in [0, λ) in a binary-search-like fash-
ion, until it finds the lowest bit position ph for which all vectors have a 0
bit. Then, if the PCSA estimator is in use, it probes bit positions in [0, ph)

5A similar conclusion is also implied by the analysis in Durand and Flajolet [2003].
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for the highest bit position pl for which all vectors have a 1 bit. Finally, it re-
verts to a Sequential Bit Probing for bit positions (pl , ph) for the PCSA and
(pl , 0] for the superLogLog estimator. The algorithm records the bit positions
it probes during these phases so that bit positions that have already been vis-
ited during some stage are skipped in subsequent stages. The net result is a
reduction in the overall estimation hop-count cost and a slightly better load
distribution.

Take, for example, a multiset consisting of 2,500,000 unique items and as-
sume we are using 512 32-bit bitmaps in the hash sketch. The highest bit
position on average set in the hash sketch with this dataset is ≈16, as com-
puted by Eq. (3). With 32 bits per hash sketch bitmap, we can expect BBP to
probe on average 5 to 6 bit positions in the first stage of the algorithm (until
it finds the lowest all-0 bit position, e.g., position 17), and as many bits in the
third stage as necessary until it has found at least one 1-bit for every bitmap
(the second stage is active only for the PCSA estimator). This can translate to
anywhere between 12 to 21 bit positions being probed during estimation, while
the standard sequential probing algorithm would probe 18 bit positions (bit po-
sitions from 0 up to 17). We expect BBP to outperform SBP for larger datasets
and longer bitmaps, and to be at least as good as SBP in the smaller cases.

Note that the worst-case hop-count performance of both algorithms is in-
dependent of the number of bitmaps and number of items in the overlay:
O(λ · log N ) hops in the worst case, with a O(log I

β
· log N ) expected figure,6

for both bit-probing algorithms. This observation constitutes a core property of
DHS and one of its great strengths: The counting hop-count cost formula is the
same, independent of the number of bitmaps and dimensions (metrics). This is
because the mapping of bit positions to ID-space intervals is the same for all
bitmaps and all dimensions. Thus, by visiting a single node in such an interval,
the counting algorithm is able to probe for the status of the corresponding bit
position in all bitmaps for all dimensions/metrics, hence making multimetric
estimation practically free (hop-countwise).

3.5.3 Bit Caching. By design, the choice of bit-probing scheme is orthogo-
nal to that of the message routing mechanism; that means that we can have both
iterative and recursive variants of both the sequential and the binary-search
bit-probing algorithms, possibly also adding routing shortcuts to the picture,
with different characteristics and trade-offs for each combination (more on this
in the performance evaluation section). A particularly interesting combination
is Sequential Bit Probing coupled with Recursive Bit Routing, as introduced in
Section 3.2. This scheme lends DHS to a simple but powerful addition: caching
of query result bits on the backward recursion path (coined Bit Caching, or BC).
Low-level implementations issues, such as the cache replacement strategy, ob-
ject time-to-live, etc., are orthogonal to our work and are thus not discussed
in this article. What is of the essence, though, is the fact that over time, less
and less counting operations will have to go all the way from bit 0 to the bit
containing the last interesting bit position for the estimator used at the time.

6Note that log I
β

< log I ≤ λ ≤ L = log N .
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Fig. 14. Algorithm estimateBBP: Estimate the number of distinct elements in a multiset using a

DHS and binary-search bit probing.
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Moreover, since under the SBP+RBR scheme all queries commence with bit
position 0 and proceed from one bit arc to the next in a recursive fashion, the
probability of a cache hit on every step increases as the bit-arc size decreases.
This add-on is beneficial for query hop-count cost, but also for the balancing
of load across nodes; with caching, the query load is mitigated from the few
nodes populating the higher bit positions to the rest of the node population.
The performance evaluation section will showcase this behavior and its totally
positive effect on the system characteristics.

3.5.4 Errors and Retries. Errors in the estimate returned by the DHS
counting algorithm are caused by: (i) statistical deviation on behalf of the un-
derlying hash sketch theory, and (ii) bits not being set during the node probe
step in the counting algorithm. As far as hash sketches are concerned, Flajolet
and Martin [1985] and Durand and Flajolet [2003] feature a rigorous analysis
of their statistical properties. Reciting the proofs found in these works is surely
beyond the scope of this article. We refer interested readers to Flajolet and
Martin [1985] and Durand and Flajolet [2003] and just mention here that the
standard deviation is closely approximated by 1.05/

√
β for Durand and Flajolet

[2003] and by 0.78/
√

β for Flajolet and Martin [1985].
As far as the latter cause is concerned, since every bit position of the bitmaps

is uniformly mapped to an interval on the node-ID space, we may have to visit
multiple nodes in every interval until we find one storing information for an
item (corresponding to the bit being set). As a consequence, the DHS count-
ing algorithm first selects a random node in the target ID-space interval, and
probes it for any relevant tuple. If no such information is available at that
node, the algorithm must proceed by visiting the target node’s immediate suc-
cessors/predecessors within the specific ID-space interval, until either some
tuple is located or an upper limit of such retries is reached. This iterative phase
exists to compensate for the following issue: When recording I items in an ID-
space interval mapping to N or more nodes, there will exist nodes which will
store no relevant information; even when the target interval consists of less
than I nodes, some of them may store no DHS-related information, due to the
randomness in choosing the target nodes (both when storing and when retriev-
ing DHS information). For our algorithms this means that when we randomly
visit a node holding a DHS bit, if it is zero, we are still not certain, so we have
to retry until we find a set bit. The question is: How many times before we stop,
while with a controllable probability we do not err?

We turn thus to the computation of the upper limit of nodes to contact per-
bit position of the DHS bitmaps. Assume that I ′ items have been uniformly
distributed to N ′ bins (i.e., mapped to an N ′-node interval in the DHS). The
counting process of the previous section corresponds to uniformly and indepen-
dently picking a bin from the set of bins without replacement, and checking for
whether there is any item stored in it. The probability P (X = t) that t empty
bins are selected in the first t probes equals

P (X = t) =
(

N ′ − t
N ′

)I ′

. (5)
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PROOF (SKETCH). When uniformly placing a single item in one of N ′ bins, the
probability of selecting a particular bin is 1

N ′ and the probability of not selecting

it is N ′−1
N ′ . Thus, after placing I ′ items, a bin will be empty with probability

( N ′−1
N ′ )I ′

. This also equals the probability of choosing an empty bin at our first
probe. Now, the probability of one of the remaining N ′ − 1 bins being empty
(and the probability of choosing an empty bin in our second probe) is ( N ′−2

N ′−1
)I ′

,
given our first probe resulted in an empty bin being chosen. Note that choosing
the next-in-line bin after the one we selected in the previous step is equivalent
to choosing one of the N ′ − 1 bins uniformly at random, since items are put
into bins in a uniform manner. In our tth probe, the probability of choosing an
empty bin will be ( N ′−t

N ′−t−1
)I ′

. Since each probe is independent of the others, the
probability of choosing t empty bins in the first t probes equals(

N ′ − 1

N ′

)I ′

· · ·
(

N ′ − t + 1

N ′ − t + 2

)I ′

·
(

N ′ − t
N ′ − t + 1

)I ′

=
(

1

N ′

)I ′

·
(

(N ′ − 1) · (N ′ − 2) · · · (N ′ − t + 1)

(N ′ − 1) · (N ′ − 2) · · · (N ′ − t + 1)

)I ′

· (N ′ − t)I ′ =
(

N ′ − t
N ′

)I ′

= P (X = t).

By solving Eq. (5) for t, we get that in order to choose a nonempty bin
with probability of at least p, we have to visit at least: t ≤ τ = �N ′ · (1 − p

1
I ′ )�

bins/nodes. By setting ξ = I ′
N ′ , we get τ = �N ′ · (1 − p

1
ξ ·N ′ )�. When using multi-

ple (β) bitmap vectors, items are partitioned among the vectors, thus I ′
β

items

are inserted in N ′ bins, so the latter formula becomes τβ = �N ′ · (1 − p
β

ξ ·N ′ )�.
Finally, by taking replication into consideration, and assuming a replication
degree of α, we get

τα
β = �N ′ · (1 − p

β

α·ξ ·N ′ )�. (6)

Note again that N ′ is the number of nodes responsible for a single-bitmap
single-bit position (i.e., belonging to the same ID-space interval), I ′ is the num-
ber of items mapping to this interval, and ξ is their ratio. This means that
there is a different optimal τβ for every ID-space interval, with smaller-sized
intervals (given a total I items being inserted in an N -node DHS) having lower
values for τβ (i.e., the interval(s) responsible for the least significant bit of the
bitmap(s) will have the largest τβ value(s)).

The default value of τβ used in DHS for all intervals is 5 (constant), which
suffices to guarantee that if a nonempty node exists in any given interval, it will
be found with probability of at least 99% when the number of items mapped to
any ID-space interval is greater or equal to the number of nodes in the interval
(i.e., I ≥ β ·N ). Obviously, the default value of 5 also suffices when counting sets
with a larger cardinality than the one dictated by the preceding. However, when
counting smaller-cardinality sets, we may choose to either: (i) increase τβ , ac-
cording to Eq. (6); (ii) use a smaller DHT/DHS overlay for the specific operation
via super nodes in hybrid P2P networks, building on a network architecture like
the one presented in Ntarmos and Triantafillou [2004] (a trend that has lately
started gaining supporters in the DHT world, too); or (iii) use explicit replica-
tion of DHS bits as outlined in the DHS insertion subsection. The worst-case
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counting hop-count complexity thus becomes O(λ · (log N + τ )), where τ is the
upper bound of the number of iterations of the probing phase. For constant τ ,
as used in DHS, the hop-count complexity becomes again O(λ · log N ). Note
that the cost of counting is, in any case, independent of the number of bitmaps.

3.6 Choice of Bitmap Length and Hash Function

As mentioned earlier (Section 2.2), hash sketches consist of a hash function
and of a bitmap vector recording the output of the former, processed with the
ρ(·) function, for each input element. For the first part, we can either use one
of the many cryptographic hash functions in the literature (e.g., MD-4, MD-
5, SHA-1, RMD-160, etc.) or directly employ whatever hash function is used
by the underlying DHT to generate node and item IDs. Assume the output
of the hash function is L bits long. Then, all bits in the output of the hash
function are pseudorandom, since this is a core design principle of any random-
izing/cryptographic hash function. This also fulfills the basic requirement of
Durand and Flajolet [2003] and (practically) Flajolet and Martin [1985] with
regard to hash functions used to insert items to the hash sketch. Given that
the length of the hash sketch bitmap vector λ must be less than L bits, we can
use part of the output of the hash function of choice to insert items to the Dis-
tributed Hash Sketch. For the remainder of this article, we shall assume that
we are using the lower λ bits of the output of the hash function provided by the
underlying DHT implementation.

On the other hand, the length λ of the bitmap vectors is a matter of de-
bate. Since we are dealing with distributed, autonomous systems, it should be
fixed when deploying a Distributed Hash Sketch instance. However, λ is an
application-specific parameter whose value depends on the hash function used
and the maximum cardinality to be estimated. More specifically, λ must be less
than the output of the hash function used minus the logarithm of the number
of bitmap vectors in the hash sketch, and bigger than the rounded-up sum of
3 plus the logarithm of the cardinality I to be estimated over the number of
bitmaps in the hash sketch (see Eq. (3)). As an example, in order to calculate
the cardinality of a multiset containing one million unique items with a single-
vector hash sketch, we will need at least 23 bits, while one trillion unique items
will take at least 43 bits per vector; for 512 bitmaps in the hash sketch, these
figures drop to 14 and 34 bits, respectively. Moreover, note that an λ value (even
much) larger than the minimum given by Eq. (3) has no negative effect on the
accuracy of the computed estimate (it will merely result in the upper bits never
being set to 1). Also note that, due to the mapping of bit positions to DHT nodes,
we do not need to set a value of λ close to the aforesaid. Furthermore, with L-bit
DHT keys and 2L possible ID values, the Birthday Paradox limits the number
of items in any DHT namespace (and hence the maximum estimated cardinal-
ity) to 2

L
2 . For example, most DHTs use a 160-bit hash function (specifically

SHA-1), so λ will never have to be larger than 83 bits, dropping to 76 bits for
512 bitmaps in the hash sketch.

The previous analysis leads to the following simple algorithm: If on applica-
tion design/deployment time there is some, even vague, notion of the maximum
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Table II. Design Space Taxonomy: List of Configuration Parameters for DHS

Hash Sketch Parameters

⇒ Hash Function (h(·))
⇒ Number of Bitmaps (β)

⇒ Number of Bits per Bitmap (λ)

⇒ PCSA vs. superLogLog Estimator

Message Routing
⇒ Iterative vs. Recursive Bit Routing ( IBR/RBR)

⇒ Routing Shortcuts ( RS)

DHS Insertions/Updates

⇒ Single-item vs. Bulk Item Insertions ( SII/BII)

⇒ Target Neighborhood Replication ( TNR)

⇒ Maintenance Traffic Piggybacking ( MTP)

Counting with DHS

⇒ Sequential vs. Binary-search Bit Probing ( SBP/BBP)

⇒ Bit Caching ( BC)

⇒ Retry Limit (τ )

cardinality to be estimated by the given distributed hash sketch instance (even
within a few binary orders of magnitude), and we fix the number of bitmaps
in the hash sketch, we can compute λ by Eq. (3) as in the first example given
before. Otherwise, we can use the upper bound on I implied by the Birthday
Paradox and compute λ as in the second example.

3.7 Design Space Taxonomy—Putting It All Together

This section described Distributed Hash Sketches, our approach for distribut-
ing the data and computation chores of hash sketches over a DHT P2P overlay
in a scalable and efficient manner. Our architecture offers a wealth of algo-
rithms, techniques, and methods for a system designer to harness to her needs
when deploying a DHS instance. First, there are parameters related to the base
hash sketch: the hash function, the number and bit-length of bitmaps, and the
actual estimator algorithm (superLogLog versus PCSA). Then, it is possible
to choose among two bit-routing protocols, namely, iterative and recursive bit
routing, and whether to use routing shortcuts. As far as item insertions and up-
dates are concerned, there is the choice of single-item versus bulk insertions,
while we can selectively replicate items in the target neighborhood and use
message piggybacking to further lower the overall maintenance cost. For the
counting part, there are again two candidate bit-probing algorithms: sequen-
tial and binary-search bit probing; there is also the option of caching estimation
result bits (in tandem with recursive routing), and the retry limit parameter.
Table II summarizes the resulting design space.

4. PERFORMANCE EVALUATION

We shall now present an in-depth evaluation of the performance, efficiency, and
scalability of the algorithms and protocols discussed in this article. We first
outline the experimental setup and methodology of the evaluation procedure,
then discuss our results and findings.

4.1 Methodology

In Ntarmos et al. [2006] we had implemented a basic Chord-like DHT and
DHS in an event-driven simulator coded in C++ from scratch. The simulator
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supported all basic DHT primitives, that is, node joins and leaves/failures and
data addition and deletion, and all the functionality of DHS and subsequent con-
structions. We used this simulator for preliminary performance evaluation pur-
poses and sanity checks, and in order to observe how our solutions behave and
scale in a fully controlled environment. We now implement DHS over FreePas-
try [FreePastry 2002], a publicly available implementation of the Pastry overlay
[Druschel and Rowstron 2001] in the Java programming language. In Pastry
(and FreePastry) lookups have a hop-count cost in O(log2b N ), with b a positive
integer. We configured FreePastry so that its routing cost is in O(log2 N ) (i.e.,
b = 1), so that hop-count results are easily comparable to other DHTs. Both im-
plementations gave similar results, so we chose to show only results computed
using the latter, to showcase the performance of our solutions as implemented
in a real-world system. The source code of our implementation consists of ap-
proximately 5,500 lines of Java code7 and is publicly available on the World
Wide Web [FreeDHS 2006].

In both cases, the performance evaluation was carried out in the following
steps.

(1) We populated the network with peers and allowed enough time for the
DHT to stabilize. We ran P2P overlays consisting of 1000, 2500, 5000, and
10000 nodes in order to showcase the scalability properties of our approach
and as examples of mid-range distributed systems, but larger networks are
naturally supported by both our solutions and the code base.

(2) We generated the data items to be stored on nodes. As is standard prac-
tice in the relevant literature, we synthetically generated datasets that:
(i) can test our system for various value distributions ranging from near
uniform to highly skewed, and (ii) correspond to value distributions also
observed in real-world systems [Saroiu et al. 2002]. Specifically, data item
values were drawn from either a skewed Zipfian distribution with param-
eter θ = 1.2 or a uniform distribution. Note that the value distribution
skewness translates to multiple occurrences of highly popular values across
items in the overlay, and to few or no occurrences for values in the tail
of the distribution. The number of total data items was set to 250× the
number of nodes in the overlay (i.e., 250,000 items for the 1000-node over-
lay, 625,000 items for the 2500-node overlay, etc.), so as to also showcase
the scalability of our approach with regard to the size of the distributed
multiset.

(3) We randomly assigned data items to nodes in the overlay with a uniform dis-
tribution, so that each node on average stores 250 items. This corresponds
to the data contributed by each overlay node.

(4) We then had all nodes insert their items into the DHS.

(5) Finally, we selected random nodes and had them estimate the number of
distinct items stored on the overlay. Without loss of generality, we have that:
(i) In the configurations employing bit caching, there is no cache replace-
ment, and (ii) these queries are executed one at a time, so that there is at

7Generated using David A. Wheeler’s SLOCCount.
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most one query active at any time in the system. Unless stated otherwise,
the number of retries was set to 5 hops.

We used 128 and 512 bitmaps per hash sketch, and 32 bits per hash sketch
bitmap. Note that the expected performance figures are directly affected by the
bitmap length, and that with 32-bit bitmaps we are able to count over trillions
of items. The results we shall present shortly were averaged over multiple runs
for every case, to avoid statistical artifacts.

In brief, we focus on and present results for the following fields:

(1) hop-count cost for inserting items to the DHS;

(2) insertion load per input item and overall insertion load distribution;

(3) hop-count cost for queries (i.e., computing the estimate);

(4) node load per query and overall query load distribution; and

(5) accuracy of the computed estimate, as expressed by the average error versus
a centralized estimate.

More specifically, our main focus is on distribution transparency. Thus, we
mainly want to prove that the proposed solutions: (i) are as accurate as their
centralized counterparts, (ii) impose low runtime overhead, and (iii) scale well
with the size of the network and of the overall data collection of peers. We
thus measure the accuracy and (message count) performance of the proposed
solutions, attempting to showcase their applicability under the wide-scale dis-
tribution setting of a P2P overlay. More specifically, we are primarily interested
in the number of hops required to do the estimation, the accuracy of the esti-
mation itself, as well as the fairness of the load distribution across nodes in
the network. We first instrumented FreePastry with the appropriate hooks to
allow us to measure the number of hops each message needs to reach its desti-
nation node. We present hop-count results for both inserting items to the DHS
and for doing the actual estimation. Moreover, we report on the mean error of
the estimation, computed as the percentage by which the distributed estima-
tion differed from the value that would be estimated by a hash sketch with
the same parameters if all items were stored on a single machine (centralized
case).

Another vital metric for distributed systems such as peer-to-peer data net-
works is the distribution of load across participating hosts. We measure the load
on a given node as the insertion and query/probe “hits” on this node; that is, the
number of times this node is the target of an insertion or query/probe opera-
tion. Conversely, we can think of the load imposed by an insertion/query in the
system as the number of nodes visited during processing of the insertion/query.
We thus further instrumented FreePastry to report on the aforesaid metrics;
namely node insertion hits and node query hits. In order to visualize the impact
of the different approaches on load distribution, we employed the Gini Coeffi-
cient [Damgaard and Weiner 2000], as advocated in Pitoura and Triantafillou
[2007]. In brief, Pitoura and Triantafillou [2007] compare the appropriateness
and performance of nine of the most well-known distribution fairness metrics
(including the standard deviation, skewness, kurtosis, coefficient of variation,
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maximum-to-minimum load ratio, fairness index, Lorenz curves, and the Gini
Coefficient) for P2P applications. The Gini Coefficient emerged the winner, be-
ing intuitive, predictable, not oversensitive to changes in the input data skew,
providing a global perspective on the underlying distribution, and exhibiting
the smallest estimation error among its contenders.

The Gini Coefficient, GC, is the mean of the absolute difference of every pos-
sible pair of load values, taking values in the interval [0, 1), where a GC value
of 0.0 is the best possible state, with 1.0 being the worst. The Gini Coefficient
reflects the amount of imbalance in the system, so that, for example, a GC value
of 0.25 translates to ≈75% of the total load being equally distributed across all
nodes in the system. More specifically, if li, 1 ≤ i ≤ N is the load on the ith node
and μl is the mean of these loads, then

GC = 1

2 · N 2 · μl

N∑
i=1

N∑
j=1

(|li − l j |).

As a yardstick: (i) In a rendezvous-based approach in which nodes locally com-
pute a hash sketch for their items and store the result on a handful (or just
one) rendezvous node(s), the GC scores for the insertion and query load distri-
butions are almost equal to 1; (ii) when (quasi-)uniformly selecting numbers
in a fixed interval, as when assigning IDs to nodes placed on a DHT, the GC
score of the distribution of arc lengths between consecutive DHT nodes (i.e.,
the distance of any two consecutive values) is ≈0.5; and (iii) if we subsequently
(quasi-)uniformly select item values from the same interval as node IDs, and
assign each new item to the node at the upper end of the arc the item value falls
in, in a balls-and-bins scenario (as with the classic consistent hashing approach
of DHTs [Karger et al. 1997]), then the distribution of items to nodes results in
a GC score of ≈0.7. This means that, given that objects are assigned to nodes
in the DHT using consistent hashing, the expected GC score for item inser-
tion and access under uniform value and popularity assumptions (in essence,
a best-case scenario) for a standard DHT configuration and mapping of items
to nodes is ≈0.7.

4.2 Evaluated Configurations

Due to the breadth of the design space, we have identified the most interesting
design choice combinations and present results only for them. We commence
with the configuration of Ntarmos et al. [2006] and then gradually introduce
our novel techniques contributed in this article one at a time, showing how each
of them improves over the previous configuration. We will briefly describe each
of these configurations, summarized in Table III, then discuss their effect on the
various performance metrics. All of the configurations employ the superLogLog
estimator.

The first configuration (case 1), coined DHS0, corresponds to the settings in
Ntarmos et al. [2006] and serves as the starting point on which this work builds.
In brief, DHS0 uses iterative bit routing without routing shortcuts, single-item
insertions without replication, and sequential bit probing without bit caching
and with a retry limit of 5 hops. In a second step, we turn routing shortcuts on

ACM Transactions on Computer Systems, Vol. 27, No. 1, Article 2, Publication date: February 2009.



Distributed Hash Sketches • 2:35

Table III. Evaluated System Configurations

Routing Maintenance Querying Affects

Case Bit Routing Items per No. of Bit Probing Retry I: Insertions

No. Algorithm Operation Replicas Algorithm Limit Q: Queries

Streaming Scenarios

1 IBR Single 0 SBP 5 –

2 IBR+RS Single 0 SBP 5 I+Q

3 IBR Single 0 BBP 5 Q

4 RBR Single 0 SBP 5 I+Q

5 RBR+RS Single 0 SBP 5 I+Q

Data Management Scenarios

6 RBR Bulk 0 SBP 5 I

7 RBR Bulk 0 SBP+BC 5 Q

8 RBR+RS Bulk 0 SBP+BC 5 I+Q

9 RBR Bulk 5 SBP 0 I+Q

10 RBR+RS Bulk 5 SBP 5 I+Q

(case 2) and repeat our measurements, to examine the effect of this optimization
in an otherwise plain configuration of DHS. We report on both the insertion
and query characteristics of these setups. Next (case 3) we add binary-search
bit probing into the mix, substituting the sequential bit-probing algorithm of
DHS0. As this change only affects bit probing, we will show results only for
queries. Case 4 builds again on the DHS0 configuration, adding Recursive Bit
Routing (RBR). We further add routing shortcuts (case 5) on top of this, in order
to examine the synergy of recursive routing and routing shortcuts. We then turn
to configurations using bulk insertions. First, case 6 examines the effect of bulk
insertions on the hop-count cost and load distribution of DHS. In brief, this
case is the same as case 4, only now dropping single-item insertions in favor
of bulk ones. We only report on the insertion-related metrics for this case, as
its behavior with regard to queries is the same as that of case 4. The great
advantage of RBR is that it paves the way for bit caching on the query part, to
be examined in case 7. We further examine the effect of routing shortcuts on
this setup, in case 8. Next, we examine the effect of target neighbor replication
on both the hop-count cost and load balancing of insertions and queries. Case
9 builds on the configuration of case 6, by setting the retry limit to 0, creating
instead 5 replicas per bulk insertion, as explained in Section 3.3.5. As a last step
(case 10), we enable routing shortcuts on this setup and set the retry limit back
to its original value of 5 hops, so as to examine the effect of routing shortcuts
in a configuration with replication and retries.

4.3 Insertion Characteristics

The first set of results pertains to the data insertion algorithms and protocols
of DHS. First we examine the per-item insertion hop-count cost, then look into
the distribution of insertion load across nodes in the overlay.

4.3.1 Insertion Hop-Count Cost. Figures 15(a) and 15(c) plot the per-
item insertion hop-count cost for cases 1 and 4, respectively. Since in these
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Fig. 15. Average insertion hops per input item (lower is better).

configurations, each item insertion results in a (possibly) separate target node
storing the related DHS bit information, the hop count closely follows the ex-
pected average path length of the underlying DHT (i.e., ≈0.5 · log N in an N -
node DHT overlay with a diameter of O(log N )[Stoica et al. 2001]). Figures 15(b)
and 15(d), on the other hand, depict the hop-count cost for cases 2 and 5, re-
spectively, corresponding to the configurations of cases 1 and 4 with routing
shortcuts enabled. As we can see, it now takes on average ≈2.3 hops to insert
an item into the DHS, irrespective of the number of nodes in the overlay. This
roughly means that when routing a message to a random ID in a target bit arc,
a shortcut to that arc is found at most on the second hop towards the target ID.
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This results in huge savings with regard to hop-count costs, but has a definite
negative effect on load balancing, as we shall see shortly.

Figure 15(e) (case 6) showcases why bulk insertions are the best choice when
we can/need to insert multiple items at a time (as is the case for data manage-
ment scenarios). As we can see, our expectations for a low insertion hop-count
cost are met with flying colors; the average per-item insertion hop count has
dropped to 0.12 to 0.18 hops: a reduction of a factor of approximately 40 to 45
compared to DHS0, and of 13 to 18 compared even to the routing-shortcuts-
enabled cases! This roughly translates to 30 to 45 hops (or 6 to 7 DHT lookups)
needed by each node to insert all of its (on average) 250 data items into the DHS.
Case 8 then adds routing shortcuts on top of this, and brings the insertion hop-
count cost down to an average of ≈0.05 hops per item, a reduction of a factor of
≈2.5 to 3.5×. This means that, for a random node to insert all of its items into
the DHS, it will take ≈12.50 hops, or equivalently 2 to 3 DHT lookups.

We next examine the effect of replication on bulk insertion configurations.
With a replication factor of 5, using the target neighborhood replication scheme
outlined in Section 3.3.5, the per-item insertion hop count roughly doubles, as
can be seen in Figure 15(g) for case 9. The end result is ≈60 to 90 hops (or 12
to 14 DHT lookups) to be paid by each node to insert all of its data items to the
DHS. Adding routing shortcuts into the mix (case 10) reduces these numbers
to ≈0.2 hops per item, or 50 hops (10 DHT lookups) to insert all of a node’s
item collection. This smaller decrease (factor of 1.2 to 1.8×) compared to the
corresponding decrease in the previous cases is due to the fact that routing
shortcuts only save hops from long-distance routes (i.e., routing from the node
inserting an item to a node in the target bit arc), but successor hops during
replica creation cannot be avoided.

The hop-count figures reported in this section are actually very low, thus
showcasing the low insertion overhead of our solutions. As a reference point,
keep in mind that the sheer periodic maintenance of the node routing tables in
most popular DHT implementations requires on the order of 160 lookups every
few (e.g., 15) minutes, plus the (much more frequent) cost for maintaining the
node’s connections to its immediate successors/predecessors. This fact further
allows us to apply the piggybacking technique of Section 3.3.6 to completely
hide DHS insertion/update messages inside DHT maintenance traffic.

4.3.2 Insertion Load Characteristics. Remember that for cases 1, 2, 4, and
5, utilizing SII, each item insertion results in a single (possibly different) target
node storing DHS bit info, so the per-item insertion load equals exactly 1. This
is clearly depicted in Figures 16(a), 16(b), 16(c), and 16(d), respectively. Bulk
insertions (cases 6 and 8) bring this figure down to ≈0.033 (Figures 16(e) and
16(f)): a reduction of a factor of ≈30×; this is a direct result of the fact that
only one bulk insertion message is needed for a node to insert all of its items,
so the more the items in the bulk, the lower the per-item inflicted load. These
numbers translate to a total load of ≈8 per node; that is, each node stored data
on roughly 8 other nodes, or conversely each node was visited by 8 other nodes
during the insertion phase. Last, with a replication factor of 5, the insertion
load is naturally multiplied by ≈5, as we can see in Figures 16(g) and 16(h) for
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Fig. 16. Average insertion load per input item (lower is better).

cases 9 and 10, respectively, but still remains very low: ≈45 node hits in the
1000-node overlay, and ≈50 node hits in the 10000-node overlay).

Lastly we examine the distribution of this insertion load across nodes in the
overlay. To this extent, we use the Gini Coefficient, as advocated by Pitoura
and Triantafillou [2007] and described earlier. In cases 1 and 4, the insertion
load distribution is excellent, achieving on average a 0.4 GC score (Figures 17(a)
and 17(c)), rising to ≈0.6–0.7 when routing shortcuts are enabled (Figures 17(b)
and 17(d)). Case 6, using bulk insertions, achieves a slightly higher GC score
(Figure 17(e)), soaring just over 0.73. Case 8, using routing shortcuts, produces
a slightly worse average GC score of ≈0.9 (Figure 17(f)). Replication improves
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Fig. 17. Insertion load distribution: Gini Coefficient (lower is better).

the GC score to ≈0.69 on average, becoming 0.7 to 0.8 with routing shortcuts
enabled (Figures 17(g) and 17(h), respectively). We would like to point out that
all of these GC scores are quite good in practice. As a reference point, a DHT with
pseudorandom IDs assigned to nodes and data items, and with items mapped
to nodes using the standard consistent hashing technique [Karger et al. 1997]
(a setup assumed to spread the storage load evenly across nodes in the overlay)
achieves a storage GC score of just ≈0.7 on average.8

8Computed empirically using the PAST P2P application on top of FreePastry.
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Fig. 18. Average hops per query: noncaching cases (lower is better).

4.4 Query Characteristics

The next set of results are related to the actual estimation (query) algorithms
and protocols of DHS. As in the insertion case, first we examine the query
hop-count cost, then look into the distribution of query load across nodes in
the overlay. Last, we examine the accuracy of the acquired estimates compared
to the respective estimates computed in a centralized manner (i.e., if all data
items were stored on a single host).

4.4.1 Query Hop-Count Cost. On the query front, cases 1 and 3 take on
average ≈50 to 70 hops (i.e., the equivalent of approximately 10 DHT lookups)
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to compute the estimate with 128 bitmaps, and ≈160 to 250 hops (or 32 to 40
DHT lookups) with 512 bitmaps (Figures 18(a) and 18(c)), with the higher hop
count for the latter being due to more retries. With more bitmaps in the DHS,
less bits are set per bitmap and thus less DHS bit data items are spread across
the network, so the chance that we randomly select a node not storing any data
for the queried metric increases. Routing shortcuts (case 2) lower these numbers
to 40 to 50 hops for 128 bitmaps and to 150 to 250 hops for 512 bitmaps. These
figures verify our earlier claim for an O(λ log N ) query hop-count cost in the
worst case. Note that we expect case 3, featuring the binary-search bit-probing
algorithm, to outperform the plain DHS instances for larger test cases.

Figure 18(d) plots the query hop-count cost for case 4. Now estimations take
on average ≈80 to 120 hops with 128 bitmaps (or the equivalent of 16 to 18
DHT lookups), with the 512-bitmap case dropping to ≈100 to 160 hops (i.e.,
20 to 32 DHT lookups). Routing shortcuts (case 5) further reduce these num-
bers to 40 to 60 hops for 128 bitmaps and to 65 to 90 hops for 512 bitmaps
(Figure 18(e)).

Next in line are cases 9 and 10 (Figures 18(f) and 18(g)), featuring our repli-
cation technique, coupled with routing shortcuts for the latter. As we can see,
replication is also beneficial for the query hop-count cost, as there is a 30%–40%
decrease for case 9 compared case 4 (the equivalent case without replication).
On the other hand, the hop-count cost of case 5 (i.e., case 4 plus routing short-
cuts) is already as low as we can achieve with our arsenal; thus, this replication
on top of this has virtually no effect on the average hop-count cost, as can be
seen in Figure 18(g) compared to Figure 18(e).

We have left the caching-enabled cases (i.e., cases 7 and 8) for last.
Figures 19(a) and 19(b), respectively, plot the average query hop-count cost
for these two cases over time. As we can see, there is a sharp drop in the av-
erage hop count for the first 25 to 50 queries as the cache is getting warm,
evening out at approximately 5 to 20 hops for case 7 and 1 hop for case 8 af-
ter 500 queries. We would like to note that there is no cache invalidation in
these experiments. This was an explicit choice made in order to showcase the
effect of caching on the hop-count cost (and on query load distribution, to be
presented shortly). Assuming a time-to-live period for cached results and given
a query arrival rate, it is possible to compute how many queries on average will
be answered from the cache and directly find out the respective hop-count cost
earnings from these figures.

4.4.2 Query Load Distribution. Figures 20 and 21 plot the total load im-
posed by each query in the system for the various configurations, averaged in
25-query windows. A common denominator of all noncaching configurations ex-
cept case 9 (i.e., Figures 20(a) through 20(e) and 20(g)) is that the total load is
higher for 512-bitmaps cases than it is with 128 bitmaps. The reason why this
happens for the nonreplicating configurations is also the cause of the higher
hop-count cost for these cases: More bitmaps result in less items being inserted
per bitmap, in turn resulting in a higher possibility of visiting nodes that do not
store bit data for all bitmaps, and thus forcing the algorithm to retry the prob-
ing. This is also the reason why case 9 in Figure 20(f), having a retry limit of 0
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Fig. 19. Average hops per Query: caching cases (lower is better).

hops, does not suffer this setback, achieving on the contrary a much lower total
load per query, but slightly losing in accuracy, as we shall see shortly. Lastly,
Figures 21(a) and 21(b) show the per-query load for the caching cases (cases 7
and 8, respectively). The preceding conclusions on the effect of the number of
bitmaps and routing shortcuts on the per-query load still hold, but now we also
see how caching decreases the per-query load in the long run. We can also see
that routing shortcuts do not affect the performance of DHS with regard to this
metric; although they cut down the hop-count cost for long-distance lookups,
they have no effect on the number of nodes that have to be visited during query
evaluation.

We will now examine the effect of the various techniques and algorithms
contributed in this article on the fairness of the distribution of query load
across nodes in the overlay. The first three figures plot the evolution of the
GC score of the query load distribution as queries are executed in the system,
for the configurations of cases 1, 2, and 3 (Figures 22(a), 22(b), and 22(c), re-
spectively). It takes on average 100 to 200 queries for the GC score to settle
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Fig. 20. Average node load per query: noncaching cases (lower is better).

for the configurations using 512 bitmaps (the curves for 128 bitmaps are close
to 1, but drop to ≈0.9 to 0.95 after approximately 2000 queries, not shown on
these figures for reasons of presentation). The reason why those cases with 512
bitmaps fair better than those with 128 bitmaps is due to the fact that less
bits are set per DHS bitmap, thus bit probing terminates earlier and in larger
bit arcs; note that the last few bit positions are mapped to a handful of nodes
(with the most significant bit being mapped to a single node in the worst case).
However, this situation can easily be alleviated with thresholding (see Section
3.1.3). Also note that: (i) Routing shortcuts have a negative effect on load dis-
tribution fairness, and that (ii) the two cases not using shortcuts achieve a GC
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Fig. 21. Average node load per query: caching cases (lower is better).

score of 0.73 to 0.85, which is on par with the GC of the load distribution of
popular DHTs under uniform value and item popularity distributions (≈0.7).

The load distribution fairness for cases 4 and 5 is plotted in Figures 23(a) and
23(b). Compared to the previous cases, we can see that recursive routing greatly
improves the load balancing: The system now achieves a 0.87 GC score in the
worst case (even for 128-bitmap cases), and a 0.68 GC score in the best case
(Figure 23(a)). Moreover, note that the slope of the 128-bitmaps cases (especially
for case 4) is still somewhat steep at the 500-queries point, meaning that the
GC score has not yet stabilized. We have further tested these configurations for
several thousands of queries (not shown for reasons of presentation), and found
that the GC score settles around 0.65 for the 512-bitmap cases, and around 0.75
for the 128-bitmap cases.

The effect of replication on query load distribution is depicted in Figures 24(a)
and 24(b), plotting the GC score for cases 9 and 10, respectively. For the latter
case, the achieved GC score for the query load distribution ranges from 0.82 to
0.91 for 512-bitmaps, and from 0.93 to 0.96 for the 128-bitmaps configurations.
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Fig. 22. Query load distribution (iterative routing): Gini Coefficient (lower is better).
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Fig. 23. Query load distribution (recursive routing): Gini Coefficient (lower is better).

For the former case, we can clearly see that the GC curve is still quite steep
at the 500-query point; after some more thousands of queries, the GC score
settles at around the same level as in case 4 previously. Again, it is obvious
that recursive routing is beneficial (compare to case 1, for example), and that
routing shortcuts result in a worse load distribution.

Again, we have left the configurations utilizing bit caching for last. Bit
caching is (along with thresholding) the best way for spreading the load across
nodes. Figure 25(a) plots the GC scores for case 7. We can see that the 512-
bitmaps configurations achieve a GC score of ≈0.45 after 500 queries, with
the 128-bitmap setups having reached 0.55 to 0.75 scores by that time, and
both sets of curves dropping to ≈0.4 after a few thousands of queries. Even
with routing shortcuts on (Figure 25(b)), the achieved GC score is approx-
imately 0.55 to 0.66 at the 500-query point for 512 bitmaps, and 0.75 to
0.85 for 128 bitmaps (both dropping to around 0.55 after a few thousands of
queries).
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Fig. 24. Query load distribution (replication): Gini Coefficient (lower is better).

4.4.3 Estimation Accuracy. Lastly, we examine the accuracy of the com-
puted estimates versus a centralized estimator. In all but the last three cases,
the average error is below 1%, climbing to just 3.5% in the worst case for the last
three configurations, thus also proving our claim for distribution transparency.
Note that these figures roughly equal the average error of the centralized sketch
algorithms, which are already deemed accurate by the research community.
Table IV summarizes the average error for the various configurations. Note
the negative effect of routing shortcuts on accuracy (numbers for RS-featuring
cases shown in italics), and the slightly larger error for 512 bitmaps compared
to 128 bitmaps caused by the lower-than-needed number of retries.9

9With a higher number of bitmaps in the distributed hash sketch, less items are assigned to each

bitmap and thus a higher number of retries are needed to attain the same accuracy as when using

less bitmaps; see Section 3.5.4 for the details.
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Fig. 25. Query load distribution (bit caching): Gini Coefficient (lower is better).

4.5 Discussion

The basic DHS instance (DHS0), first presented in Ntarmos et al. [2006], al-
ready enjoyed a fairly low insertion and query hop-count cost, achieving ex-
cellent accuracy and storage load balancing while also enjoying better query
load balancing over the standard rendezvous-based approach. In this work we
have contributed several additional methods which introduce significant per-
formance improvements during query execution and data insertion and for
hop-count costs as well as for load balancing. The following summarizes the
key performance results from our experimental study.

First came binary search bit probing. For the dataset of our experi-
ment, binary-search bit probing resulted in a slightly worse hop-count cost
(Figure 18(c)), as this algorithm may end up probing more bits than SBP. It
will surely probe some unset bits during the binary search phases, and it still
has to do a sequential partial pass after that to complete the resulting hash
sketch. For the same reason, we observed an artificially slightly better load
distribution (Figures 20(c) and 22(c)), as load is spread across more nodes. We
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Table IV. Average Estimation Error (%)

Case No.
β = 128 β = 512

Uniform Zipf 1.2 Uniform Zipf 1.2

Case 1 0.00 0.00 0.00 0.00

Case 2 0.01 0.00 0.26 0.25
Case 3 0.03 0.04 0.24 0.23

Case 4 0.00 0.00 0.00 0.00

Case 5 0.17 0.12 0.54 0.52
Case 6 0.00 0.02 0.04 0.05

Case 7 0.05 0.01 0.01 0.08

Case 8 1.62 1.54 2.33 2.41
Case 9 0.87 0.92 2.54 2.48

Case 10 2.11 2.56 3.27 3.49

expect BBP to outperform SBP for larger datasets and longer bitmaps, and to
be at least as good as SBP in the smaller cases. Next we examined recursive bit
routing. RBR had the same hop-count cost (Figures 15(c) and 18(d)) and load
distribution properties (Figures 17(c) and 23(a)) as the plain DHS setup, as we
still have to contact one (random) node per input item during insertions, and
still have to sequentially locate the highest all-1 bit position. However, keep in
mind that RBR has the less obvious advantages of better resilience to network-
level errors and lower per-hop latency [Dabek et al. 2004; Rhea et al. 2004] if
using a network proximity-aware DHT (such as Pastry and FreePastry).

All three configurations presented so far use single-item insertions. This
setting is well suited for streaming scenarios, where nodes wish to record their
observations in the DHS as data flies by. In a data management scenario, on
the other hand, grouping multiple item insertions into a single insertion op-
eration is very beneficial with regard to the hop-count cost and node load. We
thus turn to bulk insertion configurations. Remember that with bulk inser-
tions, each node first populates a local hash sketch with its items and, coupled
with recursive routing, it then sends a single bulk insertion message around
the DHT overlay. We saw huge improvements in the insertion hop-count cost,
and a slight degradation in insertion load balancing in case 6 (Figures 15(e),
16(e), and 17(e)). Bit caching, the next step in our configurations, in addition
to lowering the query hop-count cost over time, has the added positive effect of
spreading the query load across all nodes in the overlay (Figures 19(a), 21(a),
and 25(a)). Most notably, since query results are cached all the way back to
the bit arc corresponding to bit 0, there is a good chance that queries may
get answered on the first bit probe. Moreover, the probability of a cache miss
reduces by roughly 50% on every jump to the next bit arc, since the sizes of
subsequent bit arcs differ by a factor of 2. Target neighborhood replication
was next; the intuition behind the configuration of case 9 is trading off inser-
tion hops for query hops, and gaining, some more DHS bit data redundancy
in the process. We observed a higher insertion hop-count (Figure 15(g)) and
a better insertion load distribution (Figure 17(g)) compared to case 6, and a
lower query hop-count (Figure 18(f)) and possibly worse query load distribution
(Figure 24(a)).
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Finally, in those cases making use of routing shortcuts, most operations were
resolved by single-hopping to nodes registered in the routing tables of the in-
serting/querying node, resulting in a dramatic cut on the hop-count costs. On
the other hand, the pool of random nodes that can possibly be contacted by a
given node is limited to those in the node’s routing table, thus also affecting
negatively the load balancing and probably the accuracy of the estimate. This
is the main reason why we bumped the retry limit back to its original value
in case 10; if always selecting a target among those few nodes in the routing
table, then the possibility of choosing a node storing bit data for all bitmaps in
the DHS is quite low.

5. CONCLUSIONS

In this article we presented Distributed Hash Sketches (or DHS): a novel, fully
decentralized, scalable, and efficient mechanism capable of providing estimates
on the cardinality of multisets in Internet-scale information systems. DHS is,
to our knowledge, the first method to simultaneously satisfy the central goals of
efficiency, scalability, access and storage load balancing, high accuracy, and du-
plicate (in)sensitivity, all without additional explicit indexing structures. These
characteristics make it suitable to become the counting technique of preference
for Internet-scale data networks.

We have shown how to build DHS utilizing either PCSA or the superLogLog
hash sketches. We have analytically estimated the additional estimation
errors introduced by the wide-scale distribution inherent in our technique.
We have implemented DHS and evaluated it, both in terms of its error and
its performance characteristics. The experimental results substantiate our
claims for small errors and related storage and bandwidth overheads, while
showing the efficiency and scalability of the counting operation. In brief, the
asymptotic performance of item insertion and distributed computation of
the estimate is logarithmic in the number of nodes and independent of the
number of bitmaps, items, and metrics. Moreover, our optimizations yield a
query/insertion hop count equivalent to a very small number of DHT lookups.
The insertion/storage load distribution is also very good, on par with the
storage load balancing achieved in DHT overlays. The query/estimation load
distribution can be adjusted, even approaching a uniform distribution in the
long run when bit caching is enabled. Last, the accuracy is also excellent, with
the average error under 3.5% in the worst case.

The design space of our DHS framework is quite large, providing a rich set of
methods and mechanisms, offering trade-offs between hop-count efficiency, es-
timation accuracy, and fair load distribution. A real-world deployment of DHS
would probably choose some amalgam of the clearcut configurations presented
in the performance evaluation section. For example, an interesting configu-
ration for a streaming scenario could consist of a fusion of iterative routing,
single-item insertions, replication, and routing shortcuts to insert items, and
plain recursive routing without shortcuts plus binary-search bit probing for
the query part. On the other hand, for a data management setting, a configu-
ration with bulk insertions piggybacked on DHT traffic, along with recursive

ACM Transactions on Computer Systems, Vol. 27, No. 1, Article 2, Publication date: February 2009.



Distributed Hash Sketches • 2:51

sequential probing with caching, seems like a winning synthesis. We intend to
further examine such combinations in the future.
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