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Abstract. Adaptive responses to resource availability are common in
natural systems. In this paper we explore one possible evolutionary cause
of adaptive sleep/wake behavior. We subjected populations of digital
organisms to an environment with a slowly diminishing resource and
recorded their ability to adapt to the changing environment using sleep.
We also quantified the selective pressure not to sleep in this competitive
environment. We observed that diminishing resource availability can pro-
mote adaptive sleep responses in digital organisms even when there is an
opportunity cost associated with sleeping.
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1 Introduction

A population of organisms in an environment where a resource is always available
can be non-adaptive and function exceptionally well. There is little or no selective
pressure on the organisms to adjust their behavior within this environment since
resources are plentiful and can be consumed at any time [1]. If resources often
become diminished or unavailable, an adaptive response might allow for more
conservative resource usage [2] or increased energy storage [3]. Natural organisms
often display adaptive behavior that coincides with environmental changes where
resources fluctuate [4, 5]. An example of this type of adaptive response occurs in
nocturnal rodents and insects that sleep during the day and forage for food under
the cover of darkness. Animals that hibernate also display an adaptability that
allows them to avoid extended periods of low resource availability by increasing
the size of their fat stores prior to hibernation [6].

This form of adaptive behavior in natural organisms serves multiple purposes.
During sleep periods an animal rests [7], reprograms its brain [8] and performs
internal maintenance tasks [9]. However, while an animal is in a state of slumber
it is less aware of its environment. How could resource-aware adaptive behaviors,
such as sleep and hibernation, have evolved in competitive environments where
torpid organisms are vulnerable to active organisms? Is there a selective pressure
to sleep caused by resource limitations in environments with periodic resource
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availability? The remainder of this paper attempts to answer these questions
through experiments with digital organisms.

Previous work has been done in this area using neural networks [10]. In [10],
the organisms were subjected to two different environments with periodic light
availability, where the organism’s ability to find a resource was impaired relative
to the current light intensity. It was shown that the combination of a biological
clock and light sensor produced the best results in an environment where light
readings may not correctly disambiguate day from night. The work presented in
this paper differs for [10] in that it does not impose a predefined structure on the
organisms, provide a common starting point to the organisms, or give any in-
formation, ambiguous or not, to the organisms directly. All of these mechanisms
must be evolved while preserving an organism’s ability to self-replicate and while
avoiding other detrimental behavioral changes. We begin with a brief overview of
the Avida digital evolution platform [11] and the experimental setup, followed
by presentation of the experimental results.

2 AVIDA

Avida is an experimental software platform for research in computational evo-
lutionary biology [11]. In the past several years, Avida has been used to conduct
pioneering research on the evolution of biocomplexity [12–14]. Avida provides
researchers with tools to study the evolutionary process in greater detail and
less time than previously possible.

In an Avida experiment, self-replicating digital organisms compete against
each other in a fixed-size steady-state population. As shown in Fig. 1, each or-
ganism resides in a cell (one organism per cell) and comprises a circular list of
assembly-like instructions (its genome) and a virtual CPU capable of executing
those instructions. Cells are organized according to a topology; in this study
we used a two-dimensional grid. Every virtual CPU has three 32-bit registers
(AX, BX, and CX) and two stacks capable of storing up to ten 32-bit numbers.
The virtual CPU has an instruction pointer (IP) that determines which instruc-
tion in an organism’s genome to execute. The IP can be moved throughout the
genome with the use of conditional if-statements and explicit move instructions.
While the Avida instruction set is a Turing complete language, only basic com-
putational instructions are available and complex computations must be con-
structed by combining simple instructions (i.e, nand, inc, and add) with the
input/output instruction.

We record all input and output to and from each organism in the population
and examine them to determine the computational tasks performed. An example
task is the bitwise-and of two numbers [13]. To complete this task an organism
must read in two numbers and output the bitwise-and of those two numbers
sometime in the future. We added an energy model to Avida that allows an
organism to obtain and store energy. Once a task has been completed, an energy
reward is added to the organism’s current energy. In this study, the size of
the energy reward is subject to the availability of resources in the environment.
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Fig. 1. Avida population and structure of a single organism.

Organisms can sense the quantity of resources within the environment. The more
plentiful the resource, the larger the reward for performing a task.

An organism’s current energy level is used to determine its metabolic rate, as
shown in (1). Avida uses a probabilistic scheduler to assign virtual CPU cycles to
organisms in the population. Organisms with higher metabolic rates are assigned
higher priority within the scheduler, and therefore execute more instructions
relative to organisms with lower metabolic rates. The metabolic rate is inversely
proportional to a user-defined variable, InstructionsBeforeZeroEnergy, which
specifies how many instructions an organism can execute before it runs out of
energy, given no new energy influx. Probabilistically, organisms with a higher
metabolic rate will execute more instructions and produce more offspring than
those with less energy.

MetabolicRate =
Energy

InstructionsBeforeZeroEnergy
(1)

Avida organisms are responsible for their own replication through the use of
replication-specific instructions. To reproduce, an organism must perform three
distinct functions: allocate space at the end of its genome for its offspring’s
genome, duplicate its own genome instruction by instruction into that space,
and divide the resulting genome into two parts. Upon division, the parent or-
ganism’s state is reset, the parent’s energy is divided equally between itself and
its offspring, and the offspring’s genome is used to create a new organism. The
offspring is placed in a random cell in the grid, replacing and terminating any
organism that previously occupied that location. Variation among organisms in
the population occurs when instructions are copied. Each copied instruction is
subject to three types of mutation (modifying the instruction, deleting the in-
struction, or inserting an additional instruction) that occur at user defined rates.
Replication is asexual, and therefore every Avida run presented here begins with
the same single organism that serves as an ancestor for all successive organisms
in the population. Each run is started with a different random number seed,
resulting in different evolutionary paths taken by the population.
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3 Experimental Setup

In these experiments, the population of digital organisms is arranged in a 60×60
grid. When an instruction is being copied there is a 0.75% chance that the
instruction being copied will be mutated. During replication there is a 5% chance
an instruction will be deleted, and a 5% chance that a random instruction will be
inserted. On average each organism in the population will execute one instruction
per update, the standard unit of time in Avida.

As in [13], organisms are rewarded for performing tasks that are Boolean
logic operations. Specifically, we used the five tasks listed in Table 1. Each task
has an associated reward, indicating the number of energy units an organism
gains when completed, and a limit on how many times a individual organism
may be rewarded for performing it. Completing even these relatively simple tasks
can require several instructions. Table 2 shows a “hand-built” solution for the
and task (a nop instruction modifies the behavior the preceding instruction, for
example, placing the result in a different register than the default). Of course,
evolution may produce many different solutions for the same task.

The environment contains a single resource that is available periodically.
When the resource is available, it is non-depletable, and all five tasks described
in Table 1 are maximally rewarded. If an organism completes a task when the
resource is unavailable, no reward is given. The duration of the resource availabil-
ity changes throughout every experiment except the control experiment, where
it remains constant. Resource availability is defined in “years” and “days.” Each
year consists of 500 days, each of which lasts for 256 time steps (updates). Dur-
ing each year, the availability of the resource remains constant. That is, each
day of a year has the same duration of resource availability. At the beginning
of each day the resource becomes available for a period of time depending on
the current year. For the first year the resource is available during 100% of the
day. After each passing year, the availability of the resource during a day is
reduced by 6.25% of a full day until it becomes zero, which deprives the popula-
tion of energy and eventually brings on its demise. Through evolutionary change
brought upon by depriving the population in this manner, we observe under
which conditions the population of digital organisms will find sleep useful.

Table 1. Rewarded tasks.

Task Name Input Bitwise Output Reward Max Times Rewarded

echo A A 1000 35

nand A, B ¬(A ∧B) 1500 20

not A ¬A 1500 20

ornot A, B A ∨ (¬B) 2000 13

and A, B A ∧B 2000 13

We have added six instructions to the base Avida instruction set, enabling an
organism to sense and respond to its environment. These instructions are: time,
sense, and four variations of sleep. Executing the time instruction stores the
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Table 2. Instruction sequence that when executed completes the and task.

Instruction AX BX CX Stacks 1,2 Output Description

IO ? X ? ?,? ? read X into bx

IO ? X Y ?,? ? read Y into cx
nop-C

nand ? X nand Y Y ?,? − bx ← ¬(ax ∧ bx)

push ? X nand Y Y X nand Y, ? − push bx onto stack 1

pop ? X nand Y X nand Y ?,? − pop stack, place
nop-C result in cx

nand ? X and Y X nand Y ?,? − bx = ¬(bx ∧ cx)

IO ? Z X nand Y ?,? X and Y output bx

current time step in a register within the organism’s virtual CPU. The sense
instruction allows an organism to detect the presence or absence of the resource;
it loads one of the calling organism’s registers with the current quantity of the
resource times 100. (The value of the resource is multiplied by 100 to allow for
a wider range of the sensed value.) The sleep instructions allow organisms to
enter a low energy state that lasts for multiple CPU cycles. Compared to other
instructions, the sleep1-4 instructions cost 100 times less energy to execute and
last for 10, 20, 40, and 80 times more CPU cycles, respectively.

To help answer the questions posed in Section 1 we ran three experiments.
The first is a control where the resource is available 100% of the time. In the
second experiment resources are diminished for the duration of each run. In the
final experiment the sleep instructions have been replaced by a null instruction
to quantify the selective pressures being applied to the sleep instructions.

4 Experimental Results and Discussion

We define an environment where a resource is available for the duration of each
day. In this environment, which is referred to as “constant,” the organisms in the
population do not benefit from an adaptive response based on the availability
of the resource because the resource can be used at any time. The remainder
of this paper presents evidence that a decline in resource availability within a
single-resource environment can produce an adaptive resource-aware response.

To test this hypothesis we conducted two experiments; results presented are
the average of 50 runs. In the first experiment the resource is available during the
entire run (constant environment) and in the second experiment the availability
of the resource is reduced over the course of the run (declining environment).
Figure 2(a) displays the average metabolic rate in both the constant and de-
clining resource environments. For clarity, error bars are omitted; the maximum
standard error is 0.018 for constant environment and 0.01 for declining environ-
ment. The 16 vertical lines in Fig. 2(a) denote years, where a 6.25% decrease
in resource availability occurs in the declining resource environment. As shown,
the metabolic rate in the constant environment tends to stabilize as the run
proceeds, but decreases over time in the environment with declining resource
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availability. This behavior is expected, since organisms can receive rewards for
completing tasks continually in the constant environment, but less often as time
lapses in the declining resource environment. In fact, after the last vertical line
the organisms in the declining resource environment populations no longer have
a source of energy, and eventually the populations will die when they run out of
stored energy.

Figure 2(b) shows the average maximum and minimum number of organisms
sleeping at some time during a day in each environment. The maximum and
minimum numbers of organisms sleeping during a day in the constant environ-
ment remain relatively close together. In contrast, organisms in the declining
resource environment have evolved to participate in inactive periods, where at
the peak, on average, greater than 10% of the organisms in the population are
sleeping. At this point the number of organisms sleeping in the declining envi-
ronment is significantly above the number sleeping in the constant experiment.
(p-value < 0.0003, using Wilcoxon rank sum test for equal medians). A sample
of evolved code from one of the runs is given in Table 3. The code produces a
resource-aware behavior when executed. Specifically, the organism enters a loop
that ends when the resource becomes available.

(a) Average metabolic rate (b) Average maximum/minimum sleeping
organisms

Fig. 2. Comparison of sleep responses in two environments, one where the resource is
available 100% of the time (constant), and one where the resource availability decreases
over time (declining). Results are the average of 50 runs.

Since the organisms sleep more in the declining resource environment, one
might infer that the organisms accumulate more sleep instructions in their
genomes. However this is not true. Figure 3(a) shows the number of sleep in-
structions that are present in the organisms’ genomes in both environments,
along with the number of sleep instructions executed in each. For the first half
of the runs, organisms in both environments have substantially more sleep in-
structions in their genomes than they actually execute. The gap then begins to
narrow in the declining environment, and by the end of the runs the number of
executions nearly equals the number present. The increase in the execution of
sleep instructions in this environment suggests that sleeping is more beneficial
as the resource availability diminishes. Figure 3(b) shows the rate of execution of
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Table 3. Evolved code that loops until the resource becomes available.

Instruction Explanation

h-search place flow-head at next instruction

sleep start sleeping

sense read resource availability into bx register

if-equ-0 if bx 6= 0 skip next instruction

mov-head move instruction-head to flow-head

sleep instructions over the course of the runs in the declining resource environ-
ment. As expected, the sleep instructions with lower CPU cycle costs are used
more heavily than the more expensive sleep instructions, especially early in
the runs. As the resource becomes scarce, the number of more expensive sleep
instructions increases. This adaptation allows for longer sleep cycles with fewer
executed instructions.

(a) number of sleep instructions present
in and executed by organisms

(b) number of four sleep instructions ex-
ecuted, declining environment.

Fig. 3. Number of sleep instructions present in and executed by organisms in the
constant and declining environments. Average over 50 runs.

When Avida organisms are exposed to an environment where resource avail-
ability varies during a day, they evolve an adaptive resource-aware response. An
example is shown in Figure 4, which depicts snapshots of the 60×60 grid during
a single day in a population that evolved this adaptive sleep/wake behavior. The
black squares depict organisms that are sleeping. At this point in the run, the
resource is available for the first 112 (out of 256) updates. Figure 4(a) shows the
population at the beginning of a day. Figure 4(d) shows the population at the
day’s midway point where the resource is no longer available and organisms are
beginning to enter a sleep cycle. During this day the peak number of organisms
sleeping at one time is 2111 or 58.6%, shown in Figure 4(e). After this point the
organisms start to wake up and await the next period of resource availability.

Figure 5(a) plots the number of organisms sleeping and the resource avail-
ability during three consecutive days near the midpoint of a single run, when
the resource is available during the first 50% of each day. As shown, there is a
tight correlation between number of sleeping organisms and lack of resources.
Examination of evolved genomes shows that organisms in this population have
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Representations of a population’s response to the resource availability over a
single 256 time-step day. Black squares represent sleeping organisms and white squares
represent awake organisms. The resource is available for the first 112 time steps. a) t
= 1, 231 sleeping, resource becomes available; b) t = 64, 108 sleeping; c) t = 128, 469
sleeping; d) t = 152, 1355 sleeping, resource is no longer available; e) t = 180, 2111
sleeping; f) t = 204, 1502 sleeping, organisms are beginning to wake up; g) t = 228,
667 sleeping; h) t = 256, 189 sleeping, day ends and resource becomes available again.

evolved to begin their sleep cycle just before the beginning of resource deprived
periods, and begin preparing data to be used in tasks, just prior to the return
of the resource. This “early to bed, early to rise” behavior allows organisms
to finish tasks early during periods of resource availability, thereby increasing
the probability of receiving a reward. It also helps to avoid situations where an
organism’s execution is delayed, causing a task to be completed just after the re-
source disappears, in which case the organism receives no reward. This adaptive
behavior arose in 37 out of 50 runs in the declining resource environment.

Although the populations evolved an adaptive behavior, in the above trials
the fraction of concurrent sleeping organisms never stabilized above 60%. To
help explain why more organisms did not sleep, we conducted a final experiment,
where the four sleep instructions were replaced by the nop-x instruction, which
has no effect on the virtual CPU when executed, and has CPU and energy costs
equal to the non-sleep instructions. The same experimental setup with a declining
resource availability was used, the only difference being the replacement of the
sleep instructions with nop-x. Figure 5(b) compares the number of sleep and
nop-x instructions present and executed in the populations. In both cases the
nop-x instruction is significantly more plentiful than the sleep instructions. In
fact the p-values for both are less than 0.0001. Selective pressures produced by
this treatment favored doing nothing for 1 CPU cycle and paying a higher energy
cost, over doing nothing for multiple CPU cycles and using 100 times less energy.
Yet, even in the presence of this selective pressure, an adaptive resource-aware
sleep/wake behavior has evolved to a point where a majority of the organisms
in a single population sleep at the same time.
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(a) (b)

Fig. 5. (a) Attempted resource usage by organisms (resource activity) and resource
availability vs. time for a typical 3-day interval. (b) A comparison of sleep instructions
(squares) to inert nop-x instructions (circles); solid lines indicate the frequency with
which each instruction is found in the genome and dashed lines indicate the frequency
at which they are executed.

5 Conclusion

Revisiting the questions posed in Section 1, we have shown that populations
of digital organisms are capable of evolving resource-aware adaptive sleep/wake
behavior in an environment where resource availability is periodic and declines
over time. The organisms in these populations become highly active when the
resource is available and sleep when it is not. This behavior evolves even though
sleeping organisms are vulnerable to non-sleepers and there exists a selective
pressure not to sleep. This behavior evolved and remained stable in a majority
of the populations in our experiments. We also have seen evidence suggesting
that the adage “early to bed, early to rise” describes an evolved behavior, as
organisms maximize their probability of being rewarded for completing tasks.
This behavior evolved even in the presence of a selective pressure not to sleep.

Continuations of this work using additional environments are ongoing. Envi-
ronments with added costs, instruction and environmental impairments, positive
and negative reinforcement, and punishment will all be tested for effectiveness.
Additionally, seasonal resource availability models are under development and
will be used to model the natural world more closely. Finally, environments en-
couraging predator/prey relationships will be examined for evidence of coexisting
diurnal and nocturnal behaviors among organisms within the same population.

Further Information. Papers on digital evolution and the Avida software are
available at http://devolab.cse.msu.edu. Information on evolving adaptive
and cooperative behavior can be found at http://www.cse.msu.edu/thinktank.
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