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Abstract

In late 1994, SGI released an advanced, journaled file sys-
tem called XFS on IRIX, their System-V-derived version
of UNIX. Since that time, XFS has proven itself in pro-
duction as a fast, highly scalable file system suitable for
computer systems ranging from the desktop to supercom-
puters. In early 1999, SGI announced that XFS would
be released under an open source license and integrated
into the Linux kernel. In this paper, we outline the history
of XFS, its current architecture and implementation, our
porting strategy for migrating XFS to Linux, and future
plans, including coordinating our work with the Linux
hacker community.

1 Introduction to XFS

In the early 1990’s, SGI realized its existing EFS (Extent
File System) would be inadequate to support the new ap-
plication demands arising from the increased disk capac-
ity, bandwidth, and parallelism available on its worksta-
tions. Applications in film and video, supercomputing,
and huge databases all required performance and capaci-
ties beyond what EFS, with a design similar to the Berke-
ley Fast File System [1], could provide. EFS limitations
were similar to those found recently in Linux file systems:
small file system sizes (8 gigabytes), small file sizes (2 gi-
gabytes), and slow recovery times using fsck.

1.1 XFS Features

In response, SGI began the development of XFS [2], [3],
a completely new file system designed to support the fol-
lowing requirements:

� fast crash recovery

� large file systems

� large sparse files

� large contiguous files

� large directories

� large numbers of files

File systems without journaling must run an fsck [4]
(the file system checker) over the entire file system; in-
stead, XFS uses database recovery techniques that recover
a consistent file system state following a crash in less than
a second. XFS meets the requirements for large files sys-
tems, files, and directories through the following mecha-
nisms:

� B+ tree indices on all file system data structures [5],
[6]

� tight integration with the kernel, including use of
advanced page/buffer cache features, the directory
name lookup cache, and the dynamic vnode cache

� dynamic allocation of disk blocks to inodes

� sophisticated space management techniques which
exploit contiguity, parallelism, and fast logging.

XFS uses B+ trees extensively in place of traditional
linear file system structures. B+ trees provide an efficient
indexing method that is used to rapidly locate free space,
to index directory entries, to manage file extents, and to
keep track of the locations of file index information within
the file system.

XFS is a fully 64-bit file system. Most of the global
counters in the system are 64-bits in length, as are the
addresses used for each disk block and the unique num-
ber assigned to each file (the inode number). A single
file system can theoretically be as large as 18 million ter-
abytes. The file system is partitioned into regions called
Allocation Groups (AG). Like UFS cylinder groups, each

1



AG manages its own free space and inodes. The primary
purpose of Allocation Groups is to provide scalability and
parallelism within the file system. This partitioning also
limits the size of the structures needed to track this infor-
mation and allows the internal pointers to be 32-bits. AGs
typically range in size from 0.5 to 4GB. Files and direc-
tories are not limited to allocating space within a single
AG.

Other related file system work in Linux includes
[7],[8],[9], [10],[11], [12],[13].

1.2 The XFS Architecture

The high level structure of XFS is similar to a conven-
tional file system with the addition of a transaction man-
ager and a volume manager. XFS supports all of the stan-
dard Unix file interfaces and is entirely POSIX and XPG4-
compliant. It sits below the vnode interface [14] in the
IRIX kernel and takes full advantage of services provided
by the kernel, including the buffer/page cache, the direc-
tory name lookup cache, and the dynamic vnode cache.

XFS is modularized into several parts, each of which is
responsible for a separate piece of the file system’s func-
tionality. The central and most important piece of the file
system is the space manager. This module manages the
file system free space, the allocation of inodes, and the al-
location of space within individual files. The I/O manager
is responsible for satisfying file I/O requests and depends
on the space manager for allocating and keeping track of
space for files. The directory manager implements the
XFS file system name space. The buffer cache is used
by all of these pieces to cache the contents of frequently
accessed blocks from the underlying volume in memory.
It is an integrated page and file cache shared by all file
systems in the kernel.

The transaction manager is used by the other pieces of
the file system to make all updates to the metadata of the
file system atomic. This enables the quick recovery of
the file system after a crash. While the XFS implementa-
tion is modular, it is also large and complex. The current
implementation is over 110,00 lines of C code (not in-
cluding the buffer cache or vnode code, or user-level XFS
utilities); in contrast, the EFS implementation is approxi-
mately 12,000 lines.

The volume manager used by XFS, known as XLV, pro-
vides a layer of abstraction between XFS and its under-
lying disk devices. XLV provides all of the disk strip-
ing, concatenation, and mirroring used by XFS. XFS itself
knows nothing of the layout of the devices upon which it
is stored. This separation of disk management from the
file system simplifies the file system implementation, its

application interfaces, and the management of the file sys-
tem itself.

1.3 Support Features

XFS has a variety of sophisticated support utilities to
enhance its usability. These include fast mkfs (make a
file system), dump and restore utilities for backup, xfsdb
(XFS debug), xfscheck (XFS check), and xfsrepair to per-
form file system checking and repairing. The xfs fsr util-
ity defragments existing XFS file systems. The xfs bmap
utility can be used to interpret the metadata layouts for
an XFS file system. The growfs utility allows XFS file
systems to be enlarged on-line.

1.4 Journaling

XFS journals metadata updates by first writing them to
an in-core log buffer, then asynchronously writing log
buffers to the on-disk log. The on-disk log is a circular
buffer: new log entries are written to the head of the log,
and old log entries are removed from the tail once the in-
place metadata updates occur. After a crash, the on-disk
log is read by the recovery code which is called during a
mount operation.

XFS metadata modifications use transactions: create,
remove, link, unlink, allocate, truncate, and rename oper-
ations all require transactions. This means the operation,
from the standpoint of the file system on-disk metadata,
either never starts or always completes. These operations
are never partially completed on-disk: they either hap-
pened or they didn’t. Transactional semantics are required
for databases, but until recently have not been considered
necessary for file systems. This is likely to change, as
huge disks and file systems require the fast recovery and
good performance journaling can provide.

An important aspect of journaling is write-ahead log-
ging: metadata objects are pinned in kernel memory while
the transaction is being committed to the on-disk log. The
metadata is unpinned once the in-core log has been writ-
ten to the on-disk log.

Note that multiple transactions may be in each in-core
log buffer. Multiple in-core log buffers allow for transac-
tions when another buffer is being written. Each transac-
tion requires space reservation from the log system (i.e.,
the maximum number of blocks this transaction may need
to write.) All metadata objects modified by an operation,
e.g., create, must be contained in one transaction.
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2 The vnode/vfs Interface in IRIX

The vnode/vfs file system interface was developed in the
mid-80s [14], [15] to allow the UNIX kernel to support
multiple file systems simultaneously. Up to that time,
UNIX kernels typically supported a single file system that
was bolted directly into the kernel internals. With the ad-
vent of local area networks in the mid-80s, file sharing
across networks became possible, and it was necessary to
allow multiple file system types to be installed into the
kernel. The vnode/vfs interface separates the file-system-
independent vnode from the file-system-dependent inode.
This separation allows new file systems to re-use existing
file-system-independent code, and, at least in theory, to
be developed indepently of the internal kernel data struc-
tures.

IRIX and XFS use the following major structures to in-
terface between the file system and the rest of the IRIX
OS components:

� vfs – Virtual File System structure.

� vnode – Virtual node (as opposed to inode)

� bhv desc – behaviors are used for file system stack-
ing

� uio – I/O parameters (primarily for read and write).

� buf – used as an interface to store data in memory (to
and from disk)

� xfs mount – top-level per XFS file system structure

� xfs inode – top-level per XFS file structure.

2.1 vfs

Figure 1 depicts the vfs, bhv desc, xfs mount, and
xfs vfsops structures and their relationship in IRIX.

The vfs structure is the highest-level structure in the file
system. It contains fields such as:

� the mounted device

� native block size

� file system type

� pointer to first file system (bhv desc)

� flags

In IRIX, the vfs object points to a behavior (bhv desc)
structure which is used to construct layered file systems
for this vfs. The bhv desc structure has the following
fields:

� data (file-system-dependent data, xfs mount in figure
1)

� vobj (file-system-independent data, vfs in figure 1)

� ops (pointer to file-system-dependent functions)

� next (next bhv desc in list of file systems for this vfs).

In the example, note that we have one file system layer
since the bhv desc structure’s next pointer is NULL.

If some other layered file system was added above XFS,
a new bhv desc would be added in front of the existing
bhv desc for XFS.

2.2 vnode

The IRIX vnode structure is similar to the IRIX vfs struc-
ture as can be seen in figure 2.

The vnode structure points at the first behavior in the
chain of file systems handling the file associated with this
vnode. In figure 2, there is one behavior only: the XFS in-
ode itself. The behavior also points to the function vector,
xfs vnodeops, which contains all the file-system-specific
routines at the file level. In IRIX, the vnodeops contains
more than 57 routines which can be invoked on a “file”.
These routines cover many functions such as create, re-
move, read, write, open, close, and others.

2.3 uio

The uio structure in IRIX is used to pass I/O parameters
between the OS and the file system. This structure can be
seen in figure 3.

The uio structure can be used to point at multiple differ-
ent buffers per I/O operation. This can be used to create a
scatter/gather I/O interface allowing users to fill different,
discontinous memory areas with one system call [15].

The uio structure on IRIX has various other fields that
are used by the Virtual Memory (VM) system to commu-
nicate with the file system. One such field is uio segflg,
which indicates the different types of memory involved in
transfers such as user space, system space, or instruction
space. This information is used by the file system when
determining how to move data to and from the uio’s asso-
ciated memory.

There are several other fields in the uio which are used
to communicate between the file system and the rest of the
kernel, including:

� uio fmode – file mode flags

� uio offset – file offset
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Figure 1: vfs, bhv desc, and XFS mount relationship.

centerline

vnode

bhv_desc

xfs_inode

xfs_vnodeops
NULL

xfs_open()
xfs_close()

.

.

.

Figure 2: vnode, bhv desc, and XFS inode relationship.
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Figure 3: uio structure with 4 distinct memory areas.

� uio resid – residual count (set by the file system after
the I/O is done)

� uio limit – u-limit (maximum byte offset)

� uio fp – file pointer

2.4 layered vnode/vfs

SGI has created a clustered version of XFS called CXFS.
This file system lets multiple machines share the same
XFS file system, much like NFS clients share the NFS
server’s local file system. The major difference between
NFS and CXFS is that the data for I/O goes directly from
the disk devices to each machine instead of going through
a server like NFS.

The CXFS file system uses behaviors to layer on top
of XFS, as shown in figure 4. The dsvn structure is the
CXFS layer’s inode. It contains information kept private
to the CXFS layer, such as which nodes in the cluster are
using the file. The dsvnops contains pointers to the file-
system-dependent routines in CXFS.

In most cases, each dsvn routine does some work be-
fore calls to the next behavior in the chain, in this case,
XFS. Theoretically, other layers could be inserted be-
tween CXFS and XFS, or above CXFS.

Whenever a vnode needs to have a new layer inserted,
a lock is obtained to prevent any operations from “cross-
ing” the behavior. If an operation is currently active, e.g.
xfs read, the insertion must wait until it completes. Some

dsvn routines are simply pass through. They just call the
next layer in the behavior chain.

2.5 buffer cache/buf structure

One of the fundamental components of IRIX, XFS, and
modern file systems is the buffer cache. The buffer
cache is main memory maintained by the operating sys-
tem which contains data being transferred to and from
disk. Disk data is cached to help prevent I/O between
memory and disks. The basic idea is to keep parts of disk
in memory since disk data is often extensively re-used.

The top level data structure for the buffer cache in IRIX
is struct buf. This structure contains information such as:

� pointers to the actual memory

� the device and block number with which the buffer
is associated

� various flags indicating the state of the memory
(dirty, locked, already read, busy, etc.)

� pointers to other bufs

� error state

� size of data

� pinned status

� device-specific information
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Figure 4: CXFS layered over XFS.
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� file-system specific information

� pointer to the vnode

Each buf structure is associated with a device and block
number. A major interface routine for the buffer cache is
get buf. It is called to associate a piece of memory and
the buf structure with a block number and device, and re-
turn the buf structure “locked”. If the buf structure already
exists, we have a cache hit. If it doesn’t exist, a buffer (as-
sociated with a different device and block) may need to
be flushed from memory and re-associated with the block
requested by get buf. get buf does not read the disk; in-
stead, bread or breada call get buf and then read the disk
(if the data isn’t already there). XFS uses get buf exten-
sively to associate buffers with meta-data such as inodes,
the super block, and the XFS log.

There are various other routines that are used by XFS
to interface with the buffer cache including:

� getblk – same as get buf but with no flags

� bread – get buf and read the disk if the data is not
already there

� breada – bread, but don’t wait for the I/O to complete

� bwrite – release the buf, write it, and wait for I/O
completion

� bdwrite – release the buf, it will be written before it
is reassociated

� bawrite – release the buf, start the write, don’t wait

� brelse – release a previously locked buffer (get buf,
getblk, ... lock)

� bpin – pin the buffer (don’t let it be written) to disk
until unpinned

� bunpin – unpin the buffer and wakeup processes
waiting on the buffer.

IRIX was enhanced to have buffer “clusters” above
the standard buffer cache to improve write performance
[16]. This allows logically contiguous buffers (with non-
contiguous memory) to be handled as if they were all
physically contiguous. The buf structure continues to be
the basic data structure even for clustered bufs. Another
structure, bmapval, is used to specify the cluster.

An important capability of the buffer clusters is delayed
allocation. Actual allocation of disk blocks for user writes
can be postponed or completely eliminated with this func-
tionality. The block number of a buf which is “under

delayed allocation” is -1. If the file is truncated before
the actual disk allocation, the data never touches the disk.
Disk allocation is caused either by a get buf reassociating
a buffer to another device and block number, or by a back-
ground daemon which periodically flushes out a percent-
age of dirty buffers (which can include delayed allocation
buffers).

The interface routines for clustering buffers are:

� chunkread – return a buffer cluster, start a readahead,
wait for I/O

� getchunk – return a clustered buffer associated with
a vnode

� chunkpush – push out buffers in a range for the given
vnode.

More details on IRIX clustering and the buffer cache
operation are given in later sections.

3 The Linux VFS Layer

In this section we describe the Linux VFS layer [17].

3.1 struct file system type

The struct file system type structure is used to register a
particular file system type with Linux. Its elements are:

name The name of the filesystem (ext2, nfs, xfs, ...)

flags These flags describe the type of file system that this
structure represents. The most commonly used flag
is FS REQUIRES DEV which tells Linux that this
filesystem must mount a block device. (Networked
filesystems such as NFS shouldn’t set this flag.)

read super function This is the function that is called to
mount a file system of this type.

When a file system module is initialized, it calls the
function register filesystem with a pointer to this struc-
ture. From that point on, any attempts to mount a file
system with that name find that structure. The structure’s
read super function is called to mount the file system.

The unregister filesystem function is called when the
file system module is unloaded from memory.
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3.2 struct super

The super block structure, struct super, contains fields and
operations having to do with the whole filesystem. The
major fields in the superblock include:

device name The device structure that describes the de-
vice the file system is mounted on. The device may
be zero for some distributed file systems.

file system blocksize The Linux VFS knows what size
buffers make up the file system.

root dcache entry The pointer to the root Dcache entry.
This means that the Linux VFS layer always has a
handle on the root inode of the file system. vnode/vfs
style operating systems have a vfs operation that re-
turns it.

file system private data The struct super contains a C
union which is the union of the private data of all
the different Linux file systems. This means that
memory for the struct super and the private data are
allocated all at once to reduce memory fragmenta-
tion. Installable filesystems can also use a void data
pointer in the union, so the kernel doesn’t have to
know about every filesystem when it is compiled.

super block operations The superblock defines opera-
tions that operate on that file system. Some of the
operations found here are typical of those associated
with a vfs layer, including:

� report block and inode usage information about
the file system

� remount the file system
� unmount the file system.

Linux’s super block operations are different from the
SVR4 vfs operations [15] in that they also include
operations to deal with the reading and writing in-
odes. There are operations to:

� read in an inode given the file system it belongs
to and its inode number.

� remove the inode from memory
� deallocte the inode
� modify the “stat”-type information about the

inode.

3.3 struct dentry

The Linux VFS layer also exploits the directory cache
(dcache). The dcache is a cache of directories and the in-
odes contained in them. Its function is to cache directory
lookups and inodes in memory in order to make directory
manipulation operations faster.

When the VFS wants to find a particular filename in a
directory, it first does a search of the dcache. If it finds the
entry in the dcache, it just uses that. If the entry is not in
the dcache, it issues a lookup call to the file system. The
new inode is then added to the dcache.

Since hard links are allowed in UNIX file systems,
there may be more than one dcache entry pointing to a
given inode. Each dcache entry represents a particular
path to that inode.

The dcache is made up of struct dentry structure. The
major members of this structure are:

inode pointer the inode that this dcache entry represents.

parent directory a pointer the the directory containing
this dcache entry.

name the name of this inode in the parent directory.

list of subdirectories If this dcache entry represents a di-
rectory, there is a partial list of its subdirectories.

private data and dcache operations The struct dentry
contains a pointer to private data and a set of oper-
ations that each specific file system can implement.
They are used by the file system to make sure the
dcache is current as other clients of a distributed file
system manipulate the directory tree.

The most important dcache operation is revalidate.
When the Linux VFS uses the data in the dcache to
avoid doing a lookup, it calls the revalidate opera-
tion. The revalidate asks the underlying file system
to make sure the dcache entry is still valid.

3.4 struct inode

The struct inode represents inodes in the Linux VFS layer.
The important members of the structure are:

inode number the Linux inode knows the number of the
inode it’s representing

“stat” information the inode contains the file size, per-
missions, ownership, timestamps, and link count
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list of Dcache entries a list of all the Dcache entries that
point to the inode is kept. This enables the Linux
VFS to find full path names for each inode in mem-
ory

inode private data there is a union similar to the one
stored in the struct super that holds data about the
inode that is private to the file system

inode operations These are the operations that act on
each inode, including lookup, create, symlink, read-
link, rename, mkdir, rmdir, unlink, mknod, and
bmap. Some of the notable operations that are miss-
ing in this structure are:

� operations that read in and throw away inodes
are in the super block operations

� readdir, read, write, ioctl, and fsync are part of
the file operations.

One operation that is unique to the linux inode struc-
ture is the revalidate operation. The Linux inode con-
tains “stat” information about the inode. For a local
file system, the information in the struct inode is al-
ways at least as current as the information that the
underlying file system has on disk. This isn’t true
for distributed file systems. The Linux VFS layer
needs the revalidate operation to ask the underlying
file system to refresh the information stored in the
struct inode. The Linux VFS can then act on this
current information.

3.5 struct file

Linux’s struct file contains operations that have to do a
particular file open. The important members of struct file
are:

dcache pointer this points to the dcache entry (and thus
the inode) that this struct file represents

file position the offset in the file where the next read or
write will take place

file modes the mode the file was opened for
(O RDONLY, O WRONLY, O RDWR, ...)

file operations a switch table of the operations that can
happen on a file. These include read, write, poll,
ioctl, mmap, open, close (called release), lseek, and
fsync. This structure is also used for block and char-
acter devices, so these operations are things that you
would want to do on a device or file in general. Read-
dir is also a file operation for some strange reason.

3.6 The Linux Buffer Cache

The Linux buffer cache is made up of a set of structures
called the struct buffer head. Each buffer contains a block
of data from disk. All buffers for a given device are of the
same size, although different devices can have different
sized blocks.

Some of the interesting buffer cache operations are:

set blocksize this function sets the fundamental block-
size for a given device

getblk getblk creates a buffer for a given block on the
underlying device

brelse brelse frees a buffer

ll rw block starts I/O on a given block

4 Key Issues in Porting XFS to
Linux

In this section, we describe several additional features re-
quired in the Linux kernel to maximize the performance
achievable with XFS. In addition, we describe alternative
porting strategies for moving XFS to Linux.

4.1 Integrating the Linux Buffer and Page
Cache with XFS

4.1.1 XFS requirements for the buffer and page
cache

The IRIX implementation of XFS depends on the buffer
cache for several key facilities. First, the buffer cache al-
lows XFS to store file data which has been written by an
application without first allocating space on disk. The rou-
tines which flush delayed writes are prepared to call back
into XFS, when necessary, to get XFS to assign disk ad-
dresses to such blocks when it is time to flush the blocks
to disk. Since delayed allocation means that XFS can see
if a large number of blocks have been written before it
allocates space, XFS is able to allocate large extents for
large files, without have to reallocate or fragment storage
when writing small files. This facility allows XFS to op-
timize transfer sizes for writes, so that writes can proceed
at close to the maximum speed of the disk, even if the
application does its write operations in small blocks.

Second, the buffer cache provides a reservation scheme,
so that blocks with delayed allocation will not take so
much of the available memory that XFS would deadlock
on memory when trying to do metadata reads and writes
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in the course of allocating space for delayed allocation
blocks.

Third, the buffer cache and the interface to disk drivers
support the use of a single buffer object to refer to as much
as an entire disk extent, even if the extent is very large and
the buffered pages in memory are not contiguous. This is
important for high performance, since allocating, initializ-
ing, and processing a control block for each disk block in,
for example, a 7 MB HDTV video frame, would represent
a large amount of processor overhead, particularly when
one considers the cost of cache misses on modern proces-
sors. XFS has been able to deliver 7 GB/second from a
single file on an SGI Origin 2000 system, so the overhead
of processing millions of control blocks per second is of
practical significance.

Fourth, the buffer cache supports “pinning” buffered
storage in memory, which means that the affected buffers
will not be forced to disk until they have been ”unpinned”.
XFS relies on this capability to keep metadata updates
from being written to disk until after the log entries for
those updates have been written to disk. That is, XFS
keeps just one version of the metadata on disk (not count-
ing any copies in the log), and requiring that the log
be written before the metadata updates are written back
means that recovery can simply apply after-images from
the log to make the metadata consistent.

4.1.2 Mapping the XFS view of the buffer and page
cache to Linux

With Linux 2.3, the intent is that most file system data will
be buffered in the page cache, but I/O requests are still
issued one block at a time, with a separate buffer head
for each disk block and multiple buffer head objects for
each page (if the disk block size is smaller than the page
size). As in Linux 2.2, drivers may freely aggregate re-
quests for adjacent disk blocks to reduce controller over-
head, but they must discover any possibilities for aggre-
gation by scanning the buffer head structures on the disk
queue.

Our plan for porting XFS is to build a layered buffer
cache module on top of the Linux page cache, which al-
lows XFS to act on extent-sized aggregates, as in IRIX,
even if the actual I/O operations are performed by creating
a list of buffer head structures to send to the disk drivers.
We will also explore how to extend the Linux driver inter-
face to support queueing aggregate buffers directly to the
drivers, at least for any drivers which support the extended
interface. If the extension is optional, then perhaps only
the SCSI driver need be changed to support it.

A key goal for the layered buffer cache module is that

its objects be strictly temporary, so that they are discarded
when released by the file system, with all persistent data
held purely in the page cache. This will require storing
a little more information in each mem map t, but it will
avoid creating yet another class of permanent system ob-
ject, with separate locking and resource management is-
sues. The IRIX buffer cache is about 11,000 lines of very
complex code. By relying purely on the page cache for
buffering, we expect to avoid most of the complexity, par-
ticularly in regard to locking and resource management,
at the cost of having to pay careful attention to efficient
algorithms for assembling large buffers from pages.

4.2 Issues for the aggregate buffer cache
module

4.2.1 Partial Page Mappings

In general, disk extents will not align with page bound-
aries. This means that a given page in the page cache
may map to several different disk extents, depending on
the block size and the page size, which means that several
different aggregate buffers may address the same page.
Moreover, for efficient I/O, it is desirable to read or write
entire extents, so a given page may be only partially valid
when an aggregate buffer referencing it is released. This
implies that the mem map t needs to include a bit map
of which blocks within the page are valid. On a virtual
memory fault for such a page the virtual memory system
must force the missing parts of the page to be read (which
might, as a side-effect, cause other partially-read pages to
be created in the page cache).

4.2.2 Partial Aggregate Buffers

In general, not all of the pages in a given aggregate buffer
will be in the page cache when the file system requests the
buffer. The aggregate buffer module will supply several
interfaces to obtain buffers. One interface will return the
buffer with empty pages, marked not valid, supplied for
the “holes”. Another will force the empty pages to be read
in from disk. XFS makes use of both interfaces, since in
some cases (such as a write which covers an entire extent),
the old value of the missing pages is not needed.

4.2.3 Efficient Assembly of Buffers

At present, pages are both entered in a hash table, based
on the inode and offset, and on a page list associated with
the inode. This means that one must probe the hash table
for each page in the range of a buffer when assembling the
buffer. If the list of pages for an inode were kept sorted,
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then one could simply find one page and walk the list to
find the rest. Better yet, if the pages were on an AVL
tree associated with the inode, and not in the hash table at
all, then one could easily search the tree to find the first
valid page, and immediately know that prior pages were
not valid.

4.3 Metadata Buffers

In order to have just one way to do I/O for XFS, the ag-
gregate buffer cache will use the page cache to store XFS
metadata. The metadata pages will be associated with the
device inode on which the file system (and the log, if sep-
arate) is located.

4.4 Direct I/O

For files which are referenced multiple times, and partic-
ularly for small files, saving a copy of the file contents
in the page cache is very desirable. For very large data
files, such as streaming video files, this can be worse than
useless, since caching such data will force useful data
out of the cache. Also, for very large files transferred
at high rates, the processor overhead of copying all of
the data is very high. XFS supports doing the file sys-
tem equivalent of “raw I/O”, called direct I/O, where file
data moves directly between the file system and the user
buffers (whether reading or writing). This has proved suf-
ficiently efficient that even large databases may be effi-
ciently stored in the file system, thereby simplifying sys-
tem administration.

Direct I/O shares with raw I/O the need to lock the user
buffer pages in memory during the I/O transfer, since the
disk driver will be asked to transfer directly to or from
those pages. For consistency and simplicity of interfaces,
it is highly desirable, therefore, that the aggregate buffer
cache module allow XFS to bind a buffer object to a range
of user memory (suitably locked), and then do I/O on the
buffer object in the usual way.

4.5 Alternative Porting Strategies

We are considering three principal strategies for porting
XFS to Linux:

1. change Linux to directly support an IRIX-like vn-
ode/vfs interface, thereby minimizing the changes
required in XFS and enhances Linux to more easily
support other vnode/vfs file systems

2. change XFS so that it can be directly integrated
into the existing Linux VFS, thereby minimizing the
changes required in Linux

3. introduce a layer between XFS code and the Linux
VFS interface that translates Linux VFS calls into
the equivalent IRIX vnode/vfs operations.

The first strategy would require a new vnode/vfs layer
that would parallel (but probably not replace) the existing
Linux VFS layer. Because the vnode/vfs interface is not
standardized across the different UNIX implementations
[15], it is unlikely that the Linux vnode interface created
for XFS would directly support file systems from other
vendors, but it would make porting vnode/vfs-based file
systems easier. This might be turned into an opportunity
to develop an open source standard vnode/vfs interface in
the highest volume UNIX implementation, thereby cre-
ating a de-facto vnode/vfs interface standard in code. In
any case, this would require major changes to the existing
Linux kernel. Also, at this time it is unclear how the Linux
community in general and Linus in particular would react
to these proposed changes.

Changing XFS to fit directly into Linux VFS interface
would require significant changes to nearly every XFS
routine. The current source code organization would need
to be significantly changed. In addition, XFS uses the
UNIX uio structure to describe the I/O transfer required
at the system call level, and the uio structure is embedded
throughout the XFS code. XFS consists of a lot of sophis-
ticated code. Some commercial journaled file systems we
are aware of consist of more than 150,000 lines of C code.

The third alternative is to integrate the XFS vnode and
XFS vfs object as private file-system-dependent data in
the struct inode and struct super block data in Linux.

This approach introduces a translation layer between
the XFS code and the Linux VFS interface. This layer
will translate Linux VFS calls into the equivalent XFS vn-
ode operations. The XFS vnode itself would be attached
to the private data area of the Linux inode, while the XFS
vfs object would be attached to the private data area of the
Linux superblock. As an example, a create request to the
file system would get mapped to the XFS create via this
pointer to the XFS vnode, which includes the vnode oper-
ation for create. Similarly, a mount operation (on Linux,
the read super vfs call) would result in a call to the XFS-
specific mount operation available through the Linux su-
perblock’s pointer to the vfs object.

This approach is shown in figure 5 and figure 6.
Currently, we are focusing on the third alternative as

the fastest way of getting the port to Linux completed.
The overhead introduced by the translation layer should
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Figure 5: Converting an Linux VFS operation to an XFS vfs operation.
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be relatively small: the wrapfs stackable file system layer
[11] was found to yield about 7-10% additional overhead.
We expect the XFS translation layer overheads to be less
than 5Changing XFS to fit directly into the Linux XFS
interface is still an option for this project in the future.
The initial XFS port will be to the 2.2 kernel as a module.

4.6 Volume Management

XFS depends on a volume manager for providing an inte-
grated block interface to a set of disk drives. The current
XFS implementation relies on xlv, a relatively simple log-
ical volume manager developed by SGI to support XFS.
There are two volume managers available in Linux today:
Linux lvm [13] and md [18]. MD focuses on software
RAID support, whereas Linux lvm is a more traditional
logical volume management layer modeled after the HP-
UX design, which itself followed the OSF/1 model.

Linux lvm adds an additional layer between the phys-
ical peripherals and the i/o interface in the kernel to get
a logical view of disks. Unlike current partition schemes
where disks are divided into fixed-sized sections, lvm al-
lows the user to consider disks, also known as physical
volumes (PV), as a pool (or volume) of data storage, con-
sisting of equal-sized extents.

An lvm volume consists of arbitrary groups of physical
volumes, organized into volume groups (VG). A volume
group can consist of one or more physical volumes. There
can be more than one volume group in the system. Once
created, the volume group, and not the disk, is the basic
unit of data storage.

The pool of disk space that is represented by a volume
group can be divided into virtual partitions (called logi-
cal volumes – LV) of various sizes. A logical volume can
span a number of physical volumes or represent only a
portion of one physical volume. The size of a logical vol-
ume is determined by the number of extents it contains.
Once created, logical volumes can be used like regular
disk partitions to create a file system or as a swap device.

Currently, we plan to use Linux lvm to support XFS
logical volume manager requirements. However, SGI’s
new XVM volume manager will become available on
Linux in the near future, and XFS will exploit its advanced
features.

5 Summary

As the XFS port to Linux proceeds, source
code and progress reports will be posted to
http://oss.sgi.com/projects/xfs. The porting team

will be presenting its work at various Linux conferences
over the coming year, and we look forward to working
more closely with the Linux developer community as the
source code becomes available. At the present time, the
source code is being reviewed to insure that it can be
GPL’ed without any restrictions. Once this code review is
complete, the XFS source code will be made available at
the web site.
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