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Abstract

Today, only little is known about how to efficiently plan ambulance services. Key issues, such
as uncertainty in demand (in this case, emergency call volumes) and supply (in this case, available
vehicles and ambulance personnel), have to be addressed more thoroughly. The current paper provides
insight in dealing with randomness in the ambulance service planning. The focus is on high-priority
calls.

We analyze whether a Poisson approximation of the call arrival process is suitable and what
distribution would reasonably fit the occupancy time data (the total time an ambulance is busy).
Based on these new findings, we develop a simple capacity planning method. Through a statistical
analysis we discover that the call arrival process displays a monthly seasonal pattern and a day-of-
the-week pattern. We also find that an inhomogeneous Poisson process approximates reasonably well
the call arrival process during the day. Consequently, a forecasting model for the call arrival process
is developed. A similar analysis is conducted to identify patterns in the occupancy time. As a results,
two distribution approximations are given: Erlang (5) and Hypo-exponential distribution, with the
latter one being the more intuitive choice.

The Erlang-B model with time-dependent arrival rate and time-dependent mean occupancy time
is used to design the capacity planning. Validation of the results is also provided and we conclude
that the Erlang-B performs well.

Directions for further research include a time-dependent approach, which applies the occupancy
time distribution approximations, the extension of the current results to incorporate other types of
calls and the design of crews schedule according to the new capacity planning method.

The confidential sections of the current internship report are available upon request.
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1 Introduction

1.1 About CWI

CWI (Centrum voor Wiskune en Informatica) is the national research institute for math-
ematics and computer science in the Netherlands. From its foundation in 1946, CWI has
performed fundamental scientific research within these fields and maintained an active link
with the society through the channel of knowledge: new ideas have been discovered, developed
and transferred to various domains, such as telecommunication, stock market, public trans-
port, internet, meteorology etc. As one of the founding members of the European Research
Consortium for Informatics and Mathematics, CWI has set the standards for international
cooperation between researchers, attracting talents from several countries world-wide.

The current strategy of the institute focuses more on practice, in the sense that researchers
at CWI thrive to actively answer questions raised within the four most relevant society fields:
Earth and life sciences (modeling, simulation and data analysis that accompany conventional
experimentation for geological and biological research), Data explosion (models, methods and
techniques necessary to manage, study and exploit the increasing amounts of data), Societal
logistics (principles and methods that address crucial issues in the society: efficient and
flexible organization of traffic and transport, commerce and public services) and Software as
service (definition and deployment of standards and methods for the discovery, evaluation,
combination and integration of services, without access to the underlying source code, within
the context of the tremendous Internet growth)1.

1.2 Motivation for the Current Research

Part of the research done within the Societal logistics topic concerns an efficient planning of
ambulance services. Delivering high-quality service at affordable costs is of crucial impor-
tance, not only for ambulance service providers everywhere, but also for everyone of us that
experience life-threatening situations. Today, only little is known about how to efficiently plan
ambulance services. Handling the large costs generated by the acquirement and maintenance
of the emergency medical service equipment and the assurance at the same time of highly
qualified staff is a complex optimization problem that also has practical limitations such as
data availability and computational resources. Therefore, there is need for the development
of smart planning methods so that ambulance service providers could assure a high service
quality level.

The optimization of various aspects of emergency medical service vehicle systems has been
a very active area of research for applied mathematics and operations research. There has
been a great deal of articles dealing with the development of models that provide support
in the decision making process of key issues such as the scheduling of crews, bases locations,
capacity and staffing of ambulance bases etc (see the following section for most relevant

1More information on the CWI research fields can be found electronically at http://www.cwi.nl
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references in the field). Nevertheless, one aspect seems to lack from all these papers and that
is the analysis of the stochastic nature of the input data. Neglecting the impact of uncertainty
and assuming an a priori known deterministic demand (in this case, emergency call volumes)
and supply (availability of vehicles and ambulance personnel) inevitably leads to inefficient
planning of ambulance services.

The current paper provides insight in dealing with randomness in the ambulance service
planning and, subsequently, develops appropriate quantitative models that help implement a
more efficient planning of ambulance services.

The first step we make is to analyze whether a Poisson approximation of the call arrival
process is suitable. Several questions arise from this direction, such as the existence of a daily
effect, the occurrence of a moment-of-the-day effect, the presence of trend and/or seasonal
patterns etc. and what the impact of these effects is on the rate at which calls arrive at the
call center. As a short explanation, the existence of a daily effect means that the call volumes
in different days of the week might be generated by Poisson distributions with different pa-
rameters. A moment-of-day-effect is detected when calls in the morning arrive at a different
rate than calls in the afternoon, which suggests that an inhomogeneous Poisson process would
be more adequate to model the call arrival process. Moreover, we check whether the accuracy
of daily and hourly call volumes predictions is indeed improved through the addition of the
special-effects parameters to the forecasting model.

The second step regards the travel time distribution (further denoted as the service time)
from the base to any emergency site, which if known leads to the possibility of computing any
steady state performance measure, as suggested in Restrepo (2008). Of course, the degree of
complexity will increase (significantly for more elaborate models). However, simple prediction
models could easily integrate this specification, especially since closed-form expressions are
already known for a queueing model with a series of distributions of the service time. The
mathematical analysis is accompanied by statistical tests (performed in R), carried out on the
available data.

We proceed in the third and final step with the capacity planning by adapting models
from the literature to our new findings (call arrival behavior and service time distribution)
and carrying out the tailored forecasting procedures.

The most important result of the current research project is the simplicity of the developed
models. As the performed statistical analysis has proved, the stochastic nature of the input
data can be effectively captured through simple forecasting models. The predictions are
obtained with high accuracy and in short computation times. Thus, our models build a
sustainable source of forecasting techniques for further phases of estimating call volumes
simultaneously over time and space, static and dynamic (re)deployment of ambulances among
a number of bases.

1.3 Literature Review on Ambulance Service Planning

Ambulance service planning has stirred the interest of a great number of researchers. The
literature on the topic is extensive, with developments in several directions, which include
scheduling of crews, ambulance stations locations, and capacity and staffing of ambulance
stations for both static and dynamic deployment of ambulances. The static ambulance de-
ployment problem refers to the optimization problem of allocating a fixed number of ambu-
lances among a set of bases, with the ultimate goal of ensuring the best possible medical
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outcomes for patients. The dynamic ambulance deployment problem refers to the real-time
relocation of idle ambulances among a set of stations. Through this strategy, repositioned
idle ambulances can compensate for those that are busy, hence unavailable to respond to
incoming calls. For a review of the research done within the static and dynamic ambulance
deployment topics, we refer the reader to Restrepo (2008), which presents both previous
methods and also new approaches to finding solutions for the two optimization problems.

Due to the nature of the available data, this paper focuses on the staffing of one single
ambulance base. It addresses, however, the aspect of randomness present in the call arrivals
and travel times. Although improving the ambulance service planning models in the context
of stochasticity is a rather new approach, there are several papers that are relevant to our
work. For instance, the analysis of special-day effects and seasonal patterns within the call
arrival process, was tackled by Channouf et al. (2001) in their attempt of developing
forecasting techniques using time-series models.

Another key result is presented in the case study of Erkut et al. (2009) on data coming
from the Emergency Medical Services system of Edmonton, Canada. The paper evaluates
the performance of several maximum coverage optimization models in terms of uncertainty
in response times and ambulance availability. The maximum coverage models deal with the
optimal number of ambulance stations so that the average response times to any demand
node is within a preset limit.

Ingolfsson et al. (2008) also incorporates randomness for both travel times and ambu-
lance availability but adds a random delay component, which accounts for the activity prior
to travel to the scene. The model minimizes the number of ambulances needed to provide
a specified service level for a set of (existing or planned) ambulances stations with known
locations. A similar approach was developed in Erkut et al. (2008) by incorporating a
survival function into existing covering models. A survival function is a monotonically de-
creasing function of the response time of an emergency medical service vehicle to a patient
that returns the probability of survival for the patient.

More on how travel times depend on distances and how to use this dependence to improve
coverage can be found in Budge et al. (2008). Daytime patterns for travel times are also
discussed and included in the model.

The more complex problem of crews scheduling in the context of static ambulance de-
ployment with random travel times was treated in Erdoğan et al. (2009). They develop
a search algorithm that solves the static ambulances location problem so that the expected
coverage is maximized, while considering probabilistic response times.

Another complex planning tool for the static deployment of ambulances is presented in the
case study of Henderson and Mason (2005), developed for St. John Ambulance Service
provider in Auckland, New Zealand. The novelty of their tool comes from the direct use of real
data as recorded in a database (trace-driven simulation), the use of a detailed time-varying
travel model for modeling travel times in the simulation, and the development of a geographic
information system which provides a spatial visualization of the data.

Our method attempts to combine results from these papers into a simple but effective
staffing rule. It is based on the incorporation of the randomness present in call arrivals and
travel times, but in addition it provides a thorough statistical analysis of the data behavior.
This case study confirms the Poisson distribution is an adequate approximation of the call
arrival process (which is the most usual assumption in theory). It also reveals a new ap-
proximation for the travel times random duration (through a hypo-exponential distribution).
To obtain the capacity planning, the well-known Erlang-B formula is applied. A validation

4



procedure analyzes the impact of the proposed planning in practice.

1.4 Structure of the Report

The remainder of the report is organized as follows. Chapter 2 provides some background
knowledge concerning the main mathematical aspects that are included in our analysis. In
Chapter 3, we develop the forecasting model for the daily and hourly call volumes, using
insights provided by statistical analysis on historical data. Chapter 4 provides the data
analysis and the approximation of the travel times distribution and Chapter 5 the proposed
staffing schedule on an hourly basis. The performance of the models is evaluated through
several error measurements. Conclusions and directions for further research are presented in
Chapter 6.
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2 Background Knowledge

The main mathematical aspects covered in this paper are summarized in the following sections
in order to facilitate a better understanding of the results of the current research.

2.1 Poisson Process

The counting process N(t), t ≥ 0, is said to be a Poisson process having rate λ, λ ≥ 0, if

• N(0) = 0.

• The process has independent increments.

• The number of events in any interval of length t is Poisson distributed with mean λt.
That is, for all s, t ≥ 0

P(N(s, s + t) = k) = e−λt (λt)k

k!
, for k = 0, 1, 2 . . . .

Since most of the events modeled through Poisson processes are arrivals to a system (telephone
call requests at a switchboard, page view requests to a website etc.), we further refer to our
events as arrivals.

An equivalent characterization of the Poisson process is by the interarrival times, which
are then independent and exponentially distributed with parameter λ. The equivalence can
be seen by looking at the probability that there are no events within [s, t]:

P(next event after s + t|event at s) = P(N(s, s + t) = 0) = e−λt.

Thus, the time until the kth arrival has as distribution a sum of exponentially distributed
random variables, which is commonly known as a Gamma or Erlang distribution with shape
parameter k and scale parameter λ.

The above theoretical considerations concern a homogeneous Poisson process. In this
case, given a number of arrivals N [0, T ], then they are uniformly distributed in [0, T ]. For the
inhomogeneous case we abandon this assumption and instead we assume that the arrival time
is determined according to a distribution with a piece-wise continuous density f on [0, T ].

Define γ = EN(T ), the expected number of events in [0, T ] and λ(t) = f(t)γ, the the rate
function. Then the number of arrivals for an interval [s, t], with t ≤ T , N(s, t) has a Poisson
distribution with parameter γ

∫ t
s f(u)du and EN(s, t) =

∫ t
s λ(u)du. Again, arrivals in disjunct

intervals are independent. Note that if λ(t) is constant, then we have a homogeneous Poisson
process.

For the interarrival times, the time until the next arrival after a fixed point in time is
characterized by the rate function λ(t). Take X1 as the time until the first arrival, then

P(X1 > t) = P(N(t) = 0) = e−
∫ t
0 λ(s)ds.
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Thus X1 can have any distribution, depending on the rate function λ(t).
For alternative definitions and additional properties of the Poisson process, we refer the

reader to Ross (1997) and Koole (2009).

2.2 Erlang Loss Model

Several traffic models exist which share their name with the Erlang unit of traffic. They are
formulae which can be used to estimate the number of servers required in queueing systems.

One of the most commonly used traffic models is the Erlang B model. It determines how
many servers are required in a system if the traffic intensity (in Erlangs) is known. The model
assumes that all blocked calls are immediately cleared from the system and it is based on the
Erlang formula:

B =
ρN

N !∑N
i=0

ρi

i!

,

where N denotes the capacity of the system and ρ the traffic intensity, which is defined as
the product of the call arrival rate and the mean service time. The output of the Erlang
formula is the percentage of blocked calls. An important property of the Erlang formula is
its insensitivity to the distribution of the service time. This makes the Erlang formula both
simple to apply and robust to changes in the traffic characteristics.

Another well-known model is the Erlang C model, which assumes that all blocked calls stay
in the system until they can be handled. This model is most often applied to the design of call
centers agents scheduling where, if calls cannot be immediately answered, they enter a queue.
An extension of the Erlang C model is the Erlang A model, which includes abandonments,
meaning that the calls waiting in the queue may leave the queue without being served.

2.3 Hypo-exponential Distribution

The hypo-exponential distribution or the generalized Erlang distribution is a continuous dis-
tribution with applications in queueing theory and more generally in the field of stochastic
processes. The Erlang distribution is a series of k exponential distributions, each with rate µ.
The hypo-exponential is a series of k exponential distributions each with their own rate µk.
If we have k independently distributed exponential random variables Xk, then the random
variable X =

∑k
i=1 Xi is hypo-exponentially distributed.

Its name derives from the fact that it has a coefficient of variation smaller than one,
compared to the hyper-exponential distribution that has a coefficient of variation greater
than one. Note that the exponential distribution has a coefficient of variation equal to one.
The hypo-exponential has a minimum coefficient of variation of 1/k, which corresponds to
the Erlang distribution with shape parameter k and scale parameter µ (Wikipedia (2009)).

To compute its probability density function is not trivial. We give here a summary of the
computations involved and refer the reader to Ross (1997). For the case of a series of two
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exponentials, with rates µ1 6= µ2, we have

fX1+X2(t) =
∫ t

0
fX1(s)fX2(t− s)ds

=
∫ t

0
µ1e

−µ1sµ2e
−µ2(t−s)ds

= µ1µ2e
−µ2t

∫ t

0
e−(µ1−µ2)sds

=
µ1

µ1 − µ2
µ2e

−µ2t +
µ2

µ2 − µ1
µ1e

−µ1t.

Similar computations yield that, for a series of three exponentials,

fX1+X2+X3(t) =
3∑

i=1

µie
−µit

(∏

j 6=i

µj

µj − µi

)
,

which suggests the general formula (for a series of k exponentials, with different µk’s)

fX(t) =
k∑

i=1

∏

j 6=i

µj

µj − µi
µie

−µit.

This can be proven by induction on k. Integrating on both sides from t to ∞ yields that the
tail distribution function of X is given by

P(X > t) =
k∑

i=1

∏

j 6=i

µj

µj − µi
e−µit, (2.1)

further denoted as F̄k(t).
An intuitive derivation of the tail distribution of the hypo-exponential distribution is

offered in Koole (2009).

Remark 1. If we have a system where abandonments are allowed and we assume exponential times
(with rate γ) until abandonments occur, then abandonments can be incorporated in the Erlang delay
model. The arrival rate is λ(x, x + 1) = λ and the departure rate for state 0 < x ≤ s is equal to
λ(x, x− 1) = xµ, where λ is the Poisson arrival rate to the system and µ is the service rate. However,
the departure rate for higher states is different: λ(s + x, s + x− 1) = sµ + xγ, for all x > 0. Note that
the system is always stable, independent of the values of λ, µ and s, as long as γ > 0. In this system
the waiting time distribution, conditioned on the state, is not a gamma distribution anymore, as in
the case of an M/M/s queue, but a hypo-exponential distribution. For example, if a customer arrives
in state s + k (there are k waiting customers in front of him/her), then this customer has to wait the
sum of exponentially distributed random variables with rates sµ + kγ, sµ + (k − 1)γ, . . . , sµ before
being served, which implies a hypo-exponentially distributed waiting time.

The proof of this result follows from the properties of the exponential distribution; for
h > 0 small and k > 1, we have that

Fk(t + h) = µkhFk−1(t) + (1− µkh)Fk(t) + o(h).
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Rewriting and taking the limit as h → 0, the above becomes

F̄ ′
k(t) = µk(F̄k−1(t)− F̄k(t)), for k > 1.

By differentiating Equation (2.1) and plugging it into the above formula, we conclude that,
after some rewriting, Equation (2.1) gives the solution to F̄k(t).

To derive the moments of the hypo-exponential distributions, a Laplace transform provides
relatively easy computations. As a reminder, the Laplace transform of a non-negative random
variable X ≥ 0 with probability density function f̃(x) is defined as

f̃(s) =
∫ ∞

0
e−stf(t)dt = E[e−sX ] =

∫ ∞

0
e−stdF (t).

In our case,

f̃(s) =
k∏

i=1

µi

µi + s
,

since we have a series of k exponentials with individual rates µi. One can compute the first
two moments as follows:

E[X] = −f̃ ′(0),

E[X2] = f̃ ′′(0). (2.2)

It can be proven by induction that

f̃ ′(s) = −f̃(s)
k∑

i=1

1
µi + s

, (2.3)

and

f̃ ′′(s) = f̃(s)

[(
k∑

i=1

1
µi + s

)2

+
k∑

i=1

(
1

µi + s

)2]
. (2.4)

By plugging (2.3) and (2.4) into (2.2) and working out the computations (with f̃(0) = 1), we
find that

E[X] =
k∑

i=1

1
µi

, (2.5)

E[X2] =

(
k∑

i=1

1
µi

)2

+
k∑

i=1

1
µ2

i

.

Hence it follows immediately that

V ar[X] =
k∑

i=1

1
µ2

i

. (2.6)
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2.4 Time Series Analysis

The analysis of experimental data, observed at different points in time, leads to new problems
in statistical modeling due to correlations introduced by sampling adjacent points in time.
Obviously, traditional statistical methods cannot be applied anymore, since they are based
on the main assumption of independence between these observations. The newer approach
that tries to solve this problem is commonly referred to as time series analysis.

The primary objective of time series analysis is to develop mathematical models that
provide plausible descriptions for the sampled data. A time series is defined as a collection of
random variables indexed according to the order they are obtained in time. {xt} will further
denote the value taken by the series at time t, with t = 0,±1,±2, . . .. A simple example
of time series is a collection of independent random variables, wt, with mean 0 and finite
variance σ2

w. This time series is called white noise, due to its applications in engineering. A
particular case of the white noise is the Gaussian white noise, for which wt are independent
normally distributed variables. If the stochastic behavior of time series could be explained in
terms of the white noise, then classical statistical methods would suffice.

Auto-correlation and Cross-correlation

Two ways of introducing smoothness into time series models are moving averages and autore-
gressions. For example, if we have a white noise series and we replace the value wt by the
average of its current value and its immediate neighbors in the past and future, we obtain a
smoothed series {vt}:

vt =
1
3
(wt−1 + wt + wt+1),

Now consider a time series denoted by {xt} and the white noise series. The output of equation

xt = xt−1 − 0.9xt−2 + wt,

computed successively for t = 2, 3, . . . , 500, represents a smoothed series on xt, built as a
regression of the current value on the past two values of the series. The starting values
xt0 , xt1 are known a priori. Since the regression is on values of the same series, the model
bears the name of autoregression.

The dependence between two adjacent values xs and xt can be assessed through covariance
and correlation. The autocovariance function measures the linear dependence between two
points in the same series observed at different times and is defined as follows:

γx(s, t) = E[(xs − µxs)(xt − µxt)], for all s and t,

where µxs and µxt denote the mean over all possible events that could have produced xs and
xt, respectively. Obviously, if s = t, the autocovariance reduces to the variance:

γx(t, t) = E[(xt − µxt)2].

The autocorrelation function (ACF) measures the linear predictability of xt using the value
xs and is defined as

ρx(s, t) =
γx(s, t)√

γx(s, s)γx(t, t)
.
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It can be easily seen that −1 ≤ ρx(s, t) ≤ 1, with ±1 meaning a perfect linear prediction.
The autocorrelation not accounted for by lags s+1 to t−1 is called partial autocorrelation

(PACF). In other words, the partial autocorrelation function measures the autocorrelation
between xs and xt with the linear dependence of xs+1 through xt−1 removed.

We would also like to measure the predictability of another series yt from the series xt.
We have the cross-covariance function

γxy(s, t) = E[(xs − µxs)(yt − µyt)]
and the cross-correlation function

ρxy(s, t) =
γxy(s, t)√

γx(s, s)γy(t, t)
.

It is easily possible to extend the above to multivariate time series.
Although we have not made any special assumptions in the above definitions, a sort

of regularity in the data behavior exists. This regularity is called stationarity. The strict
stationarity identifies the equality

P(xt1 ≤ c1, . . . , xtk ≤ ck) = P(xt1+h ≤ c1, . . . , xtk+h ≤ ck),

for all k = 1, 2, . . . , time points t1, t2, . . . , tk, numbers c1, c2, . . . , ck and all time shifts h =
0,±1,±2, . . .. In other words, a series is strictly stationary if the probabilistic behavior of
every collection of values {xt1 , . . . , xtk} is identical to that of the shifted set {xt1+h, . . . , xtk+h}.

This version of stationarity is too strong for most applications. Therefore, a milder version,
called weak stationarity is commonly used. The conditions imposed on a time series xt to be
weakly stationary are:

• The mean value function µxt is constant and does not depend on t (µxt = µ for all
t = 1, 2, . . .);

• The covariance function γx(s, t) depends on s and t only through their difference h =
|s− t|, called the lag.

Further on, the term stationarity will identify weak stationarity.
In this setting, for s = t + h, we have γx(t + h, t) = γx(h, 0), which will be denoted by

γx(h). The autocorrelation function is then given by
γx(h)
γx(0)

and the cross-correlation function

by γxy(h)√
γx(0)γy(0)

.

Usually, the analysis is performed on sampled data. For a sample of n data points, the
above theoretical functions will be estimated by the following:

• The sample autocovariance function, defined as γ̂(h) =
1
n

n−h∑
t=1

(xt+h − x̄)(xt − x̄), where

x̄ is the sample mean;

• The sample autocorrelation function, defined as ρ̂(h) =
γ̂(h)
γ̂(0)

;

• The sample cross-covariance function, defined as γ̂xy(h) =
1
n

n−h∑
t=1

(xt+h−x̄)(yt−ȳ), where

x̄ and ȳ are the sample means;
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• The sample cross-correlation function, defined as ρ̂xy(h) =
γ̂xy(h)√

γ̂x(0)γ̂y(0)
.

The sample autocorrelation function has a sampling distribution that allows us to assess
whether the data comes from a completely random series or whether correlations are sta-
tistically significant at some lags. The sample cross-correlation function can be examined
graphically as a function of lag h to search for leading or lagging relations in the data.

Time Series Models

In the time series context, expressing xt as a linear combination of previous values (e.g.,
xt−1, xt−2, . . . , xp) and lagged values of another series (e.g., yt−1, yt−2, . . . , yt−q) has a large
range of applications. The simplest example of a regression model as such is the estimation
of the trend within a data sample. Let xt, for t = 1, . . . , n, be a dependent time series and
wt the Gaussian white noise. Then, by fitting the model

xt = β1 + β2t + wt, t = 1, . . . , n,

we obtain the estimated coefficients β̂1 and β̂2 and we can estimate the trend. The model
above assumes that the data has a stationary behavior around a trend. Therefore, estimating
and eliminating the trend yields a stationary process.

A systematic class of models that handle time-correlated modeling and forecasting was
developed by Box and Jenkins (Box and Jenkins (1970)). The autoregressive integrated
moving average (ARIMA) models identify several components present in the data (e.g., trend,
seasonal patterns), using sample ACF and sample PACF plots. The usual notation for this
class of models is given below:

• The backshift operator B, defined as Bkxt = xt−k;

• Differences1 of order d, ∇d, defined as ∇d = (1−B)d;

• The autoregressive operator φ(B) of order p, defined as φ(B) = 1− φ1B − . . .− φpB
p;

• The moving average operator θ(B) of order q, defined as θ(B) = 1 + θ1B + . . . + θqB
q;

• The seasonal autoregressive operator ΦP (Bs) of order P and seasonal lag s, defined as
ΦP (Bs) = 1− Φ1B

s − . . .− ΦP BPs , where Ps = P ∗ s;

• The seasonal moving average operator ΘQ(Bs) of order Q and seasonal lag s, defined
as ΘQ(Bs) = 1 + Θ1B

s + . . . + ΘQBQs , where Qs = Q ∗ s;

• The seasonal difference ∇D
s of order D, defined as ∇D

s = (1−Bs)D.

We can now introduce the ARMA, ARIMA, multiplicative seasonal ARMA and multiplicative
seasonal ARIMA models.

A time series {xt} with t = 0,±1, . . . , is ARMA(p, q) if it is stationary and

xt = φ1xt−1 + . . . + φpxt−p + wt + θ1wt−1 + . . . + θqwt−q,

1By differencing a time series, non-stationary components are eliminated and a stationary process is ob-
tained.
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with φp 6= 0, θq 6= 0, σ2
w > 0 and {xt} with a nonzero mean. In concise form, the model can

be written as

φ(B)xt = θ(B)wt.

A time series {xt} with t = 0,±1, . . . , is ARIMA(p, d, q) if ∇dxt = (1− B)dxt is ARMA(p, q).
In concise form, the model can be written as

φ(B)∇dxt = θ(B)wt.

The multiplicative seasonal ARMA, denoted by ARMA(p, q)× (P, Q)s, is given by

ΦP (Bs)φ(B)xt = ΘQ(Bs)θ(B)wt.

The multiplicative seasonal ARIMA, denoted as ARIMA(p, d, q)× (P, D, Q)s is given by

ΦP (Bs)φ(B)∇D
s ∇dxt = ΘQ(Bs)θ(B)wt.

To determine which type of model suits the data, a graphical analysis of the autocorrelation
(ACF) and partial autocorrelation (PACF) functions is conducted. Table 2.1 and Table
2.2 show how to translate the conclusions from these graphs into a time series model. For
graphical examples, see Chapter 3 of Shumway and Stoffer (1999).

AR(p) MA(q) ARMA(p, q)
ACF Tails off Cuts off after lag q Tails off
PACF Cuts off after lag p Tails off Tails off

Table 2.1: Behavior of ACF and PACF for ARMA models

AR(P )s MA(Q)s ARMA(P, Q)s

ACF Tails off at lags ks, k = 1, 2, . . . Cuts off after lag Qs Tails off at lags ks

PACF Cuts off after lag Ps Tails off at lags ks, k = 1, 2, . . . Tails off at lags ks

Table 2.2: Behavior of ACF and PACF for ARIMA models

In practice it is usually the case that several models verify the conditions presented in
the above tables. One of the methods to determine which model estimates the data behavior
best is the Akaike’s Information Criterion (AIC). It is the best method for regression models
on small samples with a large number of parameters (see Chapter 2 from Shumway and
Stoffer (1999)). The AIC is defined as

AIC = ln σ̂2
k +

n + 2k

n
,

where n is the sample size, k the number of parameters and σ̂2
k the maximum likelihood

estimator for the variance, determined as

σ̂2
k =

RSSk

n
,

with RSSk the sum of squared residuals. The model that scores the highest AIC will explain
the data behavior best.

For detailed information on time series analysis, we refer the reader to Shumway and
Stoffer (1999).
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2.5 Prediction Error Measurements

A crucial part of the modeling process is to evaluate of whether a given mathematical model
describes the system accurately. This question can be difficult to answer as it involves several
different types of evaluation. Usually, the easiest part of model evaluation is checking whether
a model fits experimental measurements or other empirical data. A common approach to
test a fit is to split the data into two disjoint subsets: training data and verification data.
The training data are used to estimate the model parameters. An accurate model will closely
match the verification data even though this data was not used to set the model’s parameters.
This practice is referred to as cross-validation in statistics.

How closely the model matches the verification data is measured by defining a metric
to measure distances between observed and predicted data. The most often used metrics
are the mean absolute percentage error (also known as MAPE), root mean squared deviation
(RMSD) and variations of these, such as a weighted MAPE, normalized RMSD or coefficient
of variation computed in terms of RMSD. We will further give an overview of the formulae
involved and we refer the reader to Wikipedia (2009) for further details.

MAPE measures the accuracy of a fitted model. For n data points, we have

MAPE =
1
n

n∑

t=1

∣∣∣∣
At − Ft

At

∣∣∣∣ ,

where At represents the observed value and Ft the forecasted value. The expression of the
error relative to At error allows one to compare the error of fitted models that differ in level.

Although MAPE is very simple and convincing, the concept has a major drawback: if there
are zero values among the observed data, a division by zero will occur. In order to avoid this
problem other measures have been defined, for example the weighted MAPE (wMAPE), which
is a ratio between the mean absolute error and the mean of the observed values:

wMAPE =
1
n

∑n
t=1 |At − Ft|

1
n

∑n
t=1 At

=
∑n

t=1 |At − Ft|∑n
t=1 At

.

RMSD (also known as root mean squared error RMSE) is a frequently used measure of
the amplitude of the residuals (the differences between values predicted by a model and the
observed values):

RMSD =
1
n

√√√√
n∑

t=1

(Ft −At)2.

The normalized root mean squared deviation (NRMSD or NRMSE) is the RMSD divided
by the range of observed values:

NRMSD =
RMSD

xmax − xmin
.

The value is often expressed as a percentage, where lower values indicate less residual variance.
CVRMSD, or more commonly CVRMSE, is defined as the RMSD normalized to the mean

of the observed values:

CVRMSD =
RMSD

x̄
.

It represents the same concept as the coefficient of variation except that RMSD replaces the
standard deviation.
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