Chapter 16

3D Solids and Their Management In
DBMS

Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

Abstract

3D spatial modeling is one of the most important issues in 3D GIS research.
It involves the definition of spatial objects, data models, and attributes for
visualization, interoperability and standards. Real world complexity leads to
different modeling approaches, as seen in different GIS applications. This
paper provides some review of the problems, challenges and issues pertaining
to the 3D GIS problems, especially in the handling and managing of 3D
solids in DBMS. The paper also describes 3D spatial operators in DBMS
and presents results using a simulation dataset. At the end of the paper, we
provide and highlight requirements and recommendations for future research.

16.1 Introduction

‘True’ 3D GIS require extensive effort, as revealed from the recent research
output and workshop (see Abdul-Rahman, et al. 2006). It is interesting to
note that work on fundamental aspects, like 3D spatial analysis, has not
been addressed to the level where an operational 3D system could be real-
ized. The aim of this paper is to review recent research on 3D spatial data
modeling and describe our recent work on the management of 3D solids in
geo DBMS. Recent research development shows that 3D spatial modeling is
becoming very important for many advanced GIS applications and the sce-
nario is being enhanced by the advancement of computer graphics (hardware

Department of Geoinformatics, Faculty of Geoinformation Science and Engineering,
Universiti Teknologi Malaysia, Skudai, Malaysia

Delft University of Technology, OTB, section GIS Technology,

Jaffalaan 9, 2628 BX the Netherlands

kenchen, alias@fksg.utm.my, s.zlatanova@tudelft.nl

279

280 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

and software), visualization, etc. and also influenced by developments in the
OpenGIS consortium. 3D visualization environments such as Google Earth
or 3D navigation software have already made some contribution and enabled
more and more users to utilize visualization technology. Until recently, only
specialized applications were able to manage and analyze 3D spatial data.
The third dimension was used primarily for visualization and navigation.
However, users are looking for applications that have one or more 3D GIS
functionality. Due to the complexity of real-world spatial objects, various
types of representations (e.g. vector, raster, constructive solid geometry, etc.)
and spatial data models (topology, and geometry) have been investigated and
developed, including e.g. Pilouk, 1996; Zlatanova, 2000; and Kada et al, 2006.

A universal and practical spatial data model that is capable of addressing
more than one application is not available. This is due to the complexity of
real world objects and situations. On the other hand, different disciplines em-
phasize different aspects of information e.g. including different requirements
and output. Thus, a data model could be considered appropriate for a cer-
tain application but not so appropriate for other tasks. Different aspects and
characteristics of real objects have led to the existence of several variations
in object definition. The solution for these problems has directly referred to
GIS standardization.

Current 3D GIS offer 2D functionality with 3D visualization and naviga-
tion capability. However, promising developments were observed in the DBMS
domain where more spatial data types, functions and indexing mechanism
were supported. In this respect, DBMS are expected to become a critical
component in developing of an operational 3D GIS. However, extensive re-
search and development are needed to achieve native 3D support at DBMS
level.

This paper reviews works on 3D DBMS, especially on the aspect of man-
aging volumetric objects. It is organized in the following order — Section 2,
a short discussion on the standard specifications for 3D GIS spatial data
modeling by Open GIS Consortium. Based on the specifications, Section 3
discusses the implementation of maintaining 3D spatial objects in DBMS.
Section 4 describes the previous research works on 3D spatial data modeling.
A brief discussion for 3D visualization is given in Section 5 and the paper
concludes with recommendations for future work in Section 6.

16.2 The OGC Abstract Specifications for 3D Solids

The Open Geospatial Consortium (OGC 1999) is a non-profit organization
that deals with the development of standards for modelling real-world objects.
These standards deal with conceptual schemes for describing and manipulat-
ing the spatial characteristics of geographic features. The desire to provide a
standard specification for GIS was initially driven by the developers - due to

16 3D Solids and Their Management In DBMS 281

the difficulty in GIS interoperability. The specification, in short, defines three
important areas, namely:

e Data types: the need to have data types that represent real world object
is obvious. Different kinds of data types and different kinds of objects
could be modelled within DBMS.

e Functions/operations: there must be functions and operators to support
the management of multi-dimensional objects that work for spatial anal-
ysis in DBMS, e.g. objects intersection.

e Spatial index: the main purpose is to deal with spatial searching (query),
and sometimes it implements in different operators to speed up the query
process.

According to the Spatial Schema, spatial characteristics are described by
one or more spatial attributes whose value is given by a geometric object
(GM_Object) or a topological object (TP_Object). Geometry provides means
for the quantitative description, by means of coordinates and mathematical
functions, of the spatial characteristics of features, including dimension, po-
sition, size, shape, and orientation. The mathematical functions used to de-
scribe the geometry of an object depend on the type of coordinate reference
system used to define the spatial position. Geometry is the only aspect of
geographic information that changes when information is transformed from
one geodetic reference system or coordinate system to another.

Topology deals with characteristics of geometric figures that remain in-
variant when space is deformed elastically and continuously — for example,
when geographic data is transformed from one coordinate system to another.
Within the context of geographic information, topology is commonly used
to describe the connectivity of an n-dimensional graph, a property that is
invariant under continuous graph transformation. Computational topology
provides information about the connectivity of geometric primitives that can
be derived from the underlying geometry.

This paper will further concentrate on Geometry.

16.2.1 GM_Sol:d

OGC defines 3D object as GM_Solid (OGC 2001) and it is a subclass of
GM_Primitive and is the basis for 3-dimensional geometry. The extent of a
solid is defined by the boundary surfaces. The boundary defines a sequence
set of GM_Surfaces that limit the extent of this GM_Solid (see Fig. 1). These
surfaces shall be organized into one set of surfaces for each boundary compo-
nent of the GM_Solid. Each of these shells shall be a cycle (closed composite
surface without boundary). In general, a solid in a bounded 3-dimensional
manifold has no distinguished exterior boundary. In cases where ‘exterior’
boundary is not well defined, all shells of the GM_SolidBoundary shall be

282 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

listed as ‘interior’. The GM_OrientableSurfaces that bound a solid shall be
oriented outward — that is, the ‘top’ of each GM_Surface as defined by its
orientation shall face away from the interior of the solid. To represent a 3D
solid as a volumetric object, GM_Solid is the best abstract spesification de-
fined by OGC. Other than the GM_Solid, some feature geometry such as
GM_Composite also involves a 3D solid object with other primitives, e.g.
point, line, and polygon.

There are some functions or operations that could be implemented using
GM_Solid. The function/operations are:

e Area: the operation shall return the sum of the surface areas of all of the
boundary components of a solid. For example: GM_Solid::area() : Area

e Volume: the operation shall return the volume of this GM_Solid. This
is the volume interior to the exterior boundary shell minus the sum
of the volumes interior to any interior boundary shell. For example:
GM_Solid::volume() : Volume

e GM_Solid (constructor): since this standard is limited to 3-dimensional
coordinate reference systems, any solid is definable by its boundary. The
default constructor for a GM_Solid is from a properly structured set of
GM_Shells organized as a GM_SolidBoundary. For example: GM_Solid::
GM_Solid(boundary : GM_SolidBoundary) : GM_Solid

<<Typo>>
GM_Primitive

i

T

<<Typo>>
GM_Solid

* boundary() | GM_SclidBoundary

* area() | Area

+ volumey{) : Violume

+ GM_Solid{boundary - GM_SolidBoundary) | GM_Solid

Fig. 16.1 GM_Solid data type defined by OGC

Although the OGC does not discuss some operations that refer to 3D solid
e.g. 3D intesection between 2 solids, to extend to the third dimension, simi-
lar specifications could be given to the 3D operations, if the z-coordinate is
considered. The notion for operations provided by OGC are as provided:

return-type type-1::operation(type-2, type-3 ...)
Example:
Double Precision Geometry 1::Distance(Geometry 2, Geometry 3)

operation(name-1 : type-1, name-2 : type-2, name-3 :
type-3 ...) : return-type,

16 3D Solids and Their Management In DBMS 283

Example:
3D Intersects(Al:Geometry 1, A2:Geometry 2) : Geometry 3

There are other 3D objects being considered in the OGC specification, i.e.
cone, sphere and, etc. Some 3D object are not considered volumetric solids,
but still appear in 3D space, i.e. free-form curve and surface. Fig.2 denotes
the complete list of 3D objects (with highlighted part) considered in OGC
specification.

The OGC abstract specifications deal with geometry and functions. Spatial
index is not mentioned in the abstract specification. Therefore, rule or speci-
fications about developing spatial indexing is unavailable. However, the OGC
provides for the implementation specification of R-Tree indexing according
to the existing DBMS format, i.e. Oracle Spatial. The following section will
discuss the basic idea of R-Tree index implemented within DBMS.

1
<<Leaf>>
1 Ceordinate Geometry
Py + DirectPossion
Geometric aggregates + GM_AffinePlacement
+GM g 1 + GM_Arc
+ GAM_MulliCurve <<leat>> + GM_ArcByBuige
+ GM_MulsPaint Geometry roct + GM_ArcString
+ GM_Mutti Primitive + GM_Onject + GA_AscStringBy Buige
+ GM_MultiSotc
« GM_MumSurface + GM_BicubicGnd
+ GM_BilinearGnd
+ SM_BSplineCurve

+ Gra_BSpineSurface
+ GM_BSpiineSurfaceForm
= GM_Crcie
"2GM" Cone »

nic

S $GM Cone
= Gl _Con

+ GM_CubicSpline
+ GM_Curveinterpolation

+ G CarsSsameat
GM_Cyinder

=& GM_Envelope ®
R Hg o
+ GM_GenericSurface
- GM_Geecdesic
+ GM_GeodesicSting
1 + GM_GriddedSurtace
=<Lgaf>> + GM_Knot

Geoometric prmeive + GM_KnotType
+ Bearing + GM_LinsSegment
+ GM_Boundary + GM_LineString
+ GM_C ¥ + GM_OffsetCurve
< om_curve
+ GM_Curve Boundary + GAT_Placemant
+ GM_OrientableCurve + GM_Pontirray
+ GM_Orientable Primitive <Leat>> + GM_PointGeid
+ GA_On Gaomatric complax +GM_PointRef
+ SM_Point + OM_Camplax + GM_Position
+ GM_Primitive + GM_Composite < GM_Pelygon
- o + GM_Cour urve + GM_PelynomisiSpine
+ GA_Ring + GM_CompositePoint + GM_PalyhedraiSurface
+ G_Shall + GM_CompositeSokd
+ Ol +@M_CompositeSurface + G, Tin
+ GM_SolidBoundary - GM_Tnangle
+ GM_Surface + GM_TranguiatedSurface |
+ GM_SurfacsBoundary LM SRR

+ GM_SplineCury
+ GM_SpineCurveForm
+ GM_Surfaceimerpolation
+ TransfiniteSet<DirectPostion=

3D object with volumetric body

3D object without volumetrie bedy, but
appears in 3D space

Fig. 16.2 Geometry package in OGC abstract specification

284 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

16.2.2 The OGC Implementation Specifications for
DBMS

The GM_Solid has been defined by the OGC as a general 3D primitive in
abstract specification (OGC 1999a). However, the existing implementation
(for SQL) of 3D solid (e.g. polyhedron, tetrahedron) is not available due to
the absent of 3D data type (as 3D primitive) within existing DBMS. A volu-
metric object could be modeled using a multi-collection of similar or different
geometries. OpenGIS implementation specification for 3D solid objects can
be referred to as PolyhedralSurface and MultiPolygon. A PolyhedralSurface is
a contiguous collection of polygons that share common boundary segments.
It is a subtype of Surface. The primitive of PolyhedralSurface and MultiPoly-
gon are referred to as Polygon (see Fig. 5). The difference between these two
geometries is that the polygons that construct PolyhedralSurface must share
boundaries with the neighboring polygons. The MultiPolygon is flexible, i.e.
share boundary may not exist for certain polygon(s). For each pair of polygons
that ‘touch’, the common boundary shall be expressible as a finite collection
of LineStrings. Each LineString shall be part of the boundary of at most 2
polygon patches. A TIN (triangulated irregular network) is a PolyhedralSur-
face consisting only of Triangle patches. For any two polygons that share a
common boundary, the ‘top’ of the polygon shall be consistent. This means
that when two LinearRings from these two Polygons traverse the common
boundary segment, they do so in opposite directions. Since the Polyhedral
surface is contiguous, all polygons will be consistently oriented. This means
that a non-oriented surface shall not have single surface representations. Fig.
3 shows an example of such a consistently oriented surface (from the top).
The arrows indicate the ordering of linear rings from the polygon boundary in
which they are located. The methods of implementing the polyhedral surface
in DBMS is given as below (see Fig. 4):

NumPatches (): Integer - Returns the number of including
polygons

PatchN (N: Integer): Polygon - Returns a polygon in this
surface, the order is arbitrary.

BoundingPolygons (p: Polygon): MultiPolygon - Returns the
collection of polygons in this
surface that bounds the given
polygon ‘p’ for any polygon ‘p’
in the surface.

IsClosed (): Integer - Returns 1 (True) if the polygon
closes on itself.

16 3D Solids and Their Management In DBMS

S
O

O

W)

Fig. 16.3 PolyhedralSurface with consistent orientation

GeomeEy
Suace

o areal): Aros
+ centrobd(): Point
+ poimOnRSurtaced) : Point

Boundanyt - MulliCune

Potygon

Polyhodal Surface

+ edsemflingi) : LinaSinng
* nwminss Aot ngl | v gar

+ intedasingtih Integad | LineSting

+ numPatches) | Inkeger
+ PalchMN Integer) - Polygon

goneip Polygos)

+ inClomed} : Booloan

Fig. 16.4 Implementation specification for PolyhedralSurface

+OnaRS

Beteipacspuiems

[

smennds
" | Meavaremntences o)

Fig. 16.5 SQL Geometry type hierarchy

285

286 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

In the implementation specification, OGC provides the geometry function
that is not limited to any dimension. Only DBMS itself decides the implemen-
tation of the standard functions (specified by OGC) that considers the third
dimension or not. Some of the standard functions given by OGC (Simple
Feature Specification for SQL, Revision 1.1) are:

Intersection (gl Geometry, g2 Geometry): Geometry

Return a Geometry that is the set intersection of geometries gl and g2.
Difference (gl Geometry, g2 Geometry): Geometry

Return a Geometry that is the closure of the set difference of gl and g2.
Union (gl Geometry, g2 Geometry): Geometry

Return a Geometry that is the set union of gl and g2.
SymDifference(gl Geometry, g2 Geometry): Geometry

Return a Geometry that is the closure of the set symmetric difference of gl
and g2 (logical XOR of space).

Buffer (gl Geometry, d Double Precision) : Geometry
Return as Geometry defined by buffering a distance d around gl
ConvexHull(gl Geometry) : Geometry

Return a Geometry that is the convex hull of gl.

Implementing the spatial index that follows the standard specification is
not available with the OGC document. This is because the spatial index deals
with the method of searching, which often involves mathematical algorithms,
e.g. the implementation of R-Tree indexing. A R-Tree is a depth-balanced
tree extending the B-tree for n-dimensions. The index stores the minimum
bounding boxes as representations, not the objects themselves. It is equally
referred to as a minimum bounding rectangle (MBR). A detailed documen-
tation about the R-Tree could be found in Rigaux et al. (2002). There is
no standard syntax/command/structure stated by OGC that enables any
DBMS to be implemented. Only the DBMSs themselves provide their own
syntax/command/structure that establishes the spatial index. The following
examples are provided:

(For Oracle Spatial)

CREATE INDEX [index_name] on
<table_name>(geometry_column)

INDEXTYPE IS mdsys.spatial_index

PARAMETERS (’sdo_indx_dims=3’); -- Dimension = 3

16 3D Solids and Their Management In DBMS 287

(For PostGIS)
CREATE INDEX [index_name] ON <table_name>

USING GIST <geometry_column>
GIST_GEOMETRY_OPS);

The concept of sample R-tree structure is given in Fig. 6, Fig. 7, & Fig.
8 in two and three-dimensions. The impact of the z-coordinate on 3D spatial
indexing will influence the execution time because the indexing mechanism
will search each of the (x, y) elements that relate to its z-coordinate. For
example, 7 (x, y, z) points will search 7 times greater than 7 (x, y) elements.

Fig. 16.6 Directory of R -Tree indexing

Rz

R

Fig. 16.7 A planar representation of an R-tree

Note that the Oracle Spatial provides the spatial index up to 4D and the
dimensionality should be defined in the syntax. However, the GiST index is
widely used for 2D data. The implementation of GiST is rather limited for
3D data. The research and application of 3D GiST is expected in the near
future. The next section discusses some implementations of spatial indexes
for the third dimension in DBMS.

288 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

Fig. 16.8 A 3D representation of an R-tree

16.3 Some Implementations of 3D Solid In DBMS

Since the Implementation specifications do not recommend a 3D data type,
most of the DBMS (except Oracle Spatial) have not implemented volumet-
ric data types. However, 3D data can be stored in the database since the
data types are embedded in 3D space, i.e. point, line and polygon can be
represented with their 3D coordinates. The next section describes how 3D
real-world objects can be stored in the DBMS using 3D multipolygon.

16.3.1 Modeling 3D Solid Using MultiPolygon

In the Oracle Spatial object-relational model, a 3D solid object from 3D
primitive is not possible. However, it could be done by implementing the
MultiPolygon that bounds a solid. The geometric description of a spatial
object is stored in a single row and in a single column of object type
SDO_GEOMETRY in a user-defined table. Any tables that have a column of
type SDO_GEOMETRY must have another column, or set of columns, that
define a unique primary key for that table. Tables of this sort are referred to
as geometry tables.
Oracle Spatial defines the object type SDO_GEOMETRY as:

CREATE TYPE sdo_geometry AS OBJECT (
SDO_GTYPE NUMBER,
SDO_SRID NUMBER,
SDO_POINT SDO_POINT_TYPE,
SDO_ELEM_INFO MDSYS.SDO_ELEM_INFO_ARRAY,
SDO_ORDINATES MDSYS.SDO_ORDINATE_ARRAY) ;

An example of implementing a 3D multipolygon (where the geometry can
have multiple, disjoint polygons in 3D) is provided below:

CREATE TABLE S01id3D (

16 3D Solids and Their Management In DBMS 289

ID number(11) not null,
shape mdsys.sdo_geometry not null);

INSERT INTO Solid3D (ID, shape) VALUES (

1 SDO_GEOMETRY (3007, -- 3007 indicates a 3D multipolygon
NULL, -- SRID is null
NULL, -- SDO_POINT is null
SDO_ELEM_INFO_ARRAY(-- the offset of the polygon

1, 1003, 1,

16, 1003, 1,

31, 1003, 1,

46, 1003, 1,

61, 1003, 1,

76, 1003, 1),
SDO_ORDINATE_ARRAY(

4,4,0, 4,0,0, 0,0,0, 0,4,0, 4,4,0, -- 1st polygon
4,0,0, 4,4,0, 4,4,4, 4,0,4, 4,0,0, -- 2nd polygon
4,4,0, 0,4,0, 0,4,4, 4,4,4, 4,4,0, -- 3rd polygon
0,4,0, 0,0,0, 0,0,4, 0,4,4, 0,4,0, -- 4th polygon
0,0,0, 4,0,0, 4,0,4, 0,0,4, 0,0,0, -- 5th polygon
0,0,4, 4,0,4, 4,4,4, 0,4,4, 0,0,4 -- 6th polygon

For PostGIS, the 3D solid as a primitive object is also not available. To
create a 3D object that implements existing primitives, then a MultiPoly-
gonM could be used. The three dimensions simply allow a z-coordinate to be
stored for each point. The geometry column in PostGIS differs from Oracle
Spatial. The description of geometry column is given below:

AddGeometryColumn(<table_name>, <column_name_of_geometry>,
<srid>, <geomery_type>, <dimension>)

An example of implementing the MultiPolygonM is given below:

CREATE TABLE So0l1id3D (ID integer primary key,
NAME varchar (20) not null);}

SELECT AddGeometryColumn(‘Solid3D’, ‘shape’,
423, ‘MULTIPOLYGONM’, 3);

Note that the table name, Solid3D, is given a geometry column named
‘shape’, with MULTIPOLYGONM type in third dimension. The following
example denotes a real multipolygon stored in PostGIS.

INSERT INTO Solid3D (ID, shape) VALUES (
2, —- 1D
GeometryFromText (’MULTIPOLYGONM(

290 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

(4,4,0, 4,0,0, 0,0,0, 0,4,0, 4,4,0) -- 1st lower polygon

(4,0,0, 4,4,0, 4,4,4, 4,0,4, 4,0,0) -- 2nd side polygon

(4,4,0, 0,4,0, 0,4,4, 4,4,4, 4,4,0) -- 3rd side polygon

(0,4,0, 0,0,0, 0,0,4, 0,4,4, 0,4,0) —— 4th side polygon

(0,0,0, 4,0,0, 4,0,4, 0,0,4, 0,0,0) -- 5th side polygon

(0,0,4, 4,0,4, 4,4,4, 0,4,4, 0,0,4) -- 6th upper polygon
)));

The advantage of implementing the multipolygon in DBMS is that the
integration between CAD and GIS is possible for 3D visualization, i.e. Oracle
(or called Spatial) spatial schema is supported by MicroStation and Autodesk
Map 3D. This is due to the geometry column provided by Spatial directly
accesses the 3D coordinates of the object, which allow the display tools to
retrieve spatial information from the geometry column. However, problems
occur if the data volume is huge, i.e. more polygons are stored for a single 3D
solid body. Data size will directly affect data retrieval and yield a slow dataset
loading within visualization environment. This weakness could be overcome
with the approach of implementing polyhedron as 3D data type in DBMS as
proposed by Arens (2003), see Section 4.

Although the implementation of MultiPolygons and Multipatch could be
done for 3D visualization, these objects do not represent real 3D objects. They
define only a set of bounding surfaces that construct a 3D object. Thus, it is
not suitable for 3D analysis. This is one of the main reasons why 3D analytical
functions are limited.

16.3.2 Spatial Indexing

Another important aspect of 3D data management is spatial indexing. Spatial
indexes are used in DBMS for fast search especially when spatial functions
are applied. Without indexing, any searches for a feature would require a
sequential scan of every record in the database. Indexing speeds up searching
by organizing the data into a search tree that could be quickly traversed to
find a particular record. There are several types of indexes within DBMS, e.g.
PostGIS and Oracle Spatial: they are B-Tree indexes, R-Tree indexes, and
GiST indexes.

e B-Trees are used for data, which can be sorted along one axis; for example,
numbers, letters, dates. GIS data cannot be rationally sorted along one
axis (which is greater, (0,0) or (0,1) or (1,0)?) so B-Tree indexing is of no
use for GIS user.

e R-Trees break up data into rectangles, and sub-rectangles, and sub-sub
rectangles, etc. R-Trees are used by some spatial databases to index GIS
data, but the PostGIS R-Tree implementation is not as robust as the

16 3D Solids and Their Management In DBMS 291

GiST implementation. Oracle Spatial will implement the 3D R-Trees in
the coming version 11g.

o GiST (Generalized Search Trees) indexes break up data into ‘things to
one side’, ‘things which overlap’, ‘things which are inside’ and can be used
on a wide range of data-types, including GIS data. PostGIS (2006) uses
an R-Tree index implemented on top of GiST to index GIS data.

GiST indexes have two advantages over R-Tree indexes in PostGIS. First,
GiST indexes enable the null value in the index columns. Secondly, GiST
indexes could easily deal with GIS objects larger than the PostGIS 8K page
size. The important part of an object in an index will only be considered
within DBMS, e.g. in the case of GIS objects, just the bounding box. GIS
objects larger than 8K will cause R-Tree indexes to fail in the process of
being built. It could take a long time to create a GiST index if there is a
significantly large amount of data in a table. Moreover, 3D indexing is not
available within PostGIS.

Other DBMS, e.g. Oracle Spatial, are able to provide 3D indexing for 3D
object (MULTIPOLYGON). For Spatial, the metadata that maintains the
lower and upper bounds and tolerance of 3D object needs to be created.
Later, a spatial index (R-tree in 3D) could be created on tables to speed up
spatial queries. The following example denotes the sample in creating a 3D
spatial index within Spatial.

-- Inserting metadata for 3D object: MULTIPOLYGON

INSERT INTO user_sdo_geom_metadata VALUES
(“S01id3D’, ‘shape’,
mdsys.sdo_dim_array(
mdsys.sdo_dim_element(‘X’, 0, 100, 0.1),
mdsys.sdo_dim_element(‘Y’, 0, 100, 0.1),
mdsys.sdo_dim_element(‘Z’, 0, 100, 0.1))
, NULL);

—-- Creating 3D Spatial Index
CREATE INDEX S01id3D_I on Solid3D(shape)
INDEXTYPE IS mdsys.spatial_index
PARAMETERS (sdo_index_dims=3) ; -- Dimension = 3

ANALYZE TABLE So01id3D COMPUTE STATISTICS;

292 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

16.3.3 Functions and Operations In DBMS

The 3D functions/operations in DBMS are mainly based on 2D objects that
appear in 3D space, i.e. point, line, and polygon (in 3D). Most of the functions
consider only the x,y coordinates of the data types although, and they may
be given with 3D coordinates. However, there are some exceptions. Some of
the 3D functions provided in PostGIS are:

e length3d(geometry): Returns the 3-dimensional length of the geometry if
it is a linestring or multi-linestring.

e length3d_spheroid(geometry,spheroid): Calculates the length of of geom-
etry on an ellipsoid, taking the elevation into account. This is just like
length_spheroid except vertical coordinates (expressed in the same units
as the spheroid axes) are used to calculate the extra distance vertical
displacement adds.

e perimeter3d(geometry): Returns the 3-dimensional perimeter of the ge-
ometry, if it is a polygon or multi-polygon.

e MakeBox3D(<LLB>, <URT>): Creates a BOX3D defined by the given
point geometries. LLB denotes lower left bottom, whereas URT denotes
upper right top.

e xmin(box3d) ymin(box3d) zmin(box3d): Returns the requested minimum
of a bounding box.

e xmax(box3d) ymax(box3d) zmax(box3d): Returns the requested maxi-
mum of a bounding box.

3D operations in existing DBMSs are hardly available. For example, due
to the third dimension, Oracle Spatial is not considered in any function and
operation, thus the 3D function and operation are not available. Maintaining
objects with 3D coordinates are possible but the functions available within
DBMS still do not consider the third-dimension. Some exceptions are only
limited to geometry calculations, e.g. 3D length and 3D perimeter. The exist-
ing spatial functions are only based on the native geometry model, i.e. buffer
for 2D polygon. The 3D operation for DBMS must focus on two directions:

e The existing operations have to be extended to the third-dimension, in
which the z-coordinate must be involved, i.e. 3D intersection, 3D buffer,
and etc.

e New 3D operations have to be developed based on topological models,
i.e. 3D overlap, 3D meet that extended from 9-intersection model.

In the coming Oracle Spatial 11g, the 3D coordinate system will be im-
plemented in DBMS environment. The 3D coordinate systems are all based
on European Petroleum Survey Group (EPSG) specifications. The supported
coordinate systems are: Vertical coordinate systems, Geocentric (3D Carte-
sian), Geographic (3D ellipsoidal), and Compound coordinate System.

16 3D Solids and Their Management In DBMS 293

16.4 Problems and Issues on 3D Data Modeling in
DBMS

A number of works attempt to address the problem of spatial data modeling
for 3D GIS where most of these efforts focused on polyhedron, tetrahedron,
triangulated tetrahedron and even free-form curves and surfaces as a mecha-
nism to formalize 3D spatial data modelling. The following section discusses
some recent works on data modeling in DBMS.

16.4.1 Modeling 3D Solid in DBMS

16.4.1.1 Polyhedron

The modelling 3D spatial object and corresponding operations in a spatial
DBMS has been investigated quite successfully by Arens (2003), and Arens
et al. (2005). The basic idea was that a 3D polyhedron could be defined as a
bounded subset of 3D space enclosed by a finite set of flat polygons, such that
every edge of a polygon is shared by exactly one other polygon. The poly-
gons are in 3D space because they are represented by vertices that appear
in 3D space. The 3D primitive implemented by Arens was in a geometrical
model with internal topology. The polyhedron was realized by storing the ver-
tices explicitly (x,y,z) and describing the arrangement of these vertices in the
faces of the polyhedron. This yields a hierarchical boundary representation
(Aguilera 1998; Verbree and Zlatanova 2004). The sample of a polyhedron is
illustrated in Fig. 9a, and the polyhedron storage is depicted in Fig. 9b.

The functions/operations given by Arens includes validation for polyhe-
dron, spatial conversion, topological operation, and metric functions. To vi-
sualize 3D objects, it is necessary to use programs that actually show the
third dimension. There are two options as proposed by Arens:

e GIS/CAD programs make a DBMS connection, for instance Microstation
(Bentley 2007). These programs can only handle 3D objects that consist
of multiple 2D objects. The 3D data stored as a 3D type needs a conver-
sion before it can be visualised, e.g. splitting up the 3D object in multiple
2D polygons.

e VRML (Virtual Reality Modelling Language). When using VRML, there
needs to be translation between the 3D type in the database and the
VRML syntax.

These two representations have advantages and disadvantages. Display-
ing 3D objects using VRML require an extra step for 3D visualization. The
polyhedron needs to be converted into a VRML file. First, the VRML file is
stored as an SQL-loader file. Then, SQL-loader (from Oracle tool) load this
file into DBMS environment to construct a table. The object’s geometry will

294 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

FPolyhodron
geomety typo

T|
..
Face

startng offset
sloment type
intorpretation code

—
| 3.+ =<ordered>>

Node Virtex
= coordinote
¥ coordinate
Z-cxsextetinabe

Fig. 16.9 Sample of polyhedron, and UML diagram of polyhedron storage (after
Arens 2003)

be added into the table and the VRML file can be browsed on the Internet.
Taking advantage of web display, the data exchange/transfer could be done
easily by extracting the VRML file. However, the VRML file is not part of
the DBMS environment. The 3D visualization becomes inefficient if the data
volume is huge — this happens when the conversion of geometry (from DBMS)
to VRML file is carried out. However, the weakness could be overcome by
integrating DBMS and display tool directly, i.e. GIS/CAD integration. In
this case, a CAD system, such as Microstation, could be connected directly
to the DBMS and retrieve the 3D data for 3D visualizaton.

16.4.1.2 TEN

Another attempt to define 3D object has been reported by Penninga, 2005.
The 3D object, i.e. tetrahedron, is used to represent 3D volumetric shapes.
The tetrahedron is the simplest possible geometry in the 3D domain. The
conceptual design was intended for implementation of both geometrical and
topological models in topographic modeling.

16 3D Solids and Their Management In DBMS 295

Initially, Penninga (2005) attempted to implement the TIN/TEN(2.5D
/3D) model approach for topographic modeling. The idea is that the earth’s
terrain can be modelled in 2.5D TIN. The complex object will be mapped
on top or below this terrain. This leads to the combination of TIN/TEN
model (TIN: Triangulated Irregular Network / TEN: Tetrahedronized Irreg-
ular Network). However, since problems appear at both the conceptual and
implementation level, an alternative model was suggested, i.e. the full TEN
model. The shift to the full 3D model avoids the complication of designing
multiple data structures in both TIN and TEN models for different spatial
objects (Penninga et al. 2006; Penninga and van OQosterom 2007).

In the TEN model, four types of topographic features can be determined
in this integration: 0D (point features), 1D (line features), 2D (area features)
and 3D (volume features). For each type, feature simplexes of corresponding
dimension are available to represent the features with nodes, edges, triangles
and tetrahedrons (see Fig. 10).

ShareBoundaryFace ShareBoundaryEdge ShareBoundaryP oint
3D object | | i

Volume Area Line Pomnt
Feature Feature Feature Feature
Repres|e11tedBy Repre}s entedBy Repre*ﬁeute(lBy
‘ Tetrahedron ‘ ‘ Triangle ‘ Edge ‘ RepresentedBy

SpecifiedBy

Fig. 16.10 Logical design of 3D TEN (after Penninga & van OQosterom 2007)

With this TIN/TEN integration, a minor drawback would occur if an ob-
ject became more complex, such as a complex building block. The entire
building could be modeled using triangles as a whole to complete the geome-
try. An undesirable side effect is that the data size may become rather large,
because more faces have to be stored in the data structure. The triangulation
approach produces more storage, as compared to the polyhedron approach
depending on the complexity of 3D objects. Since the space is completely sub-
divided into tetrahedrons, the interiors of objects (e.g. buildings), as well as
the open space, are also decomposed into tetrahedrons. These tetrahedrons,
however, require additional algorithms to be developed as a whole building
block. This leads to database size expansion (see Fig. 11) and longer response
time for visualization. More information on this comparison (polyhedron and
TEN) can be found in Zlatanova 2000.

296 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

Fig. 16.11 Comparison of the total faces/triangles between polyhedron and TEN
(after Zlatanova 2000)

16.4.1.3 Triangulated Polyhedron

The triangulated polyhedron was proposed by Ledoux and Gold (2004) and
it was based on 3D Voronoi Diagram (VD) and Delaunay Tetrahedralization
(DT). The Voronoi diagram for a set of points (in a given space, R is the
partitioning of that space into regions such that all locations within any one
region are closer to the generating point than to any other.

In 2D, this structure is defined by partitioning the plane into triangles
(where the vertices of the triangles are points that generate each Voronoi
cell) that satisfy the empty circumcircle test (a circle is empty when no points
are in its interior, but more than three points can be directly on the circle).
In any dimensions, the VD has a geometric dual structure called the De-
launay Triangulation. The two-dimensional DT is illustrated in Fig. 12 by
the dashed lines. The Delaunay Triangulation is appropriate for modelling
surfaces because among all the possible triangulations of a set of points, it
creates one where the minimum angle in each triangle is maximized (triangles
are as equilateral as possible), thus being useful for interpolation.

In three-dimension, a Voronoi cell generalizes to a convex polyhedron
formed by convex faces, as shown in Fig. 13. The generalization to three di-
mensions of the Delaunay Triangulation is the Delaunay tetrahedralization:
each triangle becomes a tetrahedron that satisfies the empty circumsphere
rule. The DT is unique for a set of points, except when there are degenerate
cases in the set (if five or more points are cospherical in 3D). In these cases, an
arbitrary choice must be made among all the possible solutions. The number
of tetrahedra in a DT constructed with n points depends on the configuration
of these points.

It can be realized that triangulated polyhedron could be utilized for gen-
erating 3D spatial objects and eventually into DBMS.

16 3D Solids and Their Management In DBMS 297

Fig. 16.12 Two-dimensional VD (bold lines) and DT (dashed lines) (after Ledoux
& Gold 2004)

Fig. 16.13 The Voronoi cell in 3D (after Ledoux & Gold 2004)

16.4.1.4 Modeling 3D Freeform Curves and Surfaces

Complex geometry types such as freeform curves and surfaces can be imple-
mented in DBMS. Many shapes in the real world are freeforms, i.e. not only
contain points, linestrings and polygons, but also curves and curved surfaces,
e.g. roads, building surfaces, and etc. Pu (2005) has created complex geome-
try data types that describe freeform curves and surfaces. Although freeform
shapes can be simulated by tiny line segments/triangles/polygons, it is quite
unrealistic and inefficient to store all these line segments/triangles/polygons
into a DBMS especially when shapes are rather huge or complex. The freeform
shapes discussed by Pu 2005, Pu and Zlatanova, 2006 are Bezier (Fig. 14),
B-spline and NURBS.

A B-Spline surface is an expansion of B-spline curves (Fig. 15a) and B-
spline curves are a generalization of Bezier curves, and the same applies for

298 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

Py

Fig. 16.15 (a) B-spline, and (b) NURBS curve (Les, 1991)

surfaces. NURBS (Non-Uniform Rational B-Splines) curve is generalized from
B-Spline curve (Fig. 12b). The implementation was done in Oracle Spatial,
where new data types for each Bezier curve, B-spline curve and NURBS curve
were created separately. An alternative approach was to create a data type
for NURBS curves, which also represented Bezier curves and B-spline curves
by leaving some parameters of NURBS curve empty - because NURBS curve
is actually the generalization of Bezier curve and B-spline curve. The final
freeform datatypes could include:

e Three curve types: GM BezierCurve, GM BSplineCurve and GM NURB-
SCurve (see Fig. 16a),

e One surface type: GM NURBSSurface (see Fig. 16b), and

e Four supplementary types: GM PointArray, GM WeightArray, GM Knot
Vector and GM Trim.

The freeform curve and surface developed by Pu 2005 could not represent
a 3D solid object. Although these data types consider the z-coordinate, the
objects do not bound a volumetric body. The research could be extended
from freeform surface that able to envelope a solid body, but it yields greater
complexity due to more complex mathematical algorithms are required. As a
result, it will slow down the process of 3D visualization and spatial operation.

16 3D Solids and Their Management In DBMS 299

GM_NURBSSurface

GM_BplineSurface Generalization

GM_SplineCurve GM_BplineCurve]

OM _BezierSufice |

Generalization

GM_NURBSCurve ‘

Fig. 16.16 (a) Freeform curve, and (b) Freeform surface datatypes

16.4.2 3D Spatial Indexing

Spatial searching is a fundamental primitive in non-traditional databases such
as GIS, CAD/CAM and multi-media applications. With the rapid prolifera-
tion of these databases in the past decade, extensive research has been con-
ducted on the design of efficient data structures to enable fast spatial search-
ing. Several data structures have been developed in this context,including
Quadtrees (Wang, 1991), R-trees (Guttman, 1984), hB-trees (Lomet and
Salzberg 1990), and TV-trees (Lin et al. 1984). Subsequent research has im-
proved these basic structures further by proposing new techniques for query
processing (Berchtold et al. 2000; Ferhatosmanoglu et al. 2001), faster and
better index creation (Garcia et al. 1998), and better split-strategies in dy-
namic updates (Beckmann et al. 1990; Berchtold et al. 1996). These tech-
niques are especially effective for low-dimensional spatial data such as those
in GIS and CAD/CAM applications.

For indexing low-dimensional spatial data, certain DBMSs allow users to
choose between one of two spatial indexes: a (Linear) Quadtree or an R-tree.
The Oracle implements these two kinds of spatial indexes and incorporates
and enhances some of the best proposals from existing spatial indexing re-
search. The PostGIS implements the GISt indexing for spatial query.

Most of the spatial indexes are extended from these two kinds of indexing
methods. The Linear Quadtree (or Quadtree for short) computes tile approx-
imations for geometries and uses existing B-tree indexes to perform spatial
searches. This approach results in simpler index creation, faster updates and
inheriting a built-in B-tree concurrency control protocol. The R-tree is im-
plemented logically as a tree and physically using tables inside the database
and the search involves recursive SQL for traversing the tree from root to
relevant leaves. This approach may be more efficient for queries due to the
enhanced preservation of spatial proximity but may be slow in updates or in-
dex creation and implements its own concurrency protocols on top of spatial
DBMS table level concurrency mechanisms.

The conventional approach to support similarity searches in high-dimensional
vector spaces can be broadly classified into two categories:

300 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

The first approach uses data-partitioning index trees. Neighbouring vec-
tors are coveredby MBRs (minimum bounding rectangles) or MBSs (mini-
mum bounding spheres), which are organized in a hierarchical tree structure.
Many index tree schemes have been proposed. They include the R-tree, the
R*-tree (Beckmann et al. 1990, the Hilbert R-tree (Kamel and Faloutsos
1994), and the SS-tree (White and Jain 1996). In addition, nearest neighbour
search methods using such indices have been proposed (Henrich 1994; Hjalta-
son and Samet 1995). Two recently proposed indices, the X-tree (Berchtold
et al. 1996) and the SR-tree (Katayama and Satoh 1997), are reported to
offer good performance. The X-tree introduces the notion of a supernode and
outperforms the R*-tree. The SR-tree has a unique feature in that it uses
both MBRs and MBSs and is reported to outperform both the R*-tree and
the SS-tree.

The second approach is the use of approximation files. Among the others,
the VA-file (vector approximation file) (Weber et al. 1998) is a simple yet
powerful scheme. The VA-file divides the data space into cells and allocates a
bit-string to each cell. The vectors inside a cell are approximated by the cell
and the VA-file itself is simply an array of these geometric approximations.
When searching vectors, the entire VA-file is scanned to select candidate
vectors. Those candidates are then verified by visiting the vector files. Weber
et al. (1998) report that the VA-file outperforms both the R*-tree and the
X-tree when dimensionality is high. In the field of spatial search of high-
dimensional data, this problem looms larger and larger. Search methods that
present an approximate answer (Arya et al.1994; Gionis et al. 1999), have
been proposed to avoid the problem. Although these methods are useful, to
overcome this problem, an A-tree index was proposed by Sakurai et al. 2002.
Introduction of the A-tree is motivated by a comparison and analysis of the
SR-tree and VA-file. The basic idea of A-tree is the introduction of virtual
bounding rectangles (VBRs), which contain and approximate MBRs or data
objects. The A-tree indexing is based on the following design structures:

e Tree structure: It adopts a tree index to limit the searching result from
one phase to the next phase.

e Relative approximation: to overcome the problem of tree indices identified
in evaluation results, a new notion (i.e. relative approximation) was in-
troduced, which is a simple yet powerful approximation method utilizing
the hierarchy of tree indices. In relative approximation, bounding regions
or data points are approximated by their relative positions in terms of
the parent’s bounding region.

e Partial usage of MBSs: since the SR-tree is one of the best indices among
the tree indices proposed so far, the SR-tree is used as the starting point
in designing the A-tree. However, the effect of MBSs is limited when
searching high dimensional data. Hence, MBSs are not stored in the A-
tree. As a result, the centroid of data objects in a subtree is used only for
insertion and deletion. The A-tree is a new index that applies the notion
of relative approximation to the hierarchical structure of the SR-tree.

16 3D Solids and Their Management In DBMS 301

However, this application is not naive; A-tree’s configuration is unique in
that: i) each node contains an MBR and a representation of the relative
approximation of its children; and ii) the centroid of data objects is used
only for updating purposes.

16.4.3 3D Operations

Since the subject of implementing 3D topological operations for geometrical
structure in a relational DBMS is a fairly unexplored area, some approaches
will be considered in developing 3D spatial operation for DBMS:

e The 3D spatial operation will cover all necessary topological structures
that define a complete solid object. In certain cases, not all primitives
are needed, e.g. a polyhedron is defined by an ordered set of coordinate
triplets for each polygon that bound a volumetric body, line will not be
used in the data structure.

e Implementation of the 3D spatial operations will be tested within the
DBMS environment.

e The results from 3D topological operations return to a Boolean form
(TRUE/FALSE). It involves two spatial objects, polyhedron and polyhe-
dron.

The topological operations presented here are based on the body-body
relation (Zlatanova, 2000). Typically, the results given by this operation are
in Boolean type, i.e. either TRUE or FALSE. The related operations include
Overlap, Meet, Disjoint, Inside, Covers, CoveredBy, Contain, and Equal (see
Fig. 17).

For topological operations in a geometrical model, a coordinate triplet of
the vertex is used. Similar to computational-geometry operation from pre-
vious sections, the binary operation is divided into base and target object.
However, the vertices from base object and polygons from target object will
be discussed (see Fig. 18a). This topological operation involves vertices (from
base object) and polygon (from target object). Therefore, the relation be-
tween these two objects will be examined. The location of base vertices rel-
ative to target polygon will be either outside, touch, or inside as has been
implemented and discussed in Chen and Abdul-Rahman (2006). These re-
lations will be used to determine how these two polyhedrons intersect each
other.

The following table (Fig. 18b) denotes the complete relationship between
base and target object. The ‘X’ sign represents the impossible intersection
between two objects, whereas the ‘check’ sign represents the possible inter-
section for geometrical models.

302 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

A B
(a) Equal (b) Meet (c) Covers (d) CoverBy
A B B
@ A A
(e) Contains (f) Inside (g) Disjomnt (h) Overlap

Fig. 16.17 Body and body relation (after Zlatanova, 2000)

3D topolegical
Inuide Ot Touch
Faual X
Meet

el b

LR P P P R

,
-

Fig. 16.18 Vertices (base) touch the target polygon (3D Meet), and Conditions for
topological operations (geometrical model)

The implementations of 3D topological operations involve two intersecting
polyhedrons. This implementation was performed within the PostGIS envi-
ronment. Below is the structure of polyhedron:

SELECT * FROM Solid3D WHERE PID = 1;

1,POLYHEDRON (PolygonInfo(6,24) ,SumVertexList(8),
SumPolygonlList(4,4,4,4,4,4),
VertexList(100.0,100.0,100.0,400.0,100.0,100.0,400.0,
400.0,100.0,100.0,400.0,100.0,100.0,100.0,400.0,400.0,
100.0,400.0,400.0,400.0,400.0,100.0,400.0,400.0),
PolygonList(1,2,6,5,2,3,7,6,3,4,8,7,4,1,5,8,5,6,

7,8,1,4,3,2)) 0,400.0,100.0,100.0,100.0,400.0,400.0,100.0,
400.0,400.0,400.0,400.0,100.0,400.0,400.0),
PolygonlList(1,2,6,5,2,3,7,6,3,4,8,7,4,1,5,8,5,6,7,8,1,4,3,2))%}

1. Polygonlnfo(6,24) denotes 6 polygons and 24 IDs of polygon arrange in
PolygonlList,
2. SumVertexList(8) denotes the total vertices,

16 3D Solids and Their Management In DBMS 303

3. SumPolygonList(4,4,4,4,4,4) denotes total vertices for each of polygon
(total polygon is 6, referred to (1)),

4. VertexList() denotes the list of coordinate-values for all vertices (with no
redundant), and

5. PolygonList() denotes the information about each polygon from sets of
ID.

The following SQL statement runs the 3D Overlap (see Fig. 19):

SELECT GMOVERLAP3D(a.POLYHEDRON,b.POLYHEDRON) AS GM_OVERLAP3D
FROM test a, test b where a.PID=1 and b.PID=2;

The result:
GM_OVERLAP3D

Polyhedron, PID =1

Polyhedron, PID = 2

Fig. 16.19 3D Overlap

16.5 3D Visualization

Without visualization, any queries from database would be just numbers and
characters — thus hard for users to decipher the meaning of the generated
information. DBMS only provides a medium for data set management, and
it certainly requires a front-end tool for visualizing the information as it is
perceived in the real world. The data from DBMS needs to be integrated into
a visualization tool so that it could be viewed as graphic. The 3D spatial data
stores in the spatial column (within DBMS), and a connection needs to be
built so that a display tool manages to access the spatial column and retrieve
the data for 3D visualization.

304 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

It is also important to note that 3D objects need to be visualized in real-
ism. With the benefit of the computer graphic technology, GIS could provide
a good display with textures and colours. Some web application, e.g. Google
Earth (GE) maintains the texture of spatial object over the Internet. GE is a
dynamic 3D virtual globe application that contains high-resolution satellite
and airborne images streamed through the Internet. GE uses a specific stan-
dard for external data sources called the Keyhole Markup Language (KML
and KMZ is the zip version). KML is a file format used to display geographic
data in an earth browser. A KML file is processed in much the same way
that HTML (and XML) files are processed by web browsers. Like HTML,
KML has a tag-based structure with names and attributes used for specific
display purposes. Thus, Google Earth and Maps act as browsers for KML
files. In Fig. 20, elements to the right on a particular branch in the tree are
extensions of elements on the left. For example, Placemark is a special kind
of Feature. It contains all of the elements that belong to Feature and adds
some elements that are specific to the Placemark element.

Other than visualization in 3D, it is important to have spatial query and
data updating based on the 3D data from the display tool. Some of the
software, e.g. ArcGIS, and Microstation could provide data editing/update,
and perform spatial query. Another advantage of integration between DBMS
and the visualization tool is that posting data could be done from the display
tool. Furthermore, the data will be stored and converted into the DBMS
enviroment.

Another important element of 3D visualization is Level-Of-Detail (LOD).
The concept of Levels of Detail (LOD) has been introduced to facilitate vi-
sualization of large scenes (see Clark 1976). The idea is to represent spatial
objects that are compatible with the pixel size of the screen, relative of the
observer’s distance. This permits the original geometric representation to be
replaced with a new low-resolution represebtation. Low-resolution represen-
tations require less memory and processing time for rendering and hence
speeding-up the visualization process. The different representation is used by
the visualisation system only if the object is far enough from the user. Closer
objects are still represented in their full resolution. Moreover, if the distant
object gets closer (as a result of the user’s navigation through the model), the
high-resolution representation is restored. The intentions are an unnoticeable
switch between low and high levels of detail.

Currently, the CityGML (Kolbe et al. 2006) supports different LOD. It
requires independent data collection processes with differing application re-
quirements. In a CityGML dataset, the same object may be represented in
different LOD simultaneously, enabling the analysis and visualization of the
same object with regard to different degrees of resolution. Furthermore, two
CityGML data sets containing the same object in different LOD may be com-
bined and integrated. The CityGML provide multiple kinds of LOD as given
in below (see Fig. 21):

16 3D Solids and Their Management In DBMS 305

MHotworkLink

'''' Ooject -
__Mhas anip_ __: Placemanrk
: et Chmring b [ScreenCOveriay
G - GroundOveriay
i Contamer 1 l F ol cher
---------------- e Docuwment
L Geomery okt
s e e ey : Line String
| —Ballcon - e
I Liststyle :,m"l :on -
e ‘con Fuih Ge ometry
— Orientation
—Locaton oces
— S ale
— CodorSryie Line Sty le
---------------- Poly Style
e e e e lconStyle
— Sryte Selecior —t st Labed Style
StyteMap
'—E TanePrirmitive | E“MSW
- e e e o Time Stamp
E - bcmmaF"” / : Sumpde Frela
SumplesrTay Freld
—Regon Oy F reial
—Load ArrayField
—LookAt
[LatLonBox — LatlonaAll Box -
— Scherma : : = Abstract Elerment

Fig. 16.20 Sample KML file format

e LODO is essentially a two and a half dimensional Digital Terrain Model.
An aerial image or a map may be draped on the DTM.

e LODI1 is the blocks model representing the buildings with flat roofs.

e LOD2 is used to differentiate the roof structures among different building.
It also used in differentiating surfaces thematically.

e LOD3 provide a building model with detailed wall and roof structures,
balconies, bays and projections. Vegetation objects may also be repre-
sented in this level. High-resolution textures can be mapped onto these
structures too.

e LOD4 completes a LOD3 model by adding interior structures for 3D
objects. For example, buildings are composed of rooms, interior doors,
stairs, and furniture.

LOD are used not only to speed up visualisation but also for different appli-
cations. For example LOD1 (CityGML) is perfect for air pollution analysis;
LOD3 is good for realistic visualisation; LOD4 can be used for evacuation
from buildings.

To maintain the LOD and colour/texture attributes could be performed in
both the DBMS and display tool. Certain display tools, e.g. VRML browser,
ArcGIS, and Microstation are able to maintain the colour and texture well.
This is not necessary to maintain the texture and colour attribute within
DBMS since these display tool manage to maintain these features with better
interactive functions. However, the LOD is required to store within DBMS.
This is because different LOD represent different kinds of geometry. For exam-
ple, from CityGML, LOD1 mainly stores simple block models that represent
buildings with flat roofs; LOD2 differentiate the roof structures among dif-

306

Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

Fig. 16.21 The five levels of detail (LOD) defined by CityGML, 2006

ferent building. With the same building, different LOD represents different
kind of roofs. The different LOD could only be stored in visualization tool, if
and only if, it converts into different layer of graphical data.

16.

6 Conclusions

A number of issues and challenges must be addressed to develop and manage

3D

solid objects in database. The problems, challenges and issues could be

summarized as:

1.

An appropriate 3D datatype that defines 3D primitive for geometry and
topology needs to be developed. Different kinds of 3D spatial objects
deal with different applications, e.g. TEN deals with terrain modeling
and polyhedron addresses with building structures. The 3D datatype
should follow the standard specification provided by OGC, and store
three-dimensional objects in an DBMS environment. The DBMS struc-
ture that stores 3D primitive in spatial column should be able to man-
age and maintain different kinds of LOD (texture/colour attributes are
optional since certain display tools could manage these well). The per-
formance in terms of the size of data storage and management efficiency
need to be given attention because DBMS provides the medium for data
management and should also be integrated with other aspects like 3D
display. Therefore, an efficient DBMS that supports various kinds of 3D
primitives is important for 3D spatial modeling.

. Spatial indexing: It is a mechanism that is usually applied to acceler-

ate the process of queries in the database by keeping some extra in-

16 3D Solids and Their Management In DBMS 307

formation. Many types of indexing methods have been cited such as
the R-tree (Guttman 1984), the K-D-B-tree (Robinson 1981) or the Z-
ordering (Orenstein 1986). Although other spatial indices that combine a
tree structure and a capacity technique have been proposed (Seeger and
Kriegel 1990; Berchtold et al. 2000), novel algorithms and structures that
give very high performance for high dimensionalities (e.g. 3-dimension)
need to be developed. Again, the performance of 3D indexing will also
need to be evaluated. The 3D R-tree indexing available in Oracle Spa-
tial, A-tree (for 3D spatial index by Sakurai 2002) and other 3D indexing
should be compared.

3. Functions and operations: There are several geometrical algorithms that
deal with spatial and attribute data manipulations for GIS analysis. The
importance of this algorithm is directly referred to its application, e.g.
calculation of volume for land subsidence, etc. Some DBMSs implement
a wide range of functions for database management and spatial analysis.
The spatial operations could be divided into several types and need to
addressed as well:

e Computational-geometry operations: functions that return a new ge-
ometry from two objects intersection, e.g. 3D Intersection, and 3D
Union.

e Topological operations: functions that return a Boolean result from
2 object intersection, e.g. extending 3D overlap.

e Metric operations: functions that involve mathematical calculation,
e.g. volume calculation of tetrahedron and polyhedron.

4. 3D visualization and interaction: Visualisation is mostly used in the con-
text of display 3D graphics. Realism display of the objects is also an issue
and could be categorized into two different approaches: texture/colour
and Level Of Detail (LOD). One of the questions like ‘how close to the
actual real world’ one could display and interact with the object. Another
issue of 3D visualization is interaction. Ideas about how user-friendly the
interactive tool needs to be for individuals to perform tasks in 3D GIS
must be adressed. Different principles and applications lead to different
approaches of visualization and interaction methods.

We reviewed and described a number of research works pertaining to
the 3D solids associated with spatial data modelling and management in
DBMS. The discussions cover the 3D datatype, spatial indexing, and func-
tions/operations (from standard specification to implementation; from com-
mercial to research/development). However, many issues must be addressed
to improve the current situation of 3D spatial modeling. The most important
issue for 3D spatial data modeling is the standardization and specification
of GIS. Although some of the specifications (abstract specification) are dis-
cussed in this paper, many other standards need to be investigated as well,
i.e. 3D operations (geometry and topology) for solid objects. The implemen-
tation of 3D operations could be done in DBMS. The spatial operators should

308 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

involve some procedures that can use, query, create, modify, or delete spatial
objects.

Other challenges in the 3D GIS domain include interoperability between
different applications, data model, integration between DBMS and visualiza-
tion, and the link between data modelling and data acquisition.

References

Abdul-Rahman A, Zlatanova S, Coors V (2006) Lecture Note on geoinforma-
tion and cartography — Innovations in 3D Geo Information Systems, Springer-
Verlag

Aguilera A (1998) Orthogonal polyhedra: study and application. Ph.D. The-
sis, LSI-Universitat Politecnica de Catalunya

Arens CA (2003) Modelling 3D spatial objects in a geo-DBMS using a 3D
primitives. Msc thesis, TU Delft, The Netherlands

Arens C, Stoter JE, van Oosterom PJM (2005) Modelling 3D spatial objects
in a geo-DBMS using a 3D primitive. In: Computers & Geosciences, 31:165-
177

Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY (1994) An optimal
algorithm for approximate nearest neighbor searching. In: Proc. ACM-SIAM
Symposium on Discrete Algorithms, pp. 573-582

Beckmann N, Kriegel H, Schneider R, Seeger B (1990) The R* tree: An ef-
ficient and robust access method for points and rectangles. In: Proc. ACM
SIGMOD Int. Conf. on Management of Data, pp. 322-331

Bentley (2007) available at http://www.bentley.com/

Berchtold S, Keim DA, Kreigel HP (1996) The X-tree: An index structure
for high dimensional data. In: Proc. of the Int. Conf. on Very Large Databases

Berchtold S, Keim DA, Kriegel HP, Seidl T (2000) A new technique for near-
est neighbor search in high-dimensional space. IEEE Trans. In: Knowledge
and Data Engineering, 12(1):45-57

Chen TK, Abdul-Rahman A (2006) 0-D feature in 3D planar polygon test-
ing for 3D spatial analysis. In: Abdul-Rahman A, Zlatanova S, and Coors V
(eds), Lecture Note on geoinformation and cartography — innovations in 3D

16 3D Solids and Their Management In DBMS 309

Geo information systems, Springer-Verlag. pp. 169-183
CityGML available at http://www.citygml.org/

Clark JH (1976) Hierarchical geometric models for visible surface algorithm.
In: Communications of the ACM, 19(10), pp. 547-554

ESRI (2007) available at http://www.esri.com/

Ferhatosmanoglu H, Tuncel E, Agrawal D, Abbadi AE (2001) Approximate
nearest neighbor searching in multimedia databases. In: Proc. Int. Conf. on
Data Engineering, pp. 503-511

Garcia YJ, Leutenegger ST, Lopez MA (1998) A greedy algorithm for bulk
loading R-trees. In: Proc. of ACM GIS

Gionis A, Indyk P, Motwani R (1999) Similarity search in high dimensions via
hashing. In: Proc. 25th International Conference on Very Large Data Bases
(VLDB), pp. 518-529

Guttman A (1984) R-trees: A dynamic index structure for spatial searching.
In: Proceedings of ACM SIGMOD, International Conference on Management
of Data, Boston, MA, pp. 47-57

Henrich A (1994) A distance scan algorithm for spatial access structures. In:
Proc. ACM International Workshop on Advances in Geographic Information
Systems, pp. 136-143

Hjaltason GR, Samet H (1995) Ranking in spatial databases. In: Proc. 4th
Symposium on Spatial Databases, pp. 83-95

Ledoux H, Gold CM (2004) Modelling oceanographic data with the three-
dimensional Voronoi diagram. In: ISPRS 2004-XXth Congress, Istanbul,
Turkey,. Vol. 2, pp. 703-708

Kada M, Haala N, Becker S (2006) Improving the realism of existing 3D city
model. In: Abdul-Rahman A, Zlatanova S, and Coors V (eds), Lecture Note
on geoinformation and cartography — innovations in 3D Geo information sys-
tems, Springer-Verlag. pp. 405-415

Kamel I, Faloutsos C (1994) Hilbert R-tree:An improved R-tree using frac-
tals. In: Proc. 20th International Conference on Very Large Databases, pp.
500-509

310 Chen Tet Khuan, Alias Abdul-Rahman, and Sisi Zlatanova

Katayama N, Satoh S (1997) The SR-tree: an index structure for high-
dimensional nearest neighbor queries. In: Proc. ACM SIGMOD International
Conference on Management of Data, pp. 369-380

Kolbe T, Groeger G, Czerwinski A (2006) City Geography Markup Lan-
guage (CityGML). In: OGC, OpenGIS Consortium, Discussion Papers, Ver-
sion 0.3.0

Les P (1991) On NURBS: a survey. IEEE Computer Graphics and Applica-
tions 11(1): 55-71

Lin KI, Jagdish HV, Faloutsos C (1994) The TV-tree: An index structure for
high-dimensional data. VLDB Journal, 3:517-542

Lomet DB, Salzberg B (1990) The hB-tree: A multi-attribute indexing
method with good guaranteed performance. Proc. A CM Syrup. on Transac-
tions of Database Systems, 15(4):625-658

OGC (1999) Abstract specifications overview. Available at http://www.
opengis.org/

OGC (1999a) OpenGIS simple features specification for SQL. Available at
http://www.opengis.org/

OGC (2001) The OpenGIS™ Abstract specification, topic 1: feature geometry
(ISO 19107 Spatial Schema) Version 5

Oracle Spatial 10g available at http://www.oracle.com/

Orenstein J (1986) Spatial query processing in an object-oriented database
system. In: Proceedings of 1986 ACM SIGMOD International Conference on
Management of Data, pp. 326-336

Penninga F (2005) 3D topographic data modelling: why rigidity is preferable
to pragmatism. In: Spatial Information Theory, Cosit’05, Vol. 3693 of Lecture
Notes on Computer Science, Springer. pp 409-425

Penninga F, van Oosterom PJM, Kazar BM (2006) A TEN-based DBMS
approach for 3D topographic data modelling. In: Spatial Data Handling 2006

Penninga F, van Oosterom PJM (2007) A compact topological DBMS data
structure for 3D topography. In: Fabrikant S, Wachowicz M (eds.), Lecture
Notes in Geoinformation and Cartography. ISBN: 978-3-540-72384-4

16 3D Solids and Their Management In DBMS 311

Pilouk M (1996) Integrated modelling for 3D GIS. PhD Thesis, ITC, The
Netherlands

PostGIS (2006) available at http://postgis.refractions.net/

Pu S (2005) Managing freeform curves and surfaces in a spatial DBMS. Msc
Thesis, TU Delft

Pu S, Zlatanova S (2006) Integration of GIS and CAD at DBMS level. In: E.
Fendel E, Rumor M (eds), Proceedings of UDMS'06 Aalborg, Denmark, TU
Delft, pp 9.61-9.71

Rigaux P., Scholl M, Voisard A (2002) Spatial databases - with application
to GIS. Morgan Kaufmann Publishers, San Francisco

Robinson J (1981) The K-D-B-Tree: A search structure for large multidi-
mensional dynamic indexes. In: Proceedings of ACM SIGMOD International
Conference on Management of Data, pp. 10-18

Sakurai Y, Yoshikawa M, Uemura M, Kojima H (2002) Spatial indexing of
high-dimensional data based on relative approximation. The International
Journal on Very Large Data Bases, 11(2), pp. 93-108

Seeger B, Kriegel HP (1990) The Buddy tree: an ef[FB017]cient and robust
access method for spatial data base systems. In: Proc. 16th International
Conference on Very Large Data Bases (VLDB), pp. 590-601

Vebree E, Zlatanova S (2004) 3D-modeling with respect to boundary repre-
sentations within geo-DBMS. GISt report No.29, TU Delft

Wang F (1991) Relational-linear quadtree approach for two-dimensional spa-
tial representation and manipulation. IEEE Trans. on Knowledge and Data
Engineering, 3(1):118-122

Weber R, Schek HJ, Blott S (1998) A quantitative analysis and performance
study for similarity-search methods in high dimensional spaces. In: Proc. 24th
International Conference on Very Large Data Bases (VLDB), pp. 194-205

White DA, Jain R (1996) Similarity Indexing with the SS-tree. In: Proc.
IEEE 12th International Conference on Data Engineering, pp. 516-523

Zlatanova S (2000) 3D GIS for urban development. PhD thesis, ITC, The
Netherlands

