
Exploiting Host Name Locality for Reduced Stretch P2P Routing

Gert Pfeifer, Christof Fetzer and Thomas Hohnstein
Dresden University of Technology

gert.pfeifer, christof.fetzer, thomas.hohnstein@inf.tu-dresden.de

Abstract

Structured P2P networks are a promising alternative
for engineering new distributed services and for replac-
ing existing distributed services like DNS. Providing com-
petitive performance with traditional distributed services is
however very difficult because existing services like DNS
are highly tuned using a combination of caching and lo-
calized communication. Typically, P2P systems use ran-
domized host IDs which destroys any locality that might
have been inherent in the IP addresses or the names of the
hosts. In this way, P2P communication can result in a high
stretch. We propose a locality preserving structured P2P
system that supports efficient local communication and low
stretch. While this system was optimized for resolving do-
main names, it will also provide a low stretch to other ap-
plications and it can be combined with existing replication
schemes to optimize the response times even further.

Keywords: Distributed Systems, DNS, Peer-to-Peer Net-
works, Pastry, Low Stretch, Overlay Simulation

1 Introduction

The central goal of this paper is to describe a design of
a low-latency P2P lookup service for global scale deploy-
ment. Today, there is one global-scale distributed lookup
service that is deployed and used in the Internet: DNS. It
is a client-server solution that uses caching and replication
to achieve mostly good response times. DNS was devel-
oped in the early days of the Internet and has already been
considered unreliable and insecure for many years. Jung et
al. [11] measured that less than 65% of the DNS queries
are answered successfully. Some of the unreliability of the
DNS can be attributed to operator errors: Danzig et al. [6]
found that most of the DNS problems are caused by con-
figuration issues. However, there are also some inherent
protocol properties that make DNS unreliable.

In the recent years, the missing security features of DNS
have been a major point of concern. DNSSEC can help to
address the security issues. It allows a separation of server

management and authority. DNS data can be signed by the
owner of the data and can then reside wherever it is useful.
DNSSEC has however been in development for many years
and it is not clear if or when it gets more widely deployed.
Hence, several research groups have started to focus on P2P
systems for replacing or augmenting DNS [3, 17, 15] .

While providing simplified management, P2P networks
lack routing efficiency leading to high delays. Our work fo-
cuses on reducing the stretch of P2P networks, i.e., the ratio
between P2P transmission delay and IP transmission delay.
A lower stretch would result in better query times and re-
duce unnecessary bandwidth consumption. Our approach
is orthogonal to approaches that optimize the replication of
objects in the P2P network like [17]. It is based on the ob-
servation that we are often interested in accessing hosts in
the same domain of the DNS namespace, e.g., in the same
country. These hosts are often also geographically closer
than hosts in other domains or hosts in other countries. We
show how one can use this information in the creation of
host IDs to reduce the stretch. Our evaluation shows that
we are better than Pastry (from which our system is derived)
even for random traffic patterns. For localized queries, we
expect an even better performance.

The rest of this paper is structured as follows. Section 2
describes related works that optimize peer-to-peer routing.
The basic ideas of our routing scheme are presented in Sec-
tion 3. Sections 4 and 5 describe our overlay organization
in detail. Performance evaluation is presented in Section 6.
Section 7 concludes the paper.

2 Related Work

The time to locate objects in a DHT can be reduced in
several ways, e.g.: (A) The access locality is exploited: each
object is stored near the location where it is most likely to
be used. This includes replication and caching strategies.
(B) Proximity Neighbor Selection (PNS): the routing steps
towards the desired object are optimized with respect to net-
work delay. To do this, one can (B.1) measure the round trip
time to nodes that are candidates for entries in a routing ta-
ble, or (B.2) use existing knowledge about the underlying

network structure to select the closest candidate.

2.1 Locality

Some applications would be able to provide locality hints
for helping to place objects in a peer-to-peer network. For
example, consider that a P2P network is used to locate text
documents. One could use the language of a document as
a hint for the most likely countries in which the users of a
document might be located. Other applications might use
URLs that can give us similar hints. Since the hash func-
tion of a DHT usually destroys these locality hints, caching
and replication is needed to exploit access locality. Data
caching and routing information caching are often used in
P2P networks to reduce response times.

Pastry [20] uses Leaf-Set-Replication1 of data to opti-
mize the distribution in the network. Since the peer-IDs
are randomly created, replicas are evenly distributed in the
topology of the underlying network. This means that each
user should have a nearby replica. Applications based on
Pastry can also exploit local route convergence to find good
locations for cached objects.

Tapestry [25] allows the selection of the replication level
which defines how many copies of an object are stored in
the network. This level is implemented by defining a com-
mon prefix length that a replication host and the object ID
must share. The shorter the prefix length, the higher is the
number of replicas. If node IDs are generated randomly, the
replicas are evenly distributed in the network topology. This
allows to adjust the replication level to the desired mean
time for fetching an object.

Beehive [16] uses this technique to build a pro-active
caching framework that adjusts the replication level of an
object based on the request rate for this object. Beehive is
used in CoDoNS [17] to build a P2P-based domain name
system. CoDoNS reaches O(1) lookup performance. The
number of hops that is allowed for a lookup can be adjusted.
To achieve a low number of hops, e.g., 0.5 hops average la-
tency, the local cache hit rate must be very high, i.e., 50%
in this case.

2.2 PNS

In different P2P solutions the stretch is reduced by opti-
mizing the routing tables of peers. When a node has to for-
ward a message, it should pick a nearby peer. This is often
reached by measuring the round trip time to peers that are
available for a certain position in the routing table. Some-
times this generates a substantial amount of traffic due to
the high number of peers. Fortunately, the traffic can be
reduced. In such situations it is sufficient to probe a small

1The leaf set contains the direct successors and predecessors of the
node in the ID space. Details can be found in [20].

number of them [8]. To reduce the PNS effort even more,
we plan to use Vivaldi [4] in the future.

Another solution to the same problem is landmark rout-
ing or clustering [24, 19]: peers cluster around distin-
guished peers called landmarks. The proximity to and be-
tween landmarks is assumed to be known by the use of net-
work coordinates or RTT measurement data. This infor-
mation can be used as an approximation of the proximity
of nodes that have similar distance vectors to the landmark
nodes.

2.3 Intrinsic problems of DHTs

Despite the availability of these technologies to optimize
routing table information, P2P routing is still not widely ac-
cepted and used for low latency services. Objects are stored
too far away from their users and replication schemes like
Beehive (used in CoDoNS) cannot exploit the access pat-
terns of local users or user groups in a global system. In-
stead, such solutions replicate a high number of the most
popular objects on hosts without a guaranteed benefit for
the local user.

DNS has good locality properties. Computers in a LAN
are often served by the same DNS server and have a long
common suffix in their DNS names. Also Internet users
usually visit web sites that have a cultural proximity, i.e.,
they are written in the same language or located in the same
country. This proximity can be exploited by DNS and im-
proves, together with caching, the performance. DHTs of-
ten destroy such proximity information, contributing to a
rather slow lookup and poor proximity between the target
object itself and the user.

While other approaches try to exploit common key-
words to express cultural proximity like Lu et al. [13]
to speed up P2P lookups, we exploit the hierarchical
structure of DNS names. If some user looks up har-
rypotter.warnerbros.co.uk, it is more probable that user
will also lookup www.amazon.co.uk instead of harrypot-
ter.warnerbros.fr. In general, a country code of a URL may
tell us where the object may be used frequently. Also, typ-
ically it is more likely to lookup the IP addresses of hosts
within its own domain than of hosts in other domains. The
postfixes of host names indicate their location in the DNS
name space and in this way provide some locality informa-
tion: (A) not only is it more likely to resolve names in its
own proximity of the DNS hierarchy but (B) there is also
a correlation between the geographical proximity of hosts
and their proximity in the DNS hierarchy. To preserve these
two correlations, our hash scheme preserves the DNS hier-
archy in the generated host IDs. For locating objects, we
are using a prefix routing scheme like the one of Pastry [20]
or Tapestry [25]. Our evaluation shows that even for ran-
dom access patterns (i.e., without using locality factor (A)),

our scheme harnesses (B) provides a better stretch than Pas-
try (from which our system is derived). Our goals are also
similar to those of SkipNet [10]. However, optimizing rout-
ing tables using PNS is much easier in our system than in
SkipNet, where it is necessary to maintain additional rout-
ing state for this purpose.

3 DNS-based Clustering

In prefix-based P2P schemes, peers cluster around com-
mon prefixes. In DNS, names are contained in zones. A
zone is an organizational unit. Starting from the root zone,
authority can be delegated to sub-zones. A zone manifests
itself in a name as a suffix.

The King approach [9] assumes that Internet hosts often
cluster around their authoritative DNS servers. These hosts
share a common suffix, i. e., the name of their DNS zone.
Since the KING tool achieved good results, we exploit this
knowledge in the design of our hash scheme. In contrast to
that, DNS gives us a poor indication for the inter-domain
proximities. Country code domains give us some benefit
which we exploit, but generic top level domains (.org, .com
and .net) do not. However, we assume that most communi-
cation is done within a domain 2.

When calculating an ID for a name, we compute for each
label of the node’s DNS name a hash value. These values
are then concatenated to build the ID. This construction it-
self does not cause collisions because names in the hierar-
chical DNS name space are unique. A novelty in this ap-
proach is that IDs can have different length. This makes
the comparison of IDs slightly more difficult: the identifier
space is not a ring with a modulo operation and is infinitely
large. At the same time it gains direct support for domains
with different granularity in their organizational structure.

Our performance evaluations are based on transit-stub
topologies. These topologies are usually interpreted as
router-level models because they explicitly group vertices
into domains and reflect that grouping in the connectivity
between vertices. In our case, they reflect the DNS hi-
erarchy. We assume that links within the same DNS do-
main have a lower delay than inter-domain links. As men-
tioned before, this assumption is based on the observations
of Gummadi et al. [9].

In our overlay (DNS-Pastry), nodes within the same
DNS domain are neighbors in the ID space. Hence, the dis-
tances between leaf set nodes in a DNS-Pastry overlay are
much smaller than in a Pastry or Chord overlay.

2For connections to web sites this is not true but usually, there are many
applications that satisfy this assumption, like e-mail clients that fetch new
e-mails from the local mail servers in short intervals, connections to do-
main controllers for user authentication, group communication, connec-
tions to the local NTP server, etc.

3.1 Comparing IDs

To make routing decision, IDs have to be comparable.
For computing the ID of a peer, a hash function πl

name is
used: πl

name returns a hash value for the l-th label of the
peer name, where l = 0 selects the highest label, i.e., the top
level domain. The ID of a peer which name consists of k+1
labels is defined as:

π0
name · π1

name · ... · πk
name,

where “·” is the concatenation operator.
The order we use on IDs is lexicographical order, i.e., we

interpret the digits as letters of an alphabet (and not num-
bers) and use the alphabetical order to compare two IDs.

4 Routing

The routing algorithm is very similar to Pastry, but it pro-
vides path locality, like defined by Harvey et al. in [10].
Path locality, which is an additional security feature, pre-
vents packets from being routed through external hosts in
the case that source and destination of the packet are in
the same domain. This property is actually provided by the
combination of the original routing algorithm of Pastry and
our approach to generate IDs: because the routing ensures
that the common prefix never gets shorter and our hash al-
gorithm ensures that a common domain is represented by a
common ID-prefix. The routing information consists of a
prefix-routing table and a leaf set. The leaf set covers a cer-
tain part of the ID space. It contains up to N node handles:
the (N − 1)/2 nodes with the closest smaller IDs, the cur-
rent (local) node, and the (N − 1)/2 nodes with the closest
greater IDs. If there are not sufficiently many nodes with
smaller (larger) IDs, the leaf set is padded with nodes that
have the largest (smallest) IDs in the system. The worst case
routing complexity depends on the number of digits in the
destination’s ID since the routing algorithm assures to add
at least one digit with each hop to the possibly non-empty
prefix match that source ID and destination ID already have.
During our measurements we have seen an O(log N) routing
complexity.

Say, we want to locate an object with ID idd. To do so,
the routing algorithm sends a message m to locate idd. A
peer L that receives (or sends) m performs the following
steps:

1. IF there are peers in the routing table or the leaf set of
L with a longer prefix match with idd than the local
node L, pick the one with the longest prefix match. If
there exists multiple nodes with a longest prefix, for-
ward to the closest one of them in terms of the round
trip time. (Select one at random if there is more than
one node with the longest prefix and the shortest round
trip time.)

2. ELSE IF there is a node N in the leaf set or the routing
table of L that has the same prefix match with idd as
L but is lexicographically closer to idd than the local
node L (i.e., L < N < idd), then L forwards the
message to N .

3. ELSE deliver it to the application on the local node.

4.1 Routing table

The routing table is very similar to the one used by Pas-
try. The number of columns is set to the base 2b which is
used to encode IDs, e.g., for base 16 (i.e., b = 4) there are
16 columns. We use function shPfD(id1, id2) to denote
the number of digits in the shared prefix of IDs id1 and id2,
i.e., they match in the first shPfD(id1, id2) digits. The
term id1[i] refers to the ith digit in the ID id1.

Consider that we want to store ID t in the routing table.
The column of t is determined by t[shPfD(c, t)+1] which
is the first digit after the common prefix shPfD(c, t) if the
length of t is at least shPfD(c, t) + 1. Otherwise, t is a
prefix of c as discussed in Section 4.2. t[shPfD(c, t)]. The
line is determined by the length of the common prefix. The
first line contains node handles whose IDs do not have a
prefix match (except for the the entry in column c[1]). In
the second line shPfD(id1, id2) equals one (except for the
column c[2]) and so on. The number of lines is equal to the
length of the ID of the current node plus 1 because we have
to gain one prefix digit in each routing step.

Figure 1 shows a routing table for the node 02312 and
b = 2. The table has six lines for the reasons mentioned
before. The number of columns is four since b = 2, which
means that possible digits are ∈ {0, 1, 2, 3}. The leaf set
size is eight, which means that at most four nodes nodes are
stored in each direction. For simplicity, Figure 1 shows only
one entry for each field in the prefix routing table. We can
store more than one for better fault tolerance. One of them
will be chosen as next hop depending on the round trip time.

The variable length of IDs leads to a little more com-
plex indexing in the routing table (see below) but at the
same time our approach offers a novel ability to the over-
lay: like in DNS, an optimization of the communication be-
tween hosts within the same organizational unit is possible.
The organizational structure can be as fine grained as de-
sired. The structure is, like in DNS, reflected by the names
of the nodes. Since these names are directly mapped to node
IDs, the hierarchical structure of the overlay is represented
by the prefix-routing table.

4.2 Routing table indexing

If peer IDs with a fixed length are used, the indexing of
the routing table is very straightforward. A message with
destination id2 is forwarded by peer id1 to the entry

Figure 1. Routing information for node 02312

(column, line) = (id2[m + 1], m)
where m = shPfD(id1, id2) and m < length(id1) and

m < length(id2)

in its prefix-routing table.
Because we are using a variable ID length, we need to

extend this rule. As noted, we only use the above rule if
the prefix match of id1 and id2 is smaller than the length of
any of the two IDs. If id2 is a strict prefix of id1, we use
position

(column, line) = (id1[m], m)
where m = shPfD(id1, id2) and m = length(id2) and

m < length(id1)

In turn, if id1 is a strict prefix of id2, we use position

(column, line) = (id2[m + 1], m + 1)
where m = shPfD(id1, id2) and m = length(id1) and

m < length(id2)

Note that the last line in the routing table is needed to
ensure logarithmic routing performance.

4.3 Algorithm for Weighted Proximity-
Neighbor-Routing

Depending on the density of nodes in the identifier space,
there could be more than one node possible for a certain po-
sition in the routing table. In this case, a routing decision is
made based on physical proximity, i.e., the measured round
trip time, and logical proximity, i.e., the distance in the
ID space. For this purpose, a weighted ranking is needed,
which is defined by the following function.

min(α∗|destId[l]−nextHopId[l]|+β∗|nextHopRTT |)
where l = shPfD(destId, nextHopId) + 1 and
length(destId) ≥ l and length(nextHopId) ≥ l

Choosing a stronger β (i.e., β > α) would increase the
work load on overlay nodes due to the higher number of
hops for the sakes of better response time. Choosing a

stronger α (i.e., α > β) would reduce the number of hops
but increase response time.

Having multiple options for each routing decision does
not just improve performance but node failures can be tol-
erated much better too.

5 Bootstrapping

To enter the overlay network, a new node must know at
least one overlay peer. This peer is used to send a message
to the new node’s ID. The node, that is responsible for this
ID is asked to send its routing table and leaf set information.

We extended the bootstrapping mechanism for Proxim-
ity Neighbor Selection. After retrieving the routing infor-
mation, the node can iterate over all nodes it knows and ask
them for their routing information. Then candidate nodes
for a certain position in the routing table are compared with
respect to proximity, i.e., RTT.

5.1 Updating routing information

To keep routing information up-to-date, each message
that is forwarded is analyzed. In the case that the sender of
the message could fill a field in the routing table, a PING
message is sent to get RTT information. In the future we
want to use Vivaldi [4] to reduce the number of ping mes-
sages. A periodic maintenance of the routing table is not
used, instead we check and correct the routing table on use.
This is similar to Pastry.

6 Performance Analysis

Our main requirements for selecting a simulator were to
evaluate the scalability of our solution and to compare the
routing performance with IP-routing to compute the stretch.
Furthermore, we wanted to compare it to other P2P solu-
tions. Hence, we looked for a simulator that already in-
cluded several common P2P protocols and allowed us to
simulate at least 1000 nodes. To be able to use the algo-
rithms applied in the simulation runs also in a real applica-
tion, we payed attention to the fact that the simulator sticks
to the common API for structured P2P overlays [5]. An-
other advantage of maintaining this API is that application
developers can easily use our simulator and the overlay to
simulate their application on it. We also preferred Open-
Source-Software to be able to perform some extensions.
Since our overlay is based on a mapping of the underly-
ing hierarchical structure into the ID space, the simulator
had to be able to use topological network information. We
examined the several simulators [7, 14, 1, 2, 12, 23, 21] and
decided to use and extend PlanetSim.

PlanetSim [2, 12] is very well documented and comes
with implementations of Chord and Symphony. It is a im-
plemented as single threaded application and does not sup-
port topological information. However, it was able to sim-
ulate a Chord-overlay with 100,000 peers on a Pentium 4
with 1GB RAM. The stabilization of the ring took 46 hours.
PlanetSim provides a very clear separation of the network
layer, overlay layer, and application layer. Hence, it is easy
to try new applications on top of existing overlay networks
or vice versa.

We added three extensions: (1) a topology front-end that
parses and imports topology files, (2) a statistics back-end
that collects statistics like delay times and hop counts during
simulation, and (3) a graphics backend that is able to display
the network topology and the overlay topology on top of it.
Of course, the latter only makes sense for small networks.
The output format is GML. The network layer had to be
extended to use the given topology and report delays to the
statistics component.

6.1 Evaluation

The main focus of the simulation is to figure out, how
efficient the overlay routing of our clustering-based overlay
(DNS-Pastry) behaves in comparison to other overlays and
to IP-routing. The important characteristics are (1) the aver-
age number of hops, (2) the round trip time (RTT), and (3)
the stretch.

We created Transit-Stub-topologies with a three-level
hierarchy, which are very common in DNS names, e.g.,
www.tu-dresden.de. For the link latencies we use a Gaus-
sian distribution3 with a mean of 1004 for intra-transit do-
main links, 10 for stub-transit links, and 1 for intra-stub
links and a deviation of one fifth of the mean. These val-
ues are derived from the CAN simulation [18] for better
comparison.

Since our implementation is very similar to Pastry,
we also added a Pastry implementation to the PlanetSim
project. Additionally, we tried to use the existing Chord im-
plementation, which was however quite buggy, so that we
had to revise it. The comparison to Chord might be slightly
unfair because it does not use PNS.

We were not able to simulate 100,000 nodes like in [12]
since our enhanced simulator needs much more memory for
statistics and topology management. So we created overlay
networks from 500 to 4000 peers, in steps of 500. The nodes
of the peer-to-peer overlay were chosen randomly for each
size from a topology of 4420 nodes. The simulation was
done on a Intel Pentium D 820 with 2048 MB RAM running

3For simplicity: all timings of topologies mentioned in the following
parts of this paper refer to the mean.

4We use abstract time units instead of ms, just to show the ratio of
delays between different parts of the network.

Ubuntu Linux and Sun Java-VM 1.5.
We compared Pastry, Chord and our DNS-Pastry with re-

spect to the average number of hops, the round trip time and
the stretch. Our benchmark application generates 100,000
ping messages between randomly chosen peers. Obviously,
this kind of application has no locality properties. Hence,
the results of the benchmark are interesting for a wide range
of applications. However, we think that the benefits of our
overlay are even higher for applications which can exploit
data and request locality. Of course, all of the measured
values depend on size and structure of the underlying net-
work topology and the parameters of the overlay networks,
so they can be compared to each other, but not to values of
other benchmarks. Pastry and DNS-Pastry use PNS to op-
timize routing information. In our case, up to three entries
are contained in one field in the routing table to choose the
best proximity and allow some resilience to node failures.
The leaf set contains 32 entries, 16 in each direction. The
Chord implementation does not use PNS. The successor list
contains 16 entries.

6.2 Results

Figure 2(a) depicts the average number of hops for
100,000 ping messages in four different simulations. The
number of hops is often a good performance indicator when
configuring an overlay network. All overlays we used reach
O(log N) complexity where N is the number of overlay
nodes. Nevertheless, some fine-tuning is always possible.
The trade-off is the size of the routing information. If, e.g.,
the base b of a digit in Pastry’s prefix routing is increased,
the number of columns in the routing table increases to 2b.
This would help to reduce the average number of hops be-
cause Pastry needs O(log2bN) hops to reach a destination.
In the case of Chord we use a successor list of 16 nodes, i.e.
24. For a network size, e.g., 4000 (≈ 212) nodes, we can
reach a destination within 8 hops.

Another measure that reduces the number of hops is to
increase the leaf set size. We ran DNS-Pastry with 4, 8, and
16 nodes in the leaf set, reducing the average hop count by
0.2 to 0.3 for each doubling of the leaf set size.

In Figure 2(a) we can see that Pastry needs less overlay
hops than Chord and our DNS-Pastry. We also simulated
an application that only sends ping messages within on Top
Level Domain (TLD) to show the performance gain for lo-
cal communication. We found, that DNS-Pastry is, as ex-
pected, much better in this case, since the domain structure
is reflected by the routing information. The graph DNS-
Pastry TLD in Figure 2(a) shows this result.

To find out, whether a low hop count guarantees a good
response time, we also measured the round trip time for this
experiment. Figure 2(b) shows the results. We observed that
DNS-Pastry has a much better RTT for random ping mes-

sages. The reason is that it efficiently accelerates the last
steps of the routing that go through the leaf set. The PNS
of Pastry ensures that the first few hops are done to nearby
nodes. The reason is that there are many options as long
as the common prefix is short, but the number of choices
drops exponentially with a growing prefix. The last hops
of the Pastry routing are usually very long. This is where
DNS-Pastry does much better and gains the RTT advantage.

Of course, the RTT of the intra-TLD simulation of DNS-
Pastry has much lower values. We can see that DNS-
Pastry needs less RTT than Pastry but more hops. This
phenomenon has already been observed by Xu et al. [22]
when constructing a hierarchical P2P routing algorithm.
The number of routing hops is getting larger as the hierarchy
depth increases. However, the user perceived performance
depends more on delay and not on the number of hops.
Therefore, we measured the stretch of DNS-Pastry. Figure
2(c) shows the comparison of stretch for the different over-
lay networks. Stretch is defined as the ratio overlay distance

IP distance .
We can see that DNS-Pastry does not incur as much de-

lay penalty as Pastry or Chord. The difference between
DNS-Pastry with arbitrary ping destinations and intra-TLD
destinations is almost negligible. This indicates that DNS-
Pastry routing is quite efficient even for applications with-
out good locality properties.

Since the good stretch of DNS-Pastry is due to the fact
that long distance hops are efficiently avoided, we also ex-
amined the influence of different timings in the transit-stub
topology.

Therefore, we created two more topologies. For better
comparison, we used timings that were also used in other
simulations, like done by Ratnasamy et al. [18]. Our first
topology had link latencies of 100 for intra-transit domain
links, 10 for stub-transit links, and 1 for intra-stub links.
Now we add a 20-5-2 and a 10-10-10 topology. These tim-
ings can help to examine the case that a domain does not
cluster advantageous. The 10-10-10 timing would also be
a case where the King tool [9] would not work properly
since it depends on the assumption of clustering around
DNS names. According to the authors of [9] this does not
seem to be a common case. Our overlay (Figure 3(a)) can
deal with this situation but loses some performance. This
might be the case for communication between different do-
mains within generic TLDs. However, if we compare it to
the results of Pastry and Chord in Figure 2(c) we still see
better performance.

Our transit stub topology does still not reflect the real
characteristics of DNS zones in the Internet. There are two
enhancements that we apply therefor: (1) slow intra-stub
links and (2) fast intra-transit links.

Some zones are not as tightly coupled as we assume in
our H(100,10,1) and H(20,5,2) topologies. Examples could
be bbc.co.uk and amazon.co.uk. We introduce a slowdown

 0

 2

 4

 6

 8

 10

 500 1000 1500 2000 2500 3000 3500 4000

av
er

ag
e

nu
m

be
r

of
 h

op
s

overlay size

Pastry
DNS-Pastry

Chord
DNS-Pastry TLD

(a) Average hop count

 0

 200

 400

 600

 800

 1000

 1200

 500 1000 1500 2000 2500 3000 3500 4000

av
er

ag
e

ro
un

d
tr

ip
 ti

m
e

overlay size

Pastry
DNS-Pastry

Chord
DNS-Pastry TLD

(b) Average round trip time

 0

 2

 4

 6

 8

 10

 500 1000 1500 2000 2500 3000 3500 4000

av
er

ag
e

st
re

tc
h

overlay size

Pastry
DNS-Pastry

Chord
DNS-Pastry TLD

(c) Average stretch

Figure 2. Comparison of Pastry, DNS-Pastry, Chord

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 500 1000 1500 2000 2500 3000 3500 4000

av
er

ag
e

st
re

tc
h

fo
r

D
N

S
-P

as
tr

y

overlay size

H(100,10,1)
H(10,10,10)

H(20,5,2)

(a) Differnet network delays

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

st
re

tc
h

fo
r

D
N

S
-P

as
tr

y

probability of slowing down a zone, timings 100-10-1

slowdown 10x
slowdown 100x

slowdown 1000x

(b) Slow intra-stub connections

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

st
re

tc
h

fo
r

D
N

S
-P

as
tr

y

probability of speeding up a TLD connection, timings 100-10-1

speedup 10x
speedup 100x

(c) Short intra-transit links

Figure 3. DNS-Pastry average stretch

factor for the intra-stub links and a probability that a zone is
slowed down. In Figure 3(b) you can see, how DNS-Pastry
behaves in this cases for a H(100,10,1) topology. We used
100,000 random ping messages and a probability of 0.2 for
a factor of 10 for intra-transit speedup, which we are going
to explain later on. A slowdown factor of 10 or 100 is not
a problem, while factor 1000 increases the stretch signifi-
cantly. However, factor 1000 is rather unrealistic, since it
would mean that an intra-stub link is 10 times slower than
intra-transit links. The probability that a zone is slowed
down seems not to have an important influence.

Sometimes the delay between hosts in different TLDs is
quite short, like between .de and .nl or between .mil and
.gov, which are both used in the US. Therefore, we created
topologies with a speedup factor for intra-transit links and
a probability that a speedup is applied for a certain link.
The results are depicted in Figure 3(c). For this simulation
a probability of 0.2 for a slowdown factor 10 for the intra-
stub slowdown has been used. We expect, that there might
be many such links in the Internet, like between country
code domains of countries that are geographically close to
each other. However, the share of such short links among
the intra-stub links has almost no influence on the stretch.

7 Conclusion

We presented a new design for a peer-to-peer overlay
network. It can support and exploit locality correlated with
the position of nodes in a hierarchical name space. Due to
the novel design of its ID space, it also supports hierarchi-
cal names within organizations to speed up communication
within large organizations. The deeper name space of these
organizations will be reflected by longer IDs in the overlay.
At the same time, prefixes in the application name space
are used as locality oracle. This locality information is also
reflected by overlay IDs.

We have shown that our design provides good perfor-
mance for random ping messages. This proves that it is
usable as multi purpose overlay - even for applications that
do not provide locality in its access patterns. The only pre-
requisite is that nodes have DNS names.

For our performance evaluation we used a simulator with
a layered architecture. We maintain the common API [5]
thus it can easily be used to simulate any application on top
of our peer-to-peer network. There is some future work: To
evaluate our overlay design for workloads/applications that
provide communication patterns with high locality, we want
to simulate a DNS resolver application. We also plan to use
PlanetLab and the simulator to explore the behavior of our

overlay during node failures and network partitions.

References

[1] Overlay Weaver: An Overlay Construction Toolkit.
http://overlayweaver.sourceforge.net, October 2006.

[2] planetSim: An Overlay Network Simulation Framework.
http://planet.urv.es/planetsim, October 2006.

[3] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS
using a peer-to-peer lookup service. In IPTPS ’01: Revised
Papers from the First International Workshop on Peer-to-Peer
Systems, pages 155–165, London, UK, 2002. Springer-Verlag.

[4] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: a
decentralized network coordinate system. In SIGCOMM ’04:
Proceedings of the 2004 conference on Applications, technolo-
gies, architectures, and protocols for computer communica-
tions, pages 15–26, New York, NY, USA, 2004. ACM Press.

[5] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica.
Towards a common api for structured peer-to-peer overlays.
In Proceedings of the 2nd International Workshop on Peer-to-
Peer Systems (IPTPS03), Berkeley, CA, February 2003.

[6] P. B. Danzig, K. Obraczka, and A. Kumar. An analysis of
wide-area name server traffic: a study of the internet domain
name system. In SIGCOMM ’92: Conference proceedings on
Communications architectures & protocols, pages 281–292,
New York, NY, USA, 1992. ACM Press.

[7] T. M. Gil, F. Kaashoek, J. Li, R. Morris, and J. Strib-
ling. p2psim: a simulator for peer-to-peer (P2P) protocols.
http://pdos.csail.mit.edu/p2psim/, April 2006.

[8] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy,
S. Shenker, and I. Stoica. The impact of dht routing geometry
on resilience and proximity. In SIGCOMM ’03: Proceedings
of the 2003 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, pages
381–394, New York, NY, USA, 2003. ACM Press.

[9] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: esti-
mating latency between arbitrary internet end hosts. In IMW
’02: Proceedings of the 2nd ACM SIGCOMM Workshop on
Internet measurment, pages 5–18, New York, NY, USA, 2002.
ACM Press.

[10] N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wol-
man. Skipnet: A scalable overlay network with practical lo-
cality properties. In In proceedings of the 4th USENIX Sympo-
sium on Internet Technologies and Systems (USITS ’03), Seat-
tle, WA, March 2003.

[11] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS perfor-
mance and the effectiveness of caching. In IMW ’01: Proceed-
ings of the 1st ACM SIGCOMM Workshop on Internet Mea-
surement, pages 153–167, New York, NY, USA, 2001. ACM
Press.

[12] P. G. López, C. Pairot, R. Mondéjar, J. P. Ahulló, H. Tejedor,
and R. Rallo. PlanetSim: A New Overlay Network Simulation
Framework. In SEM, pages 123–136, 2004.

[13] Y.-E. Lu, S. Hand, and P. Lio. Keyword searching in hyper-
cubic manifolds. In P2P ’05: Proceedings of the Fifth IEEE In-
ternational Conference on Peer-to-Peer Computing (P2P’05),

pages 150–151, Washington, DC, USA, 2005. IEEE Computer
Society.

[14] S. Naicken, A. Basu, B. Livingston, and S. Rodhetbhai. A
Survey of Peer-to-Peer Network Simulators. Proceedings of
The Seventh Annual Postgraduate Symposium, Liverpool, UK,
2006.

[15] K. Park, V. S. Pai, L. L. Peterson, and Z. Wang. CoDNS:
Improving DNS Performance and Reliability via Cooperative
Lookups. In OSDI, pages 199–214, 2004.

[16] V. Ramasubramanian and E. G. Sirer. Beehive: O(1) lookup
performance for power-law query distributions in peer-to-peer
overlays. In NSDI, pages 99–112. USENIX, 2004.

[17] V. Ramasubramanian and E. G. Sirer. The design and imple-
mentation of a next generation name service for the internet.
In SIGCOMM ’04: Proceedings of the 2004 conference on Ap-
plications, technologies, architectures, and protocols for com-
puter communications, pages 331–342, New York, NY, USA,
2004. ACM Press.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A Scalable Content-Addressable Network. In
SIGCOMM ’01: Proceedings of the 2001 conference on ap-
plications, technologies, architectures, and protocols for com-
puter communications, pages 161–172, San Diego, California,
USA, 27–31 August 2001. ACM Press.

[19] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-aware overlay construction and server selection.
In 21rd Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2002), 2002.

[20] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), pages 329–350, Nov. 2001.

[21] N. S. Ting and R. Deters. 3ls - a peer-to-peer network simu-
lator. In P2P ’03: Proceedings of the 3rd International Confer-
ence on Peer-to-Peer Computing, page 212, Washington, DC,
USA, 2003. IEEE Computer Society.

[22] Z. Xu, R. Min, and Y. Hu. Hieras: A dht based hierarchical
p2p routing algorithm. icpp, 00:187, 2003.

[23] W. Yang and N. Abu-Ghazaleh. GPS: A General Peer-to-
Peer Simulator and its Use for Modeling BitTorrent. In MAS-
COTS, pages 425–434, 2005.

[24] B. Y. Zhao, Y. Duan, L. Huang, A. D. Joseph, and J. Kubia-
towicz. Brocade: Landmark routing on overlay networks. In
P. Druschel, M. F. Kaashoek, and A. I. T. Rowstron, editors,
IPTPS, volume 2429 of Lecture Notes in Computer Science,
pages 34–44. Springer, 2002.

[25] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
and J. D. Kubiatowicz. Tapestry: A resilient global-scale over-
lay for service deployment. IEEE Journal on Selected Areas
in Communications, 22(1):41–53, Jan. 2004.

