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In the last years many authors contributed to develop and implement algorithms on polynomial factorization
and even if the situation evolved rapidly, there is still room for improvements and new points of view. We focus
on absolute factorization of rationally irreducible polynomials with integer coefficients. For such polynomials, the
best current algorithm and implementation is Chèze’s ([1], [2]) presented at Issac’04; it is based on semi-numerical
computation, uses LLL and is implemented in Magma; it can factorize polynomials of high degrees, up to 200. One
of the challenges is to improve its capabilities at least in certain situations.

We propose yet another strategy and algorithm to deal with bivariate absolute irreducibility test and factorization,
but the techniques extend to the multivariate case. The poster will present a simple, but very efficient, Las Vegas
irreducibility test for an integer polynomial f(X, Y ) irreducible over Q, based on a property of the Newton polygon
of f . We also extend the strategy to get a factorization algorithm based on modular computations.

Starting from a factorization of f(X, Y ) modulo a “well-chosen” prime p, we can obtain the algebraic field
extension Q(α) in which the absolute factors of f(X, Y ) live.
We can assume that α is an integer linear combination of the coefficients of an absolute factor of f(X,Y ), more
precisely we define α := f1(x0, y0), with f1(X, Y ) irreducible absolute factor and x0, y0 ∈ Z.
First we estimate a sufficient level of accuracy for a p-adic approximation of the algebraic integer α and then lift the
“modp” factorization of f(x0, Y ) through Hensel liftings (to the computed accuracy level).
Finally we construct an integer polynomial of the right degree vanishing on α through the algorithm LLL applied
to a matrix involving the p-adic approximation and the level of accuracy.

Our absolute factorization algorithm can be viewed as a drastic improvement of the classical algorithm TKTD
(see [3], [4], [5]) as we replace the computations in an algebraic extension of Q of degree n, the degree of the input
polynomial, by computations in an extension of the minimal degree s, the number of absolute factors of the input
polynomial.

We made a preliminary implementation in Maple and computed several examples. It is very promising as it is
fast and able to compute the researched algebraic extension for high degree polynomials. Some examples can be
found on http://math.unice.fr/∼cbertone/ .

For instance, we constructed, using two random polynomials and a resultant, a rational irreducible polynomial
f(X, Y ) of degree 200 with 10 absolute factors of degree 20 each, with ‖f(X,Y )‖∞ ∼ 1070.
It took less than 60 seconds, using a non-optimal implementation in Maple 10, to define the algebraic extension in
which the absolute factors live. More precisely:
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• We factorized f(X,Y ) mod 47 in 33 seconds.

• We then estimated the level of accuracy needed to construct the algebraic extension, obtaining 898.
It was sufficient to use Hensel Lifting on the factorization until the level 47512, and this took 2.8 seconds.

• Finally, we found a polynomial q(T ) ∈ Q[T ] defining the algebraic field extension using LLL in 14 seconds.

The bottleneck of the procedure is now the final x-adic Hensel lifting.

In other words, we believe that our approach will allow that the practical complexity of absolute factorization
of polynomials with integer coefficients decreases to the practical complexity of rational polynomial factorization.
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Ore polynomials provide a general setting for describing linear differential, difference, and q-difference operators.
Systems of equations defined by these operators can be represented by matrices of Ore polynomials. The FFreduce
algorithm [1] performs row operations in a fraction-free way to transform such matrices into “simpler” ones while
controlling coefficient growth. This algorithm can be used to compute the row-reduced and weak Popov forms of
shift polynomial matrices [1], as well as the Popov form of general Ore polynomial matrices [3]. It can also be used
to compute a greatest common right divisor (GCRD) and a least common left multiple (LCLM) of such matrices.

A modular version of the FFreduce algorithm was developed by the authors to reduce the computational com-
plexity [2]. In the modular algorithm, it was observed that the evaluation reduction Zp[t][Z; σ, δ] → Zp[Z;σ, δ] is not
generally an Ore ring homomorphism [5]. Instead of performing the row operations on the Ore polynomial matrices
directly, larger striped Krylov matrices over Zp was constructed and row reductions were performed on these matri-
ces. Each Krylov matrix was constructed dynamically—rows were added depending on which row is selected as the
pivot in each step. Unlucky homomorphisms corresponds to divisors of the determinant of a certain Krylov matrix,
and they occur rarely.

In practice, the resulting modular algorithm was only slightly faster than the corresponding fraction-free algo-
rithm for very large inputs. One obstacle in obtaining further improvement was that the row operations to reduce the
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Krylov matrix have to be done one step at a time, because it is not possible to predict which Krylov matrix should be
constructed a priori. As a result, only low-level linear algebra subroutines in the LinearAlgebra:-Modular package
was used to accelerate the computation.

In this work, we investigate the applicability of higher-level linear algebra subroutines to speed up the computa-
tion. Assuming that the first evaluation point is “lucky,” the Krylov matrices for the remaining evaluation points can
be constructed and the entire matrix can be reduced with a few calls to the appropriate linear algebra subroutines.
This should allow more sophisticated implementations to speed up the reduction process (e.g. [4]).
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Consider the problem of sparse interpolation for a black-box multivariate rational function

f(x1, . . . , xn) =
u(x1, . . . , xn)
v(x1, . . . , xn)

, (1)

in floating point arithmetic, in which both the numerator and denominator

u(x1, . . . , xn) =
∑̀

j=1

ajx
dj1
1 · · ·xdjn

n , aj 6= 0,

v(x1, . . . , xn) =
m∑

k=1

bkx
ek1
1 · · ·xekn

n , bk 6= 0 (2)

are polynomials with complex coefficients, u(x1, . . . , xn), v(x1, . . . , xn) ∈ C[x1, . . . , xn].
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That is, to recover coefficients aj , bk and multivariate exponents (dj1 , . . . , djn
), (ek1 , . . . , ekn

) for 1 ≤ j ≤ ` and
1 ≤ j ≤ m in (2) from black-box evaluations of (1) in a finite precision environment.

We present a symbolic-numeric interpolation method that is sensitive to the sparsity of the black-box multivariate
rational function. Our method implements the homogenization from [1, 3] and numerically interpolates the modified
rational function with respect to the newly introduced homogenizing variable. Then by combining with the numerical
sparse polynomial interpolation from [2], we simultaneously recover the multivariate exponents of non-zero terms
in both u(x1, . . . , xn) and v(x1, . . . , xn). Once all such non-zero terms are recovered, various techniques can be
utilized to determine the corresponding coefficients aj and bk, and the given multivariate rational function can be
interpolated.

For example, let

f(x1, . . . , xn) =
a1x

d11
1 · · ·xd1n

n + · · ·+ a`x
d`1
1 · · ·xd`n

n

1 + b2x
e21
1 · · ·xe2n

n + · · ·+ bmxem1
1 · · ·xemn

n

be defined at (0, . . . , 0). By introducing the homogenizing variable z, we obtain a modified rational function F (z, x1,
. . . , xn) = f(x1z, . . . , xnz).

Suppose p1, . . . , pn ∈ Z≥0 are pairwise relatively prime. We fix (x1, . . . , xn) at (p1, . . . , pn) and consider the
univariate rational interpolation of F (z, p1, . . . , pn) with respect to z,

F (z, p1, . . . , pn) =
A1(p1, . . . , pn)zδ1 + · · ·+ Aλ(p1, . . . , pn)zδλ

1 + B2(p1, . . . , pn)zε2 + · · ·+ Bµ(p1, . . . , pn)zεµ
. (3)

In (3), the coefficients A1(p1, . . . , pn), . . . , Aλ(p1, . . . , pn), B2(p1, . . . , pn), . . . , Bµ(p1, . . . , pn) are multivariate
polynomials A1(x1, . . . , xn), . . . , Aλ(x1, . . . , xn), B2(x1, . . . , xn), . . . , Bµ(x1, . . . , xn) evaluated at (p1, . . . , pn).

We continue to interpolate the rational functions F (z, p2
1, . . . , p2

n), F (z, p3
1, . . . , p3

n), . . . . From each interpolation,
we obtain a set of coefficients that are the corresponding coefficient polynomials evaluated at powers: A1(p2

1, . . . , p
2
n),

. . . , Bµ(p2
1, . . . , p

2
n), A1(p3

1, . . . , p
3
n), . . . , Bµ(p3

1, . . . , p
3
n), . . ..

We take a look at the interpolation of polynomial A1. Using the numerical sparse polynomial interpolation from
[2], we can interpolate A1(x1, . . . , xn) from A1(p1, . . . , pn), A1(p2

1, . . . , p2
n), A1(p3

1, . . . , p
3
n), . . . .

For i = 1, 2, . . ., from the coefficients of each interpolated F (z, pi
1, . . . , pi

n) we can simultaneously interpolate
coefficient polynomials A1, . . . , Aλ, B2, . . . , Bµ by the numerical sparse polynomial interpolation [2]. When all the
coefficient polynomials A1, . . . , Aλ, B2, . . . , Bµ are recovered, the original rational function f(x1, . . . , xn) can be
reconstructed.

Our rational interpolation is an iterative method and does not require the knowledge on either the degrees or
number of terms in the black-box rational function. The number of evaluations and interpolation steps depend on
the number of non-zero terms in the given rational function and the accuracy required.

We also investigate other sparse rational interpolation approaches and relevant issues, including the situation
when the given function f(x1, . . . , xn) is not defined at the origin (0, . . . , 0). Some initial tests are demonstrated in
Maple.
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We present an algorithm to compute the least nonnegative solution of a system of probabilistic polynomials
(SPrP), a system of equations of the form

X1 = f1(X1, ..., Xn) ... Xn = fn(X1, ..., Xn)

where, for every i ∈ {1, ..., n}, fi is a polynomial over X1, . . . , Xn with positive rational coefficients that add up to
1. The solutions of a SPrP are the fixed points of the function f : Rn → Rn with f = (f1, ..., fn). For example,
X1 = 1

2X1X2 + 1
2 , X2 = 1

4X2X2 + 1
4X1 + 1

2 is a SPrP with f(X1, X2) = ( 1
2X1X2 + 1

2 , 1
4X2X2 + 1

4X1 + 1
2 ). Obviously,

1 = (1, ..., 1) is a solution for every SPrP. By Kleene’s theorem, every SPrP has a least nonnegative solution (called
just least solution in what follows).

SPrPs are important in different areas of the theory of stochastic processes and computational models. A
fundamental result of the theory of branching processes, with numerous applications in physics and biology (see
e.g. [6, 1]), states that extinction probabilities of species are equal to the least solution of a SPrP. The same result
has been recently shown for the probability of termination of certain probabilistic recursive programs ([5, 4]). The
consistency of stochastic context-free grammars, a problem of interest in statistical natural language processing, also
reduces to checking whether the least solution of a SPrP equals 1 (see e.g. [8]).

We fix an SPrP with function f and denote its least solution by µf . The following two problems are motivated
by the applications above: (1) decide whether µf = 1, and (2) given ε > 0 compute lb, ub such that lb ≤ µf ≤ ub
and ub − lb ≤ ε.

Etessami and Yannakakis show in [5] that Problem (1) can be solved in polynomial time using exact Linear
Programming; however, it is known that in practice this method is inefficient (over 30 minutes in average for
Maple’s exact Simplex on random examples with 200 variables). The same experiments show that inexact Linear
Programming solvers based on floating point arithmetic easily lead to false results because of severe numerical
problems (10 variables and coefficients from the set {0.01, 0.5, 0.49} are enough to break lpsolve). Concerning
Problem (2), lower bounds for µf can be computed using Newton’s method to approximate a root of the function
f(X) − X (the roots obviously correspond to the fixed points of f). It is shown in [5] and [3, 7] that if Newton’s
method starts at a prefixed point p of f (a point p ∈ [0, 1]n such that f(p) ≥ p), for example p = 0, and exact
arithmetic is used, then the method converges to µf and every approximant is again a prefixed point. Again,
experiments show that naively using exact arithmetic is very inefficient. In [9] a tool is presented that uses Newton’s
method with floating point arithmetic, but for the same 7-variable example as above the tool wrongly indicates that
µf = 1. Finally, the computation of upper bounds for µf does not seem to have been considered so far.

The poster presents our new algorithm based on Newton’s method to simultaneously solve Problems (1) and (2).
To the best of our knowledge, it is the first algorithm usable in practice that never returns a wrong result and
provides not only a lower but also an upper bound for the solution.

The algorithm, shown in Figure 1, handles normalized SPrPs where fi is of quadratical degree and the Jacobian
matrix f ′(1) is an irreducible matrix such that Id − f ′(1) is nonsingular. It is essentially sufficient to consider this
class of SPrPs, since we can transform an arbitrary SPrP into a collection of SPrPs of this form, although here some
problems still have to be solved. The algorithm is based on the following theorem, which builds on a result of [5]
and Perron-Frobenius theory. (By “≺” resp. “Â” we denote smaller resp. greater in every component.)

Theorem 1. If f is normalized and µf = 1, then there is an i ∈ N such that f ′(1)(1− ν(i)) ≺ (1− ν(i)) where ν(i)

is the i-th Newton iterant. If µf < 1, then the same property holds with “≺” replaced by “Â”.
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ν(0) ⇐ 0
i ⇐ 0
while true do

ν(i+1) ⇐ NewtonNumeric(f, ν(i))
if ν(i+1) no prefixed point or ν(i+1) 6> ν(i) then

ν(i+1) ⇐ ν(i)

increase precision of NewtonNumeric
else if f ′(1) · (1− ν(i+1)) Â 1− ν(i+1) then

calculate postfixed point p using ν(i+1)

compute ν(i+1+j) and fk(p) for increasing j, k
until fk(p)− ν(i+1+j) ≤ ε

return (ν(i+1+j), fk(p))
else if f ′(1) · (1− ν(i+1)) ≺ 1− ν(i+1) then

return (1, 1)
else

i ⇐ i + 1
end if

end while

Figure 1: The algorithm returns (lb, ub) with lb ≤ µf ≤ ub.

We have proved that, with exact arithmetic, the index
i has polynomial size in the size of the SPrP. The proof
relies on recent results about the convergence speed of
Newton’s method [3, 7] and on a gap theorem by Dedieu
[2].

To overcome the inefficiency of exact arithmetic,
we compute each Newton iterant using inexact arith-
metic of variable precision, and then check whether it
is a prefixed point. If so, rounding errors do not af-
fect correctness, and the computation can proceed. If
not, the computation of the iterant is repeated with
increased precision; in our prototype implementation
we increment the bitsize of floating point numbers. In
order to obtain upper bounds on µf , if our method de-
tects that µf 6= 1 , we compute a postfixed point, i.e.
a p ∈ [0, 1]n with p ≥ f(p), which can be used as a
first upper bound for µf . We can show that the se-
quence p, f(p), f(f(p)), . . . converges to µf from above
with linear convergence rate.

In order to compute the elements of the sequence
we again use inexact arithmetic and increase precision
when needed. In this way we obtain a sequence of in-
creasingly better upper bounds for µf which, together with the lower bounds provided by the Newton iterants, yield
a solution to Problem (2).

The price to pay for a correctness guarantee with inexact arithmetic is the possibility that the algorithm does
not terminate. This can only happen when µf = 1. While in our experiments the algorithm always terminates, we
are currently searching for easy conditions that guarantee termination. Our claim that ours is the first algorithm
usable in practice that never returns a wrong result is supported by a speed-up factor of 15 on random systems with
200 variables over Maple’s exact Simplex. Recall also that Linear Programming only solves problem (1), while our
algorithm simultaneously solves (1) and (2).
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A commutative ring B with an identity is called a boolean ring if every element of which is idempotent. A residue
class ring B[X1, . . . , Xn]/〈X2

1 −X1, . . . , X
2
n−Xn〉 with an ideal 〈X2

1 −X1, . . . , X
2
n−Xn〉 also becomes a boolean ring,

which is called a boolean polynomial ring. A Gröbner basis in a boolean polynomial ring, called a boolean Gröbner
basis, is first introduced in [3, 4] with its computation algorithm in order to solve certain types of constraints over
sets. The algorithm is implemented in [5, 6] for the case that B is a boolean ring that consists of all finite or co-finite
subsets of S, here S is a set of all strings of the computer language. The program is released as a free software
of ICOT(Institute for New Generation Computer Technology), however, it has been used by very few people. It is
written in a uncommon computer language such as Prolog or Klic(a parallel logic programming language developed
in ICOT).

After the release of [6], further theoretical developments are done in [1, 7, 9]. Based on these results, we imple-
mented a new algorithm to compute boolean Gröbner bases in the computer algebra system Risa/Asir [2]. Our
program achieves tremendous speed-up comparing with the old implementation of [6]. It enables us to do our recent
work [8] of a non-trivial application of boolean Gröbner bases. The following table contains computation time(in
terms of seconds) of 7 boolean Gröbner bases for solving 7 Sudoku puzzles which are ranked as extremely difficult.
The row Risa/Asir and Klic cotain computation times of the same boolean Gröbner basis in each column by our new
program and by the old program of [6] respectively, the symbol ∞ means that the computation did not terminate
within 2 hours. All computations are done by a PC with 2GB memory and Core2Duo2GHZ CPU.

puzzle 1 2 3 4 5 6 7
Risa/Asir 41.7 43.6 48.1 40.1 44.3 48.9 76.2

Klic 134.1 398.3 1025.3 ∞ 1242.3 686.5 ∞
In the poster, we introduce our new implementation together with our non-trivial Sudoku solver based on boolean
Gröbner bases computation.
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a CNRS - INRIA - Université de Lyon (LIP / ENS Lyon)
e-mails: claude-pierre.jeannerod@ens-lyon.fr gilles.villard@ens-lyon.fr

christophe.mouilleron@ens-lyon.org

The cost of linear algebra (linear system solving, inversion,. . . ) over general dense matrices of dimension n is
O(nω) field operations, with 2 ≤ ω < 2.38. However, the underlying problems sometimes have a structure such that
the associated matrices, while still being dense, can be stored using fewer than n2 field coefficients. Thus, for such
problems, it is natural to search for algorithms subquadratic in n.

We will consider here one class of dense structured matrices. For a field K, if M ∈ Kn×n and N ∈ Kn×n, we
will say that a matrix A ∈ Kn×n is structured with respect to the operator ∇M,N : A 7→ MA − AN if the rank of
∇M,N (A) is small compared to n. This rank, noted α hereafter, is in fact a measure of the structure: the smaller it
is, the more structured the matrix is. Having α = rank∇M,N (A) ensures that there exist two matrices G,H ∈ Kn×α

such that ∇M,N (A) = GHT . We will say that (G,H) is a pair of generators of A with respect to the operator
∇M,N (A).

Storing G and H requires only 2αn coefficients, which is small compared to the n2 coefficients needed for A when
α is small. One important property is that the structure is preserved by inversion (see for example [6]):

Theorem 1. If A is invertible and structured for the operator ∇M,N then A−1 is structured for the operator ∇N,M .
More precisely, we have

rank
(∇N,M (A−1)

)
= rank

(∇M,N (A)
)
.

Moreover, if ∇M,N (A) = GHT then ∇N,M (A−1) = Y ZT , with Y = −A−1G and Z = A−T H.

For such structured matrices, well-known techniques are available for computing a compressed version of A−1 or
linear system solutions using O (̃α2n) field operations [6]. (Here and hereafter the O˜ notation hides all logarithmic
factors.) Such techniques are essentially variations of the divide and conquer approach of Morf [5] and Bitmead and
Anderson [1]. In practice, they apply to important cases like Cauchy-like matrices where both M and N are diagonal
and Vandermonde-like matrices where M is diagonal and N equals the transpose of the classical lower shift matrix
Zn, whose entry (i, j) is 1 if i = j + 1, and 0 otherwise.

However, all these techniques recursively use a “compression” stage which, given matrices G1,H1 ∈ Kn×β such
that G1H

T
1 has rank α ≤ β, computes matrices G2, H2 having exactly α columns. One exception is an algorithm by

Cardinal [3], which shows in the case of Cauchy-like matrices how to get rid of this compression step by judiciously
exploiting the explicit form of the generators Y, Z in Theorem 1.

Our goal here is twofold: first, to bring attention to Cardinal’s trick, which seems to have been very rarely cited
so far; second, to show how to extend it to a broader class of structured matrices that includes Vandermonde-like
matrices. In particular, we show the following result:
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Theorem 2. Let M be lower-triangular and N be upper-triangular, and let A be structured for the operator ∇M,N .
Then one can compute generators for A−1 without any compression stage. Furthermore, in the case of Cauchy-like
and Vandermonde-like matrices, this can be done in O (̃α2n) field operations.

Although the compression stage can be performed routinely using fast Gaussian elimination (either using ran-
domization [4] or deterministically [6, 2]), suppressing it results in algorithms that are simpler to write and sim-
pler to analyze. For now, this is the main interest of the above result. Another potential advantage of this
compression-free approach (which we have not investigated yet) is some practical speed-ups when solving Cauchy-like
and Vandermonde-like linear systems.
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1 Introduction
In symbolic computation, polynomial multiplication is a fundamental operation akin to matrix multiplication in nu-
merical computation. We present efficient implementation strategies for FFT-based dense polynomial multiplication
targeting multi-cores. We focus on polynomials over finite fields since the so-called modular techniques reduce all
computations to such fields of coefficients. Due to the constraints of 1-D FFT over finite fields, we assume 1-D FFTs
are computed in a black box program, which is not necessarily a parallel one. This allows us to employ non-standard
FFT techniques such as Truncated Fourier Transform (TFT) [5] which for many cases has better time and memory
efficiency.

We explore the parallelism in the row-column algorithm for multidimensional FFT computations. We show
that balanced input data can maximize parallel speedup and minimize cache complexity for bivariate multiplication.
However, unbalanced input data, which are common in symbolic computation, are challenging. We provide efficient
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techniques, what we call extension and contraction, to reduce multivariate (and univariate) multiplication to balanced
bivariate multiplication.

The techniques proposed in this paper are implemented in the Cilk++ language [2], which extends C++ to
the realm of multi-core programming based on the multi-threaded model realized in [4]. The Cilk++ language is
also equipped with a provably efficient parallel scheduler by work-stealing [1]. We use the serial C routines for 1-D
FFT and 1-D TFT from the modpn library [6]. Our integer arithmetic modulo a prime number relies also on the
efficient functions from modpn, in particular the improved Montgomery trick [8], presented in [7]. Our benchmarks
demonstrate good speedup on multi-cores.

2 FFT-based Multivariate Multiplication
Let K be a field and f , g ∈ K[x1 < · · · < xn] be polynomials. Define di = deg(f, xi) and d′i = deg(g, xi), for all i.
Assume there exists a primitive si-th root of unity ωi ∈ K, for all i, where si is a power of 2 satisfying si ≥ di +d′i +1.
Then fg can be computed as follows.

Step 1. Evaluate f and g at each point of the n-dimensional grid ((ωe1
1 , . . . , ωen

n ), 0 ≤ e1 < s1, . . . , 0 ≤ en < sn)
via n-D FFT.

Step 2. Evaluate fg at each point P of the grid, simply by computing f(P )g(P ),

Step 3. Interpolate fg (from its values on the grid) via n-D FFT.

3 Complexity Estimates
We consider the parallel running time of the above algorithm with the multi-threaded programming model of [4].
Our cache complexity estimates is based on the theoretical model introduced in [3].

Let s = s1 · · · sn. The number of operations in K for computing fg based on FFTs is
9
2

n∑

i=1

(
∏

j 6=i

sj)si lg(si) + (n + 1)s =
9
2
s lg(s) + (n + 1)s.

Under our serial 1-D FFT assumption, the span of Step 1 is 9
2 (s1 lg(s1) + · · ·+ sn lg(sn)), and the parallelism of

Step 1 is lower bounded by s/max(s1, . . . , sn). (4)

Let L be the size of a cache line. For some constant c > 0, the number of cache misses of Step 1 is upper bounded
by

n
cs

L
+ cs(

1
s1

+ · · ·+ 1
sn

). (5)

Remark. For n ≥ 2, Expression (5) is minimized at n = 2 and s1 = s2 =
√

s. Moreover, when n = 2, under a
fixed s = s1s2, Expression (4) is maximized at s1 = s2 =

√
s.

4 Contraction to Bivariate from Multivariate and Exten-

sion of Univariate to Bivariate
We describe below the techniques of contraction and extension by examples.

Given f ∈ K[x, y, z] where K = Z/41Z, with deg(f, x) = deg(f, y) = 1, deg(f, z) = 3. Contracting f(x, y, z) to
f ′(u, v) can be done by xe1ye2 7→ ue1+2e2 and ze3 7→ ve3 .

Consider f, g ∈ K[x] univariate, with deg(f) = 7 and deg(g) = 8; fg has “dense size” 16. We obtain an integer
b, such that fg can be performed via fbgb using “nearly square” 2-D FFTs, where fb := Φb(f), gb := Φb(g) and

Φb : xe 7−→ ue rem b ve quo b.

Here b = 3 works since deg(fbgb, u) = deg(fbgb, v) = 4; moreover, the dense size of fbgb is 25.

Proposition. For any non-constant f, g ∈ K[x], one can always compute b such that |deg(fbgb, u)−deg(fbgb, v)| ≤
2 and the dense size of fbgb is at most twice that of fg.
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5 Balanced Multiplication
We define that a pair of bivariate polynomials p, q ∈ K[u, v] is balanced if deg(p, u)+deg(q, u) = deg(p, v)+deg(q, v).

Algorithm. Let f, g ∈ K[x1 < . . . < xn]. W.l.o.g. one can assume d1 >> di and d1
′ >> di for 2 ≤ i ≤ n (up to

variable re-ordering and contraction). We obtain fg by

Step 1. Extending x1 to {u, v}.
Step 2. Contracting {v, x2, . . . , xn} to v.

Determine the above extension Φb such that fb, gb is (nearly) a balanced pair and fbgb has dense size at most
twice that of fg.

6 Experimental Results
All our benchmarks are carried out on a 16-core machine with 16 GB memory and 4096 KB L2 cache. The processors
are Intel Xeon E7340 @ 2.40GHz.

Aiming at supporting higher-level parallel algorithms for solving systems of non-linear equations, our multiplica-
tion must perform efficiently in terms of serial running time, parallelism and cache complexity, on any possible input
degree patterns, insisting on those which put code efficiency to challenge. Our experimental results demonstrate that
our balancing techniques are not only theoretical but also practical, as shown in the following figures.
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A continued fraction type method to find a rational number
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Abstract

We show a fast algorithm to find a rational number in a given real interval whose denom-
inator is minimal. The algorithm is similar to the regular continued fraction expansion for a
real number.

Keywords: rational number, interval, approximation, continued fraction

1 Definition of the Problem
Problem: For a given positive real closed interval I = [α, β], where 0 < α < β, find the rational number

r = p/q ∈ I whose denominator q(> 0) is minimal.

We have restricted the interval to be positive without loss of generality. Because in cases α, β are in opposite signs
or one of them is zero, the solution is trivial r = 0, (p, q) = (0, 1). In case both are negatives, the solution is easily
reduced to solve the case of positive interval I = [−β,−α] and then sign of the numerator of the solution is changed.

2 The trivial simplest solution
Let our inputs are α, β ∈ R, where 0<α<β. The problem requires to find the pair of positive integers (p, q) whose
denominator q is minimal such that α ≤ p/q ≤ β is satisfied.

Since any closed interval whose length is not zero always contains rational numbers, and the rational number
is countable, the value of denominator is bounded from below, therefore solution always exist and can be made
constructive. For example, the following simple trivial procedure find one. The halt property of the procedure and
the minimality of the denominator q are trivial from the construction. When the procedure below halts, the required
solution is given by the pair of p and q as r = p/q.

L0 : for q ← 1, 2, 3, . . . do
if (interval I = [qα, qβ] contains an integer)then

p ← any integer which is contained in I; exit L0
endif

enddo L0

We can also understand easily that if we replaced ”any integer” to ”all integers” in the above procedure, all
rational numbers whose denominators are the minimal value can be obtained. The statement ”the interval [qα, qβ]
contains some integer” is tested by ceil(qα)≤floor(qβ).

This procedure relies on only the correctness of the determinations of whether qα and qβ are integer or of taking
their integer part by rounding up or down, therefore it is not so difficult to realize on the computer (especially when
both α, β are given by fraction expansion of finite length or they are given by rationals. For the case of algebraic
numbers is also possible).

However, since this simple trivial method examines candidates of the denominator one by one incrementally, it
is too much time consuming when the denominator of the solution is a huge number. Therefore, in the following
more efficient algorithm will be researched.
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3 An efficient method
For the positive interval I = [α, β], we may change from the statement of the original problem as ”find some
rational numbers contained in I whose denominators are minimal” to the following statement as ”find the rational
number whose numerator is minimal among those rational numbers contained in I whose denominators are minimal”.
(Because, if we only knew the minimal value of q, the numerator p will be any integer contained in [qα, qβ] from the
inequality of the interval; p is in the range ceil(qα), . . . , floor(qβ).)

When we change the problem as above, the following lemma 1 can be used.
Lemma 1. For the positive closed interval I=[α, β] where 0<α<β, the rational numbers (both numerator and

denominator are non-negative integers) by the following two definitions always coincide. Def1: The rational number
contained in I, and the denominator is minimal (if there are many such numbers, choose the one whose numerator is
minimal). Def2: The rational number contained in I, and the numerator is minimal (if there are many such numbers,
choose the one whose denominator is minimal).

In the paper, we call this unique rational number P/Q corresponding to the positive closed interval I as ”the
rational number which represents I”.

Corollary 1. If the positive closed interval I contains any integer, let n be the minimal such integer, then the
integer n is the rational number which represents I.

From the above lemma 1 and corollary 1, we get the principle of the continued fraction expansion type algorithm
to find the rational number which represents I.

Principle of Continued Fraction Expansion type algorithm Let r be the rational number rep-
resents the positive closed interval I=[α, β]. We first let α0≡α, β0≡β, r0≡r.

In the k-th step, we let the positive closed interval as Ik≡[αk, βk], and let rk be the rational number which
represents Ik.

When Ik contains some integer, let the minimal value of such integer be nk, then (by the corollary 1) the integer
nk is the rational number rk which represents Ik.

When Ik contains no integer, then αk is not a integer and let mk←floor(αk) then 0<αk−mk<1, therefore we have
0<αk−mk≤rk−mk≤βk−mk. From this inequality, we have the relation of the reciprocals: 0<1/(βk−mk)≤1/(rk−mk)≤
1/(αk−mk). If we let αk+1≡1/(βk−mk), βk+1≡1/(αk−mk), rk+1≡1/(rk−mk), then 0<αk+1<βk+1, and we let the
interval Ik+1≡[αk+1, βk+1] then we know that Ik+1 contains the rational number rk+1. In that situation, the following
lemma 2 holds.

Lemma 2. The above transformation maps the positive closed interval Ik to another positive closed interval
Ik+1, and a rational number rk in the interval Ik to another rational number rk+1 in the interval Ik+1. When rk is
the rational number which represents Ik, then rk+1 is also the rational number which represents Ik+1.

From the above lemma 2, the both ends of the original and mapped intervals and also the representatives of
the both intervals are related by a linear fractional transformation (Möbius transformation). If we know the integer
mk and the rational number rk+1 which represents Ik+1, then the rational number rk which represents Ik can be
calculated by the backward transformation as rk = mk + 1/rk+1.

We continue the forward transformations until at the k = `-th step the interval I` contains an integer n`. Then
the integer n` is the rational number which represents I` and we terminate the transformation. And we start from
r` = n` and repeat the backward transformations to obtain the desired solution r0.

If we have (m0,m1, · · · ,m`−1) and n` as the expansion, then the solution is calculated by the regular continued
fraction as r0 = [m0, m1, m2, · · · , m`−1, n`] = m0 + 1/(m1 + 1/(m2 + · · ·+ 1/(m`−1 + 1/n`) · · · )).

Therefore, the solution r0 which we want to solve can be given by the following algorithm:

r` ← n` ; for j ← `− 1 downto 0 do
rj ← mj + 1/rj+1

enddo

or if we represent the numerators as Pj and denominators as Qj ,r0=P0/Q0 can be calculated by the following
algorithm:
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P` ← n` ; Q` ← 1;
for j ← `− 1 downto 0 do

Pj ← mjPj+1 + Qj+1 ; Qj ← Pj+1

enddo

Lemma 3. Coefficients of the expansion are not less than 1 except the first coefficient.
When the expansion terminates at the `-th step, the integer n` contained in the interval I` is not less than 1. And the
expansion continued both k-th and (k + 1)-th steps, then mk+1≥1. Therefore, the coefficients mj in the continued
fraction expansion is no less than 1 except the first m0.

In the conclusion, if the expansion terminates at the `-th step, the rational number which represents I is the
regular continued fraction [m0, m1, · · · , m`−1, n`] whose coefficients except m0 are no less than 1.

Lemma 4. The expansion terminates in finite steps. When the transformation is continued, eventually the
interval which contains integer is reached in the finite steps and the expansion terminates.

Continued Fraction Expansion type algorithm: For the given positive real numbers 0<α<β, the
algorithm below solves the rational r which represents the positive closed interval [α, β].

α0 ← α; β0 ← β;
L0:for k ← 0, 1, 2, · · · do

if (Ik = [αk, βk] contains some integer) then
rk ← the minimal integer in Ik exit L0

else
mk ← integer part of αk;
αk+1 ← 1/(βk−mk) ; βk+1 ← 1/(αk−mk)

endif
enddo L0 ;
while (k ≥ 0) do

rk−1 ← mk−1 + 1/rk ; k ← k − 1
enddo ;
r ← r0

The solution whose denominator is a large number can be obtained much faster by this present method a variant
of the regular continued fraction expansion than the trivial one.

For the continued fraction expansion finished at the `-th step, the possible smallest value of the denominator
is F`+1 which corresponds to the case of expansion [m0, 1, 1, · · · , 1] (there are ` ones). Where, Fn is the Fibonacci
number defined by F1=1,F2=1,Fn+2=Fn+Fn+1 and Fn≈φn/

√
5,φ=(1 +

√
5)/2≈1.618.

Let q be the denominator of the true solution. The trivial method searches the denominator incrementally from
1 to q. Therefore the number of arithmetics O(q) is exponential to the bit length of q. On the other hand, the
continued fraction expansion method terminates at the step ` which is k or less, where k is the minimal number
which satisfies Fk+1≥q. Since k+1≈ log(

√
5q)/ log φ, the number of arithmetics of the present method is O(log q)

linear to the bit length of q.
Example: The PC system used is CPU intel Core i7 920 (2.67GHz) using 1 thread with intel Fortran v11.0 opti-

mization flag ”-fast” with IEEE 64bit floating number. For the interval [α, β]=[0.217973763834575, 0.217973763834580],
the trivial method in 60 millisecond gave the answer p=3493241, q=16025970, p/q=0.217973763834576. The present
method made the expansion [0,4,1,1,2,2,1,5,1,6,66,1,1,1,1,2,1,3], and gave the same rational p=3493241, q=16025970
in total 0.40 microsecond (which is too short for the single measurement, so this time is the average value of the
repeat of 1000 calls).

Determining Divisibility between Polynomials with Inexact Coefficients
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Abstract

We provide a method of determining whether there exist some p ∈ P and f ∈ F such that
p is divisible by f for a pair of real multivariate interval polynomials, P and F . Although
this problem is written as a feasibility problem for a system of nonlinear algebraic equations,
it is an NP-hard problem and is thus difficult to solve. Our approach is iterative based on
interval analyses, which outputs the regions containing the solutions if the system is feasible;
otherwise, it outputs the fact of infeasibility. We also propose two methods for where the
system of algebraic equations is underdetermined, the first obtains the regions that enclose all
solutions, and the second obtains the solution that minimizes error in the Euclidean norm.

1 Introduction
We consider the following type of problem and provide an iterative method to solve it.

Problem 1. For given lα, hα, l′β , h′β ∈ R, do there exist real multivariate polynomials
p =

∑
α aαxα1

1 xα2
2 · · ·xαk

k (α = (α1, α2, . . . , αk)),

f =
∑

β bβxβ1
1 xβ2

2 · · ·xβk

k (β = (β1, β2, . . . , βk)),

where lα ≤ aα ≤ hα, l′β ≤ bβ ≤ h′β , and f | p ?
Problem 1 can be treated as a feasibility problem with polynomial equations through similar arguments in [8].

When the divisor f is an ordinary polynomial, i.e., every bβ is fixed, all constraints on polynomial equations are
linear, thus the problem is easily solved using the properties of zonotopes [8]. But in general case, Problem 1 is
NP-hard and thus difficult (for the complexity of the algorithm, see Chapter 13 of [2]). In our iterative method
based on interval analyses, each step is done by applying interval Gaussian elimination, thus it is expected to give
the answer for the problem efficiently.

2 Description of Problems
For the details of interval analyses, see [4]. We denote the domain of the interval coefficients by IR and that
of the interval polynomials by IR[x] (x = (x1, . . . , xk)). For given interval polynomials P =

∑s
i=1 aiei(x) and

F =
∑t

j=1 bjdj(x) with ai, bj ∈ IR and ei(x), dj(x) ∈ R[x], Problem 1 is rewritten as follows.

Problem 2. Determine whether there exist some polynomials p ∈ P and f ∈ F such that f | p.

We regard interval coefficients a1, . . . , as and b1, . . . , bt as symbols, then consider the remainder, rem(P, F ).
Expanding and sorting P and F in arbitrary term order Â, we write P =

∑
α fα(a1, . . . , as) · xα and F =∑

α gα(b1, . . . , bt) · xα. Then, the remainder polynomial, P ′ = rem(P, F ), is described as
P ′ =

∑
α cα(a1, . . . , as, b1, . . . , bt) · xα.

The condition where P ′ = 0 is regarded as all coefficients cα(a1, . . . , as, b1, . . . , bt) having vanished for some
a1, . . . , as and b1, . . . , bt contained in the intervals. Therefore, Problem 2 is formulated as a feasibility problem of an
algebraic equation system as

Problem 3. For the algebraic equation system

{cα(a1, . . . , as, b1, . . . , bt) = 0 | for each term of P ′},
does any solution exist satisfying li ≤ ai ≤ hi and l′j ≤ bj ≤ h′j (i = 1, . . . , s; j = 1, . . . , t)?

1The current affiliation of the author is: NEC Corporation, h-nakayama@cj.jp.nec.com
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3 Iterative Algorithms

3.1 Interval Newton Methods
In the following, we treat the feasibility problem of an algebraic equation system (Prob. 3) instead of the divisibility
problem between interval polynomials (Prob. 2). Let the variables of a system c = (c1, . . . , cn) and its constraints
f = (f1, . . . , fm), then the following problem is obtained.

find c = (c1, . . . , cn)
s.t. fj(c) = 0 (j = 1, . . . , m), (6)

li ≤ ci ≤ hi (i = 1, . . . , n).

We have denoted the number of constraints by m and that of variables by n. In this section, we deal with
problems in the case of m ≥ n, where the number of solutions is finite. Conversely, the case of m < n is described
in Section 4.

We adopt the Moore’s approach [7] based on the interval Newton method, i.e., narrowing the rectangular region
that contains some accurate solutions and finally outputting a sufficiently reduced region as an interval, instead of
the accurate solution itself.

For a function, f : IRn → IRm, and an interval, cI ∈ IRn, the step that improves the solution from cI to dI is

0 = f(c) + J(c, cI) · (dI − c), (7)

where c means a point chosen from cI. We generally adopt the midpoint, mid(cI). J(c, cI) ∈ IRm×n is a Jacobian
matrix of f , described as

Jij(c, cI) = ∂fi

∂cj
(cI1, . . . , c

I
j , cj+1, . . . , cn).

For each entry of J(c, cI), we substitute a value in the interval for the variable ci and the interval itself for
the variable cIi , and evaluate the lower and upper bounds using affine arithmetic [1, 6]. By partially replacing the
substitutions of intervals with points and using affine arithmetic, the spread of intervals in J(c, cI) are reduced.

In Eq. (7), the values of c, f(c), and J(c, cI) are already known, thus the value of dI is obtained by solving a
linear interval equation. We obtain a rectangular region that properly contains an accurate region using interval
Gaussian elimination [3] and regard the solution as relaxed.

Before applying interval Gaussian elimination, we normalize the interval matrix. For a matrix, B ∈ Rm×m, such
that mid(M) = B · mid(J) is an identity matrix (if m > n, mid(Mii) = 1, and mid(Mij) = 0 for i 6= j), we call
multiplication of B to both sides of Eq. (7) normalization. Writing M(c, cI) = B · J(c, cI), r(c) = −B · f(c), and
N(c(k), cI(k)) = dI to clarify that Eq. (8) is an iteration step to obtain cI(k+1) from cI(k) to find the solutions to
Eq. (7), the step is described as

M(c(k), cI(k)) ·
(
N(c(k), cI(k))− c(k)

)
= r(c(k)), (8)

cI(k+1) = cI(k) ∩N(c(k), cI(k)). (9)

cI(k+1) ⊆ cI(k) is obviously satisfied by the definitions of Eqs. (8) and (9).

3.2 Termination of Iterations
We need to determine some termination conditions to end the algorithm within a finite number of steps. Following
two conditions are tested at the end of each step:

1. There is no solution in the region, i.e., the current box becomes empty after the iterations.

2. There exist some solutions in the region. We then output the current region as a solution.

The criteria are given as the following statements:

Theorem 1 ([4]). There is no solution in the discarded region, cI(k) \ cI(k+1). Particularly if cI(k+1) = ∅, there are
no zeros of f in cI(k).
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Theorem 2 ([4]). If N(c(k), cI(k)) ⊆ cI(k), some zeros of f are in N(c(k), cI(k)).

By using these arguments, the algorithm to enumerate solutions in Eq. (6) for m ≥ n is given as follows.

Algorithm 1.
Input: Set of polynomials f(c) = (f1, . . . , fm) and initial box cI

init of c = (c1, . . . , cn).
Output: List of intervals containing zeros of f . If no solution exists, return empty set.
1. L = {cI

init}.
2. Pick an element from L and denote it by cI(k=0).
3. Evaluate f(cI(k)) using affine arithmetic. If the result does not contain 0, no solution is in cI(k). Go to 2.
4. Using normalization and interval Gaussian elimination, obtain cI(k+1) from cI(k).
5. If cI(k+1) = ∅, no solution is in cI(k). Go to 2.
6. If cI(k+1) = cI(k), divide cI(k) into two sub-regions and add them into L, then go to 2.
7. If N(c, cI) ⊆ cI(k), output the interval, cI(k+1), and go to 2. Otherwise, increment k by 1 and go to 3.

4 Underdetermined Case

4.1 Setting Basic Variables
For m < n in Eq. (6), we divide the set of variables, var(c) = {c1, . . . , cn}, into two; the first is a set of basic variables
var(cb) = {ci1 , . . . , cim} ⊂ var(c) and the second is that of non-basic variables var(cnb) = var(c) \ var(cb). For such
fixed bases, we find regions such that the solution to cb is uniquely determined for every fixed cnb ∈ cI

nb. This
approach is based on [5].

The algorithm consists of two phases. In the former, the region is divided and diminished through iterative steps
with replacements of bases, and finally we obtain regions where by fixing any cnb ∈ cI

nb, the system with m variables
and m constraints only has one zero. In the latter, we obtain a set of regions enclosing all solutions whose radiuses
are smaller than a threshold δ, with the basic variables remaining unchanged.

4.2 Optimization on Euclidean Norm
This section takes into consideration whether a solution can be found that minimizes its Euclidean distance from the
center. This problem is regarded as an optimization problem, thus formulated as

minimize
∑n

i=1

(
ci − (hi + li)/2

)2

s.t. fj(c) = 0 (j = 1, . . . ,m), (10)
li ≤ ci ≤ hi (i = 1, . . . , n).

We use the John condition, which is a generalization of the KKT condition, to find the optimal solution (10). This
condition describes the points that attain minimal values for given constraints f(c) = 0 and an objective function,
g(c). It is formulated as

u +
∑

j
Ejvj = 0,

u
∂g

∂ci
(c) +

∑
j
vj

∂fj

∂ci
(c) = 0, (11)

fj(c) = 0,

where u ≥ 0, vj are Lagrange multipliers and Ej ∈ [1, 1 + ε] for all j = 1, . . . , m. The constant, ε, is the smallest
positive machine number such that in the number system used on computers. In Eq. (11), the top equality is a
normalization condition, the middle one is a condition such that g(c) is minimal, and the bottom one describes zeros
of f .

Since both the number of variables and constraints in the system of algebraic equations (11) are m + n + 1, the
number of solutions is finite. Therefore, we first compute all solutions to (11) to find c that minimizes g(c), then
choose one where the value of g becomes minimum.
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Abstract

The increasing amount of information transmitted over communication channels has to
be handled efficiently to avoid congestion and delays in the network service. In this work, an
algebraic approach to data coding and transmission is proposed. One of its basic assumptions is
that in many situations the information could be decomposed into basic components or vectors,
which represent a significant part of the data. To illustrate the capabilities of the proposed
approach, a coding system based on vector quantization is investigated. This approach is
based on the observation that in most systems, events of recent history of the stream can be
used to represent future vectors of the data. Our conclusion is that the proposed algebraic
approach could be efficient in presently used coding systems.
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Figure 2: A schematic block diagram of the coding system.

5 Method
Wideband multimedia channels play an important role in today’s information systems. Accordingly, a need exists
for systems that could encode and decode efficiently and use information about the specific characteristics of the
source and the user to reproduce the information with minimal distortion. The model used in this study is based
on specific properties related to the nature of the data streams. In the case tested, video information is considered.
In particular, the main assumption is that changes or events of recent history are likely to repeatedly appear in the
same area of the image where they have previously appeared. If not similarly repeated (up to allowed distortion),
they are likely to be encoded as transformed versions of previous data. According to this model, a frame is divided
into blocks and sub-blocks.

Based on the above assumptions, the proposed system is presented in Figure 1. In the first stage of the process,
the blocks of the image after Image Partition are used for training localized codebooks (CB) using vector quantization
[1]. The Delay (D) is needed to allow updating of the codebooks before quantization (Q). Most of the sub-blocks
(vectors) of each block are adequately encoded in the first stage by relatively sparse codebooks. Some of the vectors,
however, require additional attention due to distortion above a pre-determined threshold. Usually most of these
vectors can be encoded using adjacent codebooks. It is assumed that these vectors refer to motions that have
crossed the borders of their block (codebook) thus can be found in one of the adjacent codebooks, possibly after
Transformation (T) of rotation or scaling.

6 Results
The algebraic approach to data coding using the history of the information sequence provides practical applications.
Experimental results indicate a high compression ratio of more than 100:1, obtaining almost lossless reproduction of
the original data with less than 0.1% distortion. In addition to the quality of the transmission, the implementation
of this approach can be systematically organized in a parallel manner by its very nature since different codebooks are
created for each block and searched for independently. It should be noted that even for encoding by serial machines,
reduced complexity is achieved by processing of many small codebooks instead of a combined one. Based on its
performance, it is suggested that the new localized computational approach to data coding be further analyzed and
integrated into presently available methods [2], [3].
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A Slice Algorithm for Koszul Simplicial Complexes on the Lcm Lattice
of Monomial Ideals

Bjarke Hammersholt Roune

The Koszul Complex and Lcm Lattice
Let I be a monomial ideal in a polynomial ring with indeterminates x1, . . . , xn, and define the lcm lattice[5] by

lat (I) := {lcm(M) |M ⊆ min (I)} .

The lattice lat (I) encodes the combinatorial structure of I, and interesting information about I such as resolu-
tions, Hilbert series and irreducible decomposition are gainfully computed and understood in terms of this lattice.
Often only local information around each point xa on the lattice is necessary, and this is encoded by the (upper)
Koszul complex, which is the abstract simplicial complex defined by

∆I
xa :=

{
v ∈ {0, 1}n ∣∣xa−v ∈ I

}
, where xv /∈ I for vi < 0.

In this abstract we present an algorithm that computes the Koszul complexes of points on the lcm lattice, and
thus reduces questions about a general monomial ideal to questions about a single point on a square free monomial
ideal. This leads to algorithms for Hilbert-Poincaré series (different from Bigatti et.al.’s algorithm [2, 1]), irreducible
decomposition ([3], generalizing the Slice Algorithm [6]) and Koszul homology (as described by E. Saenz-de-Cabezon
[4]).

We wish to thank Eduardo Saenz-de-Cabezon and Anna Maria Bigatti for helpful discussions on these topics.

The Staircase Subset
Those m ∈ lat (I) where max(facets

(
∆I

m

)
) 6= 0 are uninteresting for applications, so we ignore them. Thus the

output of the algorithm is the set
{
(m,∆I

m) |m ∈ turn (I)
}
, where

turn (I) :=
{
m ∈ lat (I)

∣∣max(facets
(
∆I

m

)
) = 0

}
.

Slices and Content
The algorithm recursively considers smaller and smaller subsets of turn (I) in a divide-and-conquer fashion, until each
subset is trivially simple. We represent each subset by a slice, which is a tuple (I, S, q) where I and S are monomial
ideals and q is a monomial. A monomial m is then in the subset represented by (I, S, q) if mx1 · · ·xn ∈ (turn (I)\S)q.
Thus each slice accounts for some part of the output, it’s content, which is given by

con (I, S, q) :=
{
(mq, ∆I

m) |mx1 · · ·xn ∈ turn (I) \ S
}

.

If I is the input ideal, then we initially consider the slice (Ix1 · · ·xn, 〈0〉 , 1), since it accounts for all of the output,
i.e. its content is

{
(m,∆I

m) |m ∈ turn (I)
}
.

Note how the multiplication by x1 · · ·xn in the starting slice and in the definition of content cancel each other.
This may seem to be an unnecessary complication, but it is essential since none of the equations given below hold
without it.

96



I. S. Kotsireas, A. Novocin, P. Horn

Divide...
We split a slice into two simpler slices according to the equation

con (I, S, q) = con (I : p, S : p, qp) ∪ con (I, S + 〈p〉, q) ,

where p is some monomial such that 1 6= p /∈ S and the union is disjoint. I.e. we recursively replace a slice (I, S, q)
by two simpler slices (I : p, S : p, qp) and (I, S + 〈p〉 , q). We then apply the following equation to each of the two
slices,

con (I, S, q) = con (I ′, S, q) , I ′ :=
〈
xa ∈ min (I)

∣∣∣xa′ /∈ S
〉

,

i.e. we discard elements xa of min (I) if xa′ lies in S, where a′i := max(0, ai − 1).
Note that these equations are the equations used in the original Slice Algorithm [6], and looking at that paper

should make the ideas in this abstract more clear.

...and Conquer
The algorithm has two base cases. First, if xi does not divide lcm(min (I)) for some xi, then con (I, S, q) = ∅. Second,
if I is square free, then

con (I, S, q) =
{(

q,
{

v ∈ {0, 1}n
∣∣∣x(1,...,1)−v ∈ I

})}
.

Pesudo-code
The pseudo-code below implements the algorithm.

function con (I, S, q)

let I ′ :=
〈
xa ∈ min (I)

∣∣∣xa′ /∈ S
〉

if x1 · · ·xn does not divide lcm(min (I ′)) then return ∅
if I ′ is square free then return

{(
q,

{
v ∈ {0, 1}n ∣∣x(1,...,1)−v ∈ I

})}

let p be some monomial such that 1 6= p /∈ S

return con (I ′ : p, S : p, qp) ∪ con (I ′, S + 〈p〉, q)
Then the function call con (Ix1 · · ·xn, 〈0〉, 1) returns

{
(m, ∆I

m) |m ∈ turn (I)
}
.

Example
The tree shows the computation on input

〈
xy, x2

〉
.

(〈x2y2, x3y〉, 〈0〉, 1)

(〈x, y〉, 〈0〉, x2y) (〈x2y2, x3y〉, 〈x2y〉, 1)

(〈x3y〉, 〈xy〉, 1)

(〈xy〉, 〈y〉, x2) (〈0〉, 〈x2, xy〉, 1)

A : (x2y, {(0, 0), (0, 1), (1, 0)})

B : (xy, {(0, 0)}

C : (x2, {(0, 0)}

D : ∅

A

B

C D

Output from leafsComputation tree

p = x2y

p = xy

p = x2

(〈xy〉, 〈x〉, xy)
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Efficient algorithms for the algebraic analysis of system reliability
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The reliability of multi-state coherent systems can be effectively analysed using an algebraic approach based on
computations on monomial ideals [2]. Every multi-state coherent system has a monomial ideal associated to it and
the knowledge of its multigraded Betti numbers and/or a certain form of its multigraded Hilbert series (based on
free resolutions) provides exact reliability identities and good bounds for the reliability of the corresponding system.
In particular, the bounds obtained from the minimal free resolution of the monomial ideal are tightest among all
bounds based on resolutions. They are typically tighter than the generalised Bonferroni-Fréchet inclusion-exclusion
bounds which can be shown that correspond to the well known Taylor resolution.

However, the computation of minimal free resolutions of monomial ideals is a hard computational problem in
general. Also, when the size of the ideal grows, the computation of any resolution is a difficult task for the algorithms
available in the main computer algebra systems. An alternative approach is to compute directly the ranks of the
modules in the resolution without computing the resolution itself (i.e. the corresponding differentials). For this we
use Mayer-Vietoris trees [4] which provide an efficient algorithm that has shown good performance and is able to deal
with ideals of a reasonable size. This capabilities make this algorithm suitable for the analysis of system reliability
[6].

In the poster we show the algebraic background of the correspondence between monomial ideals and multi-state
coherent systems. Then, the Mayer-Vietoris tree algorithm is presented together with the application to our problem.
Finally, we apply our methods to some of the most relevant systems in reliability theory (cf. [3] for instance). The
systems analyzed include different types of k-out-of-n systems, an important family of coherent systems which have
been the object of considerable attention in the reliability literature and are at the centre of the study of scan
statistics, used, for example, in gene association studies. We study basic k-out-of-n systems, consecutive k-out-of-n
systems, weighted k-out-of-n and multistate k-out-of-n. Another important family of sytems we study are series-
parallel systems, a main example of coherent systems broadly used in the design and analysis of networks and other
industrial applications.

When applied to these and other systems, our algorithms lead to recurrence relationships for the (multigraded)
Betti numbers of the corrsponding ideals, which can be solved to give generating functions and explicit formulas for
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the numbers and for the identities and bounds. From there it is possible to derive asymptotic formulas for exact
reliability and bounds under models such as independence as, for example, n →∞. Some of these results are known
from probability theory but many are new and compare well with bounds derived by other methods [5, 6].For a range
of other problems without a fixed structure, when there are no combinatorial formulas or asymptotics results, the
computer algorithms still give fast accurate solutions for relatively large systems. In particular, we don’t need to
make strong assumptions on the probability models, which is the case of most other approaches.

Our algorithm has been implemented in the C++ library CoCoALib [1] and shows good performance, in particular
when the number of variables grows, which makes it suitable for this kind of application. Our algorithms provide the
form of the Hilbert series that is needed for the analysis of the reliability of systems in comparatively high number of
variables. We give some tables and diagrams showing the performance of our algorithm in different kinds of systems,
comparing with the results in the literature, when available.
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Approximate Factorization of Polynomials in Z[x]

Tateaki Sasakia Yasutaka Ookurab
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Today, approximate polynomial factorization is well known, but it is only for multivariate polynomials over fields
such as C or R. To our knowledge, no paper has been published so far on approximate factorization of univariate
polynomials over Z. In this poster, we challenge to this new theme, present three algorithms, and show that the
approximate factorization in Z[x] is feasible but the factorization is often unstable, posing many problems to us.

Let F (x) be a given primitive square-free polynomial in Z[x]. Let G(x), H(x) and ∆(x) in Z[x] satisfy

F (x) = G(x)H(x) + ∆(x), ‖∆‖ ≤ ε ¿ 1,

then G(x) and H(x) are called approximate factors of F (x) of tolerance ε, where ‖F‖ denotes the norm of F . The
∆(x) is called perturbation. Let the roots of F (x), G(x) and H(x) be

F (x) = fl(x−α1) · · · (x−αl), G(x) = gm(x−γ1) · · · (x−γm), H(x) = hn(x−η1) · · · (x−ηn),

where γ → α̂ik
(k=1, . . . , m) and η → α̂jk

(k=1, . . . , n) as ‖∆‖ → 0. Let αi = α̂i + δi

(i=1, . . . , l), where δi → 0 as ‖∆‖ → 0. We call δi perturbations of αi. We define perturbations of the coefficients
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similarly. Let I and J be the following index sets: I = {i1, . . . , im} and J = {j1, . . . , jn}. Assuming that the
perturbations δ1, . . . , δl are sufficiently small, we want to determine the index sets I and J . In this poster, we
consider only the case of fl = gmhn.

Algorithm 1 Sum of Powers of Roots (SPR) Method
This method was suggested by [1], and used for exact factorization in Z[x] by [2]. Let

Nk = fk
l × (αk

i1 + · · ·+ αk
im

) (k = 1, . . . , m).

Then Nk ∈ Z if ‖∆‖ = 0. Therefore, finding an index set I such that N1, . . . , Nk are approximately integers, we will
be able to obtain an approximate factor.

Proposition 3. The perturbation of Nk is O(kfk
l max{(|αk−1

1 δ1|, . . . , |αk−1
m δm|}).

The SPR method works reasonably for monic polynomials. For non-monic polynomials, it is almost useless,
because the perturbation of Nk increases rapidly as k increases.

Algorithm 2 Factor-Differentiation Method (FDM)
This method uses the idea in [3]. Let Fi(x) = (x−αi) (i = 1, · · · , l). We define factor-differentiated polynomial F̂i(x)
as F̂i(x) = F (x)/Fi(x). Let F̂I(x) = F̂i1(x) + · · ·+ F̂im

(x) and F̂J (x) = F̂j1(x) + · · ·+ F̂jn
(x). Then, for ∆ = 0, we

have F̂I(x) = G′(x)H(x) ∈ Z[x] and F̂J(x) = G(x)H ′(x) ∈ Z[x]. Therefore, finding an index set I such that F̂I is a
polynomial with approximately integer coefficients, we will be able to obtain an approximate factor. (Actually, we use
only FD-polynomials with real coefficients: if αi is imaginary, we define Fi(x) and F̂i(x) as Fi(x) = (x− αi)(x− ᾱi)
and F̂i = [F (x)/Fi(x)]F ′i (x), respectively.)

Proposition 4. The perturbation of the xk-term of F̂I is O(
∑k

i=0((k− i+1)|gk−i+1δHi| + |hk−iδ
′
Gi|)), where gi

and hi are the coefficients of xi-terms of G and H, respectively, and δ′Gi and δHi are perturbations of xi-terms of
[gmΠi∈I(x− αi)]′ and [hnΠj∈J (x− αj)], respectively.

For non-monic polynomials, the FDM is much better than the SPR method, but it still suffers from the leading
coefficient (or tail coefficient). If fl is large then either gm, hn or both are large, making perturbations of many
coefficients of F̂I(x) (and F̂J(x)) large. Furthermore, in order to determine gm (or hn), we assign fl as the leading
coefficient of candidate factor, which also increases the perturbations of the coefficients.

Algorithm 3 Robust Ultimate Method (RUM)
Let LC be a set of all the positive integer divisors of fl, and let G̃(x) def= gΠi∈IFi(x), g ∈ LC, 1 ≤ m ≤ [l/2]. We
check if G̃(x) divides F (x) approximately at tolerance ε for all the possible candidates G̃(x), then we will be able
to find an approximate factor of tolerance ε. This is the third algorithm. One may think that this method will
find any approximate factor of tolerance ε, but it is not true. For some ill-conditioned polynomials (Wilkinson-type
polynomials), G̃(x) cannot give approximate factors of the minimal tolerances.

Time complexity of this algorithm is proportional to the cardinality of LC, so it seems to be slow but it is not
so slow actually. In the actual implementation, we first check the second leading and the last coefficients of G̃(x)
whether they are approximately integers. This check discards most wrong candidates quickly.

We have implemented the above three algorithms and tested variously. In order to find the desired index set I,
we employed the knapsack method; the lattice method is useless for our algorithms. We found the following points
by the tests.

• The algorithms are applicable to polynomials of several ten degrees.

• The SPR method works for monic polynomials well, but it is useless for non-monic polynomials. The FDM is
unstable but RUM is stable.

• Approximate factorization in Z[x] is pretty sensitive to ε: there is no approximate factor if ε is small, but
there may be many factors if ε is made bigger.

• In actual implementation, we select factor candidates by using a cutoff parameter εcut, εcut > ε. This seems
to be not a good strategy, but we have no better strategy now.
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Many computer algebra systems include facilities for the solutions of the systems of ordinary differential and
integral equations. Besides, classical areas of computer algebra are dominated by algorithms which are based on
algebraic concepts and emphasize on using computer algebra systems for computing symbolic solutions.

Consider the algebra of all complex matrices, the univariate matrix polynomial is defined as follows:

A(λ) =
n∑

i=0

Anλn,

where λ is a complex variable and Ai, i = 0, · · · , n, are complex matrices with detAn 6= 0. However, the connection
between systems of differential equations and univariate matrix polynomials is well known [3]. The present paper
employs the canonical form of matrix polynomials theory to investigate the Smith form and applies the obtained
results to the system of integral equations.

Canonical forms of matrices are useful tools for classifying matrices, identifying their key properties and reducing
complicated systems of equations to equivalent diagonal systems. The fact that they are very difficult to be computed,
makes them particularly amenable to computer algebra. Indeed, working with matrix polynomials, one fundamental
canonical form, the Smith form is defined as follows:

Every n× n matrix polynomial A(λ), with detA(λ) 6= 0, admits a representation [1]:

A(λ) = E(λ)D(λ)F (λ),

where E(λ) and F (λ) are n×n matrix polynomials with constant nonzero determinants and the Smith form D(λ) =
diag[d1(λ), · · · , dr(λ)] is a diagonal matrix with monic scalar polynomials di(λ) such that di(λ) is divisible by di−1(λ);
Definitions and characterization of Smith form is also given for the multivariate matrix polynomials expressed as the
generalization of the scalar multivariate polynomials. Moreover, the bivariate matrix polynomials expressed in the
homogeneous form is defined as follows [2]:

P (α, β) = Adα
d + Ad−1α

d−1β + · · ·+ A0β
d.

The most common application of this factorization involves solving the system of linear differential and difference
equations. In this research, the main idea is to approximate the system of linear integral equations by a matrix poly-
nomial equation. A method for constructive solution of the system is based on the Smith form of the corresponding
matrix polynomials. First, we transform the integral operators of the system to a matrix polynomial A(λ). In fact,
the novel matrix polynomial is obtained if the variable is replaced by the integral operator. However, various kernels
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in the system of integral equations lead to multivariate matrix polynomials. Then, diagonalisation D(λ) of a matrix
polynomial using elementary transformation should be obtained. Symbolic computer algebra relieve one from the
tedious task of different mathematical operations, which are essential to obtain the Smith form.

The search for factorization acting on a class of multivariate matrix polynomials under consideration has been
significantly useful in finding the solution of the system of integral equations as follows:

X(t) +
∫ t

a

K(t, s)X(s)ds = Y(t),

where
X(t) = [x1(t), x2(t), ..., xn(t)]T , Y (t) = [y1(t), y2(t), ..., yn(t)]T ,

K(t, s) = [Kij(t, s)], i, j = 1, 2, ..., n.

and K(t, s) and Y (t) are continuous given functions and X(t) is the solution to be determined. The corresponding
matrix polynomial equation to the above system can be considered as follows:

A(λ)X = Y.

Here, the variables in the matrix polynomial are governed by integral operators. Due to the highly advanced
features of symbolic computations and the computational complexity of system solution, using canonical form, we
split the integral equations system to a system of independent equations.

D(λ)U(t) = Z(t),

where U(t) = F (λ)X(t) and Z(t) = E−1(λ)Y (t). So, the desired solution of the altered system can be solved easily
by any classical methods and acting integral operations on these solutions will lead to the final solution of the system.
Finally, an applicable model is included to show the validity and applicability of this approach in comparison to most
numerical methods.
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In this poster, we will propose a new method that reduces the number of exact computational steps needed
for obtaining exact results, for a certain class of algebraic algorithms. This method is the floating-point interval
method using zero rewriting and symbols. Zero rewriting, which is from stabilization techniques [1], rewrites an
interval coefficient into the zero interval if the interval contains zero. Symbols are used to keep track of the execution
path of the original algorithm with exact computations, so that the associated real coefficients can be computed by
evaluating the symbols. The key point is that at each stage of zero rewriting, one checks to see if an interval that has
been rewritten into zero is really zero by exploiting the associated symbol. This method mostly uses floating-point
computations; the exact computations are only performed at the stage of zero rewriting and in the final evaluation
to get the exact coefficients. Moreover, one does not need to check the correctness of the output.

Now let us describe more details. We restrict ourselves to the following class of algorithms:

• Input, intermediate, and output data are from the polynomial ring R[x1, . . . , xm], where R is a subring of the
real numbers.

• Operations on data are polynomial functions over R.

• Predicates on data have zero discontinuity.

A predicate is said to have zero discontinuity if it has no discontinuous points or the only discontinuous point of
the predicate is zero such as in the if statement “If C = 0 then ... else ...”. Let us call the class of algorithms that
satisfy the above three conditions, algebraic algorithms with zero discontinuity.

Given an algebraic algorithm with zero discontinuity, our proposed method is as follows:

R-to-IS Make each input coefficient a into the pair (interval with symbol or IS for short) [[ã, α], Symbola], where
[ã, α] is an interval of a (ã is a floating-point approximation of a with a preselected precision and α is an error
bound) and Symbola is an indeterminate representing a.

IS Arithmetic Perform arithmetic between IS’s:

[[A,α], s] + [[B, β], t] = [[A,α] + [B, β], +̇(s, t)]

[[A,α], s]− [[B, β], t] = [[A,α]− [B, β], −̇(s, t)]

[[A,α], s]× [[B, β], t] = [[A,α]× [B, β], ×̇(s, t)]

Namely, for the interval parts, perform interval arithmetic, and for the symbol parts, just remember what
arithmetic is done, by using formal symbols +̇, −̇, and ×̇ for addition, subtraction, and multiplication.

Guaranteed Zero Rewriting For any intermediate IS [[E, ε], s], if |E| ≤ ε, then substitute the original input
coefficient values for the symbol s to make the associated real number r(s). If r(s) = 0, proceed to the next
step; if otherwise, raise the precision and go back to R-to-IS.

IS-to-R Substitute the original input coefficient values for the respective symbols to evaluate the symbol part of
the output.

Here, as a simple example of evaluating a symbol, let s = ×̇(t, +̇(u, v)) be the symbol part of an intermediate or
output IS, where t, u and v were input symbols for

√
2, 3, and 4, respectively. Then by performing the substitution

t =
√

2, u = 3, and v = 4 for s, one should obtain the result r(s) =
√

2× (3 + 4) = 7
√

2.
We refer to the above method as the ISCZ method (the IS method with Correct Zero rewriting). The termination

and correctness of this method can be proved by the theory of stabilizing algebraic algorithms [1]. Namely, if the
given algorithm A terminates with an input I, then the ISCZ method for A always terminates in a finite number of
steps and gives the same result as the output of A(I).

Using the ISCZ method, one can skip exact computations (evaluation of s) of any IS [[E, ε], s] and use only
floating-point computations unless |E| ≤ ε. In other words, one can reduce the exact computations of nonzero
coefficients. Therefore, the ISCZ method is effective when there are more cases where |E| > ε than those where
|E| ≤ ε. Moreover, one does not need to check the correctness of the output.

However, the ISCZ method can obviously cause the symbol parts of IS’s to grow. In this poster, we also will
propose a way to circumvent the growth of the symbol parts.
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We applied the ISCZ method to Buchberger’s algorithm that computes Gröbner bases w.r.t. the lexicographic
order in Maple on a computer. The experimental results indicated that the ISCZ method is more effective in the
case of non-rational coefficients, especially the ones including transcendental constants, than in the case of rational
coefficients. We will describe more details on the experiment in this poster.

In general, we believe that the ISCZ method is useful when the growth of intermediate coefficients is the main
reason exact computation of the original algorithm is slow. In Buchberger’s algorithm one often has huge intermediate
coefficients even though the final coefficients are moderate in size. Investigation on other algorithms is a future work.
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The concept of Gröbner bases and the algorithm to compute them were introduced by Buchberger and the
algorithm consists of computation of S-polynomials and one of monomial reductions. Since it has applications across
a wide range of computer algebra, many optimizations have been studied and developed [6, 10, 7, 1]. In [4], Faugère
introduced a new efficient algorithm F4 to compute Gröbner bases by use of linear algebra in order to achieve
simultaneous monomial reductions. A method to solve systems of algebraic equations by use of linear algebra were
also studied by Lazard in [8]. Also by appropriate choices of term orders for given ideals, we may compute Gröbner
basis for it efficiently. Mora-Robbiano [9] and Caboara [2] studied several method to find suitable term orders.

We introduce a new method to compute Gröbner bases of ideals on polynomial rings by use of sparse linear
algebra. It implicitly processes both of the computations of S-polynomials and the one of monomial reductions in
a single linear space simultaneously. Thus, with this method, we can expect to use a great variety of techniques
including parallelism used by computation in linear algebras, in order to get Gröbner bases. Moreover our algorithm
includes an indicator to choose an appropriate term order for an efficient computation of Gröbner basis for a given
system of polynomials. The term order changes dynamically during the computation. If we need the Gröbner basis
with respect to a given term order, we can use a method for change of order, e.g., Gröbner walk [3], FGLM [5], and
Hilbert driven [12].

We choose PARI/GP2 to implement the algorithms in this paper in order to demonstrate that it is not difficult
to implement Gröbner bases computation to a system which has neither S-polynomials nor monomial reductions.
You can download the file from our page. 3

This file has three main routines, (1) groebner basis la, (2) groebner basis la opt, and (3) groebner basis la
mat. The first one is a naive implementation of our algorithm, the second is optimized version. Furthermore, we give
the experimental version (3) omitting routine for computation of row echelon form.

In these main algorithms input polynomials are converted to vectors in a direct product of Q just before of
computation, the computed vectors are converted to output polynomials at the end of the routines, and most of all
computations are processed within linear algebra.

1This work was supported by KAKENHI (20500013)., Kobe University
2http://pari.math.u-bordeaux.fr/
3http://kurt.scitec.kobe-u.ac.jp/~sakira/GBwithinLA/
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We give a tiny computational example as follows:
For an example, when we put groebner basis la opt([x^2+y^2+z^2-20, x+y-5, x*y*z-3]),
it outputs [[8*z^3+40*z-48, 2*y^2-10*y+(z^2+5), x+(y-5)], [x,y,z], [6, 3, 2]] which means {z3 + 5z −
6, 2y2 − 10y + z2 + 5, x + y − 5} is the reduced Gröbner basis of 〈x2 + y2 + z2 − 20, x + y − 5, xyz − 3〉Q[x,y,z] with
respect to the term-order weighted by {x : 6, y : 3, z : 2}. In the following table, we give a timing data of these
implementations though they are not faster than existing implementations to compute Gröbner bases. The unit
of time in the table is the second. (Mac OS X 10.5.6, CPU 2.8GHz Xeon, Memory 22GB, GP/PARI 2.3.4 with
x86-64/GMP-4.2.3)

polynomial system (1) no opt. (2) opt. (3) no echelon
{xy + z − xy, x2 − z, x3 − x2yz} 10.5 1.5 10.6

{xy + z − xz, x2 − z, 2x3 − x2yz − 1} > 1 hour 1.6 11.5
{5x3 − 7yz, 11y2 − 101z, x + y − 65537z} > 1 hour 9.3 0.8
{x2 + y2 + z2 − 20, x + y − 5, xyz − 3} > 1 hour 3.7 12.1
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