
random noise, orthogonal frequency di-
vision multiplexing, and anisotropy of
the cosmic microwave background radi-
ation. Therefore, visualizing these func-
tions and computing them reliably can
be useful and interesting.

What are spheroidal wave
functions?
Spheroidal wave functions are general-
izations of Legendre functions and
spherical Bessel functions for spheroidal
coordinates rather than for the spherical
polar coordinates in which the latter
functions usually occur. The literature
on spheroidal wave functions is often in
the context of specialized applications,
but two applied-mathematics mono-
graphs are especially useful: those by
Julius Stratton and colleagues1 and by
Carson Flammer.2 Josef Meixner and
colleagues have derived analytical re-
sults,3,4 and summaries of many results
appear in Higher Transcendental Func-
tions, edited by Arthur Erdélyi,5 and in
the Handbook of Mathematical Functions,
edited by Milton Abramowitz and Irene
Stegun.6 For extensive discussions of
computational methods—with programs
in Mathematica, C, and Fortran—see
my atlas of mathematical functions.7

Spheroidal coordinates
I relate spheroidal coordinates—d, h,

x, and f—to Cartesian coordinates—x, y,
and z—as in Flammer’s monograph:2 For
prolate coordinates,

,

z = dηξ/2, −1 ≤ η ≤ 1, ξ ≥ 1, and 0 ≤ φ ≤
2π. For oblate coordinates,

,

z = dηξ/2, −1 ≤ η ≤ 1, ξ ≥ 0, and 0 ≤ φ≤ 2π.
The limits ξ → ∞, d → 0, dξ/2 = r, and

η = cosθ produce spherical polar coordi-
nates. Many of the spheroidal coordinate
systems used by other authors, including
Abramowitz and Stegun, do not have this
limit property. Figure 1 illustrates sur-
faces corresponding to constant parame-
ter values—η, ξ, or φ. The parameter d
provides an overall scale factor, as does r
in spherical polar coordinates. For details
of the geometry of spheroidal coordi-
nates, see the references by Flammer,2

Abramowitz and Stegun,6 and Parry
Moon and Domina Spencer.8 Beware,
the choice of coordinate systems and no-
tations is quite variable!

The scalar wave equation in
spheroidal coordinates
As a context for spheroidal wave func-
tions, consider solving the scalar wave
equation in spheroidal coordinates. The
related, but more complicated, vector
wave equation for Maxwell’s equations is
covered by Flammer, by Moon and
Spencer, and in technical papers on an-
tenna theory and wave scattering by
spheroids.

The scalar wave equation for wave
number k—namely, ∇ 2ψ + k2ψ = 0—is
separable in spheroidal coordinates by
writing, for prolate coordinates,

,

in which m is an integer if the φ depen-
dence has a period of 2πand if n is an in-
teger. This separability is analogous to that
for solving the Laplace equation (k = 0) in
spherical polar coordinates. Function Smn
is the prolate spheroidal angular function
when k is real, because in the limit of small
nonsphericity, η becomes the polar angle
θ. Parameter c is given by c ≡ kd/2 = πd/λ,
where λ is the wavelength corresponding
to wave number k. Thus, c scales as the ra-
tio of distance to wavelength. Function
Rmn is the prolate spheroidal radial function,
which becomes a spherical Bessel function
in the limit of zero c.

Prolate spheroidal functions satisfy
Equation 1 for the angular function and
Equation 2 for the radial function. (See
the sidebar for all numbered equations.)
In these equations, λmn(c) is the prolate
spheroidal eigenvalue, with λmn(0) = n(n +
1). Oblate coordinates have a similar sep-
aration of the wave equation.
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Analytical results for spheroidal wave
functions are commonly presented in
terms of those for prolate functions. The
transition to the oblate functions (angular
or radial functions, or eigenvalues) follows
this rule: prolate ↔ oblate by c ↔ ±ic, c2 ↔
−c2. However, all spheroidal functions are
real-valued, in spite of this rule’s appear-
ance. In the following, I give results for
prolate functions, with the understanding
that the rule is used in analysis (but not in
numerical computations!) to obtain results
for oblate functions. In a dispersive (lossy)
medium, the wave number k is a complex
number, so c is complex. Le-Wei Li and his
colleagues have considered this case.9

Spheroidal wave functions are usually
expanded in a basis of corresponding
spherical functions, with the magnitude
of c controlling the range of basis func-
tions needed for accurate results.

Eigenvalues for spheroidal
equations
The eigenvalues, λmn, are tricky, tedious,
and time-consuming to compute accu-
rately. I present the necessary formulas;
for their derivation, see Flammer’s

monograph.2 Here I describe a brute-
force method.

First, we define two functions that de-
pend on m, n, and c (but not on the eigen-
value), shown in Equations 3 and 4.
Then, we combine these functions to de-
fine two functions of λmn, shown in Equa-
tions 5 and 6. The first continued fraction
terminates with either the term contain-
ing γm

0 or the term with γm
1,

depending on whether n −
m is even or odd, while the
second fraction is nontermi-
nating (in principle). As the
second fraction’s upper limit
increases, the accuracy with
which λmn can be deter-
mined increases.

The eigenvalue λmn is the
root of the transcendental
equation U(λmn) =– U1(λmn) +
U2(λmn) = 0. This equation
has no closed-form solutions,
except if c = 0 when λmn = n(n
+ 1) or if the deformation is
large. Accurate eigenvalues
are the essential first step for
determining spheroidal wave

functions. Approximate eigenvalues can be
estimated by expanding them as power se-
ries in c or as asymptotic series in c and its in-
verse powers. The resulting cumbersome
formulas are accurate to better than parts
per million only for very small or very large
c. If the interfocal distance of the spheroidal
coordinates d ≈ λ, a condition that is often
interesting, then c ≈ 3. For such c values, the
series formulas give an accuracy of only a
few percent for most values of m and n.

For m and n from 0 to 6, and for c with
a magnitude less than 3, the eigenvalues
have a uniform, slow dependence on de-
formation parameter c. For oblate and
prolate cases, λmn(c) deviates from the
spherical coordinates value, n(n + 1), in
opposite directions. This deviation is con-
sistent with the leading term in a power
series expansion in c being quadratic.
When the magnitude of c is small, the ef-
fects of nonsphericity generally become
smaller as n increases.

To compute the eigenvalues numeri-
cally, we can start with approximate solu-
tions derived from power series or as-
ymptotic expansions, then refine these
solutions by a robust root-finding algo-
rithm. Using either starting method gives
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Figure 1. Spheroidal coordinates: (a) prolate; (b) ob-
late. η, ξ, and φare constant parameter values. Coor-
dinate surfaces are hyperboloids of revolution for η,
and half planes for φ.
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eigenvalue estimates that are usually
within 0.2 of the final eigenvalue. We can
therefore use a simple and robust root
finder, such as the bisectional method, to
locate the roots. Typically, a dozen bisec-
tions produce part-per-thousand accu-
racy in λmn(c), and approximately 30 bi-
sections results in 10-digit accuracy, the
goal for functions in my atlas.7

When c is small in magnitude, the
eigenvalue departs steadily from the
spherical-coordinates value. You might
therefore expect that the eigenvalue
equation’s roots are unique, as some pre-
vious investigations have assumed. How-
ever, as m and n increase, this is not nec-
essarily so.3,4,7

Spheroidal
angular
functions
Spheroidal angu-
lar functions are
usually expanded
into spherical Le-
gendre functions
of the first kind,
Pm

m+r(η), or the sec-
ond kind, Qm

m+r(η). 
For functions of the first kind, which

are regular at η = ±1, we write

,

with summation starting at r = 0 if n − m
is even but at r = 1 if n − m is odd. In ei-
ther case, r goes by steps of two. As c → 0,
the spheroidal angular function collapses
to Pm

m+r(η) with the same m and n values.
The only nonzero angular coefficient is
then dmn

n–m(c), corresponding to r = n − m.
For functions of the second kind, which
are irregular at η = ±1, we have

.

As c → 0, this collapses to Qm
n(η), so that

the only nonzero angular coefficient is
dmn

n–m(c)—that is, r = n − m.
We can compute spheroidal angular

coefficients  dmn
r (c) from the recurrence

relation

with αr and γr given by

and

.

Recurrence can procede in the direction
of increasing or decreasing r. For modest
values of n − m, the latter gives more ac-
curate results.

(Computing has certainly progressed
over the last 40 years. The 75,000 nu-
merical values that Stratton and col-
leagues used required “about six months
of fairly intensive effort” from two pro-
grammers and 10 hours of production
time on MIT’s Whirlwind I computer.1

The output was more than five kilometers
of paper tape, from which they prepared
tables on an electric typewriter. A modern
desktop computer reduces both the exe-
cution time and the computer’s volume by
factors of approximately 1,000.)

Expansion coefficients for the angular
part of spheroidal wave functions depend
on the order n, the degree m, and the pa-
rameter c, and on whether you are using
prolate or oblate coordinates. Figure 2
displays the dr

mn(c) values as surfaces made
from plaquettes whose vertices are the co-
efficient values. The coefficients for
oblate coordinates behave similarly to
those for prolate coordinates. If c2 is much
larger than shown here, however, the be-
havior of the dr

mn(c) becomes complicated.
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Figure 2. Coefficients for expanding
spheroidal wave functions in a basis of
Legendre functions, for m and n values
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The coefficients peak at r = n − m, which
is the unique value when the prolate-
ness parameter c = 0.
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There are four arguments for each
spheroidal angular function of the first
and second kind: m, n, c, and η. To visual-
ize S(1)

mn(c,η), we choose  c  = 2 and super-
impose three curves for each m and n: c =
2 (prolate case), c = 0 (spherical case), and
 c  = 2 (oblate case). For c = 0, we have
the spherical Legendre functions, Pn

m(η).
For the regular functions, Figure 3 shows
S(1)

mn(c,η) for η over [0, 1]. The spherical
angular function is nearly the average of
the values for prolate and oblate coordi-
nates, indicating that the dr

mn(c) are ap-
proximately even functions of c.

Spheroidal radial functions
The spheroidal radial functions, Rmn(c, ξ),
are usually expanded in a basis of spherical
Bessel functions.7 The expansions are quite
simple, because radial expansion coeffi-
cients are proportional to angular expan-
sion coefficients. A given set of spherical-
basis radial functions (Bessel, Neumann, or
Hankel) has corresponding spheroidal ra-
dial functions. I discuss the spheroidal ra-
dial function called R(1)

mn(c, ξ) by Flammer,2

by Abramowitz and Stegun,6 and in my at-
las,7 but called  jem`(b, ξ) by Stratton and
colleagues,1 where ` = n and h = c in our
notation. When c = 0, R(1)

mn(c, ξ) collapses to
jn(cξ), the spherical Bessel function.

The prototype spheroidal radial function
is regular at ξ = ±1 and expands in terms of
regular spherical Bessel functions as shown
in Equation 7. In this equation, summation
starts at r = 0 if n − m is even but at r = 1 if
n −m is odd. In either case, r goes by steps
of two. The coefficients ar

mn(c) are radial ex-

pansion coefficients.
As c → 0, the
spheroidal radial
function collapses
to jn(cξ), and the
only nonzero ra-
dial coefficient is
then  a mn

n–m(0), cor-
responding to r =
n −m.

We can readily
compute the spheroidal radial coeffi-
cients in terms of the angular coefficients
dr

mn. Although the normalization of the
angular coefficients is different between
Stratton and colleagues1 and Flammer,2

the radial coefficients are the same. Fig-
ure 4 displays the ar

mn(c) values as surfaces
made from plaquettes whose vertices are
the radial coefficient values. To visualize
R(1)

mn(c, ξ) , I choose  c  = 2 and show two
curves for each m and n:  c  = 2 (prolate
coordinates) and c = −i2 (oblate coordi-
nates), as in Figure 5.

After we have computed the angular
and radial spheroidal wave functions, we
can compute the complete spheroidal
wave function, which can help solve
many problems of interest to scientists
and engineers.
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