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Abstract. Lagrange proved a theorem which states that every nonnegative
integer can be written as a sum of four squares. This result can be general-
ized in two directions. The one is a horizontal generalization which is known
as polygonal number theorem, and the other is a higher dimensional gener-
alization which is known as Hilber-Waring problem. In this paper, we shall
generalize Lagrange’s sum of four squares furthermore. To each regular poly-
tope V in an Euclidean space, we will associate a sequence of nonnegative
integers which we shall call regular polytope numbers, and consider the prob-
lem of finding the order g(V ) of the set of regular polytope numbers associated
to V . The construction of regular polytope numbers as well as numerical data
for the order of the set of regular polytope numbers will be given.

In 1770, Lagrange proved a theorem which states that every nonnegative integer
can be written as a sum of four squares. This theorem is known as the sum of
four squares. There are two major generalizations of this beautiful result. The one
is a horizontal generalization due to Cauchy which is known as polygonal number
theorem, and the other is a higher dimensional generalization which is known as
Hilber-Waring problem.

A nonempty subset A of nonnegative integers is called a basis of order g if g
is the minimum number with the property that every nonnegative integer can be
written as a sum of g elements in A. Lagrange’s sum of four squares can be restated
as the set {n2 | n = 0, 1, 2 . . .} of nonnegative squares forms a basis of order 4. The
polygonal numbers are sequences of nonnegative integers constructed geometrically
from regular polygons. For example, pentagon numbers count the number of points
in the following pentagonal array.

0 1 5 12 22

Figure 1. The pentagon numbers

The sequence of pentagon numbers is 0,1,5,12,22,35, · · · . The sequence of k-gon
numbers can be constructed in a similar manner. It is easy to check that formula
for the nth k-gon number is p2

k(n) = n + (k − 2) (n−1)n
2 . We now state Cauchy’s

polygonal number theorem (cf.[6]).
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Theorem (Cauchy) For every k ≥ 3, the set {p2
k(n) | n = 0, 1, 2, · · · } of k-gon

numbers forms a basis of order k, i.e. every nonnegative integer can be written as
a sum of k k-gon numbers.

We note that polygonal numbers are two dimensional analogues of squares. Ob-
viously, cubes, fourth powers, fifth powers, · · · are higher dimensional analogues
of squares. In 1770, Waring stated without proof that every nonnegative integer
can be written as a sum of 4 squares, 9 cubes, 19 fourth powers, and so on. In
1909, Hilbert proved that there is a finite number g(d) such that every nonnegative
integer is a sum of g(d) d-th powers, i.e. the set {nd|n = 0, 1, 2 · · · } of dth powers
forms a basis of order g(d). The Hilbert-Waring problem is concerned with the
study of g(d) for d ≥ 2. This problem was one of the most important research
topics in additive number theory in last 90 years, and it is still a very active area
of research.

In this paper, we shall generalize Lagrange’s sum of four squares furthermore.
In fact, to each regular polytope V in an Euclidean space, we will associate a
sequence of nonnegative integers which we shall call regular polytope numbers,
and consider the problem of finding the order g(V ) of the set of regular polytope
numbers associated to V . The polygonal numbers can be considered as regular
polytope numbers associated to regular polygons in R2 while the dth powers can
be considered as regular polytope numbers associated to d-dimensional measure
polytope. Therefore the theory of regular polytope numbers can be considered
as a higher dimensional generalization of Cauchy’s polygonal number theorem, or
equivalently a horizontal generalization of Hilbert-Waring problem.
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In section 1, we shall develop a method of constructing the sequence of regular
polytope numbers associated to a regular polytope in an Euclidean space. We
will obtain formulae for the nth regular polytope numbers. In section 2, we shall
study relations between regular polytope numbers. As a result, we shall constitute
an analogy between cross polytope numbers and measure polytope numbers. In
section 3, we shall give numerical data for the order of the set of regular polytope
numbers.

Throughout this paper, we shall use the following notations:

Z> : the set of nonnegative integers
V (resp. V d) : a regular polytope (resp. of dimension d) in an Euclidean space
V (n) : the nth polytope number associated to V
∂V (n) : the number of points in the nth array which lie on the boundary of V
V (n)] : the number of points in the nth array which lie in the interior of V
l1 : the 1-dimensional regular polytope, i.e. line segment
p2

k : the regular k-gon
αd : the d-dimensional regular simplex, d > 2
βd : the d-dimensional cross polytope, d > 2
γd : the d-dimensional measure polytope, d > 2

1. Construction of regular polytope numbers

Let V d be a d-dimensional regular polytope in an Euclidean space. In this
section, we will develop the method of constructing the sequence {V (n)|n ∈ Z>}
of regular polytope numbers associated to V . This will be done by induction on
the dimension d of V . Therefore we start with the construction of 1-dimensional
regular polytope numbers.

It is clear that a line segment l is the only regular polytope in R1, and it is also
clear that the nth regular polytope number associated to a line segment should be
n, i.e. l1(n) = n. Suppose now that the sequences of regular polytope numbers
have been constructed for any regular polytopes of dimension less than d, and let
V be a regular polytope in Rd. By convention we put V (0) = 0,V (1) = 1 and we
define the sequence {V (n)|n ∈ Z>} using induction once more on n. So we assume
that V (n − 1) has been constructed, say on a regular polytope X ( of the same
shape as V ). We take a vertex, say x, of X. We extend the edges of X containing
x to form a lager regular polytope X̂ containing X which is similar to X (You may
refer to Figure 1). We next make the nth array of points associated to V on X̂ as
follows. We first place the (n−1)th array of points on X (Note that X is contained
in X̂). Next, to each new k-dimensional face of X̂, 0 5 k 5 d − 1, we put nth
array of points associated to the corresponding k-dimensional regular polytope. By
convention, we put the nth 0-dimensional polytope number to be 1 if n > 1.We
finally count all the points in X̂ to define V (n).

It follows easily from our construction that formula for the nth k-gon number is
n + (k − 2) (n−1)n

2 . We can also easily check that the nth regular polytope number
associated to the 3-dimensional cube is n3 which coincides with our intuition.
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We borrow a classical theorem from combinatorial geometry which classifies all
the regular polytopes in Euclidean spaces(cf.[3]).

Theorem(Schläfli) The only possible Schläfli symbols for a regular polytope in
the Euclidean space in Rd are given by the following list:

d = 2 : {n}, where n > 3 is an arbitrary integer;
d = 3 : {3, 3},{3, 4},{4, 3},{3, 5},{5, 3};
d = 4 : {3, 3, 3},{3, 3, 4},{4, 3, 3},{3, 4, 3},{3, 3, 5},{5, 3, 3};
d > 5 : {3d−1},{3d−2, 4},{4, 3d−2}.
For each symbol in the list, there exists a regular polytope with that symbol,

and two regular polytopes with the same symbols are similar.

Our aim is to construct a sequence of regular polytope numbers associated to
each regular polytope listed in the above theorem. To accomplish this task we need
information on the number Nj of j-dimensional faces of a regular polytope. We
tabulate this information as follows (cf.[3]).

d = 3 :

name Schläfli symbol N0 N1 N2

tetrahedron {3, 3} 4 6 4
octahedron {3, 4} 6 12 8

cube {4, 3} 8 12 6
icosahedron {3, 5} 12 30 20

dodecahedron {5, 3} 20 30 12

d = 4 :

name Schläfli symbol N0 N1 N2 N3

5 cell {3, 3, 3} 5 10 10 5
16 cell {3, 3, 4} 8 24 32 16

tessaract {4, 3, 3} 16 32 24 8
24 cell {3, 4, 3} 24 96 96 24
600 cell {3, 3, 5} 120 720 1200 600
120 cell {5, 3, 3} 600 1200 720 120

d > 5 :

name Schläfli symbol Nj (0 6 j 6 d− 1)
regular simplex αd {3d−1} (

d+1
j+1

)

cross polytope βd {3d−2, 4} 2j+1
(

d
j+1

)

measure polytope γd {4, 3d−2} 2d−j
(
d
j

)

Theorem 1.1. The 3-dimensional regular polytope numbers are computed as fol-
lows:

name of polytope Schläfli symbol nth polytope number
tetrahedron {3, 3} 1

6n(n + 1)(n + 2)
cube {4, 3} n3

octahedron {3, 4} 1
3n(2n2 + 1)

dodecahedron {5, 3} 1
2n(9n2 − 9n + 2)

icosahedron {3, 5} 1
2n(5n2 − 5n + 2)

Proof. We only give a proof for dodecahedron numbers. The other cases can
be treated similarly. Let D denote a dodecahedron in R3. Then N0 = 20, N1 = 30,



ON REGULAR POLYTOPE NUMBERS 5

and N2 = 12. By definition, D(0) = 0 and D(1) = 1. Let x be a vertex of D. Then
the number of edges (resp. pentagons) containing x is 3 (resp. 3). It follows from
our construction that

D(n)−D(n− 1) = (N0 − 1) + (N1 − 3)l1(n)] + (N2 − 3)p2
5(n)]

= 19 + 27(n− 2) + 9( 3n2−n
2 − 5(n− 1))

= 1
2 (27n2 − 45n + 20), n > 2.

Therefore we have D(n) = n
2 (9n2 − 9n + 2), n > 0.

Theorem 1.2. The 4-dimensional regular polytope numbers are computed as fol-
lows:

Schläfli symbol nth polytope number
{3, 3, 3} 1

4!n(n + 1)(n + 2)(n + 3)
{3, 3, 4} 1

3n2(n2 + 2)
{4, 3, 3} n4

{3, 4, 3} n2(3n2 − 4n + 2)
{3, 3, 5} n

6 (145n3 − 280n2 + 179n− 38)
{5, 3, 3} n

2 (261n3 − 504n2 + 283n− 38)

Proof. We only give the construction for four dimensional measure polytope
{4, 3, 3} since the other cases can be treated similarly. Our intuition says that the
nth polytope number for this polytope should be n4. Let V be a measure polytope
in R4 whose Schläfli symbol is {4, 3, 3}, and x be a vertex of V . Then the number
of edges (resp. squares, cubes) containing x is 4 (resp. 6,4). It follows from our
construction that

V (n)− V (n− 1) = (N0 − 1) + (N1 − 4)l1(n)] + (N2 − 6)p2
4(n)]

+(N3 − 4)α3(n)]

= 4n3 − 6n2 + 4n− 1.

Therefore we have V (n) = n4 as we expected from our intuition.

Theorem 1.3. The d-dimensional regular polytope numbers, d > 5, are computed
as follows:

name Schläfli symbol nth polytope number
regular simplex αd {3d−1} 1

d!n(n + 1) · · · (n + d− 1)
cross polytope βd {3d−2, 4} ∑d−1

r=0(−1)r
(
d−1

r

)
2d−1−rαd−r(n)

measure polytope γd {4, 3d−2} nd

Here αs(n) denotes the nth s-dimensional regular simplex number, i.e. αs(n) =
1
s!n(n + 1) · · · (n + s− 1) =

(
n+s−1

s

)
.

Proof. Regular simplex numbers: We shall proceed by induction on d. So we
assume that αr(n) = n(n+1)···(n+r−1)

r! for r 6 d− 1. Let αd denote a d-dimensional
regular simplex in Rd. Then Ni =

(
d+1
i+1

)
, 0 6 i 6 d − 1. Let x be a vertex of αd.

It follows from a simple calculation that the number of r-dimensional faces, which
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are also r-dimensional regular simplexes, of αd containing x is
(
d
r

)
, 1 6 r 6 d − 1.

Hence it follows from our construction that

αd(n)− αd(n− 1) = (N0 − 1) +
d−1∑
r=1

(Nr −
(

d

r

)
)αr(n)]

=
d−1∑
r=0

(
d

r + 1

)
αr(n)],

where α0(n)] = 1 by convention. Note that each face of a regular simplex is
again a regular simplex of lower dimension. It follows easily from this fact and our
construction that

αr(n) =
r∑

j=0

(
r + 1
j + 1

)
αj(n)], 1 6 r 6 d− 1.

Therefore we have

αd(n)− αd(n− 1) = αd−1(n) =
n(n + 1) · · · (n + d− 2)

(d− 1)!
.

( by induction hypothesis )

From this it follows that

αd(n) =
n(n + 1) · · · (n + d− 1)

d!
, n = 0, 1, · · · .

Cross polytope numbers: Let βd denote a d-dimensional cross polytope in Rd.
Then Ni = 2i+1

(
d

i+1

)
, 0 6 i 6 d − 1. Let x be a vertex of βd. It follows from a

simple calculation that the number of r-dimensional faces, which are r-dimensional
regular simplexes, of βd containing x is 2r

(
d−1

r

)
, 1 6 r 6 d − 1. Hence it follows

from our construction that

βd(n)− βd(n− 1) =
d−1∑
r=0

(
Nr − 2r

(
d− 1

r

))
αr(n)]

=
d−1∑
r=0

(
2r+1

(
d

r + 1

)
− 2r

(
d− 1

r

))
αr(n)]

(replacing r by d-1-r)

=
d−1∑
r=0

(
2d−r

(
d

r

)
− 2d−1−r

(
d− 1

r

))
αd−1−r(n)].

By a simple manipulation on binomial coefficients, we can verify that

2d−r

(
d

r

)
− 2d−1−r

(
d− 1

r

)
=

r∑
u=0

(−1)u

(
d− 1

u

)
2d−1−u

(
d− u

r − u

)
.
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Therefore we have

βd(n)− βd(n− 1) =
d−1∑
r=0

(
r∑

u=0

(−1)u

(
d− 1

u

)
2d−1−u

(
d− u

r − u

))
αd−1−r(n)]

=
d−1∑
u=0

(−1)u

(
d− 1

u

)
2d−1−u

(
d−1∑
r=u

(
d− u

r − u

)
αd−1−r(n)]

)

=
d−1∑
u=0

(−1)u

(
d− 1

u

)
2d−1−u

d−u−1∑
s=0

(
d− u

s + 1

)
αs(n)]

=
d−1∑
u=0

(−1)u

(
d− 1

u

)
2d−u−1αd−u−1(n)

=
d−1∑
r=0

(−1)r

(
d− 1

r

)
2d−r−1

(
αd−r(n)− αd−r(n− 1)

)
.

This proves that

βd(n) =
d−1∑
r=0

(−1)r

(
d− 1

r

)
2d−r−1αd−r(n).

Measure polytope numbers: Let γd be a d-dimensional measure polytope in Rd.
Then Ni = 2d−i

(
d
i

)
, 0 6 i 6 d− 1. Let x be a vertex of γd. It follows from a simple

calculation that the number of r-dimensional faces, which are also r-dimensional
measure polytopes, of γd containing x is

(
d
r

)
, 1 6 r 6 d− 1. We now use induction

on d. So we assume that γr(n) = nr for 0 6 r 6 d − 1. Note that each face of a
measure polytope is again a measure polytope of lower dimension. From this fact,
it is easy to observe that

γr(n) =
r∑

s=0

2r−s

(
r

s

)
γs(n)], 1 6 r 6 d− 1.

It now follows from our construction that

γd(n)− γd(n− 1) =
d−1∑
r=0

(Nr −
(

d

r

)
)γr(n)]

=
d−1∑
r=0

(2d−r − 1)
(

d

r

)
γr(n)]

=
d−2∑
r=0

(2d−r − 1)
(

d

r

)
γr(n)] +

(
d

d− 1

)
γd−1(n)].

It follows from our observation that

γd−1(n)] = nd−1 −
d−2∑
r=0

2d−1−r

(
d− 1

r

)
γr(n)].
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Thus we have

γd(n)− γd(n− 1)

=
(

d

d− 1

)
nd−1 +

d−2∑
r=0

[
(2d−r − 1)

(
d

r

)
− 2d−1−r

(
d− 1

r

)(
d

d− 1

)]
γr(n)]

=
(

d

d− 1

)
nd−1 −

(
d

d− 2

)
γd−2(n)] +

d−3∑
r=0

[
(2d−r −

(
d− r

1

)
2d−1−r − 1)

(
d

r

)]
γr(n)]

=
(

d

d− 1

)
nd−1 −

(
d

d− 2

)
nd−2 +

d−3∑
r=0

[
(2d−r −

(
d− r

1

)
2d−1−r +

(
d− r

2

)
2d−r−2 − 1)

(
d

r

)]
γr(n)].

Continuing this process, we finally have

γd(n)− γd(n− 1) =
d∑

i=1

(−1)i−1

(
d

i

)
nd−i.

Thus we have γd(n) = nd, n = 0, 1, · · · .
Remark: We compute the nth cross polytope number of dimension d, 2 6 d 6 10,
as follows:

d βd(n)
2 n2

3 1
3n(2n2 + 1)

4 1
3n2(n2 + 2)

5 n
15 (2n4 + 10n2 + 3)

6 1
45n2(2n4 + 20n2 + 23)

7 n
315 (4n6 + 70n4 + 196n2 + 45)

8 n2

315 (n6 + 28n4 + 154n2 + 132)
9 n

2835 (2n8 + 84n6 + 798n4 + 1636n2 + 315)
10 n2

14175 (2n8 + 120n6 + 1806n4 + 7180n2 + 5067)

2. Relation between regular polytope numbers

In the first section we have developed the concept of regular polytope numbers
and computed them. The formulae for regular simplex numbers and measure poly-
tope numbers are simple and they coincide with our intuition. However formulae
for cross polytope numbers are complicated and look unnatural. The purpose of
this section is to give an analogy between cross polytope numbers and measure
polytope numbers. By doing this, we give naturality on cross polytope numbers.
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We start with the following simple geometric figure.

n2 = n(n+1)
2 + n(n−1)

2

nth square number = nth triangle number
+ (n− 1)th triangle number

Figure 3. Decomposition of a square

Figure 3 can be generalized in two directions, i.e. horizontally and vertically. As
a horizontal generalization we can easily verify that pk(n) = p3(n)+(k−3)p3(n−1),
i.e. nth k-gon number equals nth triangle number plus (k−3)times (n−1)th triangle
number. As a vertical generalization, we can show that n3 = α3(n) + 4α3(n− 1) +
α3(n− 2), i.e. nth cube number equals nth pyramid number plus 4 times (n− 1)th
pyramid number plus (n − 2)th pyramid number. More generally, we have the
following theorem.

Theorem 2.1. Every d-dimensional regular polytope number can be written as
a linear combination of d-dimensional regular simplex numbers with nonnegative
integer coefficients.

Proof. For the cases of dimension 2,3, and 4, the theorem is an immediate
consequence of direct computations. We only give the results for these cases.

d = 2;

pk(n) = p3(n) + (k − 3)p3(n− 1), k > 3.

d = 3;

nth cube number = α3(n) + 4α3(n− 1) + α3(n− 2),
nth octahedron number = α3(n) + 2α3(n− 1) + α3(n− 2),

nth dodecahedron number = α3(n) + 16α3(n− 1) + 10α3(n− 2),
nth icosahedron number = α3(n) + 8α3(n− 1) + 6α3(n− 2).

d = 4;

nth {3,3,4} number = α4(n) + 3α4(n− 1) + 3α4(n− 2) + α4(n− 3),
nth {4,3,3} number = α4(n) + 11α4(n− 1) + 11α4(n− 2) + α4(n− 3),
nth {3,4,3} number = α4(n) + 19α4(n− 1) + 43α4(n− 2) + 9α4(n− 3),
nth {3,3,5} number = α4(n) + 115α4(n− 1) + 357α4(n− 2) + 107α4(n− 3),
nth {5,3,3} number = α4(n) + 45α4(n− 1) + 1993α4(n− 2) + 543α4(n− 3).

d > 5;
Cross polytope numbers: It follows from Theorem 1.3. that

βd(n) =
d−1∑
r=0

(−1)r

(
d− 1

r

)
2d−1−rαd−r(n).
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Note that αd−1(n) = αd(n)−αd(n−1). By a successive application of this relation,
we have

αd−r(n) =
r∑

i=0

(−1)i

(
r

i

)
αd(n− i).

Therefore we have

βd(n) =
d−1∑
r=0

(−1)r

(
d− 1

r

)
2d−1−r

r∑

i=0

(−1)i

(
r

i

)
αd(n− i)

=
d−1∑

i=0

d−1∑

r=i

(−1)r

(
d− 1

r

)
2d−1−r(−1)i

(
r

i

)
αd(n− i)

=
d−1∑

i=0

aiα
d(n− i),

where ai = (−1)i
∑d−1

r=i (−1)r
(
d−1

r

)(
r
i

)
2d−1−r.

We now have

ai = (−1)i
d−1∑

r=i

(−1)r

(
d− 1

r

)(
r

i

)
2d−1−r

= (−1)i
d−1∑

r=i

(−1)r

(
d− 1

i

)(
d− 1− i

d− 1− r

)
2d−1−r

(replacing d-1-r by s)

=
(

d− 1
i

) d−1−i∑
s=0

(−1)d−1−i−s

(
d− 1− i

s

)
2s

=
(

d− 1
i

)
.

This proves that

βd(n) =
d−1∑

i=0

(
d− 1

i

)
αd(n− i).

Measure polytope numbers: It is well-known, from Worpitzky’s identity(cf.[9]),
that

xn =
n−1∑

k=0

〈
n
k

〉(
x + k

n

)
,

where
〈

n
k

〉
denotes the Eulerian number which counts the number of permuta-

tions in Sn which has exactly k ascents. It is easy to verify that this identity can
be reformulated as

γd(n) =
d−1∑

i=0

〈
d
i

〉
αd(n− i).
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Remark: The Eulerian number
〈

d
i

〉
shares similar properties with the bino-

mial coefficient
(
d−1

i

)
. For example, we have identities

〈
d
i

〉
=

〈
d

d− 1− i

〉
,

〈
d
i

〉
= (i + 1)

〈
d− 1

i

〉
+ (d− i)

〈
d− 1
i− 1

〉
, d > 0.

This constitutes an analogy between cross polytope numbers and measure polytope
numbers.

3. Numerical results

In this section, we give numerical data for the order g of the set of regular
polytope numbers which are obtained by computer search. Since Euler’s polygonal
number theorem gives the exact order for the set of regular polytope numbers of
dimension 2, we only consider the cases of dimension > 3.

d = 3

Schläfli symbol nth polytope number g
{3, 3} 1

6n(n + 1)(n + 2) 5
{4, 3} n3 9*
{3, 4} 1

3n(2n2 + 1) 7
{5, 3} 1

2n(9n2 − 9n + 2) 22
{3, 5} 1

2n(5n2 − 5n + 2) 15

d = 4

Schläfli symbol nth polytope number g
{3, 3, 3} 1

4!n(n + 1)(n + 2)(n + 3) 8
{3, 3, 4} 1

3n2(n2 + 2) 11
{4, 3, 3} n4 19*
{3, 4, 3} n2(3n2 − 4n + 2) 28
{3, 3, 5} n

6 (145n3 − 280n2 + 179n− 38) 125
{5, 3, 3} n

2 (261n3 − 504n2 + 283n− 38) 606

d = 5

Schläfli symbol nth polytope number g
{3, 3, 3, 3} 1

5!n(n + 1)(n + 2)(n + 3)(n + 4) 10
{3, 3, 3, 4} 1

15n(2n4 + 10n2 + 3) 14
{4, 3, 3, 3} n5 37*
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d = 6

Schläfli symbol nth polytope number g
{35} 1

6!n(n + 1)(n + 2)(n + 3)(n + 4)(n + 5) 13
{34, 4} 1

45n2(2n4 + 20n2 + 23) 19
{4, 34} n6 73*

d = 7

Schläfli symbol nth polytope number g
{36} 1

7!n(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)(n + 6) 15
{35, 4} 1

315n(4n6 + 70n4 + 196n2 + 45) 21
{4, 35} n7 143

Remark: In the table, * denotes that the given value is exact. That g({4, 3}) =
9 was proved jointly by Wieferich[8] and Kempner[5], g({4, 3, 3}) = 19 was proved in
joint work of Balasubramanian[1] and Deshouillers and Dress[4], g({4, 3, 3, 3}) = 37
was proved by Chen[2], and g({4, 3, 3, 3, 3}) = 73 was proved by Pillai[7].
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