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Abstract

This work introduces the A system1 , an Internet-
based, free and open source electronic voting system
which employs strong cryptography. Our system is a
fully functional e-voting platform and enjoys a number
of security properties, such as robustness, trust distri-
bution, ballot privacy, auditability and verifiability. It
can readily implement and carry out various voting pro-
cedures in parallel and can be used for small scale
boardroom/department-wide voting as well as large-
scale elections. In addition, A employs a flexible
voting scheme which allows the system to carry out pro-
cedures such as surveys or other data collection activi-
ties. A offers a unique opportunity to study crypto-
graphic voting protocols from a systems perspective and
to explore the security and usability of electronic voting
systems.

1. Introduction

Electronic voting is currently one of the most in-
tensely debated subjects in Information Technology.
Public distrust of electronic voting has led to demands
for mandatory paper audit trails, and indeed this require-
ment has recently become law in many states. In 2004,
the Department of Defense canceled the Internet-based
voting system SERVE that was developed by Accenture
on a $22 million contract [36] because of justified se-
curity concerns raised by the academic community [24].
At the same time, the source code of currently used elec-
tronic voting systems was put under scrutiny and a mul-
titude of flaws was unearthed [29]. These events threat-
ened the credibility of e-voting and raised many ques-
tions. Should electronic voting be abandoned altogether
as impossible with the current infrastructure? If not,
would it be possible to build electronic voting systems
that are trustworthy?

1The Web site of the system, which includes source code, is at:
http://cryptodrm.engr.uconn.edu/adder/.

Although no system can claim to solve every problem
facing electronic voting today, we suggest that the most
obvious course of action is to develop free and open
source electronic voting systems. While many e-voting
systems exist or are under development world-wide, no
fully functional and reasonably secure system is cur-
rently publicly available for free use. When the machin-
ery used to manage an election runs inside a “black box,”
there is no way to verify the validity of the election.

In order to protect commercial interests, most current
e-voting systems do not have publicly available source
code. In some cases, code is concealed to avoid the dis-
covery of embarrassing security flaws. Even proprietary
systems that reveal source code often leave several crit-
ical components hidden. In order to ensure true demo-
cratic elections, voting software must be independently
auditable and verifiable by any interested third party. For
this reason, free and open source e-voting systems can
be a catalyst for positive developments in the area. To
the best of our knowledge, A is the only free and
open source e-voting system based on state-of-the-art
cryptographic design.

In the remainder of the introduction, we will review
the design goals, briefly summarize the operation and ar-
chitecture of the A system, we will provide a thor-
ough review of the existing body of work in e-voting
systems, and discuss how A advances the state of
the art. In section 2, we will present an overview of an
A election procedure. In section 3, we will discuss
how our implementation captures various desired secu-
rity properties. We will conclude with vulnerabilities
and future directions in section 4.

1.1. Voting over the Internet

When the term Internet voting is used, it generally
refers to remote Internet voting, where the client soft-
ware communicates over the Internet to the server soft-
ware, say, from a voter’s PC. However, there are at least
two other ways to implement voting over the Internet:
kiosk voting and poll-site voting. Each of these three



ways has its own particular security requirements.
Remote. In this scenario, a third party, or the voter him-
self (rather than election officials) has control over the
voting client and operating environment.
Kiosk. In this scenario, the voting client may be in-
stalled by election officials, but the voting environment
is out of election officials’ control.
Poll-site. In this scenario, election officials have control
over the voting client and the operating environment.

Although the A system was designed especially
for remote Internet voting, nothing prevents it from be-
ing deployed for poll-site or kiosk voting, depending on
the security requirements. A also has the ability
to carry out small-scale and large-scale election proce-
dures, or even surveys where strong security may be less
of a concern.

It is not unreasonable to ask that remote Internet vot-
ing be as secure as voting by mail. We note that although
remote Internet voting opens itself up to a wide range of
attacks that may not be applicable to poll-site or kiosk
Internet voting (cf. §3), it at least reduces the threat of
insider attacks and allows less trust to be placed in the
election officials. In many cases, voting machines arrive
at polling places days or weeks early, making the threat
of an on-site attack a real concern.

1.2. System overview

An A election procedure is initiated through an
interface which allows the administrator to provide the
candidate list and specify the eligible users. Such users
are voters and authorities. An A election procedure
progresses in the following manner. The authorities log
into the system and participate in a protocol that results
in the creation of a public encryption key for the system,
and a unique private decryption key for each authority.

Next, each voter logs on, downloads the public key of
the system, and uses that to encrypt the ballot, which is
placed in an area of public storage specifically reserved
for that voter. When the election is over, the server tallies
the votes (using special encryption properties) and posts
the encrypted result. Subsequently, the authorities pro-
vide some decoding information based on the encrypted
result and their private keys. When enough such decod-
ing information has been collected, the server combines
the individual pieces to form the election result, which
is then published. We note that A does not employ
any user-to-user communication; instead, users of the
system (in particular, the authorities) communicate in-
directly through the public bulletin board that is main-
tained by the system. Voters are only active in one round
throughout the system’s operation (unless they are also
playing the role of the authorities, which is possible in

our architecture).
The A system is implemented as a bulletin board

server, an authentication server (the gatekeeper), and
client software (either a Java applet or a stand-alone pro-
gram). Figure 1 shows a diagram of the entire system.
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Figure 1. System diagram.

1.3. Design & security goals

In creating the A system, we adhered to the fol-
lowing design goals.

1. Transparency. All of the data on the bulletin board
should be accessible to the public. This includes
the encrypted votes, public encryption keys, and fi-
nal tallies. The bulletin board does not store se-
crets.

2. Universal Verifiability. Any election result ob-
tained by the system should be verifiable by any
third party. By inspecting the election transcript, it
should be possible to perform a complete audit of
any procedure.

3. Privacy. All voters in an election should be confi-
dent that their individual choices will remain hid-
den. Only the total is made available to the public.

4. Distributed Trust. Each procedure is “supervised”
by multiple authorities, and the final sum cannot be
revealed without the cooperation of a given number
of authorities. Any attempt to undermine the proce-
dure will require the corruption of a large number
of authorities. Authorities and voters may overlap
arbitrarily. Thus, it is possible for the voters them-
selves to ensure trustworthiness (or have an active
role in it).



1.4. Related work

There exist three general design approaches for build-
ing e-voting systems based on strong cryptographic
primitives: mixnet-based, introduced by D. Chaum [13];
homomorphic encryption-based, introduced by J. Be-
naloh [11]; and blind-signature-based, introduced by
Fujioka et al. [19]. These approaches rely on different
cryptographic primitives and, from an implementation
point of view, have different advantages and disadvan-
tages.

It should be noted that some implementations do not
fall into these categories as they do not employ one of
these voting-oriented strong cryptographic primitives.
We will briefly discuss these schemes as well.
Mixnet-based schemes. In a mixnet-based scheme
[13], the election system is built around a basic cryp-
tographic primitive called a mixnet. A mixnet is com-
prised of a collection of servers whose task is to shuffle
a given input sequence of ciphertexts (encrypted votes).
This serves as an implementation of a robust anonymous
channel. To ensure that mix-servers do not drop or sub-
stitute ciphertexts, it is necessary that the servers pro-
vide proofs of correct operation. A general criticism
of mixnet-based schemes is that these proofs are cum-
bersome. We note, though, that significant advances
have been made towards making robust mixnets prac-
tical [12, 20, 22, 31].

Known mixnet based implementations: (i) VoteHere
VHTi [8, 30] is a commercial implementation which
focuses on voter-verifiability. VoteHere has published
their source code for public scrutiny, but it is propri-
etary and uses patented methods. (ii) Scytl Pnyx [33] is
another recent commercial implementation. The source
code is not publicly available, but the system appears to
have been used in some government systems and small
private and public sector applications in Europe. (iii)
SureVote [14] is a commercial, special-hardware en-
hancement of the mixnet approach by D. Chaum which
incorporates a “visual crypto” voter-verifiable compo-
nent. The suggested system uses proprietary printing
equipment and currently no publicly available imple-
mentation exists (although we are aware that an imple-
mentation is underway [38]).
Homomorphic-based schemes. In a homomorphic
encryption-based voting scheme [11], votes are added
while encrypted, so no individual vote ever needs to be
revealed. In order to ensure that the private decryption
key of the election is not used to decrypt an individ-
ual vote, a threshold encryption scheme must be applied
to distribute the key among several authorities in such
a way that multiple authorities have to combine their
shares in order to use it. Homomorphic encryption is

the approach we followed for the A system. A great
advantage of this approach is that voters may openly au-
thenticate themselves to the voting servers, i.e., there is
no need for any anonymous channel to ensure voter pri-
vacy.

Two known implementations of this approach can be
found in the form of projects based in the European
Union: (i) The CyberVote project [2], funded by the
European Commission, has developed a prototype sys-
tem. The system is designed to run over the Internet, and
clients can use Java-enabled mobile phones, pocket PCs,
and PCs. Currently, there is no source code available for
CyberVote, nor is there any downloadable software at
all. (ii) E-Vote [21] is another EU-funded project that
was tested in Greece in 2003. The system is based on
Paillier homomorphic encryption [16]. No public im-
plementation of the system is available and the project
appears to be commercially oriented.
Blind signature-based schemes. Blind signature-based
schemes use a method proposed by Fujioka, Okamoto,
and Ohta [19]. In this scheme, voters obtain a blind sig-
nature on their ballot from an administrator. That is, the
administrator signs the ballot without being able to read
its contents. Subsequently, voters submit their blindly
signed ballots through an anonymous channel to a vot-
ing bulletin board that will only accept ballots signed by
the administrator. The main advantage of the blind sig-
nature approach is that it removes the requirement for
the anonymous channel to be robust. Its main disadvan-
tage is that the voter needs to be active in at least two
phases to ensure verifiability—it is not a “vote-and-go”
voting scheme. From an implementation point of view,
realizing an anonymous channel is not straightforward.
In the known implementations we considered, it is easy
to correlate voters with their votes (or, in any case, there
is at most a single point of failure for anonymity).

Known implementations of blind-signature based
schemes: (i) Sensus [15] is a direct implementation of
the Fujioka et al. scheme. Source code for Sensus is
available, but it is released under a proprietary license.
The software is no longer maintained, and the author
claims that the current implementation is “clunky and
won’t scale” [7]. (ii) EVOX is another implementation
based on the Fujioka et al. scheme. The first version is
described by Herschberg in his Master’s thesis [23], and
the second version by DuRette in his Bachelor’s thesis
[17]. EVOX does not currently have any source code or
downloadable software available. (iii) REVS [25] fol-
lows the design of the second revision of EVOX. There
is currently no downloadable software for REVS, but the
authors have said packages will be available soon [40].
(iv) The Votopia project [28], created jointly by Korean
and Japanese developers, was tested in the election of



the MVP in the Soccer World Cup of 2002. In the Vo-
topia system, users download a Java applet which per-
forms cryptographic operations. A PKI is used to dis-
tribute key pairs for each server. Votopia is not publicly
available and does not provide anonymity.
Other methods. There exist other implementations not
based on voting-oriented cryptographic primitives. We
now review them briefly.

The Diebold AccuVote-TS system is one of the most
heavily criticized non-Internet-based electronic voting
systems used in practice [29]. Problems pointed out in-
clude: incorrect use of cryptography, poor code quality,
and possibility of smartcard forgery, among many oth-
ers. Despite Diebold’s rebuttal [9], the system remains
mistrusted by a number of experts.

The SERVE system is a Department of Defense
government-funded project for Internet-based voting.
SERVE works as follows: For each voting district, a lo-
cal election official (LEO) generates a key pair. When a
ballot is cast, it is sent with identification over the Web.
This information is encrypted with the Web server’s
public key. The Web server verifies the eligibility of the
voter, decrypts the ballot, removes the voter’s name, and
re-encrypts the ballot with the LEO’s public key. This
ballot is then sent to the LEO. SERVE was found to have
many vulnerabilities [24] and the project was discontin-
ued [36]. One of the major vulnerabilities particular to
SERVE is that the Web server knows the vote of each
voter, and can tie it to his identity. If the Web server is
compromised, voter privacy is broken entirely.

RIES (Rijnland Internet Election System) [6] is an
election system developed in 2003 and 2004 for the Wa-
ter Board elections at Rijnland and De Dommel in the
Netherlands. The system has many vulnerabilities [5],
such as the use of a single master triple-DES key.

EVM2003 [3] is a project to develop a free and open
source electronic voting machine. However, it seems to
have undergone very little activity since its inception in
2003 and does not seem to employ any cryptographic
voting protocols.

Condorcet Internet Voting Service (CIVS) [1] is
a Web-based free voting system that employs the Con-
dorcet election method. Voters submit a ranking of can-
didates instead of picking only one candidate. CIVS em-
ploys some cryptographic integrity mechanisms but falls
short of offering cryptographic guarantees for voter pri-
vacy.

GNU.FREE [4] is a free Internet voting system re-
leased by the GNU project. In GNU.FREE, voting is not
done over the Web. Rather, a stand-alone Java program
is used to cast votes which are encrypted using a cipher
(BlowFish). The system does not provide sufficient se-
curity (beyond preventing regular eavesdropping), and

it is easy for a malicious system to correlate voters and
their votes. It is worth noting that EVM2003, CIVS, and
GNU.FREE are the only voting systems we have found
that are free software.

1.5. Comparison to the present work

A is an Internet-based e-voting system based on
a strong voting-oriented cryptographic primitive (homo-
morphic encryption). A is free software released
under the GNU GPL. Anyone can create his own instal-
lation of A for testing or general usage. To the best
of our knowledge, A is the first system of this kind.

Moreover, A compares particularly favorably
against commercial Internet voting systems (e.g.,
SERVE). For instance, A supports large-scale trust
distribution for voter privacy. As a large number of key-
share-holding authorities is supported, elections can es-
sentially be run by the community. In addition, A
employs state-of-the-art encryption methods and puts
forth the very attractive design principle of transparency:
the bulletin board is publicly readable and holds no se-
crets. Thus, even if it is compromised, the privacy of the
voters cannot be violated. Additionally, the whole elec-
tion process is universally verifiable. Admittedly, A
has many limitations; nevertheless these are shared by
all systems of the same kind (cf. §4).

While there exist serious and justified security con-
cerns regarding the employment of Internet-based vot-
ing for sensitive election procedures such as Presiden-
tial elections, we believe the existence of free and open
source system like A will motivate further testing
and development, and will be a step forward in the de-
velopment of truly robust and trustworthy e-voting pro-
cedures.

2. Overview of an election

At the heart of the system operation is a bulletin board
(a notion introduced in e-voting by Benaloh [11]). The
bulletin board is a public channel with memory, where
all authenticated users (voters and authorities) can ap-
pend data. We realize the bulletin board as an SQL
database which provides availability and data integrity,
while authentication is performed by a Kerberos-like
“gatekeeper” server, which assigns cryptographic tokens
to users that allow the users to perform various actions
upon receiving proper credentials. Client software, ei-
ther a Web browser with a digitally-signed Java applet,
or a stand-alone GUI program, is used to connect to the
system.

There are three types of users in the A system:
authorities, voters, and administrators. Authorities are



responsible for jointly maintaining the security and pri-
vacy of the election, voters are the users who actually
cast ballots, and administrators are responsible for cre-
ating and managing elections.

A typical A election procedure consists of sev-
eral stages. See Figure 2 for a graphical depiction of the
interactions between parties.

Procedure creation. An election begins when an ad-
ministrator logs onto the bulletin board server and sub-
mits the procedure creation data. Among the parameters
specified are the procedure identifier, the identities of
voters and authorities that are eligible to participate, the
authority threshold t, the minimum and maximum num-
ber of candidates that voters can select, the list of candi-
dates, and the election duration. Once the administrator
submits this form, the bulletin board server populates the
database with the corresponding information.

The bulletin board server subsequently generates the
public cryptographic parameters p, q, g, and f , where p
is a safe prime, i.e., p = 2q + 1 and q is a prime, g is an
order q element of Z∗p, and f ∈ 〈g〉. Note that the same
cryptographic parameters may be used for other proce-
dures. We denote by Eh : Zq × Zq −→ 〈g〉2 the mapping
(r, x) 7→ (gr, hr f x) (this is a form of a Elgamal encryp-
tion [18]). All of these parameters (and all cryptographic
data generated by the server in the future) are stored on
the bulletin board.

In the following three steps, the set of authorities that
are enabled for the procedure will jointly produce the
public key of the system initializing a threshold encryp-
tion scheme (cf. [32]). We note that not all authorities
are required to successfully carry out the steps. We will
use the notation Authsstage1,Authsstage2, and Authsstage3 to
denote the subsets of authorities that succeed in complet-
ing the stages of the system public key generation. If
the authorities that complete all three stages are below a
safety threshold t′, the system terminates the procedure.
Note that the safety threshold satisfies t′ > t.

Authority public key generation. Once the procedure
has been created, the authorities collaborate to create the
public encryption key of the system. At the end of the
election, they each contribute a part to the decryption of
the result. Note that no authority has the ability to de-
crypt a single vote because the actual private key of the
system does not exist in the private memory of any one
entity. Rather, it is broken up in the form of the authori-
ties’ individual private keys. In order to decrypt a single
vote, an amount of authorities greater than the author-
ity threshold t would all have to collaborate. To ensure
that no malicious coalition can exceed such a threshold
in a certain deployment, election officials can designate
authorities with differing political interests, so that they
have few reasons to collude.

An authority i downloads p, q, g, and f from the bul-
letin board. The authority then generates an Elgamal
key-pair (hi, xi), where hi = gxi , and xi ∈R Zq. In this
step, hi serves as the public key of the authority, and xi

serves as the private key. The public key is stored on
the bulletin board. Once all authorities have completed
this stage, the public key of each authority is stored on
the bulletin board. Let Authsstage1 be the set of author-
ities that have completed this step. If |Authsstage1| < t′

(the safety threshold), then the server will terminate the
procedure here.

Polynomial generation. At this stage, the authorities
will participate in a protocol that will compute the public
key for the election using a distributed key generation
protocol.

An authority i logs in, reads h j (the public keys) for
all authorities j ∈ Authsstage1, and the authority threshold
t. The authority creates a polynomial Pi(x) ∈ Zq[x], and
publishes the value Eh j (r j, Pi( j)) for each j ∈ Authsstage1,
where r j ∈R Zq. This serves as a form of encryption
of authority j’s index evaluated in authority i’s poly-
nomial. Finally, he publishes Gi,` for ` = 0, . . . , t − 1.
Let Authsstage2 ⊆ Authsstage1 be the set of authorities that
have completed this step. If |Authsstage2| < t′, the server
terminates the procedure.

Private key generation. Each authority j ∈ Authsstage2

connects to the bulletin board server and reads
Eh j (r j, Pi( j)) for all i ∈ Authsstage2. Note that authority
j can decrypt all of these values, as they were encrypted
with his public key. Thus, he retrieves x j (his private
key) from his private memory. He decrypts these val-
ues, computes their sum, and stores the result in private
memory. At this point, authority j has the sum of the
evaluations of his index in every other authority’s poly-
nomial. Let Authsstage3 ⊆ Authsstage2 be the set of author-
ities that have completed this step. If |Authsstage3| < t′,
the server terminates the procedure.

Public key publication. The bulletin board server pub-
lishes the value h =

∏
i∈Authsstage2

Gi,0. Note that h is the
sum of all of the authorities’ polynomials evaluated at 0.
This value h serves as the public key of the procedure,
which voters will use when they encrypt their ballots.

Voting. Now, the election may begin. A voting timer
is set which will expire when the election duration is
reached. Each voter i downloads the public key h from
the bulletin board, as well as p, q, g, and f . The voter
is permitted to vote between Kmin and Kmax candidates,
where 0 ≤ Kmin ≤ Kmax ≤ L, and L is the total num-
ber of candidates. The voter thus forms a ciphertext for
each candidate, encrypting 1 if the voter votes for that
candidate, and 0 otherwise. The encrypted vote is there-
fore a vector of ciphertexts, one for each candidate, each
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Figure 2. The stages of an Adder election procedure. Note that the Gatekeeper is involved in
every transaction that requires user authentication.

one of the format Vi = (gri , hri f ζi ), where ζi ∈ {0, 1}
and ri ∈R Zq. Observe that the encryption satisfies
the homomorphic property: (gr, hr f ζ) ⊕ (gr′ , hr′ f ζ

′

) =
(gr+r′ , hr+r′ f ζ+ζ

′

). Along with the encrypted vote, the
voter computes a proof of ballot validity Pi which is a
non-interactive zero-knowledge proof that the encrypted
vote is properly formed, meaning the voter has voted for
the correct number of candidates, and that each cipher-
text is the encryption of either 0 or a 1. Finally, the pair
(Vi, Pi) is posted on the bulletin board.

The bulletin board server then verifies the proof. If
the proof is valid, and the voter has not already voted,
it posts the vote and proof on the bulletin board. Other-
wise, it discards the vote and proof and returns an error.
Result tabulation. When duration of the election has
expired, or when an administrator manually ends the
election, result tabulation occurs. The bulletin board
contains received a vote Vi from each voter i. The en-
crypted sum of the votes is computed by the bulletin
board server combining the votes as

V =
m⊕

i=0

Vi,

where ⊕ is the homomorphic operation on votes, and V
is a vector of ciphertexts encrypting the total number of

votes for each candidate. This combined sum is then
posted on the bulletin board.

Authority decryption. Now, each authority logs in
again, downloads the encrypted result of the election,
and submits his partial decryption. These partial decryp-
tions are posted on the bulletin board.

Result decryption. Once each authority has submit-
ted his partial decryption, the bulletin board server com-
bines the partial decryptions and decrypts the result.

Result publication. The end result is finally published
on the bulletin board. The election is over, and no more
logins are accepted. Anyone can now view the final re-
sult.

3. Electronic voting concerns

After the major controversies with electronic voting,
several scientists came out rather harshly against elec-
tronic voting, and this is understandable given the flaws
in current voting systems. More recently, however, re-
searchers have begun to take a more serious look at cryp-
tographic voting systems and their feasibility, even go-
ing so far as to express optimism about electronic voting



[27]. In this section, we describe how A addresses
common concerns in electronic voting.

3.1. User authentication

A performs user authentication by employing a
Kerberos-like system called the gatekeeper. Actions that
can be performed by users include: creating procedures,
deleting procedures, voting, authority actions, and re-
setting procedures. The gatekeeper keeps a private ta-
ble of user credentials, as well as a private signing key.
When a user wishes to perform an action in the A
system, he authenticates himself (either by password or
public-key authentication where it makes sense and al-
ready exists (e.g., the military) to the gatekeeper. The
gatekeeper then ensures that the user is eligible to per-
form the requested action, and if so, generates a signed
ticket that authorizes the user. The ticket is then pre-
sented to the bulletin board server, which verifies the
gatekeeper’s signature, and allows the user to perform
the requested action. In the implementation this transfer
from the gatekeeper server to the bulletin board server is
essentially transparent from the user’s point of view.

As a result of this authentication system, A
achieves a realization of the bulletin board as an entity
that holds no secrets, but solely enforces constraints on
the posting of messages and ensures the integrity of the
election audit trail. Secret data is separated into the gate-
keeper component of the system. The bulletin board,
which holds all data relevant to the election, is thus in
complete public view. Furthermore, it is possible to have
several gatekeepers, each responsible for authenticating
one segment of users, or as a measure of redundancy in
case of failure. At the same time the database of the
bulletin board server can also be replicated.

To enter users into the system, the administrator pro-
vides the gatekeeper with a list of names and email ad-
dresses. The system can then randomly generate pass-
words and email the users their respective credentials.
Additionally, printed letters can be produced, if admin-
istrators would like to notify users by mail. If voter
anonymity is desired, voter identifiers can be assigned
randomly by the gatekeeper and the system can use those
instead of any identifying information (pseudonymity).
The identity of the voter can be authenticated, but cannot
be known without collusion between the bulletin board
server and the gatekeeper. Random user identifiers may
be assigned independently of the bulletin board server,
so that even if the votes are one day compromised, the
identity of the user cannot be learned or proved directly
from the bulletin board data.

3.2. Ballot privacy

In most elections, it is crucial that the privacy of each
voter is maintained. It should not be possible for anyone
to determine how each voter voted. This is in conflict
with the goal of universal verifiability, since determin-
ing that each voter voted correctly and tallying the votes
both require access to the votes themselves. To address
this problem, A corrects these problems by employ-
ing homomorphic encryption techniques. An encryp-
tion function E is homomorphic if, given E(x1),E(x2),
where x1 and x2 are plaintexts, it is possible to compute
E(x1 + x2). That is, there is an operation ⊕ such that
E(x1) ⊕ E(x2) = E(x1 + x2). Given a homomorphic en-
cryption function, it is possible to add a sequence of en-
crypted votes without being able to read the votes them-
selves. Thus, once all of the votes are cast, independent
third parties can perform the summation themselves.

3.3. Universal verifiability

The A system is designed to be universally veri-
fiable. All data present on the bulletin board are publicly
viewable. The bulletin board server runs with a special
read-only account designated for auditors. The free and
open source verification suite that accompanies the sys-
tem performs the following tasks:

1. Tallying of the encrypted ballots. Since homomor-
phic encryption is used, there is no need to possess
a private key to add the votes. All that is required
are the encrypted ballots themselves. The verifi-
cation suite repeats the server-executed encrypted
ballot aggregation.

2. Verification of all proofs. Proofs of ballot validity
are checked for each voter.

3. Decryption of the final tally. Once all of the au-
thorities have finished submitting their partial de-
cryptions, the verification suite recomputes the La-
grange coefficients and decrypts the final sum.

4. Verification of the hash chain. In order to enforce
the integrity of the bulletin board and causality of
events, we employ a hash chain. A hash of the
database is computed at the start of an election, and
stored in the database. At frequent intervals (say,
every five minutes), a new hash is computed, incor-
porating the previous hash. If anyone is to tamper
with the database, it must be done between hash
snapshots, since each successive hash guarantees
the integrity of every snapshot that has occurred
before it. The hash chain is verifiable since each
ballot in the database is accompanied by a time-
stamp. The entire history of the database can then



be reconstructed, and the hash chain can be com-
puted and compared with the published value.

3.4. Voter verifiability

Voter verifiability is a common concern in elec-
tronic voting systems. Many direct recording electronic
(DRE) systems use a voter-verifiable paper audit trail
(VVPAT). Before the vote is counted in the machine,
a paper confirmation containing the voter’s ballot is
printed and displayed to the voter. If the voter agrees
with the print-out, he indicates this to the machine, and
the paper ballot is dropped into a tamper-proof box. If
the voter disagrees with the print-out, the paper ballot
is discarded, and the voter can re-vote. The goal of a
VVPAT is to ensure that there exists a paper record of
every vote that is counted by the electronic machines.
Furthermore, each item in the paper trail has been cer-
tified by the voter who cast it. If the electronic tally is
disputed, it is thus possible to perform a manual recount
of the votes by inspecting the paper trail.

The focus of the A system is on providing a
strong cryptographic solution to electronic voting. As
such, we feel that voter verifiability remains an orthog-
onal concern. If A is used in a controlled setting,
at a designated polling place, it is an easy matter to add
a VVPAT component. However, it must be noted that
VVPAT makes no sense in the context of remote Internet
voting. Since voting is performed on the voter’s com-
puter, it is not possible for an authentic paper trail to be
maintained. It thus remains the decision of the organiza-
tion conducting the election whether or not a VVPAT is a
necessary component, as A provides the flexibility
to accommodate both large and small-scale elections.

4. Vulnerabilities and future directions

A, as an Internet-based voting system, is suscep-
tible to a number of vulnerabilities and attacks. We will
consider these vulnerabilities along with possible solu-
tions which will be implemented in future versions of
the A system.
Distributed key generation. Currently, the distributed
key generation subsystem of A is not universally
verifiable, i.e., some authorities may misbehave without
being detected. This may result in a bias in the random-
ness of the elections’ public keys. There are standard
cryptographic solutions to this problem which will be
incorporated into future versions.
Transcript availability and robustness. The A
system relies on an SQL database for the preservation
of the election trail which includes all encrypted ballots
and public keys of authorities, as well as other auxiliary

values. While this database contains no secrets, (due
to our transparency design principle) and thus we need
not provide any access control for read access, it is sup-
posed to be available for the verification of the election,
as well as the publication of the election results. An in-
sider attack that deletes the database in some stage of
A’s operation would naturally be destructive to an
election process. To tackle this problem, the database
can be replicated and stored at frequent intervals in re-
mote replication database servers. Future versions of
A will incorporate such fault-tolerance techniques.
Vote buying and coercion. In the current implementa-
tion, a malicious voting client may produce a proof of
how a user voted or otherwise leak information about
the voter. Future versions of A will incorporate
the use of ciphertext re-randomization, a technique that
has been suggested as a way to obtain protection against
such proof-of-vote attacks in the context of e-voting (cf.
[10]).
Voter verifiability. Currently, our system does not offer
to a voter a method for physically verifying that his pub-
lished encrypted ballot encrypts his actual choice. In-
stead, the voter relies on the correctness of the client
software for this task. We note that dealing with this is a
complex problem, since any method for voter-based ver-
ifiability can also potentially used by the voter to prove
how he voted and thus allow for vote buying.
Viruses and other client-environment hazards. Al-
though cryptography cannot entirely solve the secure
platform problem for remote Internet voting [34], an ob-
vious area where it would help is by employing a trusted
computing environment [35]. It is typical for many cryp-
tographic protocols to assume an ideal environment that
is free of viruses and other malicious software, and fre-
quently many assumptions are unspecified [26]. In other
cases, where operating details are specified, they are of-
ten too optimistic or ignore issues such as security and
usability trade-offs.

If A is run on a standard PC, the client envi-
ronment can be subverted by viruses and other mali-
cious code which may reside on it and have taken con-
trol of the local machine. Such attacks are particularly
devastating for any e-voting scheme employing a non-
dedicated PC environment. A standard approach to deal
with such attacks is to provide a stripped down operat-
ing environment containing an authorized Web browser
with the A applet installed which can be down-
loaded and burned into a bootable CD-ROM. With such
a CD, the user can boot into a clean environment. Us-
ing a stripped-down version of a free and open source
operating as a base would allow complete auditing of
the software down to the compiler and operating system
level, which is important as the electronic voting system



can only be as trustworthy as its compiler [37]. In a fu-
ture version of A, we will consider the development
of such a stripped down operating environment.
Denial-of-service attacks. The A system, as all
Internet-based voting systems, is susceptible to denial-
of-service attacks. While such attacks can be partic-
ularly devastating against a voting system, there exist
countermeasures which we will consider incorporating
into future versions of A (a possible approach to
consider is [39]).
User interaction. Computer systems running election
protocols may in one way or another engage their hu-
man operators to become active participants in secu-
rity/integrity verification (cf. [14]) and the system’s se-
curity guarantees may rely partly on users’ reporting cer-
tain types of abnormal operation. Enabling human veri-
fiability of secure system operation is an important goal
for any secure system implementation. We view A
as an important step forward in understanding the issues
between cryptography and its users.
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