

www.agilityds.com

HANDEL-C LANGUAGE REFERENCE MANUAL

Handel-C Language Reference Manual

www.agilityds.com

Agility, the Agility logo and Handel-C are trademarks of Agility Design Solutions Inc.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this
document may be adapted or reproduced in any material form except with the prior written permission
of the copyright holder.

The product described in this document is subject to continuous development and improvement. All
particulars of the product and its use contained in this document are given by Agility Design Solutions
Inc. in good faith. However, all warranties implied or express, including but not limited to implied
warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. Agility Design Solutions
Inc. shall not be liable for any loss or damage arising from the use of any information in this document,
or any incorrect use of the product.

The information contained herein is subject to change without notice and is for general guidance only.

Copyright © 1991 - 2007 Agility Design Solutions Inc. All rights reserved.

Authors: RG

Document number: RM-1003-4.4

Customer Support at http://www.agilityds.com/support/

Agility in Europe Agility in Japan Agility in the Americas

T: +44 (0) 1235 825 087 T: +81 (0) 45 331 0218 T: +1 650 846 2555
T: +1 800 570 7004

E: sales@agilityds.com E: sales@agilityds.com E: sales@agilityds.com

Handel-C Language Reference Manual

www.agilityds.com

CONVENTIONS ... 11

ASSUMPTIONS & OMISSIONS .. 12

1 INTRODUCTION.. 13
1.1 REFERENCES ... 13

2 GETTING STARTED WITH HANDEL-C ... 14

3 BASIC CONCEPTS.. 15
3.1.1 Handel-C programs ... 15
3.1.2 Parallel programs .. 15
3.1.3 Channel communication.. 16
3.1.4 Scope and variable sharing... 18

3.2 PROGRAM STRUCTURE.. 19

4 INTRODUCTION TO TIMING .. 21

5 TARGETING HARDWARE AND SIMULATION ... 22
5.1 COMPARISON OF HANDEL-C AND ANSI-C ... 22

5.1.1 Handel-C v C: types and type operators ... 22
5.1.2 Handel-C v C: floating-point variables... 23
5.1.3 Handel-C v C: variable widths and casting ... 23
5.1.4 Handel-C v C: side effects... 24
5.1.5 Handel-C v C: functions .. 25
5.1.6 Handel-C v C: loop statements ... 26
5.1.7 Handel-C v C: unions .. 27
5.1.8 Handel-C v C: data input and output... 28
5.1.9 Handel-C v C: memory allocation.. 28
5.1.10 Handel-C v C: standard library.. 28
5.1.11 C and Handel-C types and objects ... 28
5.1.12 Expressions in C and Handel-C .. 29
5.1.13 Statements in C and Handel-C ... 31

5.2 HANDEL-C CONSTRUCTS NOT FOUND IN ANSI-C .. 32

6 LANGUAGE BASICS ... 35
6.1 PROGRAM STRUCTURE.. 35
6.2 COMMENTS .. 36
6.3 STATEMENT SUMMARY .. 36
6.4 OPERATOR SUMMARY ... 38
6.5 TYPE SUMMARY .. 40
6.6 COMPARISON OF HANDEL-C AND ANSI-C ... 41

6.6.1 Handel-C v C: types and type operators ... 42
6.6.2 Handel-C v C: floating-point variables... 42
6.6.3 Handel-C v C: variable widths and casting ... 43
6.6.4 Handel-C v C: side effects... 44
6.6.5 Handel-C v C: functions .. 45

Handel-C Language Reference Manual

www.agilityds.com

6.6.6 Handel-C v C: loop statements ... 46
6.6.7 Handel-C v C: unions .. 47
6.6.8 Handel-C v C: data input and output... 48
6.6.9 Handel-C v C: memory allocation.. 48
6.6.10 Handel-C v C: standard library.. 48
6.6.11 C and Handel-C types and objects ... 48
6.6.12 Expressions in C and Handel-C .. 49
6.6.13 Statements in C and Handel-C ... 51

6.7 HANDEL-C CONSTRUCTS NOT FOUND IN ANSI-C .. 52

7 DECLARATIONS .. 55
7.1 INTRODUCTION TO TYPES... 55

7.1.1 Handel-C values and widths.. 56
7.1.2 String constants... 57
7.1.3 Constants .. 57

7.2 LOGIC TYPES.. 58
7.2.1 int... 58
7.2.2 Signed | unsigned syntax .. 59
7.2.3 Supported types for porting... 59
7.2.4 Inferring widths .. 59
7.2.5 Arrays .. 61
7.2.6 Array indices.. 62
7.2.7 struct.. 62
7.2.8 enum.. 64
7.2.9 Bit fields ... 65

7.3 POINTERS .. 66
7.3.1 Pointers and addresses... 68
7.3.2 Pointers to functions.. 68
7.3.3 Pointers to interfaces... 69
7.3.4 Structure pointers .. 69
7.3.5 address and indirection operators... 70

7.4 ARCHITECTURAL TYPES .. 71
7.5 CHANNELS ... 71

7.5.1 FIFO code example... 73
7.5.2 Arrays of channels... 73
7.5.3 Restrictions on channel accesses... 73
7.5.4 Timing and latency in FIFOs ... 75

7.6 INTERFACES: OVERVIEW.. 76
7.6.1 Interface declaration.. 76
7.6.2 Interface definition ... 77
7.6.3 Example interface to external code... 78
7.6.4 Interface specifications.. 79

7.7 RAMS AND ROMS ... 81
7.7.1 Multidimensional memory arrays... 83

7.8 MPRAM (MULTI-PORTED RAMS) ... 84
7.8.1 Initialization of mprams.. 86
7.8.2 Mapping of different width mpram ports.. 86
7.8.3 mprams example... 87

7.9 WOM (WRITE-ONLY MEMORY) ... 88

Handel-C Language Reference Manual

www.agilityds.com

7.10 SIGNAL... 89
7.11 SEMA ... 90
7.12 STORAGE CLASS SPECIFIERS... 91

7.12.1 auto.. 91
7.12.2 extern (external variables)... 91

7.13 EXTERN LANGUAGE CONSTRUCT .. 92
7.14 REGISTER... 94
7.15 INLINE FUNCTIONS... 94
7.16 STATIC ... 95
7.17 TYPEDEF .. 96
7.18 TYPEOF .. 96

7.18.1 const .. 97
7.18.2 volatile ... 98

7.19 COMPLEX DECLARATIONS ... 98
7.19.1 Macro expressions in widths ... 98
7.19.2 <> (type clarifier) ... 98
7.19.3 Using signals to split up complex expressions.. 99

7.20 VARIABLE INITIALIZATION .. 100

8 STATEMENTS.. 102
8.1 SEQUENTIAL AND PARALLEL EXECUTION .. 102

8.1.1 seq... 103
8.1.2 Replicated par and seq ... 103
8.1.3 prialt... 105
8.1.4 Using prialt: examples ... 106

8.2 ASSIGNMENTS .. 108
8.2.1 continue ... 109
8.2.2 goto.. 110
8.2.3 return [expression]... 110
8.2.4 Conditional execution (if . . . else) ... 111
8.2.5 while loops... 112
8.2.6 do ... while loops.. 113
8.2.7 for loops... 113
8.2.8 switch... 114
8.2.9 break.. 115
8.2.10 delay .. 116
8.2.11 try... reset... 117
8.2.12 releasesema() ... 118
8.2.13 trysema() ... 119

9 EXPRESSIONS... 121
9.1 INTRODUCTION TO EXPRESSIONS.. 121
9.2 CASTING OF EXPRESSION TYPES .. 122

9.2.1 Restrictions on casting .. 123
9.3 RESTRICTIONS ON RAMS AND ROMS.. 123
9.4 ASSERT.. 124
9.5 WARNING ... 127

Handel-C Language Reference Manual

www.agilityds.com

9.6 BIT MANIPULATION OPERATORS ... 129
9.6.1 Shift operators ... 130
9.6.2 Take / drop operators .. 130
9.6.3 Concatenation operator... 130
9.6.4 Bit selection ... 131
9.6.5 Width operator ... 132

9.7 ARITHMETIC OPERATORS... 132
9.8 RELATIONAL OPERATORS.. 134

9.8.1 Signed/unsigned compares... 134
9.8.2 Implicit compares .. 135

9.9 LOGICAL OPERATORS ... 135
9.9.1 Bitwise logical operators.. 136

9.10 CONDITIONAL OPERATOR .. 136
9.11 MEMBER OPERATORS (. / ->) ... 137

10 FUNCTIONS AND MACROS: OVERVIEW... 138
10.1 COMPARISON OF FUNCTIONS AND MACROS ... 138

10.1.1 Functions and macros: language issues... 138
10.1.2 Functions and macros: sharing hardware ... 140
10.1.3 Functions and macros: clock cycles.. 141
10.1.4 Functions and macros: examples ... 141
10.1.5 Accessing external names .. 143
10.1.6 Recursion in macros and functions ... 144

10.2 FUNCTIONS .. 144
10.2.1 Introduction to functions .. 144
10.2.2 Function definitions and declarations.. 145
10.2.3 Functions: scope ... 146
10.2.4 Arrays of functions... 146
10.2.5 Function pointers... 149
10.2.6 Simultaneous function calls... 154
10.2.7 Multiple functions in a statement... 155

10.3 MACROS .. 156
10.3.1 Introduction to macros... 156
10.3.2 Non-parameterized macro expressions .. 156
10.3.3 Parameterized macro expressions.. 157
10.3.4 select operator... 157
10.3.5 ifselect ... 159
10.3.6 Recursive macro expressions ... 160
10.3.7 Shared expressions... 161
10.3.8 Using recursion to generate shared expressions.. 162
10.3.9 Restrictions on shared expressions .. 162
10.3.10 let ... in ... 163
10.3.11 Macro procedures ... 164
10.3.12 Macro procedures compared to pre-processor macros .. 165
10.3.13 Preprocessor macros .. 166
10.3.14 Macro/shared exprs/procs: syntax .. 168

11 INTRODUCTION TO TIMING .. 169
11.1 STATEMENT TIMING... 169

Handel-C Language Reference Manual

www.agilityds.com

11.1.1 Example timings .. 169
11.1.2 Statement timing summary.. 175

11.2 AVOIDING COMBINATIONAL LOOPS ... 177
11.3 PARALLEL ACCESS TO VARIABLES ... 179
11.4 DETAILED TIMING EXAMPLE ... 180
11.5 TIME EFFICIENCY OF HANDEL-C HARDWARE ... 182

11.5.1 Reducing logic depth... 182
11.5.2 Pipelining... 185

12 CLOCKS OVERVIEW... 188
12.1 LOCATING THE CLOCK... 188

12.1.1 External clocks .. 188
12.1.2 Internal clocks fed from expressions... 189

12.2 CURRENT CLOCK .. 189
12.3 MULTIPLE CLOCK DOMAINS.. 190

12.3.1 Channels communicating between clock domains ... 190
12.3.2 Simulating multiple clock domains .. 204

13 TARGETING HARDWARE AND SIMULATION ... 205
13.1 RESETS ... 205

13.1.1 Specifying a global reset ... 205
13.1.2 Current reset value: __reset.. 206

13.2 INTERFACING WITH THE SIMULATOR.. 206
13.2.1 Simulator input file format.. 207
13.2.2 Block data transfers... 208

13.3 TARGETING FPGA AND PLD DEVICES ... 209
13.3.1 Summary of supported devices... 209
13.3.2 Detecting the current device family ... 211
13.3.3 Targeting specific devices via source code... 212
13.3.4 Supported families... 215

13.4 USE OF RAMS AND ROMS WITH HANDEL-C... 216
13.4.1 Asynchronous RAMs... 216
13.4.2 Synchronous RAMs... 223
13.4.3 Targeting Stratix and Cyclone memory blocks.. 238
13.4.4 Using on-chip RAMs in Altera devices .. 239
13.4.5 Using on-chip RAMs in Xilinx devices... 240
13.4.6 Using external ROMs .. 241
13.4.7 Connecting to RAMs in foreign code... 241
13.4.8 Using other RAMs ... 245

14 INTERFACING WITH EXTERNAL HARDWARE .. 246
14.1 INTERFACE SORTS .. 246

14.1.1 Reading from external pins bus_in.. 247
14.1.2 Registered reading from external pins: bus_latch_in.. 248
14.1.3 Clocked reading from external pins: bus_clock_in.. 248
14.1.4 Writing to external pins: bus_out... 249
14.1.5 Bidirectional data transfer: bus_ts... 249
14.1.6 Bidirectional data transfer with registered input: bus_ts_latch_in 250
14.1.7 Bidirectional data transfer with clocked input: bus_ts_clock_in .. 251

Handel-C Language Reference Manual

www.agilityds.com

14.1.8 Example hardware interface.. 252
14.2 SIMULATING INTERFACES .. 255
14.3 BUSES AND THE SIMULATOR .. 257
14.4 MERGING PINS.. 258

14.4.1 Merging clock pins... 258
14.4.2 Merging input pins ... 258
14.4.3 Merging tri-state pins... 259

14.5 TIMING CONSIDERATIONS FOR BUSES ... 259
14.5.1 Example timing considerations for input buses... 260
14.5.2 Example timing considerations for output buses... 261

14.6 METASTABILITY .. 262
14.6.1 Techniques to minimize the problem .. 262
14.6.2 Using interfaces: External resynchronizing example .. 265

14.7 PORTS: INTERFACING WITH EXTERNAL LOGIC.. 267
14.8 SPECIFYING THE INTERFACE .. 269
14.9 TARGETING PORTS TO SPECIFIC TOOLS... 269

15 OBJECT SPECIFICATIONS... 271
15.1 ACTIVE_LOW SPECIFICATION.. 279
15.2 BASE SPECIFICATION... 279
15.3 BIND SPECIFICATION.. 279
15.4 BLOCK SPECIFICATION... 281
15.5 BUFFER SPECIFICATION ... 282
15.6 BUSFORMAT SPECIFICATION... 282
15.7 SPECIFYING THE CLOCK PIN FOR SSRAM .. 283
15.8 CLOCKPORT SPECIFICATION... 284
15.9 DATA SPECIFICATION (PIN CONSTRAINTS).. 286
15.10 DCI SPECIFICATION.. 287
15.11 EXTINST, EXTLIB, EXTFUNC SPECIFICATIONS ... 288
15.12 EXTPATH SPECIFICATION ... 289
15.13 FIFOLENGTH SPECIFICATION... 290
15.14 FIFOKIND SPECIFICATION ... 290
15.15 INFILE AND OUTFILE SPECIFICATIONS .. 291
15.16 INOUTPORTS SPECIFICATION .. 291
15.17 INSTANCENAME SPECIFICATION.. 292
15.18 INTIME AND OUTTIME SPECIFICATIONS... 293
15.19 TIMING CONSTRAINTS EXAMPLE ... 293
15.20 MAXFIFOLENGTH SPECIFICATION .. 295
15.21 MINFIFOLENGTH SPECIFICATION ... 295
15.22 MINPERIOD SPECIFICATION... 296
15.23 OFFCHIP SPECIFICATION .. 297
15.24 PARANOIA SPECIFICATION.. 298
15.25 PIN SPECIFICATIONS.. 299
15.26 PORTNAME SPECIFICATION .. 300

Handel-C Language Reference Manual

www.agilityds.com

15.27 PORTS SPECIFICATION... 300
15.28 PROPERTIES SPECIFICATION .. 301
15.29 PULL SPECIFICATION ... 304
15.30 QUARTUS_PROJ_ASSIGN SPECIFICATION .. 304
15.31 RATE SPECIFICATION ... 305
15.32 RCLKPOS, WCLKPOS AND CLKPULSELEN SPECIFICATIONS (SSRAM TIMING) 305
15.33 READ SPECIFICATION... 306
15.34 RESOLUTIONTIME SPECIFICATION ... 307
15.35 RETIME SPECIFICATION .. 308
15.36 SC_TYPE SPECIFICATION ... 308
15.37 SHOW SPECIFICATION.. 309
15.38 SPEED SPECIFICATION ... 309
15.39 STANDARD SPECIFICATION... 309

15.39.1 I/O standards supported by different chips ... 312
15.39.2 I/O standard details ... 312
15.39.3 Differential I/O standards... 317

15.40 STD_LOGIC_VECTOR SPECIFICATION .. 317
15.41 STARTUP SPECIFICATION ... 318
15.42 STARTUPPARANOIA SPECIFICATION .. 318
15.43 STARTUPPIPELINE SPECIFICATION .. 318
15.44 STRENGTH SPECIFICATION ... 319
15.45 SYNCHRONOUS SPECIFICATION .. 319
15.46 UNCONSTRAINEDPERIOD SPECIFICATION ... 320
15.47 UNCONSTRAINEDPERIOD.. 321
15.48 VHDL_TYPE SPECIFICATION.. 322
15.49 VHDL_COMPONENT SPECIFICATION... 323
15.50 WARN SPECIFICATION.. 324
15.51 WEGATE SPECIFICATION .. 324
15.52 WESTART AND WELENGTH SPECIFICATIONS... 324

16 HANDEL-C PREPROCESSOR .. 326
16.1 PREPROCESSOR MACROS.. 326
16.2 FILE INCLUSION .. 327
16.3 CONDITIONAL COMPILATION .. 328
16.4 LINE CONTROL.. 329
16.5 CONCATENATION IN MACROS... 329
16.6 ERROR GENERATION... 330
16.7 PREDEFINED MACRO SUBSTITUTION ... 330
16.8 LINE SPLICING .. 330

17 LANGUAGE SYNTAX... 332
17.1 LANGUAGE SYNTAX CONVENTIONS... 332
17.2 KEYWORD SUMMARY... 332
17.3 CONSTANT EXPRESSIONS .. 338

Handel-C Language Reference Manual

www.agilityds.com

17.3.1 Identifiers: syntax .. 338
17.3.2 Integer constants: syntax .. 338
17.3.3 Character constants: syntax.. 338
17.3.4 Strings: syntax... 339
17.3.5 Floating-point constants: syntax.. 339

17.4 FUNCTIONS AND DECLARATIONS: SYNTAX .. 340
17.5 MACRO/SHARED EXPRS/PROCS: SYNTAX .. 341
17.6 INTERFACES: SYNTAX ... 342
17.7 STRUCTURES: SYNTAX.. 343
17.8 ENUMERATED TYPES: SYNTAX ... 343
17.9 SIGNAL SPECIFIERS: SYNTAX... 343
17.10 CHANNEL SYNTAX... 343
17.11 RAM SPECIFIERS: SYNTAX ... 344
17.12 DECLARATORS: SYNTAX ... 344
17.13 FUNCTION PARAMETERS: SYNTAX .. 344
17.14 TYPE NAMES AND ABSTRACT DECLARATORS: SYNTAX 345
17.15 STATEMENTS: SYNTAX .. 345

17.15.1 Compound statements with replicators ... 348
17.16 REPLICATORS: SYNTAX... 348
17.17 EXPRESSIONS: SYNTAX... 349

18 INDEX... 353

Handel-C Language Reference Manual

www.agilityds.com

CONVENTIONS
The following conventions are used in this document.

 Warning Message. These messages warn you that actions may damage your

hardware.

 Note. These messages draw your attention to crucial pieces of information.

Hexadecimal numbers will appear throughout this document. The convention used is that of prefixing
the number with '0x' in common with standard C syntax.

Sections of code or commands that you must type are given in typewriter font like this:
 void main();

Information about a type of object you must specify is given in italics like this:
 copy SourceFileName DestinationFileName

Optional elements are enclosed in square brackets like this:
 struct [type_Name]

Curly brackets around an element show that it is optional but it may be repeated any number of times.
 string ::= "{character}"

Handel-C Language Reference Manual

www.agilityds.com

ASSUMPTIONS & OMISSIONS
This manual assumes that you:

• have used Handel-C or have the Handel-C Language Reference Manual
• are familiar with common programming terms (e.g. functions)
• are familiar with your operating system (MS Windows or Linux)
This manual does not include:

• instruction in VHDL or Verilog
• instruction in the use of place and route tools

Introduction

 Page 13
www.agilityds.com

1 INTRODUCTION

1.1 REFERENCES
• The C Programming Language 2nd Edition
Kernighan, B. and Ritchie, D.
Prentice-Hall, 1988
• Altera Databook
Altera 2004
www.altera.com/literature/lit-index.html
• Xilinx Data Book
Xilinx 2004
www.xilinx.com/literature/index.htm
• VHDL for logic synthesis
Author: Andrew Rushton
Publisher: John Wiley and Sons
ISBN: 0-471-98325-X
Published: May 1998
• IEEE standard 1364 -1995
IEEE Standard Hardware Description Language
Based on the Verilog® Hardware Description Language.
http://standards.ieee.org/

• EDIF 2 0 0 American National Standard
(ANSI/EIA-548-1988, approved: March 14, 1988).

Getting started with Handel-C

 Page 14
www.agilityds.com

2 GETTING STARTED WITH HANDEL-C

Basic concepts

 Page 15
www.agilityds.com

3 BASIC CONCEPTS
Handel-C uses much of the syntax of conventional C with the addition of inherent parallelism. You can
write sequential programs in Handel-C, but to gain maximum benefit in performance from the target
hardware you must use its parallel constructs. These may be new to some users. If you are familiar
with conventional C you will recognize nearly all the other features.

Handel-C programs

• Parallel programs
• Channel communications
• Scope and variable sharing

3.1.1 HANDEL-C PROGRAMS

Since Handel-C is based on the syntax of conventional C, programs written in Handel-C are implicitly
sequential. Writing one command after another indicates that those instructions should be executed in
that exact order. To execute instructions in parallel, you must use the par keyword.

Handel-C provides constructs to control the flow of a program. For example, code can be executed
conditionally depending on the value of some expression, or a block of code can be repeated a
number of times using a loop construct.

You can express your algorithm in Handel-C without worrying about how the underlying computation
engine works. This philosophy makes Handel-C a programming language rather than a hardware
description language. In some senses, Handel-C is to hardware what a conventional high-level
language is to microprocessor assembly language.

The hardware design that DK produces is generated directly from the Handel-C source program.
There is no intermediate 'interpreting' layer as exists in assembly language when targeting general-
purpose microprocessors. The logic gates that make up the final Handel-C circuit are the assembly
instructions of the Handel-C system.

3.1.2 PARALLEL PROGRAMS

The target of the Handel-C compiler is low-level hardware. This means that you get massive
performance benefits by using parallelism. It is essential for writing efficient programs to instruct the
compiler to build hardware to execute statements in parallel. Handel-C parallelism is true parallelism,
not the time-sliced parallelism familiar from general-purpose computers. When instructed to execute
two instructions in parallel, those two instructions will be executed at exactly the same instant in time
by two separate pieces of hardware.

Basic concepts

 Page 16
www.agilityds.com

When a parallel block is encountered, execution flow splits at the start of the parallel block and each
branch of the block executes simultaneously. Execution flow then re-joins at the end of the block when
all branches have completed. Any branches that complete early are forced to wait for the slowest
branch before continuing.

This diagram illustrates the branching and re-joining of the execution flow. The left hand and middle
branches must wait to ensure that all branches have completed before the instruction following the
parallel construct can be executed.

3.1.3 CHANNEL COMMUNICATION

Channels provide a link between branches executing in parallel. One parallel branch outputs data onto
the channel and the other branch reads data from the channel.

Channels can be constructed with and without FIFO capacities

• Channels constructed as FIFOs
A channel can be constructed as a FIFO queue. In this case, the data is written to the
head of the FIFO and is read from the tail. If the FIFO is full, a write blocks until an
element is read from the FIFO. If the FIFO is empty, a read blocks until there is data ready
to be read.

• Channels constructed without FIFO capacity
These channels provide synchronization between parallel branches because the data
transfer can only complete when both the transmitter and the receiver are ready. If one
side is not ready, the other must wait.

Basic concepts

 Page 17
www.agilityds.com

Channel synchronization

SYNCHRONIZATION OF NORMAL CHANNELS

Here, the channel is shown transferring data from the left branch to the right branch. If the left branch
reaches point a before the right branch reaches point b, the left branch waits at point a until the right
branch reaches point b.

Communication without synchronization
If you are using a channel FIFO, the left branch will not have to wait at point a if there is space in the
FIFO. Instead, it can write to the FIFO once per clock tick until the FIFO is full. Only then will it have to
wait. Each time the right branch reads from the FIFO at point b, the data at the head of the FIFO is
read, and the next piece of data becomes the head. The right branch must wait if the FIFO is empty.

In this case, the two branches will not be synchronized after every read and write.

Basic concepts

 Page 18
www.agilityds.com

3.1.4 SCOPE AND VARIABLE SHARING

The scope of declarations is based around code blocks. A code block is denoted with {...} brackets.
This means that:

• Global variables must be declared outside all code blocks
• An identifier is in scope within a code block and any sub-blocks of that block.

The scope of variables is illustrated below:

Since parallel constructs are simply code blocks, variables can be in scope in two parallel branches of
code. This can lead to resource conflicts if the variable is written to simultaneously by more than one
of the branches. Handel-C states that a single variable must not be written to by more than one
parallel branch but may be read from by several parallel branches.

If you wish to write to the same variable from several processes, the correct way to do so is by using
channels which are read from in a single process. This process can use a prialt statement to select
which channel is ready to be read from first, and that channel is the only one which will be allowed to
write to the variable.

Basic concepts

 Page 19
www.agilityds.com

while(1)
 prialt
 {
 case chan1 ? y:
 break;
 case chan2 ? y:
 break;
 case chan3 ? y:
 break;
 }

In this case, three separate processes can attempt to change the value of y by sending data down the
channels, chan1, chan2 and chan3. y will be changed by whichever process sends the data first.

 A single variable should not be written to by more than one parallel branch.

3.2 PROGRAM STRUCTURE

Sequential structure
As in a conventional C program, a Handel-C program consists of a series of statements which execute
sequentially. These statements are contained within a main() function that tells the compiler where the
program begins. The body of the main function may be split into a number of blocks using {...}
brackets to break the program into readable chunks and restrict the scope of variables and identifiers.

Handel-C also has functions, variables and expressions similar to conventional C. There are
restrictions where operations are not appropriate to hardware implementation and extensions where
hardware implementation allows additional functionality.

Parallel structure
Unlike conventional C, Handel-C programs can also have statements or functions that execute in
parallel. This feature is crucial when targeting hardware because parallelism is the main way to
increase performance by using hardware. Parallel processes can communicate using channels. A
channel is a point-to-point link between two processes.

Overall structure
The overall program structure consists of one or more main functions, each associated with a clock.
This is unlike conventional C, where only one main function is permitted. You would only use more
than one main function if you needed parts of your program to run at different speeds (and so use
different clocks). A main function is defined as follows:

Basic concepts

 Page 20
www.agilityds.com

Global Declarations

Clock Definition
void main(void)
{
 Local Declarations

 Body Code
}

The main() function takes no arguments and returns no value. This is in line with a hardware
implementation where there are no command line arguments and no environment to return values to.
The argc, argv and envp parameters and the return value familiar from conventional C can be
replaced with explicit communications with an external system (e.g. a host microprocessor) within the
body of the program.

Introduction to timing

 Page 21
www.agilityds.com

4 INTRODUCTION TO TIMING
A Handel-C program executes with one clock source for each main statement. It is important to be
aware exactly which parts of the code execute on which clock cycles. This is not only important for
writing code that executes in fewer clock cycles but may mean the difference between correct and
incorrect code when using Handel-C’s parallelism. Experienced programmers can immediately tell
which instructions execute on which clock cycles. This information becomes very important when your
program contains multiple interacting parallel processes.

Knowing about clock cycles also becomes important when considering interfaces to external
hardware. It is important to understand timing issues before moving on to implementing such
interfaces because it is likely that the external device will place constraints on when signals should
change.

Avoiding certain constructs has a dramatic influence on the maximum clock rate that your Handel-C
program can run at.

Targeting hardware and simulation

 Page 22
www.agilityds.com

5 TARGETING HARDWARE AND SIMULATION

5.1 COMPARISON OF HANDEL-C AND ANSI-C
Handel-C has many similarities to ANSI-C (ISO-C). However, Handel-C is a language for digital logic
design, which means that the way in which DK interprets it may different to the way in which compilers
interpret ANSI-C for software design. Handel-C has some extensions to ANSI-C, to allow additional
functionality for hardware design. It also lacks some ANSI-C constructs which are not appropriate to
hardware implementation.

This section summarizes the differences between Handel-C and ANSI-C. It is not a definitive list. Refer
to specific sections to see how DK implements each of the language constructs.

5.1.1 HANDEL-C V C: TYPES AND TYPE OPERATORS

Handel-C supports all ANSI-C types apart from float, double and long double. You can still perform
floating-point arithmetic.

char, short and long are supported to help the porting of code from ANSI-C. However, it can be better
(more efficient in hardware terms) to re-express these as a signed or unsigned int of a specific width.
In Handel-C, ints are not limited to 64 bits.

Handel-C has a range of additional types for creating channels and interfaces between different
hardware blocks, and for specifying memories and signals. The Agility wide number library provides
signed and unsigned compiler-independent implementations of int32 and int64.

Handel-C also allows all ANSI-C storage class specifiers and type qualifiers, but volatile and register
have no meaning in hardware terms, and are accepted for compatibility only.

You have to specify the size of an array in Handel-C. For example, you couldn't write:

int ai[SIZE]

and then # define SIZE.

Handel-C variables can only be initialized if they are static, const or global. Otherwise, you must
assign a value to them in a statement.

int a = 8 //not allowed

int a;
a = 8; // OK

static int a = 8; // OK

The Handel-C typeof operator allows you to determine the type of an object at compile time.

Targeting hardware and simulation

 Page 23
www.agilityds.com

5.1.2 HANDEL-C V C: FLOATING-POINT VARIABLES

There are no floating-point types (float, double or long double) in Handel-C.

Floating-point arithmetic is more complex than integer or fixed-point arithmetic and tends to require
more hardware. If you are porting C code to Handel-C, check if there is a way to avoid using floating-
points. For example, you might be able to use fixed-point values (which have a binary point), or to
change the units to remove the decimal places (e.g. use pence or cents instead of pounds or dollars).

If you do need to use floating-point arithmetic, use the Agility floating-point library. This allows you to
specify the exact width of the mantissa and exponent. You can download the floating-point library from
the downloads section of the Agility support web site (http://www.agilityds.com/support/). If you can
use fixed-point arithmetic, use the Agility fixed-point library. This is provided in the Platform
Developer's Kit.

5.1.3 HANDEL-C V C: VARIABLE WIDTHS AND CASTING

Handel-C widths
Handel-C types are not limited to specific widths. When you define a Handel-C variable, you should
specify the minimum width required, to minimize hardware usage. For example, if you have a variable,
x, that can hold a value between 1 and 20, use a 5-bit int:

int 5 x;

Casting
There is no automatic conversion between signed and unsigned values in Handel-C, you have to
explicitly cast them:

int 12 x;
unsigned int 12 y;
y = x; //not allowed
y = (unsigned) x; //OK

Similarly, there is no automatic type conversion. If you wanted to add an int 5 and a long together, you
would need to pad the int to 32 bits by using the concatenation operator. However, it would be more
usual to perform arithmetic on ints of specific widths.

Pointers can be cast to void and back, to another pointer of the same type except for the addition or
removal of a type qualifier, between signed and unsigned, and between similar structs (e.g. a struct
with identical elements except for the width of the types).

You cannot perform the following casts in Handel-C:

• from a pointer of one type to a pointer of another type (except for those listed above)
• from a pointer to an integral type
• from an integral type to a pointer
• from a pointer to a function to a pointer to another function type

http://www.agilityds.com/support/

Targeting hardware and simulation

 Page 24
www.agilityds.com

Arithmetic and comparisons on variables of different width
In Handel-C you need to use the concatenation operator or the take operator when performing
arithmetic or comparisons on variables of different width. For example:

int 12 x;
int 8 y;

x = y; // not allowed
y = x; //not allowed
x = y[7] @ y[7] @ y[7] @ y[7] @ y // OK
y = x <-8; // OK; preserves the sign and copies the 7 LSBs

Alternatively you can use the width adjustment macros in the Agility standard macro library, stdlib.hcl.
The adju() macro adjusts the width of unsigned numbers and the adjs() macro adjusts the widths of
signed numbers. The standard library is now provided as part of the Platform Developer's Kit (PDK). If
you do not already have a copy of PDK, you can download it from the support section of the Agility
web site.

sizeof
There is no sizeof in Handel-C. For simple types (signed and unsigned char, int, long and short), you
can use the width operator. For example, sizeof long in C is equivalent to width long in Handel-C,
except that the number of bytes is returned in C and the number of bits is returned in Handel-C.

5.1.4 HANDEL-C V C: SIDE EFFECTS

There are restrictions on how you can use side-effects in Handel-C, because each statement must
only take one clock cycle. Each statement can only contain a single assignment, or an increment or a
decrement.

This means that:

• Shortcut assignments (e.g. +=) must appear as standalone statements.
• The initialization and iteration phases of for loops must be statements, not expressions.

If you are porting ANSI-C code, complex statements have to be re-written as multiple single
statements. It is often more efficient to run these statements in parallel. You cannot use comma
operators in Handel-C.

If you had the following expression written in ANSI-C:

a = b = ++c, d+e;

this could be separated into single statements in Handel-C:

Targeting hardware and simulation

 Page 25
www.agilityds.com

seq
{
 ++c;
 b = d + e;
 a = b;
}

However, you could rewrite the same code to run all the statements in parallel:

par
{
 ++c;
 a = d + e;
 b = d + e;
}

5.1.5 HANDEL-C V C: FUNCTIONS

There are a number of differences in the way in which functions can be used in ANSI-C and Handel-C.

In Handel-C:

• Functions may not be called recursively, since all logic must be expanded at compile-time to
generate hardware.
• You can only call functions in expression statements. These statements must not contain any
other calls or assignments.
• Variable length parameter lists are not supported.
• Old-style ANSI-C function declarations (where the type of the parameters is not specified) are not
supported.
• main() functions take no arguments and return no values.
• You can have more than one main() function. Each main() function is associated with a clock. If
you have more than one main() function in the same source file, they must all use the same clock.
• You can have arrays of functions and inline functions. These are useful when you are writing
parallel code.

Re-writing recursive functions
If you want to port code that uses recursive functions to Handel-C, the options for rewriting it include:

• Using recursive macro expressions or recursive macro procedures. (It must be possible to
determine the depth of recursion at compile-time.)
• Creating multiple copies of a function.
• Re-writing the function to create iterative code. This is relatively easy if the function is calling itself
(simple recursion), and the recursive call is the last item within the function definition (tail recursion).

Targeting hardware and simulation

 Page 26
www.agilityds.com

The following ANSI-C function has simple tail recursion:

unsigned long Factorial (unsigned long n)
{
 if (n==0)
 return 1;
 else
 return n * Factorial (n-1);
}

It can be re-written in Handel-C as:

unsigned int 32 Factorial (unsigned int 32 n)
{
 unsigned int 32 nfact;
 nfact = 1;
 if (n == 0)
 delay;
 else
 {
 while (n != 0)
 {
 nfact *= n;
 --n;
 }
 }
 return nfact;
}

Note that the if...else is required to prevent the possibility of a combinatorial loop if the while loop is not
executed.

5.1.6 HANDEL-C V C: LOOP STATEMENTS

for loops in Handel-C are slightly different to those in ANSI-C: the initialization and iteration steps are
written as statements rather than expressions. This is because of restrictions on side effects in
expressions in Handel-C.

You need to ensure that loop statements take at least one clock cycle in Handel-C. This means that:

• you cannot have empty loops in Handel-C
• you need to ensure that the body of a loop will always execute at least once, or else provide an
alternative execution point using an if...else.

For example, if you had the following ANSI-C code:

Targeting hardware and simulation

 Page 27
www.agilityds.com

while ((--i) != 0)
{
 MyFunction (i);
}

The while loop would not be executed if i was equal to 0. You could re-write this in Handel-C as:

--i;
if (i != 0)
 while (i != 0)
 {
 MyFunction (i);
 --i;
 }
else
 delay;

Note that you need to decrement i before you enter the while body to preserve the order dependency
of the ANSI-C code.

5.1.7 HANDEL-C V C: UNIONS

 Handel-C does not support unions

You can use one of the following workarounds to avoid the use of unions:

• If there is no relationship between members of the union, you can use a struct instead.
• If the members of the union are of related types (e.g. int, long and char), you can "reuse" a single
variable which is the width of the widest variable in the union.
For example, if you have the following union in your C code:

union
{
 unsigned long ul;
 unsigned char uc;
 short ss;
} u;

you could use a single variable of the same width as the long:

unsigned int 32 i;

You could then get values equivalent to ul, ss and ul by casting and using the take operator:

Targeting hardware and simulation

 Page 28
www.agilityds.com

u.ul would be written as i

u.uc would be written as i <-8

u.ss would be written as (signed) (i<-16)

Note that in ANSI-C there is no guarantee about whether ul, uc and ss would share storage, and so
the Handel-C code above might not exactly reproduce the behaviour of the ANSI-C code in your C
compiler.

5.1.8 HANDEL-C V C: DATA INPUT AND OUTPUT

Handel-C does not have functions equivalent to scanf() and printf(). You can use scanf() and printf()
when you are simulating a design, as Handel-C allows you to make calls to Handel-C functions.
Alternatively, you can use the Handel-C infile and outfile specifications. Both these methods allow you
to debug an algorithm before you build it in hardware.

When you are targeting hardware, data is passed between different parts of your Handel-C design
using channels. If your Handel-C design will receive data from or send data to external components,
you need to specify an interface. These external components might be written in EDIF, Verilog or
VHDL, or they could be an additional component specified in Handel-C.

5.1.9 HANDEL-C V C: MEMORY ALLOCATION

Memory allocation is not relevant when you are targeting hardware, so Handel-C has no equivalent of
malloc and free.

You can use Handel-C to create RAM or ROM blocks on an FPGA or PLD, or interface to off-chip
memory.

5.1.10 HANDEL-C V C: STANDARD LIBRARY

The standard library in Handel-C is called stdlib.hcl. This has no relationship to the C library, stdlib.lib
or to stdio.lib.

stdlib.hcl contains bit manipulation and arithmetic macros.

The standard library is now provided as part of the Platform Developer's Kit (PDK). If you do not
already have a copy of PDK, you can download it from the support section of the Agility web site.

5.1.11 C AND HANDEL-C TYPES AND OBJECTS

Targeting hardware and simulation

 Page 29
www.agilityds.com

In both

Conventional C
only

Handel-C
only

int double chan
unsigned float ram
char union rom
long wom

short mpram

enum signal

register chanin

static chanout

extern undefined

struct interface

volatile <>

void inline

const typeof

auto

signed

typedef

5.1.12 EXPRESSIONS IN C AND HANDEL-C

Targeting hardware and simulation

 Page 30
www.agilityds.com

In both

Conventional C
only

Handel-C
only

* (pointer
indirection)

sizeof select(...)

& (address of) width(...)

- @

+ \\

* (multiplication) <-

/ [:]

 let...in

Targeting hardware and simulation

 Page 31
www.agilityds.com

%

<<

>>

>

<

>=

<=

==

!=

& (bitwise and)

^

|

? :

[]

!

&&

~

||

->

5.1.13 STATEMENTS IN C AND HANDEL-C

Targeting hardware and simulation

 Page 32
www.agilityds.com

In both Handel-C only

{;} par
switch delay
do ... while ?
while !
if ... else prialt
for (;;) seq
break ifselect
continue
return
goto
assert assert is an expression

in Handel-C and not the
same as in ANSI-C

5.2 HANDEL-C CONSTRUCTS NOT FOUND IN ANSI-C
Handel-C is designed to target hardware. It allows you to specify timing and to target components
such as memory, ports, buses and wires. One of the most important differences to ANSI-C is the
ability to create code that executes in parallel.

Handel-C constructs that are not found in ANSI-C are listed below.

Parallelism
The par keyword specifies that a block of code should execute in parallel. Each statement within the
block is executed in the same clock cycle. If the par keyword is not used, statements within a code
block are executed sequentially. You can use the seq keyword to make this more explicit.

Channels allow communication between parallel branches of code. They are specified using the chan
keyword, or by chanin and chanout when you are simulating code. You can read from and write to
channels using statements of the form

Channel ? Variable; //reads from a channel
Channel ! Expression; //writes to a channel

prialt statements are used with multiple channels, to select the first one that is ready for a read or
write.

Semaphores (sema) allow you to coordinate the use of resources that are shared between parallel
branches of code. The trysema() construct tests to see if the sema is owned. The releasesema()
construct frees a semaphore once it is no longer needed by a resource.

inline functions, arrays of functions, macro procedures and macro expressions help you to create
multiple copies of functions. You need copies of a function if it is to be accessed by parallel branches

Targeting hardware and simulation

 Page 33
www.agilityds.com

of code.

Timing
The set clock construct specifies the clock source for each main() function. You can have more than
one clock interfacing with your design by specifying more than one main() function. If you want to
simulate code, you can set a "dummy" clock. You can specify the frequency of a clock using the rate
specification. The clockport specification can be used to assign a dedicated clock input resource on
your target device. You can also use it to specify that a port on an interface is used to drive the
Handel-C clock.

Assignments and delay take one clock cycle in Handel-C. Everything else is "free". The delay
statement does nothing, but takes one clock cycle. This can be used to avoid timing conflicts, such as
combinational loops.

The intime and outtime specifications can be used to specify the maximum delay between an interface
and an element interacting with an interface, (e.g. the port reading data into a RAM).

Compile-time selection and expansion and generic code
When you write code to target hardware, all logic needs to be expanded at compile time. This means
that you cannot use recursive functions. However, macro procedures, macro expressions and shared
expressions allow compile-time recursion in combination with the select, ifselect and let...in constructs.

The select operator allows you to select between expressions at compile time. It is similar to the
conditional operator (cond ? expr1: expr2), but no hardware is generated for the conditional.

The ifselect construct is similar to an if...else, but selects between alternative blocks of code at compile
time.

The typeof operator allows the type of an object to be determined at compile time. The undefined
keyword specifies that the compiler should infer the width of a variable. These constructs allow you to
create parameterizable code. For example, the Agility fixed-point library uses macros to pass the
integer width and fraction width of a fixed-point number into code that creates a struct to hold the
number.

Targeting hardware; FPGAs and PLDs
The set family and set part constructs allow you to specify the device you want to target in your source
code. You can also set the device using the DK GUI.

Targeting hardware; memory
The ram and rom keywords allow you to create on-chip RAM and ROM, and to interface to external
RAM and ROM. If you want to create a block RAM, use the block specification. To interface to off-chip
RAMs or ROMs, use the offchip specification. The addr, data, we, cs, oe and clk specifications define
the pins used between the FPGA/PLD and external RAM or ROM.

An mpram is a multi-ported RAM. This allows you to read from and write to a RAM within the same
clock cycle, or to make two read or two write accesses. Individual ports can be specified as read/write,
read-only and write-only using the ram, rom and wom keywords.

If you want to interface to a dedicated memory resource on the FPGA/PLD, use the ports specification.

Targeting hardware and simulation

 Page 34
www.agilityds.com

The clkpulselen, rclkpos and wclkpos specifications allow you to synchronize a RAM clock with the
Handel-C clock. The westart, welength and wegate specifications allow you to specify timing of a RAM
clock that is asynchronous to the Handel-C clock.

Targeting hardware; wires
If you specify a signal in Handel-C, this creates a wire in hardware. A signal takes on the value
assigned to it but only for that clock cycle. The value assigned to it can be read back during the same
clock cycle.

Targeting hardware; resets
set reset allows you to reset your device into a known state. It can also be used to configure devices
that are not in a known state at start up.

try...reset allows you to specify some actions that occur if a particular condition becomes true within a
particular block of hardware.

Interfacing to existing modules and to peripherals
Handel-C interfaces can be used to connect to external devices or to external logic on your target
FPGA/PLD, such as other programs written in Handel-C, VHDL or Verilog.

Port-type interfaces allow you connect to external logic. The bind, and properties specifications allow
you to parameterize interfaces connecting to external code.

Bus-type interfaces connect to pins connected to peripheral devices. The standard specification
selects the I/O standard for interface pins and the strength specification determines the drive current.
You can use the dci specification if you want to use digital controlled impedance. The pull specification
allows you to create a pull up or pull down resistor for bus pins. The speed specification allows you to
specify the slew rate for the output buffer on pins.

The extern "language" construct is the same as that found in C++. It allows you to connect to blocks
of ANSI-C or C++ code for co-simulation.

Bit manipulation
Handel-C types are not constrained to a specific width, so you can specify the exact width needed for
a variable to minimize hardware usage. Bit manipulation is required to connect objects of different
widths. In addition to the ANSI-C bit manipulation operators, Handel-C provides the take and drop
operators, which take and drop the least significant bits of a variable, and the concatenation operator,
to extend variable width. The bit selection operator, allows you to select individual bits of a variable.

Language basics

 Page 35
www.agilityds.com

6 LANGUAGE BASICS

6.1 PROGRAM STRUCTURE

Sequential structure
As in a conventional C program, a Handel-C program consists of a series of statements which execute
sequentially. These statements are contained within a main() function that tells the compiler where the
program begins. The body of the main function may be split into a number of blocks using {...}
brackets to break the program into readable chunks and restrict the scope of variables and identifiers.

Handel-C also has functions, variables and expressions similar to conventional C. There are
restrictions where operations are not appropriate to hardware implementation and extensions where
hardware implementation allows additional functionality.

Parallel structure
Unlike conventional C, Handel-C programs can also have statements or functions that execute in
parallel. This feature is crucial when targeting hardware because parallelism is the main way to
increase performance by using hardware. Parallel processes can communicate using channels. A
channel is a point-to-point link between two processes.

Overall structure
The overall program structure consists of one or more main functions, each associated with a clock.
This is unlike conventional C, where only one main function is permitted. You would only use more
than one main function if you needed parts of your program to run at different speeds (and so use
different clocks). A main function is defined as follows:

Global Declarations

Clock Definition
void main(void)
{
 Local Declarations

 Body Code
}

The main() function takes no arguments and returns no value. This is in line with a hardware
implementation where there are no command line arguments and no environment to return values to.
The argc, argv and envp parameters and the return value familiar from conventional C can be
replaced with explicit communications with an external system (e.g. a host microprocessor) within the
body of the program.

Language basics

 Page 36
www.agilityds.com

6.2 COMMENTS
Handel-C uses the standard /* ... */ delimiters for comments. These comments may not be nested.
For example:

/* Valid comment */

/* This is /* NOT */ valid */

Handel-C also provides the C++ style // comment marker which tells the compiler to ignore everything
up to the next new line. For example

x = x + 1; // This is a comment

6.3 STATEMENT SUMMARY

Language basics

 Page 37
www.agilityds.com

Statement Meaning

par {...} Parallel execution
seq {...} Sequential execution
par (Init ; Test ; Iter){...} Parallel replication
seq (Init ; Test ; Iter){...} Sequential replication
Variable = Expression; Assignment
Variable ++; Increment
Variable --; Decrement
++ Variable; Increment
-- Variable; Decrement
Variable += Expression; Add and assign
Variable -= Expression; Subtract and assign
Variable *= Expression; Multiply and assign
Variable /= Expression; Divide and assign
Variable %= Expression; Modulo and assign
Variable <<= Expression; Shift left and assign
Variable >>= Expression; Shift right and assign
Variable &= Expression; Bitwise AND and assign
Variable |= Expression; Bitwise OR and assign
Variable ^= Expression; Bitwise XOR and assign
Channel ? Variable; Channel input
Channel ! Expression; Channel output
if (Expression) {statement} [else
{statement}]

Conditional execution

ifselect (Expression) {statement}
[else {statement}]

Conditional compilation

while (Expression) {statement} Iteration
do {...} while (Expression); Iteration
for (Init ; Test ; Iter) {...} Iteration
break; Loop, switch and prialt

termination
continue; Resume execution
return[([Expression])]; Return from function
goto label; Jump to label
switch (Expression) {statement} Selection
prialt {statement} Channel alternation

Language basics

 Page 38
www.agilityds.com

releasesema() Make semaphore available
after use of trysema
expression

try{...}
reset(Condition){statement}

Perform statements on
reset condition

delay; Single cycle delay

Note: RAM and ROM elements, signals and array elements are included in the set of variables above.
However,

ram x [3];

x[0]++;
is invalid.

 The assignment group of operations and the increment and decrement

operations are included as statements to reflect the fact that Handel-C expressions cannot contain
side effects.

6.4 OPERATOR SUMMARY
The following table lists all operators. Entries at the top have the highest precedence and entries at
the bottom have the lowest precedence. Entries within the same group have the same precedence.
Precedence of operators is as expected from conventional C. For example:

x = x + y * z;

This performs the multiplication before the addition. Brackets may be used to ensure the correct
calculation order as in conventional C.

Note that assignments are not true operators in Handel-C.

Language basics

 Page 39
www.agilityds.com

Operator Meaning

trysema Test if semaphore owned. Take if
not

select(Constant, Expr, Expr) Compile-time selection
Expression [Expression] Array or memory subscripting
Expression [Constant] Bit selection
Expression [Constant:
Constant]

Bit range extraction. One of the
two constants may be omitted (but
not both).

functionName (Arguments) Function call
pointerToStructure->member Structure reference
structureName.member Structure reference
! Expression Logical NOT
~ Expression Bitwise NOT
- Expression Unary minus
+ Expression Unary plus
& object Yields pointer to operand
* pointer Yields object or function that the

operand points to
width(Expression) Width of expression
(Type) Expression Type casting
Expression <- Constant Take LSBs
Expression \\ Constant Drop LSBs
Expression * Expression Multiplication
Expression / Expression Division
Expression % Expression Modulo arithmetic
Expression + Expression Addition
Expression - Expression Subtraction
Expression << Expression Shift left
Expression >> Expression Shift right
Expression @ Expression Concatenation
Expression < Expression Less than
Expression > Expression Greater than
Expression <= Expression Less than or equal
Expression >= Expression Greater than or equal
Expression == Expression Equal
Expression != Expression Not equal

Language basics

 Page 40
www.agilityds.com

Expression & Expression Bitwise AND
Expression ^ Expression Bitwise XOR
Expression | Expression Bitwise OR
Expression && Expression Logical AND
Expression || Expression Logical OR
Expression ? Expr : Expr Conditional selection
assert diagnostic macro to print to stderr

6.5 TYPE SUMMARY
The most common types that may be associated with a variable, and the prefixes for architectural and
compound types are listed below.

Common logic types

Type Width

int See *Note 1
[signed | unsigned] int n n bits
[signed | unsigned] int undefined Compiler infers width
[signed | unsigned] char 8 bits
[signed | unsigned] short 16 bits
[signed | unsigned] long 32 bits
[signed | unsigned] int32 32 bits
[signed | unsigned] int64 64 bits
typeof (Expression) Yields type of object
*Note 1: Width will be inferred by compiler unless the 'set intwidth = n' command appears before the
declaration.

Architectural types
Prefixes to the above types for different architectural object types are:

Language basics

 Page 41
www.agilityds.com

Prefix Object

chan Channel
chanin Simulator channel
chanout Simulator channel
ram Internal or external RAM
rom Internal or external ROM
signal Wire
wom WOM within multi-port

memory

Compound types
The compound types are:

Prefix Object

struct Structure

mpram Multi-port memory

Special types

Type Object

interface Interface to
external logic or
device

sema Semaphore. Has
no width or logic
type

Interfaces connect to logic beyond the Handel-C design, whether on the same or a different device.

6.6 COMPARISON OF HANDEL-C AND ANSI-C
Handel-C has many similarities to ANSI-C (ISO-C). However, Handel-C is a language for digital logic
design, which means that the way in which DK interprets it may different to the way in which compilers
interpret ANSI-C for software design. Handel-C has some extensions to ANSI-C, to allow additional
functionality for hardware design. It also lacks some ANSI-C constructs which are not appropriate to
hardware implementation.

This section summarizes the differences between Handel-C and ANSI-C. It is not a definitive list. Refer

Language basics

 Page 42
www.agilityds.com

to specific sections to see how DK implements each of the language constructs.

6.6.1 HANDEL-C V C: TYPES AND TYPE OPERATORS

Handel-C supports all ANSI-C types apart from float, double and long double. You can still perform
floating-point arithmetic.

char, short and long are supported to help the porting of code from ANSI-C. However, it can be better
(more efficient in hardware terms) to re-express these as a signed or unsigned int of a specific width.
In Handel-C, ints are not limited to 64 bits.

Handel-C has a range of additional types for creating channels and interfaces between different
hardware blocks, and for specifying memories and signals. The Agility wide number library provides
signed and unsigned compiler-independent implementations of int32 and int64.

Handel-C also allows all ANSI-C storage class specifiers and type qualifiers, but volatile and register
have no meaning in hardware terms, and are accepted for compatibility only.

You have to specify the size of an array in Handel-C. For example, you couldn't write:

int ai[SIZE]

and then # define SIZE.

Handel-C variables can only be initialized if they are static, const or global. Otherwise, you must
assign a value to them in a statement.

int a = 8 //not allowed

int a;
a = 8; // OK

static int a = 8; // OK

The Handel-C typeof operator allows you to determine the type of an object at compile time.

6.6.2 HANDEL-C V C: FLOATING-POINT VARIABLES

There are no floating-point types (float, double or long double) in Handel-C.

Floating-point arithmetic is more complex than integer or fixed-point arithmetic and tends to require
more hardware. If you are porting C code to Handel-C, check if there is a way to avoid using floating-
points. For example, you might be able to use fixed-point values (which have a binary point), or to
change the units to remove the decimal places (e.g. use pence or cents instead of pounds or dollars).

If you do need to use floating-point arithmetic, use the Agility floating-point library. This allows you to
specify the exact width of the mantissa and exponent. You can download the floating-point library from
the downloads section of the Agility support web site (http://www.agilityds.com/support/). If you can
use fixed-point arithmetic, use the Agility fixed-point library. This is provided in the Platform
Developer's Kit.

http://www.agilityds.com/support/

Language basics

 Page 43
www.agilityds.com

6.6.3 HANDEL-C V C: VARIABLE WIDTHS AND CASTING

Handel-C widths
Handel-C types are not limited to specific widths. When you define a Handel-C variable, you should
specify the minimum width required, to minimize hardware usage. For example, if you have a variable,
x, that can hold a value between 1 and 20, use a 5-bit int:

int 5 x;

Casting
There is no automatic conversion between signed and unsigned values in Handel-C, you have to
explicitly cast them:

int 12 x;
unsigned int 12 y;
y = x; //not allowed
y = (unsigned) x; //OK

Similarly, there is no automatic type conversion. If you wanted to add an int 5 and a long together, you
would need to pad the int to 32 bits by using the concatenation operator. However, it would be more
usual to perform arithmetic on ints of specific widths.

Pointers can be cast to void and back, to another pointer of the same type except for the addition or
removal of a type qualifier, between signed and unsigned, and between similar structs (e.g. a struct
with identical elements except for the width of the types).

You cannot perform the following casts in Handel-C:

• from a pointer of one type to a pointer of another type (except for those listed above)
• from a pointer to an integral type
• from an integral type to a pointer
• from a pointer to a function to a pointer to another function type

Arithmetic and comparisons on variables of different width
In Handel-C you need to use the concatenation operator or the take operator when performing
arithmetic or comparisons on variables of different width. For example:

int 12 x;
int 8 y;

x = y; // not allowed
y = x; //not allowed
x = y[7] @ y[7] @ y[7] @ y[7] @ y // OK
y = x <-8; // OK; preserves the sign and copies the 7 LSBs

Alternatively you can use the width adjustment macros in the Agility standard macro library, stdlib.hcl.
The adju() macro adjusts the width of unsigned numbers and the adjs() macro adjusts the widths of

Language basics

 Page 44
www.agilityds.com

signed numbers. The standard library is now provided as part of the Platform Developer's Kit (PDK). If
you do not already have a copy of PDK, you can download it from the support section of the Agility
web site.

sizeof
There is no sizeof in Handel-C. For simple types (signed and unsigned char, int, long and short), you
can use the width operator. For example, sizeof long in C is equivalent to width long in Handel-C,
except that the number of bytes is returned in C and the number of bits is returned in Handel-C.

6.6.4 HANDEL-C V C: SIDE EFFECTS

There are restrictions on how you can use side-effects in Handel-C, because each statement must
only take one clock cycle. Each statement can only contain a single assignment, or an increment or a
decrement.

This means that:

• Shortcut assignments (e.g. +=) must appear as standalone statements.
• The initialization and iteration phases of for loops must be statements, not expressions.

If you are porting ANSI-C code, complex statements have to be re-written as multiple single
statements. It is often more efficient to run these statements in parallel. You cannot use comma
operators in Handel-C.

If you had the following expression written in ANSI-C:

a = b = ++c, d+e;

this could be separated into single statements in Handel-C:

seq
{
 ++c;
 b = d + e;
 a = b;
}

However, you could rewrite the same code to run all the statements in parallel:

par
{
 ++c;
 a = d + e;
 b = d + e;
}

Language basics

 Page 45
www.agilityds.com

6.6.5 HANDEL-C V C: FUNCTIONS

There are a number of differences in the way in which functions can be used in ANSI-C and Handel-C.

In Handel-C:

• Functions may not be called recursively, since all logic must be expanded at compile-time to
generate hardware.
• You can only call functions in expression statements. These statements must not contain any
other calls or assignments.
• Variable length parameter lists are not supported.
• Old-style ANSI-C function declarations (where the type of the parameters is not specified) are not
supported.
• main() functions take no arguments and return no values.
• You can have more than one main() function. Each main() function is associated with a clock. If
you have more than one main() function in the same source file, they must all use the same clock.
• You can have arrays of functions and inline functions. These are useful when you are writing
parallel code.

Re-writing recursive functions
If you want to port code that uses recursive functions to Handel-C, the options for rewriting it include:

• Using recursive macro expressions or recursive macro procedures. (It must be possible to
determine the depth of recursion at compile-time.)
• Creating multiple copies of a function.
• Re-writing the function to create iterative code. This is relatively easy if the function is calling itself
(simple recursion), and the recursive call is the last item within the function definition (tail recursion).

The following ANSI-C function has simple tail recursion:

unsigned long Factorial (unsigned long n)
{
 if (n==0)
 return 1;
 else
 return n * Factorial (n-1);
}

It can be re-written in Handel-C as:

Language basics

 Page 46
www.agilityds.com

unsigned int 32 Factorial (unsigned int 32 n)
{
 unsigned int 32 nfact;
 nfact = 1;
 if (n == 0)
 delay;
 else
 {
 while (n != 0)
 {
 nfact *= n;
 --n;
 }
 }
 return nfact;
}

Note that the if...else is required to prevent the possibility of a combinatorial loop if the while loop is not
executed.

6.6.6 HANDEL-C V C: LOOP STATEMENTS

for loops in Handel-C are slightly different to those in ANSI-C: the initialization and iteration steps are
written as statements rather than expressions. This is because of restrictions on side effects in
expressions in Handel-C.

You need to ensure that loop statements take at least one clock cycle in Handel-C. This means that:

• you cannot have empty loops in Handel-C
• you need to ensure that the body of a loop will always execute at least once, or else provide an
alternative execution point using an if...else.

For example, if you had the following ANSI-C code:

while ((--i) != 0)
{
 MyFunction (i);
}

The while loop would not be executed if i was equal to 0. You could re-write this in Handel-C as:

Language basics

 Page 47
www.agilityds.com

--i;
if (i != 0)
 while (i != 0)
 {
 MyFunction (i);
 --i;
 }
else
 delay;

Note that you need to decrement i before you enter the while body to preserve the order dependency
of the ANSI-C code.

6.6.7 HANDEL-C V C: UNIONS

 Handel-C does not support unions

You can use one of the following workarounds to avoid the use of unions:

• If there is no relationship between members of the union, you can use a struct instead.
• If the members of the union are of related types (e.g. int, long and char), you can "reuse" a single
variable which is the width of the widest variable in the union.
For example, if you have the following union in your C code:

union
{
 unsigned long ul;
 unsigned char uc;
 short ss;
} u;

you could use a single variable of the same width as the long:

unsigned int 32 i;

You could then get values equivalent to ul, ss and ul by casting and using the take operator:

u.ul would be written as i

u.uc would be written as i <-8

u.ss would be written as (signed) (i<-16)

Note that in ANSI-C there is no guarantee about whether ul, uc and ss would share storage, and so
the Handel-C code above might not exactly reproduce the behaviour of the ANSI-C code in your C

Language basics

 Page 48
www.agilityds.com

compiler.

6.6.8 HANDEL-C V C: DATA INPUT AND OUTPUT

Handel-C does not have functions equivalent to scanf() and printf(). You can use scanf() and printf()
when you are simulating a design, as Handel-C allows you to make calls to Handel-C functions.
Alternatively, you can use the Handel-C infile and outfile specifications. Both these methods allow you
to debug an algorithm before you build it in hardware.

When you are targeting hardware, data is passed between different parts of your Handel-C design
using channels. If your Handel-C design will receive data from or send data to external components,
you need to specify an interface. These external components might be written in EDIF, Verilog or
VHDL, or they could be an additional component specified in Handel-C.

6.6.9 HANDEL-C V C: MEMORY ALLOCATION

Memory allocation is not relevant when you are targeting hardware, so Handel-C has no equivalent of
malloc and free.

You can use Handel-C to create RAM or ROM blocks on an FPGA or PLD, or interface to off-chip
memory.

6.6.10 HANDEL-C V C: STANDARD LIBRARY

The standard library in Handel-C is called stdlib.hcl. This has no relationship to the C library, stdlib.lib
or to stdio.lib.

stdlib.hcl contains bit manipulation and arithmetic macros.

The standard library is now provided as part of the Platform Developer's Kit (PDK). If you do not
already have a copy of PDK, you can download it from the support section of the Agility web site.

6.6.11 C AND HANDEL-C TYPES AND OBJECTS

Language basics

 Page 49
www.agilityds.com

In both

Conventional C
only

Handel-C
only

int double chan
unsigned float ram
char union rom
long wom

short mpram

enum signal

register chanin

static chanout

extern undefined

struct interface

volatile <>

void inline

const typeof

auto

signed

typedef

6.6.12 EXPRESSIONS IN C AND HANDEL-C

Language basics

 Page 50
www.agilityds.com

In both

Conventional C
only

Handel-C
only

* (pointer
indirection)

sizeof select(...)

& (address of) width(...)

- @

+ \\

* (multiplication) <-

/ [:]

 let...in

Language basics

 Page 51
www.agilityds.com

%

<<

>>

>

<

>=

<=

==

!=

& (bitwise and)

^

|

? :

[]

!

&&

~

||

->

6.6.13 STATEMENTS IN C AND HANDEL-C

Language basics

 Page 52
www.agilityds.com

In both Handel-C only

{;} par
switch delay
do ... while ?
while !
if ... else prialt
for (;;) seq
break ifselect
continue
return
goto
assert assert is an expression

in Handel-C and not the
same as in ANSI-C

6.7 HANDEL-C CONSTRUCTS NOT FOUND IN ANSI-C
Handel-C is designed to target hardware. It allows you to specify timing and to target components
such as memory, ports, buses and wires. One of the most important differences to ANSI-C is the
ability to create code that executes in parallel.

Handel-C constructs that are not found in ANSI-C are listed below.

Parallelism
The par keyword specifies that a block of code should execute in parallel. Each statement within the
block is executed in the same clock cycle. If the par keyword is not used, statements within a code
block are executed sequentially. You can use the seq keyword to make this more explicit.

Channels allow communication between parallel branches of code. They are specified using the chan
keyword, or by chanin and chanout when you are simulating code. You can read from and write to
channels using statements of the form

Channel ? Variable; //reads from a channel
Channel ! Expression; //writes to a channel

prialt statements are used with multiple channels, to select the first one that is ready for a read or
write.

Semaphores (sema) allow you to coordinate the use of resources that are shared between parallel
branches of code. The trysema() construct tests to see if the sema is owned. The releasesema()
construct frees a semaphore once it is no longer needed by a resource.

inline functions, arrays of functions, macro procedures and macro expressions help you to create
multiple copies of functions. You need copies of a function if it is to be accessed by parallel branches

Language basics

 Page 53
www.agilityds.com

of code.

Timing
The set clock construct specifies the clock source for each main() function. You can have more than
one clock interfacing with your design by specifying more than one main() function. If you want to
simulate code, you can set a "dummy" clock. You can specify the frequency of a clock using the rate
specification. The clockport specification can be used to assign a dedicated clock input resource on
your target device. You can also use it to specify that a port on an interface is used to drive the
Handel-C clock.

Assignments and delay take one clock cycle in Handel-C. Everything else is "free". The delay
statement does nothing, but takes one clock cycle. This can be used to avoid timing conflicts, such as
combinational loops.

The intime and outtime specifications can be used to specify the maximum delay between an interface
and an element interacting with an interface, (e.g. the port reading data into a RAM).

Compile-time selection and expansion and generic code
When you write code to target hardware, all logic needs to be expanded at compile time. This means
that you cannot use recursive functions. However, macro procedures, macro expressions and shared
expressions allow compile-time recursion in combination with the select, ifselect and let...in constructs.

The select operator allows you to select between expressions at compile time. It is similar to the
conditional operator (cond ? expr1: expr2), but no hardware is generated for the conditional.

The ifselect construct is similar to an if...else, but selects between alternative blocks of code at compile
time.

The typeof operator allows the type of an object to be determined at compile time. The undefined
keyword specifies that the compiler should infer the width of a variable. These constructs allow you to
create parameterizable code. For example, the Agility fixed-point library uses macros to pass the
integer width and fraction width of a fixed-point number into code that creates a struct to hold the
number.

Targeting hardware; FPGAs and PLDs
The set family and set part constructs allow you to specify the device you want to target in your source
code. You can also set the device using the DK GUI.

Targeting hardware; memory
The ram and rom keywords allow you to create on-chip RAM and ROM, and to interface to external
RAM and ROM. If you want to create a block RAM, use the block specification. To interface to off-chip
RAMs or ROMs, use the offchip specification. The addr, data, we, cs, oe and clk specifications define
the pins used between the FPGA/PLD and external RAM or ROM.

An mpram is a multi-ported RAM. This allows you to read from and write to a RAM within the same
clock cycle, or to make two read or two write accesses. Individual ports can be specified as read/write,
read-only and write-only using the ram, rom and wom keywords.

If you want to interface to a dedicated memory resource on the FPGA/PLD, use the ports specification.

Language basics

 Page 54
www.agilityds.com

The clkpulselen, rclkpos and wclkpos specifications allow you to synchronize a RAM clock with the
Handel-C clock. The westart, welength and wegate specifications allow you to specify timing of a RAM
clock that is asynchronous to the Handel-C clock.

Targeting hardware; wires
If you specify a signal in Handel-C, this creates a wire in hardware. A signal takes on the value
assigned to it but only for that clock cycle. The value assigned to it can be read back during the same
clock cycle.

Targeting hardware; resets
set reset allows you to reset your device into a known state. It can also be used to configure devices
that are not in a known state at start up.

try...reset allows you to specify some actions that occur if a particular condition becomes true within a
particular block of hardware.

Interfacing to existing modules and to peripherals
Handel-C interfaces can be used to connect to external devices or to external logic on your target
FPGA/PLD, such as other programs written in Handel-C, VHDL or Verilog.

Port-type interfaces allow you connect to external logic. The bind, and properties specifications allow
you to parameterize interfaces connecting to external code.

Bus-type interfaces connect to pins connected to peripheral devices. The standard specification
selects the I/O standard for interface pins and the strength specification determines the drive current.
You can use the dci specification if you want to use digital controlled impedance. The pull specification
allows you to create a pull up or pull down resistor for bus pins. The speed specification allows you to
specify the slew rate for the output buffer on pins.

The extern "language" construct is the same as that found in C++. It allows you to connect to blocks
of ANSI-C or C++ code for co-simulation.

Bit manipulation
Handel-C types are not constrained to a specific width, so you can specify the exact width needed for
a variable to minimize hardware usage. Bit manipulation is required to connect objects of different
widths. In addition to the ANSI-C bit manipulation operators, Handel-C provides the take and drop
operators, which take and drop the least significant bits of a variable, and the concatenation operator,
to extend variable width. The bit selection operator, allows you to select individual bits of a variable.

Declarations

 Page 55
www.agilityds.com

7 DECLARATIONS

7.1 INTRODUCTION TO TYPES
Handel-C uses two kinds of objects: logic types and architecture types. The logic types specify
variables. The architecture types specify variables that require a particular sort of hardware
architecture (e.g., ROMs, RAMs and channels).

Declarations

 Page 56
www.agilityds.com

Both kinds are specified by their scope (static or extern), their size and their type. Architectural types
are also specified by the logic type that uses them.

Both types can be used in derived types (such as structures, arrays or functions) but there may be
some restrictions on the use of architectural types.

Specifiers
The type specifiers signed, unsigned and undefined define whether the variable is signed and whether
it takes a default defined width.

You can use the storage class specifiers extern and static to define the scope of any variable.

Functions can have the storage class inline to show that they are expanded in line, rather than being
shared.

Type qualifiers
Handel-C supports the type qualifiers const and volatile to increase compatibility with ANSI-C. These
can be used to further qualify logic types.

Disambiguator
Handel-C supports the extension < >. This can be used to clarify complex declarations of architectural
types.

7.1.1 HANDEL-C VALUES AND WIDTHS

A crucial difference between Handel-C and conventional C is Handel-C’s ability to handle values of
arbitrary width. Since conventional C is targeted at general-purpose microprocessors it handles 8, 16
and 32 bit values well but cannot easily handle other widths. When targeting hardware, there is no
reason to be tied to these data widths and so Handel-C has been extended to allow types of any
number of bits.

Handel-C has also been extended to cope with extracting bits from values and joining values together
to form wider values. These operations require no hardware and can provide great performance
improvements over software.

When writing programs in Handel-C, care should be taken that data paths are no wider than
necessary to minimize hardware usage. While it may be valid to use 32-bit values for all items, a large
amount of unnecessary hardware is produced if none of these values exceed 4 bits.

Care must also be taken that values do not overflow their width. This is more of an issue with Handel-
C than with conventional C because variables should be just wide enough to contain the largest value
required (and no wider).

You cannot cast a variable or expression to a type with a different width. Use the concatenation
operator to zero pad or sign extend a variable to a given width.

Declarations

 Page 57
www.agilityds.com

7.1.2 STRING CONSTANTS

String constants are allowed in Handel-C. A string constant consists of a string of characters delimited
by double quotes ("). They will be stored as a null-terminated array of characters (as in ANSI-C).
String constants can contain any of the special characters listed below. Arrays and pointers can be
initialized with string constants, and string constants can be assigned to pointers. If a string constant is
assigned to a pointer, the storage for the string will be created implicitly.

Special characters:

\a alert
\b backspace
\f formfeed
\n newline
\r carriage return
\t tab
\v vertical tab
\\ backslash
\? question mark
\' single quote
\" double quote
\onumber octal number e.g. \o77
\xnumber hexadecimal number e.g. \xf3

7.1.3 CONSTANTS

Constants may be used in expressions. Decimal constants are written as simply the number while
hexadecimal constants must be prefixed with 0x or 0X, octal constants must be prefixed with a zero
and binary constants must be prefixed with 0b or 0B. For example:

w = 1234; /* Decimal */

x = 0x1234; /* Hexadecimal */

y = 01234; /* Octal */

z = 0b00100110; /* Binary */

The width of a constant may be explicitly given by 'casting'. For example:

x = (unsigned int 3) 1;

Casting may be necessary where the compiler is unable to infer the width of the constant from its

Declarations

 Page 58
www.agilityds.com

usage.

7.2 LOGIC TYPES
The basic logic type is an int. It may be qualified as signed or unsigned. Integers can be manually
assigned a width by the programmer or the compiler will attempt to infer a width from use.

Enumeration types (enums) allow you to define a specified set of values that a variable of this type
may hold.

There are derived types (types that are derived from the basic types). These are arrays, pointers,
structs bit fields, and functions. The non-type void enables you to declare empty parameter lists or
functions that do not return a value. The typeof type operator allows you to reference the type of a
variable.

7.2.1 INT

There is only one fundamental type for variables: int. By default, integers are signed. The int type may
be qualified with the unsigned keyword to indicate that the variable only contains positive integers or 0.
For example:

int 5 x;
unsigned int 13 y;

These two lines declare two variables: a 5-bit signed integer x and a 13-bit non-negative integer y. In
the second example here, the int keyword is optional. Thus, the following two declarations are
equivalent.

unsigned int 6 x;
unsigned 6 x;

You may use the signed keyword to make it clear that the default type is used. The following
declarations are equivalent.

int 5 x;
signed int 5 x;
signed 5 x;

The range of an 8-bit signed integer is -128 to 127 while the range of an 8-bit unsigned integer is 0 to
255 inclusive. This is because signed integers use 2's complement representation.

You may declare a number of variables of the same type and width simultaneously. For example:

int 17 x, y, z;

This declares three 17-bit wide signed integers x, y and z.

Declarations

 Page 59
www.agilityds.com

7.2.2 SIGNED | UNSIGNED SYNTAX

Signed | unsigned is declared in the same way as in ANSI-C except that Handel-C allows the width to
be declared. The width may be undefined, an expression, or nothing.

For example:

• int a;
• long b;
• unsigned int 7 c;
• signed undefined d;
• long signed int e;

7.2.3 SUPPORTED TYPES FOR PORTING

Handel-C provides support for porting from conventional C by allowing the types char, short and long.
For example:

unsigned char w;
short y;
unsigned long z;

Note that these are fixed-widths in Handel-C, and implementation dependent in ANSI-C. The widths
used for each of these types in Handel-C is as follows:

Type Width

char 8 bits (signed)
short 16 bits
long 32 bits

 Smaller and more efficient hardware will be produced by using variables of

the smallest possible width.

7.2.4 INFERRING WIDTHS

The Handel-C compiler can infer the width of variables from their usage. It is therefore not always
necessary to explicitly define the width of all variables and the undefined keyword can be used to tell
the compiler to try to infer the width of a variable. For example:

Declarations

 Page 60
www.agilityds.com

int 6 x;
int undefined y;

x = y;

In this example the variable x has been declared to be 6 bits wide and the variable y has been
declared with no explicit width. The compiler can infer that y must be 6 bits wide from the assignment
operation later in the program and sets the width of y to this value.

If the compiler cannot infer all the undefined widths, it will generate errors detailing which widths it
could not infer.

The undefined keyword is optional, so the two definitions below are equivalent:

int x;
int undefined x;

Handel-C provides an extension to allow you to override this behaviour to ease porting from
conventional C. This allows you to set a width for all variables that have not been assigned a specific
width or declared as undefined.

This is done as follows:

set intwidth = 16;

int x;
unsigned int y;

This declares a 16-bit wide signed integer x and a 16-bit wide unsigned integer y. Any width may be
used in the set intwidth instruction, including undefined.

You can still declare variables that must have their width inferred by using the undefined keyword. For
example:

set clock = external "p1";
set intwidth = 27;

void main(void)
{
 unsigned x;
 unsigned undefined y;
}

This example declares a variable x with a width of 27 bits and a variable y that has its width inferred by
the compiler. This example also illustrates that the int keyword may be omitted when declaring
unsigned integers.

You may also set the default width to be undefined:

set intwidth = undefined;

Declarations

 Page 61
www.agilityds.com

7.2.5 ARRAYS

You can declare arrays of variables in the same way that arrays are declared in conventional C. For
example:

int 6 x[7];

This declares 7 registers each of which is 6 bits wide. Accessing the variables is exactly as in
conventional C. For example, to access the fifth variable in the array:

x[4] = 1;

Note that as in conventional C, the first variable has an index of 0 and the last has an index of n-1
where n is the total number of variables in the array.

When a variable is used as an array index, as is often done when using a for loop, the variable must
be declared unsigned.

Example
This loop initializes all the elements in array ax to the value of index.

unsigned int 6 ax[7];
unsigned index;

index=0;
do
{
 ax[index] = (0 @ index);
 index++;
}
while(index <= 6);

Note that the width of index has to be adjusted in the assignment. This is because its width will be
inferred to be 3, from the array dimension (the array has 7 elements, so "index" will only ever need to
count as far as 6).

Multidimensional arrays
You can declare multi-dimensional arrays of variables. For example:

unsigned int 6 x[4][5][6];

This declares 4 * 5 * 6 = 120 variables each of which is 6 bits wide. Accessing the variables is as
expected from conventional C. For example:

y = x[2][3][1];

Pointers to arrays
If you want to declare a pointer to the whole of an array, rather than an individual element, you must
enclose the variable name and the "*" in brackets. You must also use brackets when initializing a

Declarations

 Page 62
www.agilityds.com

pointer to an entire array:

// Declare an array
unsigned 4 MyArray [2];

// Declare a pointer to an array element
unsigned 4 *pointer_to_array_element;

// Declare a pointer to the entire array - brackets are required
unsigned 4 (*pointer_to_array) [2];

void main(void)
{
 // Initialize pointer to point to an individual array element
 pointer_to_array_element = &MyArray[0];

 // Initialize pointer to point to the entire array - brackets are
required
 (pointer_to_array) = &(MyArray);
 ...
}

If you wanted to view all the referenced values MyArray in the Watch window during simulation, you
would need to type in "(*pointer_to_array)".

7.2.6 ARRAY INDICES

When an array is declared, the index has the smallest width possible. For instance, in array[8], the
index need only go up to seven and will therefore be a three bit number. If a variable is declared to
represent the index, it too will be three bits.

7.2.7 STRUCT

struct defines a data structure; a grouping together of variables under a single name. The format of the
structure can be identified by a type name. The variable members of the structure may be of the same
or different types. Once a structure has been declared, its type name can be used to define other
structures of the same type. Structure members may be accessed individually using the construct

struct_Name.member_Name

Syntax
A structure type is declared using the format

Declarations

 Page 63
www.agilityds.com

struct [type_Name]
{
 member-list
} [instance_Name {,instance_Name}];

member-list is a list of variable definitions terminated by semi-colons.

The use of instance_Names declares variables of that structure type. Alternatively, you may declare
variables as follows:

struct type_Name instance_Name;

Storage
• Structures may be passed through channels and signals.
• Structures may be stored in internal memory elements.
• Structures cannot be stored in off-chip RAMs.

If a structure contains a memory element, a channel, or a signal, it cannot be stored in another
memory element, it cannot be passed to a function "by value", it cannot be assigned to and it cannot
be passed through a channel or a signal.

If a structure contains a memory element, it cannot be assigned (or assigned to) another structure, as
the assignment cannot be performed in a single clock cycle.

Whole structures may not be sent directly to interfaces.

Example
struct human // Declare human struct type
{
 unsigned int 8 age; // Declare member types
 int 1 sex;
 char name[25];
}; // Define human type

struct human sister;
sister.age = 25;

Initialization
You can use a list initializer to initialize static or const structures or structures with global scope. List
initializers may be flat or structured.

Declarations

 Page 64
www.agilityds.com

struct Boris
{
 int 12 v[3];
 int 8 a, b;
};
static struct Boris b = {{1, 2, 3}, 4, 5};

7.2.8 ENUM

enum specifies a list of constant integer values, for example:

enum weekdays {MON, TUES, WED, THURS, FRI};

The first name (in this case MON) has a value of 0, the next 1, and so on, unless explicit values are
specified. If not all values are specified, values increment from the last specified value.

If you do not specify a width for the enum, the program must contain information from which the
compiler can infer the width.

You can declare variables of a specified enum type. They are effectively equivalent to int undefined or
unsigned undefined. The signedness is inferred from use.

To specify enum values

enum weekdays {MON = 9, TUES, WED, THURS, FRI};

To specify the width of an enum

enum weekdays {MON = (unsigned 4)9, TUES, WED, THURS, FRI};

To declare a variable of type enum

enum weekdays x;

To assign enum values to a variable

static int x = MON;

Example
The example below illustrates how to infer the width of an enum. The cast ensures the enumerated
variable has a width associated with it.

Declarations

 Page 65
www.agilityds.com

set clock = external "P1";
typedef enum
{
 A,
 B,
 C = 43,
 D
} En;

void main(void)
{
 En num;
 int undefined result;

 num = (int 7)D;

 result = num;
}

7.2.9 BIT FIELDS

A bit field is a type of structure member consisting of a specified number of bits. The length of each
field is separated from the field name by a colon (:). Each element can be accessed independently.
Since Handel-C allows you to specify the width of integers in bits, a bit field is merely another way of
specifying a standard structure. In ANSI-C, bit fields are made up of words, and only the specified bits
are accessed, the rest are padded. Padding in ANSI-C is implementation dependent. There is no
padding in Handel-C, so nothing can be assumed about it.

Syntax
struct [tag_name]
{
 field_Type field_Name: field_Width
 ...
} [instance_names] ;

Example
This example defines an identical array of flags as a structure and as a bit field.

Declarations

 Page 66
www.agilityds.com

struct structure
{
 unsigned int 1 LED;
 unsigned int 1 value;
 unsigned int 1 state;
}outputs;

struct bitfield
{
 unsigned int LED : 1;
 unsigned int value : 1;
 unsigned int state : 1;
}signals;

7.3 POINTERS
A pointer declaration consists of *, the name of the pointer and the type of the variable that it points to.

type *Name

Pointers are used to point to variables in conjunction with the unary operator &, which gives the
address of an object. To set a pointer to point to a variable, you assign the address of the variable to
the pointer. For example

int 8 *ptr; //declare a pointer to an int 8
int 8 object, x;
object = 6;
x = 10;
ptr = &object; //assigns address of object to ptr
x = *ptr; // x is now 6
*ptr = 12; //object is now 12

 The behaviour of uninitialized pointers is undefined. De-referencing an

uninitialized pointer during simulation will result in a run-time error, after which the simulator will
terminate.

Casting pointers
In Handel-C, you may only cast void pointers (void * pointerName) to a different type. All other
pointers may only be cast to change the sign of an object pointed to, and whether it is const or volatile.
These restrictions are the standard casting restrictions in Handel-C.

You can change a void pointer's type by casting, assignment or comparison. Void * must have a

Declarations

 Page 67
www.agilityds.com

consistent type so:

void *p;
int 6 *s;
int 7 *t;
p = s;
p = t; //invalid

Pointer arithmetic
You cannot perform arithmetic on a void pointer because the size of the object being pointed to is not
known.

• Valid pointer operations are:
• Assign a pointer to another pointer of the same type
• Add a pointer and an integer
• Subtract an integer from a pointer
• Subtract or compare (using <, <=, > or >=) a pointer to an array or memory member with another
pointer to a member of the same array or memory
• Compare two pointers for equality (using != or ==)
• Assign or compare a pointer to NULL

The result of subtracting or comparing pointers to members of different arrays or memories or to other
objects is undefined.

The behaviour of arithmetic on pointers that moves the pointer beyond the extent of the object is
undefined. An exception is that an address one element beyond an array or memory (at the high end)
is valid, but it is not valid to dereference a pointer at such an address (the behaviour of the
dereference would be undefined). This "one-beyond" address is useful for loops.

Examples
In the examples below, p and q can point to any part of Single or an element of Array, AnotherArray or
Memory.

Declarations

 Page 68
www.agilityds.com

int undefined i;
int 4 Single, Array [10], AnotherArray [20];
ram int 4 Memory [10];
int 4 * p, * q;
unsigned int 1 test;

p = & Single;
p += 2; // undefined behaviour (invalid address)
p = & Single; ++ p; // defined (valid address), but ...
* p = 0; // ... undefined behaviour
p = & (Array [4]);
p += 2; // now, p = & (Array [6])
p = Array; q = & (Array [4]);
i = q - p; // meaningful; now, i = 4;
test = (p < q); // meaningful (true in this case)
test = (p == q); // meaningful (false in this case)
p = Array; q = AnotherArray;
i = q - p; // undefined behaviour
test = (p < q); // undefined behaviour
test = (p == q); // meaningful (false for pointers into different objects)

7.3.1 POINTERS AND ADDRESSES

Pointers in Handel-C are similar to those in conventional C. They provide the address of a variable or
a piece of code. This enables you to access variables by reference rather than by value.

The indirection operator (*) is the same as it is in ANSI-C. It is used to de-reference pointers (i.e. to
access objects pointed to by pointers).

The "address of" operator (&) works as it does in ANSI-C.

7.3.2 POINTERS TO FUNCTIONS

If you point to code (a function), the address operator is optional. The syntax is

returnType (*pointerName)(parameter list);

The parentheses at the end of the declaration declare the pointer to be a pointer to a function. The *
before the pointerName declares it to be a pointer declaration.

There is the standard C type ambiguity between the declaration of a function returning a pointer and a
pointer to a function. To ensure that * is associated with the pointer name rather than the return type,
you need to use parentheses

int 8 * functionName(); //function returning pointer

Declarations

 Page 69
www.agilityds.com

and

int 8 (* pointerName)(); //pointer to function

7.3.3 POINTERS TO INTERFACES

When declaring pointers to interfaces, you must ensure that you declare a pointer to an interface sort
and then assign a defined interface to it (much as when you declare a pointer to a function). You
cannot combine the definition of an object with the declaration of a pointer to it.

The members of the interface must have the same name in the declaration of the pointer type as in the
definition of the interface object which you assign the pointer to.

Example
//declaration of pointer to interface of sort bus_out
interface bus_out() *p(int 2 x);
interface bus_out() b(int 2 x=y); //interface definition
p=&b; // p now points to b

7.3.4 STRUCTURE POINTERS

The structure pointer operator (->) can be used, as in ANSI-C. It is used to access the members of a
structure, when the structure is referenced through a pointer.

struct S
{
 int 18 a, b;
} s, *sp;
sp = &s;
s.a = 26;
sp->b = sp->a;

The last line accesses the member variables of structure s through pointer sp. Because the pointer is
being used to access the structure, the -> operator is used to refer to the member variables.

sp->a = (*sp).q

You can cast structure pointers between structures with the same member types and names. For
example:

struct S1
{
 int 6 x;
} st1;

Declarations

 Page 70
www.agilityds.com

struct S2
{
 int 6 x;
} st2;

set clock = external;
void main (void)
{
 int r;
 struct S1 *structPtr1;
 struct S2 *structPtr2;
 structPtr1 = &st1;
 structPtr2 = (struct S2 *)structPtr1;
 structPtr2->x = 7;
 r = st1.x; //r = 7
}

7.3.5 ADDRESS AND INDIRECTION OPERATORS

The indirection operator * is the same as it is in ANSI-C. It is used to de-reference pointers (i.e. to
access objects pointed to by pointers).

The address operator (&) works as it does in ANSI-C.

The following can also be used: pointers to arrays, pointers to channels, pointers to signals, pointers to
memory elements, pointers to structures, pointers to pointers, arrays of pointers.

Example: pointer assignment
unsigned char cha, chb, *chp;

chp = &cha;
cha = 90;

chb = *chp;
chp = &chb;

The first line declares two unsigned variables (cha and chb), and a pointer to an unsigned (chp). The
second line assigns the address of cha to pointer chp. In other words, pointer chp now points to
variable cha. The third line simply assigns a value to cha. The fourth line dereferences pointer chp, to
access what it's pointing to, which is cha. In other words, chb is assigned the value of the object
pointed to by chp. The last line assigns the address of chb to pointer chp. In other words, pointer chp
now points to variable chb.

Declarations

 Page 71
www.agilityds.com

Example: pointer to pointer assignment
struct S
{
 int 6 a, b;
} s1, s2, *sp, **spp;

sp = &s1;
spp = &sp;
s2 = **spp;

This declares two variables of type struct S (s1 and s2), a pointer to a variable of this type (sp), and a
pointer to a pointer to a variable of this type (spp). The next line assigns the address of structure s1 to
pointer sp (pointer sp to point to structure s1). The following line assigns the address of pointer sp to
pointer spp (pointer spp to point to pointer sp). The last line dereferences pointer spp twice, and it
assigns the dereferenced value, which is s1, to structure s2 (i.e. s2 now equals s1).

7.4 ARCHITECTURAL TYPES
The architectural types are:

• channels (used to communicate between parallel processes)
• interfaces (used to connect to pins or provide signals to communicate with external code)
• memories (rom, ram, wom and mpram)
• signal (declares a wire).

The type clarifier < > has been provided to help clarify the definitions of memories, channels and
signals.

7.5 CHANNELS
Handel-C provides channels for communicating between branches of code executing in parallel. One
branch writes to a channel and a second branch reads from it.

Channels are declared with the chan keyword. For example:

chan int 7 link;

The width and type of data sent down the channel must be of the same width and type as the channel.
The width and type of a channel can sometimes be inferred by the Handel-C compiler, if they are not
explicitly declared. The channel can be an entry in an array of channels, or be pointed to by a channel
pointer.

If you want to select the first channel that is ready to communicate from a list of channels, use the
prialt statement.

If you wish to convert the channel into a FIFO, use the fifolength specification. This creates a FIFO
with the specified number of data stores of the same width as the channel.

Declarations

 Page 72
www.agilityds.com

If you are simulating code, you may use chanin and chanout to specify interfaces to the simulator.
These do not represent architectural channels but can be addressed in a similar way.

Syntax
chan [logicType] Name [with specifications];

 Reading from a channel
Channel ? Variable;

This assigns the value read from the channel to the variable. It may also be read to a signal, an array
element, RAM element or WOM element.

Writing to a channel
Channel ! Expression;

This writes the value of the expression to the channel. Expression may be any expression of the
correct type.

Example
set clock = external;
void main(void)
{
 unsigned 8 Res;
 chan Bill;

 par
 {
 Bill ! 23;
 Bill ? Res;
 }
}

Declarations

 Page 73
www.agilityds.com

7.5.1 FIFO CODE EXAMPLE

chan unsigned 8 ch with { fifolength=2 };
{
 unsigned 8 a,b,c,d ;

 ch!1; // FIFO becomes <1>
 ch!2; // FIFO becomes <1,2>
 ch?a; // FIFO becomes <2>, a becomes 1
 ch!3; // FIFO becomes <2,3>
 ch?b; // FIFO becomes <3>, b becomes 2
 ch?c; // FIFO becomes empty, c becomes 3
 ch!4; // FIFO becomes <4>
 ch!5; // FIFO becomes <4,5>
 ch?d; // FIFO becomes <5>, d becomes 4
 ch!6; // FIFO becomes <5,6>
}

7.5.2 ARRAYS OF CHANNELS

Handel-C allows arrays of channels to be declared. For example:

chan unsigned int 5 x[6];

This is equivalent to declaring 6 channels each of which is 5 bits wide. A channel can be accessed by
specifying its index. As with variable arrays, the index for the nth element is n-1. For example:

x[4] ! 3; // Output 3 on channel x[4]
x[3] ? y; // Input to y from channel x[3]

It is also possible to declare multi-dimensional arrays of channels. For example:

chan unsigned int 6 x[4][5][6];

This declares 4 * 5 * 6 = 120 channels each of which is 6 bits wide. Accessing the channels is similar
to accessing arrays in conventional C. For example:

x[2][3][1] ! 4; // Output 4 on channel

7.5.3 RESTRICTIONS ON CHANNEL ACCESSES

No two statements may simultaneously write to or simultaneously read from a single channel.

Declarations

 Page 74
www.agilityds.com

par
{
 out ! 3 // Undefined: simultaneous send to a channel
 out ! 4
}

This code will give an undefined result, as it attempts to write simultaneously to a single channel.
Similarly, the following code will not work because an attempt is made to read simultaneously from the
same channel:

par
{
 in ? x; // Undefined: simultaneous receive from a channel
 in ? y;
}

 Your code should not rely on the perceived behaviour of multiple

simultaneous reads and writes, in either simulation or hardware.

You can detect parallel accesses to channel during simulation using the Detection of simultaneous
channel reads/writes option on the Compiler tab in Project Settings, or by using the -S+parchan option in
the command line compiler.

Simultaneous channel access concealed within prialt
The prialt construct negotiates the readiness of the remote (i.e. non-prialt) end of channel. It does not
resolve conflicts at the local (i.e. prialt) end of the channel. The programmer must still avoid
simultaneous channel accesses, even if the send or receive statements are inside a prialt statement.

Declarations

 Page 75
www.agilityds.com

Examples:
int 4 x, y, z;
chan <int 4> ch1, ch2;
unsigned int 1 thing;

// Code that affects thing

par {
 ch2 ! x;
 prialt
 {
 case ch1 ! y:
 break;
 case ch2 ! y:
 // Undefined: simultaneous send
 break;
 }
 if (thing)
 ch1 ? z;
 else
 ch2 ? z;
}

If thing is false, then channel ch2 is the only channel that becomes ready to receive, so the prialt tries
to send y over ch2 simultaneously with the statement sending x over ch2, resulting in an illegal
simultaneous access.

There is a conflict even when thing is true, as ch2 undergoes readiness negotiations within the prialt
statement and this also requires access to the channel.

Restrictions on channels accesses between clock domains
If you have channels communicating between clock domains, all writes to a channel must take place
within a single clock domain, and all reads must take place within a single clock domain.

For more information on using channels to communicate between clock domains, see Channels
communicating between clock domains (see page 190)

7.5.4 TIMING AND LATENCY IN FIFOS

Note that if fifolength is a power of 2, the channel will be implemented in a different way to when it is
not, in order to save memory.

Channels with FIFO sizes of a power of 2 may have greater latency.

The latency of channels is dependent on the target architecture and the way the code has been
implemented within it.

Declarations

 Page 76
www.agilityds.com

7.6 INTERFACES: OVERVIEW
All interfaces, except for external (foreign code or off-chip) RAMs are declared with the interface
keyword in Handel-C. Interfaces are used to communicate with:

• external devices
• external logic, such as other Handel-C programs, programs written in VHDL etc.

You can communicate between blocks of internal logic using channels

The interface definition is in two parts:

• an interface sort: the name of the black box or primitive that the interface connects to
• an instance name: the name of the instance of the interface sort in Handel-C

Interface definitions may be split into declarations and definitions. You must use a declaration if you
want to define multiple instances of the same interface sort, or to use forward references.

The declaration gives the sort name and port names and types associated with that interface sort.

The definition gives the instance name, object specifications and the data transmitted for a single
instance of the interface sort.

Only signed and unsigned types may be passed over interfaces.

 Your license may not allow you to use interfaces. If this is the case you can

only interface to external devices using macros provided in any Agility libraries you have licenses for,
such as PAL.

7.6.1 INTERFACE DECLARATION

You need to use an interface declaration if you want to define multiple instances of an interface sort,
or to use forward references. If you only want a single instance of an interface sort, you only need to
use an interface definition.

Interfaces of pre-defined sorts do not need to be declared.

The general format of the interface declaration is:

interface Sort (ports_in_to_Handel-C)
 (ports_out_from_Handel-C);

Declarations

 Page 77
www.agilityds.com

Sort user-defined name or predefined
interface sort

ports_in_to_Handel-C Optional. One or more prototypes of
ports bringing data into the Handel-C
code.

ports_out_from_Handel-
C

Optional. One or more prototypes of
ports sending data from the Handel-C
code.

A port prototype consists of the port type, and the port name. At least one port (whether to Handel-C
or from Handel-C) must be declared. Port declarations are delimited by commas. For example:

interface MyInterface (int 5 InPort)
 (int 4 OutPort1, int 4 OutPort2);

 The name of each port in a port_in or port_out interface must be different, as

they will all be built to the top level of the design.

Once you have declared an interface sort, you can define multiple instances of that sort. The interface
definition creates a named instance of the interface sort, assigns data to be transmitted to the output
ports, and may also specify properties using interface specifications. You cannot use interface
specifications in interface declarations, only in interface definitions.

You can declare pointers to an interface declaration and then assign a defined interface to the pointer.

7.6.2 INTERFACE DEFINITION

A Handel-C interface definition consists of an interface sort, an instance name and data ports, together
with information about each port.

The definition defines a single instance of an interface sort. If you want to define multiple instances, or
use forward references to the interface, declare the interface, and then make multiple definitions of
that interface sort. (You do not need to declare interfaces of predefined sorts.)

The general format of an interface definition is:

interface Sort (ports_in_to_Handel-C)
 InstanceName (ports_out_from_Handel-C)
 with {GeneralSpecs};

Sort Pre-defined interface sort, or used-
defined sort. (This should match the
sort in the interface declaration, if you
are using one.)

Declarations

 Page 78
www.agilityds.com

ports_in_to_Handel-C Definitions of one or more ports
bringing data into the Handel-C code.
(Port definitions are described below.)

InstanceName User-defined identifier for that
instance of the interface. (You can
define any number of instances of an
interface sort, if you make a
declaration of the interface sort.)

ports_out_from_Handel-
C

Definitions of one or more ports
sending data from the Handel-C
code.
Each output port should be assigned
an expression. The value of the
expression will be connected to that
port.

GeneralSpecs Handel-C interface specifications.
These specify hardware details of the
interface, such as chip pin numbers
or are used to specify an external
simulator using the extlib directive.
Interface specifications apply to all
ports in the interface. You can also
assign specifications to individual
ports.

Port definitions
If the interface has been previously declared, the port definitions must be prototyped in their interface
declaration, and must have the same types as those in the prototype. The declaration must have at
least one port into Handel-C or from Handel-C. Port definitions are delimited by commas. Each port
definition consists of:

• the data type that uses it (either defined or inferred from its first use). Only signed and unsigned
types may be passed over interfaces.
• a port name
• port specifications (optional). The port specifications are enclosed in a set of braces {...} and
delimited by commas.

Example
interface Sort_A (int 4 inPort1, int 4 inPort2)
 interfaceName (unsigned outPort = x)

7.6.3 EXAMPLE INTERFACE TO EXTERNAL CODE

This example shows an interface declaration used to connect to a piece of foreign code, and the

Declarations

 Page 79
www.agilityds.com

definition that uses this declaration.

set clock = external "D17";
set family = XilinxVirtex;
set part = "V1000BG560-4";

// Interface declaration
interface ttl7446(unsigned 7 segments, unsigned 1 rbon)
 (unsigned 1 ltn, unsigned 1 rbin, unsigned 4 digit,
 unsigned 1 bin);

unsigned 1 ltnVal;
unsigned 1 rbinVal;
unsigned 1 binVal;
unsigned 4 digitVal;

// Interface definition
interface ttl7446(unsigned 7 segments, unsigned 1 rbon)
 decode(unsigned 1 ltn=ltnVal, unsigned 1 rbin=rbinVal,
 unsigned 4 digit=digitVal, unsigned 1 bin=binVal)
 with {extlib="PluginModelSim.dll",
 extinst="decode; model=ttl7446_wrapper; delay=1"};

This declares an interface of sort tt17446. The inputs from the interface to the Handel-C design are
segments and rbon. The interface would therefore connect to a black box named tt17746 with ports
segments, rbon, ltn, rbin, digit, and bin.

The instance of the interface is decode. The instance specifies the data going into the ports ltn, rbin,
digit, and bin and connects to a plugin, PluginModelSim.dll, for simulation.

If you did not want to use forward references to the interface, and only wanted to define a single
instance of the interface sort tt17446, you would not need to declare the interface. (The interface
definition would be exactly the same as that shown above.)

7.6.4 INTERFACE SPECIFICATIONS

Predefined bus interface specs: Default:

data list the pins used for
transferring data, MSB to
LSB

None

Declarations

 Page 80
www.agilityds.com

speed set buffer speed (output) 1
pull set pull-up or pull-down

for bus pins
None

infile set file source for input
bus data

None

outfile set file destination for
output bus data

None

All interface specs: Default:

base specify display base for
variables in debugger

10

bind bind component to work
library

0

busformat text format of exported
wires in EDIF netlist

"B_I"

data list the pins used for
transferring data, MSB
to LSB

None

dci apply Digital Controlled
Impedance to buses
(Xilinx only)

0 (No)

extlib specify external plugin
for simulator

None

extfunc specify external
simulator function for
this port

PlugInSet or
PlugInGet

extpath specify any direct logic
(combinational logic)
connections to another
port

None

extinst specify connection to
external code

None

intime maximum allowable
time between a port
and the sequential
elements it drives (in
ns)

None

outtime maximum allowable
time between a port
and the sequential
elements it is driven
from (in ns)

None

Declarations

 Page 81
www.agilityds.com

properties parameterize
instantiations of
external black boxes

None

sc_type specify type of port in
port_in, port_out or
generic interface for
SystemC

bool for 1 bit
ports, sc_uint
otherwise

standard specify I/O standard
(electrical
characteristics) to use
on port(s) in question

LVTTL

strength specify drive strength
(in mA) for output
buses

Standard
dependent

vhdl_type specify type of port in
port_in, port_out or
generic interface in
VHDL

std_logic for 1
bit ports,
unsigned
otherwise

warn disable some compiler
warnings

1 (No)

7.7 RAMS AND ROMS
RAMs and ROMs may be built from the logic provided in the FPGA/PLD using the ram and rom
keywords.

For example:

ram int 6 a[43];
static rom int 16 b[4] = { 23, 46, 69, 92 };

This example constructs a RAM consisting of 43 entries each of which is 6 bits wide and a ROM
consisting of 4 entries each of which is 16 bits wide.

ROMs must be declared as static or global. If you declare a static ROM in a macro procedure, each
call to the macro creates a separate version of the ROM. RAMs can be declared as static, global or
auto (i.e. non-static).

All RAMs and ROMs must be declared as arrays, so to declare a RAM that holds one 4 bit integer, you
must declare it as an array with a dimension of 1.

ram int 4 ramname[1];

Declarations

 Page 82
www.agilityds.com

 RAMs and ROMs may only have one entry accessed in any clock cycle.

Initialization
You can only initialize ROMs or RAMs if they are static, or have global scope. For example, a global
ROM could be initialized as shown below:

rom int 16 b[4] = { 23, 46, 69, 92 } with {block = 1};

The ROM is initialized with the constants given in the following list in the same way as an array would
be initialized in C. In this example, the ROM entries are given the following values:

ROM entry Value

b[0] 23
b[1] 46
b[2] 69
b[3] 92

Inferring size from use
The Handel-C compiler can also infer the widths, types and the number of entries in RAMs and ROMs
from their usage. Thus, it is not always necessary to explicitly declare these attributes. For example:

ram int undefined a[123];
ram int 6 b[];
ram c[43];
ram d[];

Accessing RAMs and ROMs
RAMs and ROMs are accessed in the same way as arrays. For example:

ram int 6 b[56];

b[7] = 4;

This sets the eighth entry of the RAM to the value 4. Note that as in conventional C, the first entry in
the memory has an index of 0 and the last has an index of n-1 where n is the total number of entries in
the memory.

Differences between RAMs and arrays
RAMs differ from arrays in that an array is equivalent to declaring a number of variables. Each entry in
an array may be used exactly like an individual variable, with as many reads, and as many writes to a

Declarations

 Page 83
www.agilityds.com

different element in the array as required within a clock cycle. RAMs, however, are normally more
efficient to implement in terms of hardware resources than arrays, but they only allow one location to
be accessed in any one clock cycle. Therefore, you should use an array when you wish to access the
elements more than once in parallel and you should use a RAM when you need efficiency.

RAM and ROM support on different devices
Creating internal RAMs can only be done if the target device supports on-chip RAMs. Most devices
currently targeted by Handel-C do so (e.g. Altera Flex 10K, APEX, APEXII, Stratix and Cyclone, Xilinx
Spartan series devices and Virtex series devices).

7.7.1 MULTIDIMENSIONAL MEMORY ARRAYS

You can create simple multi-dimensional arrays of memory using the ram, rom and wom keywords.
The definitions can be made clearer by using the optional disambiguator <>.

Syntax
ram | rom | wom logicType entry_width
 Name[[const_expression]] {[[const_expression]]}
 [= {initialization}];

Possible logic types are ints, structs, pointers and arrays.

The last constant expression is the index for the RAM. The other indices give the number of copies of
that type of RAM.

Example
ram <int 6> a[15][43];
static rom <int 16> b[4][2][2] =
 {{{1, 2},
 {3, 4}
 },
 {{5, 6},
 {7, 8}
 },
 {{9, 10},
 {11, 12}
 },
 {{13, 14},
 {15, 16}
 }
 };

This example constructs 15 RAMs, each consisting of 43 entries of 6 bits wide and 4 * 2 ROMs, each

Declarations

 Page 84
www.agilityds.com

consisting of 2 entries of 16 bits wide. The ROM is initialized with the constants in the following list in
the same way as a multidimensional array would be initialized in C. The last index (that of the RAM
entry) changes fastest. In this example, the ROM entries are given the following values:

ROM entry Value ROM entry Value

b[0][0][0] 1 b[0][0][1] 2
b[0][1][0] 3 b[0][1][1] 4
b[1][0][0] 5 b[1][0][1] 6
b[1][1][0] 7 b[1][1][1] 8
b[2][0][0] 9 b[2][0][1] 10
b[2][1][0] 11 b[2][1][1] 12
b[3][0][0] 13 b[3][0][1] 14
b[3][1][0] 15 b[3][1][1] 16
Because of their architecture, RAMs and ROMs are restricted to performing operations sequentially.
Only one element of a RAM or ROM may be addressed in any given clock cycle and, as a result,
familiar looking statements are often disallowed. For example:

ram <unsigned int 8> x[4];
x[1] = x[3] + 1;

This code is inadvisable because the assignment attempts to read from the third element of x in the
same cycle as it writes to the first element.

In a multi-dimensional array, you can access separate elements of the arrays, so long as you are not
accessing the same RAM. For example:

x[2][1]=x[3][0] is valid

x[2][1]=x[2][0] is invalid

Note that arrays of variables do not have these restrictions but may require substantially more
hardware to implement than RAMs depending on the target architecture.

7.8 MPRAM (MULTI-PORTED RAMS)
You can create multiple-ported RAMs (MPRAMs) by constructing something similar to an ANSI-C
union. You must use the mpram keyword.

mprams can be used to connect two independent code blocks. The clock of the mpram port is taken
from the function in which it is used.

The normal declaration of a MPRAM would be to create a dual-ported RAM by declaring two ports of
equal width:

• for Altera ApexII devices, both ports can be bi-directional. For Cyclone and Stratix devices this
depends on the type of memory used. For other Altera families, one port would be read-only and one
write-only

Declarations

 Page 85
www.agilityds.com

• for Virtex and SpartanII devices, both ports would be read/write for block RAM, and for LUT RAM,
one port would be read/write and one read-only. Spartan and SpartanXL devices only have distributed
(LUT) RAM.

You can use mpram ports of different widths for certain devices.

The mpram construct allows the declaration of any number of ports. Your only restriction is the target
hardware.

You can apply clock specifications to the whole MPRAM, or to individual ports. MPRAM write ports will
be synchronous and read ports will be asynchronous by default, if the target hardware allows it. For
example, Stratix memories are fully synchronous and do not allow an asynchronous read port.

You can create synchronous read ports explicitly by using clock position specifications (rclkpos and
clkpulselen), and asynchronous write ports by using write-enable specifications (westart, welength or
wegate). However, you cannot have an asynchronous write port and a synchronous read port, since
this would violate Handel-C's timing semantics.

Syntax
mpram MPRAM_name
{
 ram_Type variable_Type RAM_Name[size]
 [with {ClockPosition/WriteEnableSpecs = value}];
 ram_Type variable_Type RAM_Name[size]
 [with {ClockPosition/WriteEnableSpecs = value}];
};

Examples
In the example below, the first MPRAM is a bi-directional dual-port RAM, with clock specifications
applied to the whole MPRAM. The second is a simple dual-port RAM, with different clock
specifications applied to each port.

set clock = external_divide "C1" 4;

mpram
{
 ram unsigned 4 Port1[4];
 ram unsigned 4 Port2[4];
} TMax with {wclkpos = {2}, rclkpos = {2.5}, clkpulselen = 1};

mpram
{
 wom unsigned 4 WritePort[4] with {wclkpos = {2}, clkpulselen = 1};
 rom unsigned 4 ReadPort[4] with {rclkpos = {2.5}, clkpulselen = 1};
} SMax;

Declarations

 Page 86
www.agilityds.com

7.8.1 INITIALIZATION OF MPRAMS

The first member of the mpram can be initialized.

static mpram Fred
{
 ram <unsigned 8> ReadWrite[256]; // Read/write port
 rom <unsigned 8> Read[256]; // Read only port
} Mary ={10,11,12,13};

This would have the same effect as

Mary.ReadWrite[0]=10;
Mary.ReadWrite[1]=11;
Mary.ReadWrite[2]=12;
Mary.ReadWrite[3]=13;

The other elements of Fred.ReadWrite will be initialized as zero (since Mary is static). In this case,
since Fred.Read is the same size as Fred.ReadWrite, elements 0 – 3 of Fred.Read would be initialized
with the same values.

7.8.2 MAPPING OF DIFFERENT WIDTH MPRAM PORTS

If the ports of the mpram are of different widths, they will be mapped onto each other according to the
specifications of the chip you are using. If the ports used are of different widths, the widths should
have values of 2n.

Different width ports are available for Xilinx Virtex and Spartan-II, Spartan-IIE and Spartan-3 devices
and Altera Apex II, Stratix and Cyclone devices. They are not available with other Altera devices.

Xilinx bit mapping
To find the bits that an array element occupies in a Xilinx Virtex or Spartan RAM, you can use the
formula
RAM array ram y Name[a] will have a start bit of (y * (a+1)) - 1 and an end bit of y * a.

Xilinx mapping is little-endian. This means that the address points to the LSB.

The bits between the declarations of RAM are mapped directly across, so that bit 27 in one declaration
will have the same value as bit 27 in another declaration, even though the bits may be in different
array elements in the different declarations.

mpram Joan
{
 ram <unsigned 4> ReadWrite[256]; // Read/write port
 rom <unsigned 8> Read[256]; // Read only port
};

Joan.ReadWrite[100] will run from 400 to 403.

Declarations

 Page 87
www.agilityds.com

Joan.Read[100] will run from 800 to 807.

Joan.Read[50] will run from 400 to 407.

Joan.ReadWrite[100] is equivalent to Joan.Read[50][0:3].

ApexII bit mapping
To find the bits that an array element occupies in an ApexII RAM, you can use the formula
RAM array ram y Name[a] will have a start bit of (y * (a+1)) - 1 and an end bit of y * a.

ApexII mapping is little-endian. This means that the address points to the LSB.

The bits between the declarations of RAM are mapped directly across, so that bit 27 in one declaration
will have the same value as bit 27 in another declaration, even though the bits may be in different
array elements in the different declarations.

mpram Joan
{
 ram <unsigned 4> ReadWrite[256]; // Read/write port
 rom <unsigned 8> Read[256]; // Read only port
};

Joan.ReadWrite[100] will run from 400 to 403.

Joan.Read[100] will run from 800 to 807.

Joan.Read[50] will run from 400 to 407.

Joan.ReadWrite[100] is equivalent to Joan.Read[50][0:3].

7.8.3 MPRAMS EXAMPLE

Using an mpram to communicate between two independent logic blocks:

Declarations

 Page 88
www.agilityds.com

File 1:
mpram Fred
{
 ram <unsigned 8> ReadWrite[256]; // Read/write port
 rom <unsigned 8> Read[256]; // Read only port
};

mpram Fred Joan ; // Declare Joan as an mpram like Fred

set clock = internal "F8M";

void main(void)
{
 unsigned 8 data;

 Joan.ReadWrite[7] = data;
}

File 2:
mpram Fred
{
 ram <unsigned 8> ReadWrite[256]; // Read/write port
 rom <unsigned 8> Read[256]; // Read only port
};

extern mpram Fred Joan;
set clock = external "P2";

void main(void)
{
 unsigned 8 data;
 data= Joan.Read[7];
}

7.9 WOM (WRITE-ONLY MEMORY)
You can declare a write-only memory using the keyword wom. The only use of a write-only memory
would be to declare an element within a multi-ported RAM. Since woms only exist inside multi-port
rams, it is illegal to declare one outside an mpram declaration.

Declarations

 Page 89
www.agilityds.com

Syntax
wom variable_Type variable_Size WOM_Name[dimension] =
 initialize_Values [with {specs}]

Example
mpram connect
{
 wom <unsigned 8> Writeonly[256]; // Write only port
 rom <unsigned 8> Read[256]; // Read only port
}

7.10 SIGNAL
A signal is an object that takes on the value assigned to it but only for that clock cycle. The value is
assigned at the start of the clock cycle and can be read back during the same clock cycle. At all other
times the signal takes on its initialization value. The optional disambiguator <> can be used to clarify
complex signal definitions.

If a signal is assigned to when you are debugging code, values shown in the Watch and Variables
windows are updated immediately, rather than at the end of the clock cycle (step).

Signals represent wires in hardware.

Syntax
signal [<type data-width>] signal_Name;

Example
int 15 a, b;
signal <int> sig;

a = 7;
par
{
 sig = a;
 b = sig;
}

sig is assigned to and read from in the same clock cycle, so b is assigned the value of a.

Since the signal only holds the value assigned to it for a single clock cycle, if it is read from just before
or just after it is assigned to, you get its initial value. For example:

Declarations

 Page 90
www.agilityds.com

int 15 a, b;
static signal <int> sig = 690;

a = 7;
par
{
 sig = a;
 b = sig;
}
a = sig;

Here, b is assigned the value of a through the signal, as before. Since there is a clock cycle before the
last line, a is finally assigned the signal's initial value of 690.

7.11 SEMA
Handel-C provides semaphores for protecting critical areas of code. Semaphores are declared with
the sema keyword. For example:

sema RAMguard;

Semaphores have no type or width associated with them. They cannot be assigned to or have their
value assigned to anything else. You can only access semaphores through the
trysema(semaphore) expression and releasesema(semaphore) statement. trysema tests to
see if the semaphore is currently taken. If it is not, it takes the semaphore and returns one. If it is
taken, it returns zero. releasesema releases the semaphore. After you have taken a semaphore, you
should ensure that you release it cleanly once you have left the critical area.

Semaphores may be included in structures. They cannot be passed to directly to functions, over
channels or interfaces. They may be passed to functions or channels by reference.

Syntax
sema Name

Example
inline void critRAMaccess(sema *RAMsema, ram int 8
 (*danger)[4], unsigned count)
{
 int 8 x;
 // wait till you've got the // RAM
 while(trysema(*RAMsema)==0) delay;
 x= (*danger)[count];
 releasesema(*RAMsema);
}

Declarations

 Page 91
www.agilityds.com

7.12 STORAGE CLASS SPECIFIERS
Storage class specifiers define how variables are accessed.

extern and static are used within functions to allocate storage. static gives the declared objects static
storage class, and extern specifies that the variable is defined elsewhere. For compatibility with ANSI-
C, the specifiers auto and register can be used but have no effect.

The expansion of a function is defined by the specifier inline.

The typedef specifier does not reserve storage, but allows you to declare new names for existing
types.

7.12.1 AUTO

auto defines a local automatic variable. In Handel-C, all local variables default to auto. You cannot
initialize an auto variable, but must assign it a value. The initialization status of auto variables is
undefined.

Example
set clock = external "P1";

void main (void)
{
 auto 8 pig;
 pig = 15;
}

7.12.2 EXTERN (EXTERNAL VARIABLES)

extern declares a variable that is external to all functions; the variable may be accessed by name from
any function.

External variables must be defined exactly once outside any function, and declared in each function
that wants to access them. The declaration may be an explicit extern , or else be implicit from the
context (if the variable has been defined outside a function without static).

If the variable is used in multiple source files, it is good practice to collect all the extern declarations in
a header file, included at the top of each source file using the #include headerFileName directive.

You may use extern "language" to access variables in C or C++ files.

Declarations

 Page 92
www.agilityds.com

 You cannot access the same variable from different clock domains.

Example
extern int 16 global_fish;
int global_frog = 1234;

main()
{
 global_fish = global_frog;
 ...
}

Syntax
extern variable declaration;

7.13 EXTERN LANGUAGE CONSTRUCT
The extern "language" construct allows you to declare that names used in Handel-C code have ANSI-
C or C++ linkage.

• For ANSI-C functions, use extern "C"
• For C++ functions, use extern "C++"

These functions can only be compiled for simulations targeting the simulator. They may not be used in
targeting devices.

extern "C" and extern "C++" functions have the same timing as Handel-C functions. For example, a
printf() function would take at least one clock cycle, even if the return value is ignored, and a C
function with a body that takes 0 clock cycles and a void return type would not take any clock cycles.

Examples
extern "C" int printf(const char *format, ...);
declares printf() with C linkage.

extern "C++"
{
 int 14 x;
}

declares a variable, x, with C++ linkage.

Declarations

 Page 93
www.agilityds.com

extern "C"
{
 //remove Microsoft-specific extensions from the header file
 #define __cdecl
 #include <stdio.h>
}

causes everything in stdio.h to have C linkage.

Mapping of types to C/C++
Handel-C types will be mapped to C/C++ types in the following way when inside an extern "language"
construct:

Handel-C type C/C++ type

char char
short short
long long
int int (only valid within an extern

"language" construct)
int width Int<width> (C++ only)
unsigned int width UInt<width> (C++ only)
struct struct
type ram[n] convertedType[n]
type rom[n] convertedType[n]
Others Generate an error

Mapping of types outside extern
Mapping of types outside the extern "language" construct is the same, except signed and unsigned
ints must have a specified width.

 When outside an extern "language" construct, an int without a specified width

will generate an error.

For example, the following Handel-C:

Declarations

 Page 94
www.agilityds.com

extern "C" int printf(const char *format, ...);
extern "C++"
{
 int 14 x;
 long y;
}
char f(long y); //outside extern construct

will map to this C++:

int printf(const char *format, ...);
Int<14> x;
long y;
char f(long y);

7.14 REGISTER
register has been implemented for reasons of compatibility with ANSI-C. register defines a variable
that has local scope. Its initial value is undefined.

Example
register int 16 fish;
fish = f(plop);

7.15 INLINE FUNCTIONS
inline causes a function to be expanded where it is called. The logic will be generated every time it is
invoked. This ensures that the function is not accessed at the same time by parallel branches of code.

 If you have a local static variable in an inline function there is one copy of the

variable per function instantiation.

By default, functions are assumed to be shared (not inline).

Declarations

 Page 95
www.agilityds.com

Example
inline int 4 knit(int needle, int stitch)
{
 needle = needle + stitch;
 return(needle);
}

int 4 jumper[100];
par(needle = 1; needle < 100; needle = needle+2)
{
 jumper[needle] = knit(needle, 1);
}

Syntax
inline function_Declaration

7.16 STATIC
static gives a variable static storage (its values are kept at all times). This ensures that the value of a
variable is preserved across function calls. It also affects the scope of a variable or a function. static
functions and static variables declared outside functions can only be used in the file in which they
appear. static variables declared within an inline function or an array of functions can only be used in
the copy of the function in which they appear. Handel-C uses static in a different way to C++. In C++, if
you have an inline function and a local static variable, one copy of the variable is shared across each
function instantiation. In Handel-C, there is one copy of the variable per function instantiation.

static variables are the only local variables (excluding consts) that can be initialized. To get a default
value, initialize the variable.

Example
static int 16 local_function (int water, int weed);
static int 16 local_fish = 1234;

void main(void)
{
 int fresh, pondweed;
 local_fish = local_function(fresh, pondweed);
 ...
}

Syntax
static variable_declaration;
static functionName(parameter-type-list);

Declarations

 Page 96
www.agilityds.com

Static variables in arrays of functions
If a static variable is declared in an arrayed function, each instance of the function will have its own
independent copy of the variable.

7.17 TYPEDEF
typedef defines another name for a variable type. This allows you to clarify your code. The new name
is a synonym for the variable type.

typedef int 4 SMALL_FISH;

If the typedef is used in multiple source files, it is good practice to collect all the type definitions in a
header file, included at the top of each source file using the #include headerFileName directive. It is
conventional to differentiate typedef names from standard variable names, so that they are easily
recognizable.

Example
typedef int 4 SMALL_FISH;

extern SMALL_FISH stickleback;

7.18 TYPEOF
The typeof type operator allows the type of an object to be determined at compile time. The argument
to typeof must be an expression. Using typeof ensures that related variables maintain their
relationship. It makes it easy to modify code by simplifying the process of sorting out type and width
conflicts.

A typeof construct can be used anywhere a type name could be used. For example, you can use it in a
declaration, in casts.

Syntax
typeof (expression)

Declarations

 Page 97
www.agilityds.com

Example
unsigned 9 ch;
typeof(ch @ ch) q;
struct
{
 typeof(ch) cha, chb;
} s1;
typeof(s1) s2;

ch = s1.cha + s2.chb;
q = s1.chb @ s2.cha;

If the width of variable ch were changed in this example, there would be no need to modify any other
code.

This is also useful for passing parameters to macro procedures. The code below shows how to use a
typeof definition to deal with multiple parameter types.

macro proc swap (a, b)
{
 typeof(a) t;
 t=a;
 a=b;
 b=t;
}

7.18.1 CONST

const defines a variable or pointer or an array of variables or pointers that cannot be assigned to. This
means that they keep the initialization value throughout. They may be initialized in the declaration
statement. The const keyword can be used instead of #define to declare constant values. It can also
be used to define function parameters which are never modified. The compiler will perform type-
checking on const variables and prevent the programmer from modifying it.

Example 1
const int i = 5;

i = 10; // Error
i++; // Error

Declarations

 Page 98
www.agilityds.com

Example 2
const int *const p;

p = p + 1; // Error
*p = 3; // Error

7.18.2 VOLATILE

In ANSI-C, volatile is used to declare a variable that can be modified by something other than the
program.

It is mostly used for hard-wired registers. volatile controls optimization by forcing a re-read of the
variable. It is only a guide, and may be ignored. The initial value of volatile variables is undefined.

Handel-C does nothing with volatile. It is accepted for compatibility purposes.

7.19 COMPLEX DECLARATIONS
It is possible to have extremely complex declarations in Handel-C. You can combine arrays of
functions, structs, arrays, and pointers with architectural types. To clarify such expressions, it is wise
to use typedef.

7.19.1 MACRO EXPRESSIONS IN WIDTHS

If you use a macro expression to provide the width in a type declaration, you must enclose it in
parentheses. This ensures that it will be correctly parsed as a macro.

int (mac(x)) y;

To declare a pointer to a function returning that type, you get

int (mac(x)) (*f)();

7.19.2 <> (TYPE CLARIFIER)

< > is a Handel-C extension used to disambiguate complex declarations of architectural types. You
cannot use it on logic types. It is good practice to use it whenever you declare channels, memories or
signals, to clarify the format of data passed or stored in these variables.

It is required to disambiguate a declaration such as:

chan int *x; //pointer to channel or
 //channel of pointers?

This should be declared as

Declarations

 Page 99
www.agilityds.com

chan <int *> x; //channel of pointers
or

chan <int> *x; //pointer to channel

Example
struct fishtank
{
 int 4 koi;
 int 8 carp;
 int 2 guppy;
} bowl;

signal <struct fishtank> drip;
chan <int 8 (*runwater)()> tap;

7.19.3 USING SIGNALS TO SPLIT UP COMPLEX EXPRESSIONS

You can use signals to split up complex expressions. E.g.,

b = (((a * 2) - 55) << 2) + 100;

could also be written

int 17 a, b;
signal s1, s2, s3, s4;

par
{
 s1 = a;
 s2 = s1 * 2;
 s3 = s2 - 55;
 s4 = s3 << 2;
 b = s4 + 100;
}

Breaking up expressions also enables you to re-use sub-expressions:

Declarations

 Page 100
www.agilityds.com

unsigned 15 a, b;
signal sig1;

par
{
 sig1 = x + 2;
 a = sig1 * 3;
 b = sig1 / 2;
}

7.20 VARIABLE INITIALIZATION

Global, static and const variables
Global variables (i.e. those declared outside all code blocks) may be initialized with their declaration.
For example:

static int 15 x = 1234;

static int 7 y = 45 with {outfile = "out.dat"};

Variables declared within functions or macros can only be initialized if they have static storage or are
consts.

Global and static variables may only be initialized with constants. If you do not initialize them, they will
have a default value of zero.

If you use the set reset construct, variables will be reset to their initial values. If you use the try...reset
construct, variables will not be re-initialized.

All other variables
Local non-static variables have no default initial value. You cannot initialize them. Instead, you must
use an explicit sequential or parallel list of assignments following your declarations to achieve the
same effect. For example:

{
 int 4 x;
 unsigned 5 y;

 x = 5;
 y = 4;
}

Simulation
In simulation, variables (including static variables inside functions) are initialized before the simulation
run begins (i.e. before the first clock cycle is simulated).

Declarations

 Page 101
www.agilityds.com

Statements

 Page 102
www.agilityds.com

8 STATEMENTS

8.1 SEQUENTIAL AND PARALLEL EXECUTION
Handel-C implicitly executes instructions sequentially. When targeting hardware it is extremely
important to use parallelism. For this reason, Handel-C has a parallel composition keyword par to
allow statements in a block to be executed in parallel.

Three assignments that execute in parallel and in the same clock cycle:

par
{
 x = 1;
 y = 2;
 z = 3;
}

Three assignments that execute sequentially, requiring three clock cycles:

x = 1;
y = 2;
z = 3;

The par example executes all assignments literally in parallel. Three specific pieces of hardware are
built to perform these three assignments. This is about the same amount as is needed to execute the
assignments sequentially.

Sequential branches
Within parallel blocks of code, sequential branches can be added by using a code block denoted with
the {...} brackets instead of a single statement. For example:

par
{
 x = 1;
 {
 y = 2;
 z = 3;
 }
}

In this example, the first branch of the parallel statement executes the assignment to x while the
second branch sequentially executes the assignments to y and z. The assignments to x and y occur in
the same clock cycle, the assignment to z occurs in the next clock cycle.

 The instruction following the par {...} will not be executed until all branches of

Statements

 Page 103
www.agilityds.com

the parallel block complete.

8.1.1 SEQ

To allow replication, the seq keyword exists. Sequential statements can be written with or without the
keyword.

The following example executes three assignments sequentially:

x = 1;
y = 2;
z = 3;

as does this:

seq
{
 x = 1;
 y = 2;
 z = 3;
}

8.1.2 REPLICATED PAR AND SEQ

You can replicate par and seq blocks by using a counted loop (a similar construct to a for loop). The
count is defined with a start point (index_Base below), an end point (index_Limit) and a step size
(index_Count). The body of the loop is replicated as many times as there are steps between the start
and end points. If it is a par loop, the replicated processes will run in parallel, if a seq, they will run
sequentially.

Syntax
par | seq (index_Base; index_Limit; index_Count)
{
 Body
}

The apparent variables used in index_Base, index_Limit and index_Count are macro exprs that are
implicitly declared. index_Base, index_Limit and index_Count do not need to be single expressions,
for example, you could declare par (i=0, j=23; i != 76; i++, j--). In this case i and j are implicit macro
exprs

Statements

 Page 104
www.agilityds.com

Example
par (i=0; i<3; i++)
 {
 a[i] = b[i];
 }

 expands to:

par
{
 a[0] = b[0];
 a[1] = b[1];
 a[2] = b[2];
}

Replicated pipeline example
unsigned init;
unsigned q[149];
unsigned 31 out;

init = 57;
par (r = 0; r < 16; r++)
{
 ifselect(r == 0)
 q[r] = init;
 else ifselect(r == 15)
 out = q[r-1];
 else
 q[r] = q[r-1];
}

ifselect checks for the start of the pipeline, the replicator rules create the middle sections and ifselect
checks the end. The replicated code expands to:

par
{
 q[0] = init;
 q[1] = q[0];
 q[2] = q[1];
 etc...

 q[14] = q[13];
 out = q[14];
}

Statements

 Page 105
www.agilityds.com

8.1.3 PRIALT

The prialt statement selects the first channel ready to communicate from a list of channel cases. The
syntax is similar to a conventional C switch statement.

prialt
{
 case CommsStatement:
 Statement
 break;

 case CommsStatement:
 Statement
 break;

 [default:
 Statement
 break;]
}

prialt selects between the communications on several channels depending on the readiness of the
other end of the channel. CommsStatement must be one of the following:

Channel ? Variable

Channel ! Expression

The case whose communication statement is the first to be ready to transfer data will execute and
data will be transferred over the channel. The statements up to the next break statement will then be
executed. If no channel is ready within a given clock tick, the default clause will be executed (if one is
present)

Priority
If two channels are ready simultaneously, then the first one listed in the code takes priority.

Default
prialt with no default case:
execution halts until one of the channels becomes ready to communicate.

prialt statement with default case:
if none of the channels is ready to communicate immediately then the default branch statements
executes and the prialt statement terminates.

Restrictions
Fall through of cases in a prialt construct is prohibited. This means that each case must have its own
break statement. If the same channel is listed twice in its cases, only the first occurrence will ever be
accessed. You would only wish to do this if the channel within the prialt is the result of an expression

Statements

 Page 106
www.agilityds.com

(e.g., a pointer to a channel or a reference to an array of channels). The compiler cannot reliably
check this condition, so it will not cause a warning.

If a channel between clock domains has fifolength=0 (default) and has a prialt on both sides, the
compiler will convert it to have a fifolength=1. This is also true if a channel within a prialt has the other
side within a try reset in a different clock domain.

8.1.4 USING PRIALT: EXAMPLES

The prialt statement selects the first channel ready to communicate from a list of channel cases. In the
code below the prialt will block and the channel write will not occur until the second clock cycle when
an attempt is made to read from second within the seq.

int 4 x, y, z;
chan <int 4> first, second;

par
{
 prialt
 {
 case first ! x:
 break;
 case second ! y:
 break;
 }

 seq
 {
 delay;
 second ? z;
 }

Send and receive statements can be mixed within a prialt. For example:

Statements

 Page 107
www.agilityds.com

int 4 num, even, odd;
chan <int 4> ch1, ch2;

par
{
 if (num[0] != 0)
 ch1 ? odd;
 else
 ch2 ! num;

 prialt
 {
 case ch1 ! num:
 break;
 case ch2 ? even:
 break;
 }
}

Restrictions on using prialt
int 4 x, y;
chan <int 4> ch;

prialt
{
 case ch ! x:
 break;
 case ch ! y: //illegal: ch already used
 break;
}

int 4 x, y;
chan <int 4> ch;

prialt
{
 case ch ! x:
 break;
 case ch ? y: //illegal: ch already used
 break;
}

Statements

 Page 108
www.agilityds.com

8.2 ASSIGNMENTS
Handel-C assignments are of the form:

Variable = Expression;

For example:

x = 3;
y = a + b;

The expression on the right hand side must be of the same width and type (signed or unsigned) as the
variable on the left hand side. The compiler generates an error if this is not the case.

The left hand side of the assignment may be any variable, array element or RAM element. The right
hand side of the assignment may be any expression.

Short cuts
The following short cut assignment statements cannot be used in expressions as they can in
conventional C but only in stand-alone statements. See Introduction: Expressions for more
information.

Shortcuts cannot be used with RAM variables, as they contravene the RAM access restrictions

Statements

 Page 109
www.agilityds.com

Statement Expansion

Variable ++; Variable = Variable + 1;
Variable --; Variable = Variable - 1;
++ Variable; Variable = Variable + 1;
-- Variable; Variable = Variable - 1;
Variable +=
Expression;

Variable = Variable + Expression;

Variable -=
Expression;

Variable = Variable – Expression;

Variable *=
Expression;

Variable = Variable * Expression;

Variable /=
Expression;

Variable = Variable / Expression;

Variable %=
Expression;

Variable = Variable % Expression;

Variable <<=
Expression;

Variable = Variable << Expression;

Variable >>=
Expression;

Variable = Variable >> Expression;

Variable &=
Expression;

Variable = Variable & Expression;

Variable |=
Expression;

Variable = Variable | Expression;

Variable ^=
Expression;

Variable = Variable ^ Expression;

8.2.1 CONTINUE

continue moves straight to the next iteration of a for, while or do loop. For do or while, this means that
the test is executed immediately. In a for statement, the increment step is executed. This allows you to
avoid deeply nested if ... else statements within loops.

Statements

 Page 110
www.agilityds.com

Example
for (i = 100; i > 0; i--)
{
 x = f(i);
 if (x == 1)
 continue;
 y += x * x;
}

 You cannot use continue to jump out of or into par blocks.

8.2.2 GOTO

goto label moves straight to the statement specified by label. label has the same format as a variable
name, and must be in the same function as the goto. Labels are local to the whole function, even if
placed within an inner block. Formally, goto is never necessary. It may be useful for extracting yourself
from deeply nested levels of code in case of error.

Example
for(...)
{
 for(...)
 {
 if(disaster)
 goto Error;
 }
}

Error:
 output ! error_code;

 You cannot use goto to jump out of or into par blocks.

8.2.3 RETURN [EXPRESSION]

The return statement is used to return from a function to its caller. return terminates the function and

Statements

 Page 111
www.agilityds.com

returns control to the calling function. Execution resumes at the line immediately following the function
call. return can return a value to the calling function. The value returned is of the type declared in the
function declaration. Functions that do not return a value should be declared to be of type void.

Example
int power(int base, int n)
{
 int i, p;

 p = 1;
 for (i = 1; i <= n; ++i)
 p = p * base;
 return(p);
}

 You cannot use return to jump out of par blocks.

8.2.4 CONDITIONAL EXECUTION (IF . . . ELSE)

Handel-C provides the standard C conditional execution construct as follows:

if (Expression)
 Statement
else
 Statement

As in conventional C, the else portion may be omitted if not required. For example:

if (x == 1)
 x = x + 1;

Statement may be replaced with a block of statements by enclosing the block in {...} brackets. For
example:

Statements

 Page 112
www.agilityds.com

if (x>y)
{
 a = b;
 c = d;
}
else
{
 a = d;
 c = b;
}

The first branch of the conditional is executed if the expression is true and the second branch is
executed if the expression is false. Handel-C treats zero values as false and non-zero values as true.
Relational and logical operators return values to match this meaning but it is also possible to use
variables as conditions. For example:

if (x)
 a = b;
else
 c = d;

This is expanded by the compiler to:

if (x!=0)
 a = b;
else
 c = d;

When executed, if x is not equal to 0 then b is assigned to a. If x is 0 then d is assigned to c.

8.2.5 WHILE LOOPS

Handel-C provides while loops exactly as in conventional C:

while (Expression)
 Statement

The contents of the while loop may be executed zero or more times depending on the value of
Expression. While Expression is true then Statement is executed repeatedly. Statement may be
replaced with a block of statements. For example:

x = 0;
while (x != 45)
{
 y = y + 5;
 x = x + 1;
}

Statements

 Page 113
www.agilityds.com

This code adds 5 to y 45 times (equivalent to adding 225 to y).

8.2.6 DO ... WHILE LOOPS

Handel-C provides do ... while loops exactly as in conventional C:

do
 Statement
while (Expression);

The contents of the do ... while loop is executed at least once because the conditional expression is
evaluated at the end of the loop rather than at the beginning as is the case with while loops.
Statement may be replaced with a block of statements. For example:

do
{
 a = a + b;
 x = x - 1;
} while (x>y);

8.2.7 FOR LOOPS

Handel-C provides for loops similar to those in conventional C.

for (Initialization ; Test ; Iteration)
 Statement

The body of the for loop may be executed zero or more times according to the results of the condition
test. There is a direct correspondence between for loops and while loops. Because of the benefits of
parallelism, it is nearly always preferable to implement a while loop instead.

for (Init; Test; Inc)
 Body;

is directly equivalent to:

{
 Init;
 while (Test)
 {
 Body;
 Inc;
 }
}

unless the Body includes a continue statement. In a for loop continue jumps to before the increment,
in a while loop continue jumps to after the increment.

Statements

 Page 114
www.agilityds.com

Unless a specific continue statement is needed, it is always faster to implement the for loop as a
while loop with the Body and Inc steps in parallel rather than in sequence when this is possible.

Each of the initialization, test and iteration statements is optional and may be omitted if not required.
Note that for loops with no iteration step can cause combinational loops. As with all other Handel-C
constructs, Statement may be replaced with a block of statements. For example:

for (; x>y ; x++)
{
 a = b;
 c = d;
}

The difference between a conventional C for loop and the Handel-C version is in the initialization and
iteration phases. In conventional C, these two fields contain expressions and by using expression side
effects (such as ++ and --) and the sequential operator ',' conventional C allows complex operations to
be performed. Since Handel-C does not allow side effects in expressions the initialization and iteration
expressions have been replaced with statements. For example:

for (x = 0; x < 20; x = x+1)
{
 y = y + 2;
}

Here, the assignment of 0 to x and adding one to x are both statements and not expressions. These
initialization and iteration statements can be replaced with blocks of statements by enclosing the block
in {...} brackets. For example:

for ({ x=0; y=23;} ; x < 20; {x+=1; x*=2;})
{
 y = y + 2;
}

8.2.8 SWITCH

Handel-C provides switch statements similar to those in conventional C.

switch (Expression)
{
 case Constant:
 Statement
 break;

 default:
 Statement
 break;
}

Statements

 Page 115
www.agilityds.com

The switch expression is evaluated and checked against each of the case compile time constants. The
statement(s) guarded by the matching constant is executed until a break statement is encountered.

If no matches are found, the default statement is executed. If no default option is provided, no
statements are executed.

Each of the Statement lines above may be replaced with a block of statements by enclosing the block
in {...} brackets.

As with conventional C, it is possible to make execution drop through case branches by omitting a
break statement. For example:

switch (x)
{
case 10:
 a = b;
case 11:
 c = d;
 break;

case 12:
 e = f;
 break;
}

Here, if x is 10, b is assigned to a and d is assigned to c, if x is 11, d is assigned to c and if x is 12, f is
assigned to e.

 The values following each case branch must be compile time constants.

8.2.9 BREAK

Handel-C provides the normal C break statement for:

• terminating loops
• separation of case branches in switch and prialt statements.

break cannot be used to jump into or out of par blocks.

Loops
When used within a while, do...while or for loop, the loop is terminated and execution continues from
the statement following the loop. For example:

Statements

 Page 116
www.agilityds.com

for (x=0; x<32; x++)
{
 if (a[x]==0)
 break;
 b[x]=a[x];
}
// Execution continues here

switch
When used within a switch statement, execution of the case branch terminates and the statement
following the switch is executed. For example:

switch (x)
{
 case 1:
 case 2:
 y++;
 break;
 case 3:
 z++;
 break;
}
// Execution continues here

prialt
When used within a prialt statement, execution of the case branch terminates and the statement
following the prialt is executed. For example:

prialt
{
 case a ? x:
 x++;
 break;
 case b ! y:
 y++;
 break;
}
// Execution continues here

8.2.10 DELAY

Handel-C provides a delay statement, not found in conventional C, which does nothing but takes one
clock cycle to do it. This may be useful to avoid resource conflicts (for example to prevent two

Statements

 Page 117
www.agilityds.com

accesses to one RAM in a single clock cycle) or to adjust execution timing.

delay can also be used to break combinational logic cycles.

8.2.11 TRY... RESET

try...reset allows you to perform actions on receipt of a reset signal within a specified section of code.
You can form the same kind of construct with other control statements, but this requires more complex
code and therefore more hardware.

Syntax
try
{
 statements
}
reset(condition)
{
 statements
}

During the execution of statements within the try block, if condition is true, the reset statement block
will be executed immediately, else it will not. The condition expression is continually checked. If it
occurs in the middle of a function, execution will immediately go to the reset thread. Static variables
within the function will remain in the state they were in when the reset condition occurred. Variables
and RAMs will not be re-initialized.

Examples
void main(void)
{
 interface bus_in(int 1 input) resetbus();
 try
 {
 someFunction();
 }
 reset(resetbus.input == 1)
 {
 cleanUpSomeFunction();
 }
}

If you have nested try...reset statements, and more than one try condition is true, only the outermost
reset statement is executed. For example:

Statements

 Page 118
www.agilityds.com

unsigned 4 a, s, t, x, y;
static unsigned 1 condition = 0;

par
{
 while(1)
 {
 condition = (a == 1);
 }

 try
 {
 try
 {
 a = 1;
 a = 2;
 a = 3;
 }
 reset(condition)
 {
 s = 1;
 t = 1;
 }
 }
 reset (condition)
 {
 x = 1;
 y = 1;
 }
}

will execute the second reset statement only.

8.2.12 RELEASESEMA()

releasesema(semaphore) releases a semaphore that was previously taken by trysema(semaphore).

Statements

 Page 119
www.agilityds.com

Example
inline void critRAMaccess(sema *RAMsema, ram int 8
 (*danger)[4], unsigned count)
{
 int 8 x;
 while(trysema(*RAMsema)==0) delay; // wait till you've got the RAM
 x= (*danger)[count];
 releasesema(*RAMsema);
}

8.2.13 TRYSEMA()

trysema(semaphore) tests to see if the semaphore is owned. If not, it returns one and takes
ownership of the semaphore. If it is, it returns zero. A semaphore may be freed by using the statement
releasesema(semaphore).

Example
inline void critRAMaccess(sema *RAMsema, ram int 8
 (*danger)[4], unsigned count)
{
 int 8 x;
 // wait till you've got the RAM
 while(trysema(*RAMsema)==0) delay;
 x= (*danger)[count];
 releasesema(*RAMsema);
}

 Note that you can no longer take the semaphore twice without releasing it.

while(1)
{
 // always succeeds because its the same 'trysema' expression
 if (trysema(s)) {...}
}

In DK version 1, this worked. In DK version 1.1 and subsequent versions, the second and subsequent
trysema() will always fail. Instead, use

Statements

 Page 120
www.agilityds.com

while(1)
{
 if (trysema(s))
 {
 ...
 releasesema(s)
 }
}

Functions and macros: overview

 Page 121
www.agilityds.com

9 EXPRESSIONS

9.1 INTRODUCTION TO EXPRESSIONS

Clock cycles required
Expressions in Handel-C take no clock cycles to be evaluated, and so have no bearing on the number
of clock cycles a given program takes to execute.

They affect the maximum possible clock rate for a program: the more complex an expression, the
more hardware is involved in its evaluation and the longer it is likely to take because of combinational
delays in the hardware. The clock period for the entire hardware program is limited by the longest such
evaluation in the whole program.

Because expressions are not allowed to take any clock cycles, expressions with side effects are not
permitted in Handel-C. For example;

if (a<b++) /* NOT PERMITTED */

This is not permitted because the ++ operator has the side effect of assigning b+1 to b which requires
one clock cycle.

Breaking down complex expressions
The longest and most complex C statement with many side effects can be written in terms of a larger
number of simpler expressions and assignments. The resulting code is normally easier to read. For
example:

a = (b++) + (((c-- ? d++ : e--)) , f);

can be rewritten as:

a = b + f;
b = b + 1;
if (c)
 d = d + 1;
else
 e = e - 1;
c = c - 1;

Prefix and postfix operators
Handel-C provides the prefix and postfix ++ and -- operations as statements rather than expressions.
For example:

Functions and macros: overview

 Page 122
www.agilityds.com

a++;
b--;
++c;
--d;

is directly equivalent to:

a = a + 1;
b = b - 1;
c = c + 1;
d = d - 1;

9.2 CASTING OF EXPRESSION TYPES
Automatic conversions between signed and unsigned values are not allowed. Values must be cast
between types to ensure that the programmer is aware that a conversion is occurring that may alter
the meaning of a value.

You can cast to a type of undefined width. For example:

int 4 x;
unsigned int undefined y;

x = (int undefined)y;

The compiler will infer that y must be 4 bits wide.

Explanation of signed/unsigned casting
The following piece of Handel-C is invalid:

int 4 x; // Range of x: -8...7
unsigned int 4 y; // Range of y: 0...15

x = y; // Not allowed

This is because x is a signed integer while y is an unsigned integer. When generating hardware, it is
not clear what the compiler should do here. It could simply assign the 4 bits of y to the 4 bits of x or it
could extend y with an extra zero as its most significant bit to preserve its value and then assign these
5 bits to x assuming x was declared to be 5 bits wide.

To see the difference, consider the case when y is 10. By simply assigning these 4 bits to a signed
integer, a result of -6 would be placed in x. A better solution might be to extend y to a five bit value by
adding a 0 bit as its MSB to preserve the value of 10.

A programmer must explicitly cast the variables to the same type. Assuming that they wish to use the
4-bit value as a signed integer, the above example then becomes:

Functions and macros: overview

 Page 123
www.agilityds.com

int 4 x;
unsigned int 4 y;

x = (int 4)y;

It is now clear that the value of x is the result of treating the 4 bits extracted from y as a signed integer.

9.2.1 RESTRICTIONS ON CASTING

Casting cannot be used to change the width of values. For example, this is not allowed:

unsigned int 7 x;
int 12 y;

y = (int 12)x; // Not allowed

The conversion should be done explicitly:

y = (int 12)(0 @ x);

Here, the concatenation operation produces a 12-bit unsigned value. The casting then changes this to
a 12-bit signed integer for assignment to y.

This is to ensure that the programmer is aware of such conversions.

Explanation
int 7 x;
unsigned int 12 y;

x = -5;
y = (unsigned int 12)x;

The Handel-C compiler could take two routes. One would be to sign extend the value of x and produce
the result 4091. The second would be to zero pad the value of x and produce the value of 123. Since
neither method can preserve the value of x in y Handel-C performs neither automatically. Rather, it is
left up to the programmer to decide which approach is correct in a particular situation and to write the
expression accordingly. You may sign extend using the adjs macro and zero-pad using the adju
macro. These macros are provided in the standard macro library within the Agility Platform
Developer's Kit.

9.3 RESTRICTIONS ON RAMS AND ROMS
Because of their architecture, RAMs and ROMs are restricted to performing operations sequentially.
Only one element of a RAM or ROM may be addressed in a single clock cycle. In hardware, this
means you can only write one value to the address port of a memory, allowing one read access or one
write access. You can detect simultaneous memory accesses when you are debugging your code by
using the Detection of simultaneous memory accesses option on the Debug tab in Project Settings, or the -

Functions and macros: overview

 Page 124
www.agilityds.com

S+parmem option in the command line compiler.

If you want to make more than one access to a memory at a time, use an MPRAM (multi-ported RAM).
You can access more than one port at a time, but you can only make a single access to any one
mpram port in a single clock cycle.

Example of disallowed assignment
Only one element of a RAM or ROM may be addressed in any given clock cycle and, as a result,
familiar looking statements will often produce unexpected results. For example:

ram <unsigned int 8> x[4];
x[1] = x[3] + 1;

This code should not be used because the assignment attempts to read from the third element of x in
the same cycle as it writes to the first element, and the memory may produce undefined results.

Example of disallowed condition evaluation
ram unsigned int 8 x[4];

if (x[0]==0)
 x[1] = 1; //double access, disallowed

This code is illegal because the condition evaluation must read from element 0 of the RAM in the
same clock cycle as the assignment writes to element 1. Similar restrictions apply to while loops, do
... while loops, for loops and switch statements.

Incorrect execution with conditional operator
This code will not execute correctly because of the double access.

x = y>z ? RamA[1] : RamA[2];

The solution is to re-write the code as follows:

x = RamA[y>z ? 1 : 2];

Here, there is only a single access to the RAM so the problem does not occur.

 Arrays of variables do not have these restrictions but may require

substantially more hardware to implement than RAMs (depending on the target architecture).

9.4 ASSERT
assert allows you to generate messages at compile-time if a condition is met. The messages can be
used to check compile-time constants and help guard against possible problematic code alterations.

Functions and macros: overview

 Page 125
www.agilityds.com

The user uses an expression to check the value of a compile-time constant, and if the expression
evaluates to false, an error message is sent to the standard error channel in the format

filename:line number, start column - end column::Assertion failed: user-defined error string

The default error message is:

"Error : User assertion failed"

If the expression evaluates to true, the whole assert expression is replaced by a constant expression.

assert can be used as a statement by passing 0 as the trueValue. If the condition is true, the whole
assert statement is replaced by 0 (a null statement). This is shown in the example below. If the width
of x is 3 (the condition is true), the whole statement is replaced by the trueValue of 0, so nothing
happens.

assert (width(x)==3, 0, "Width of x is not 3 (it is %d)", width(x));

A more detailed example is given below. assert can also be used as an expression, where its return
value is assigned to something. This is illustrated in the second example below, where the return value
is assigned to ReturnVal.

Syntax
assert(condition,trueValue [,string with format specification(s) {,argument(s)}]);

If condition is true, the whole expression reduces to trueValue. If condition is false, string will be
sent to the standard error channel, with each format specification replaced by an argument. When
assert encounters the first format specification (if any), it converts the value of the first argument into
that format and outputs it. The second argument is formatted according to the second format
specification and so on. If there are more expressions than format specifications, the extra
expressions are ignored. The results are undefined if there are not enough arguments for all the
format specifications.

The format specification is one of:

%c Display as a character %s Display as a string

%d Display as a decimal %f Display as a floating-point
%o Display as an octal %x Display as a hexadecimal
%% Display % character

 An assert evaluates to an empty statement and can only appear after all

declarations in a macro or function

Functions and macros: overview

 Page 126
www.agilityds.com

Using assert as a statement
In the example below assert is used as a statement.

set clock = external "C1";
int f(int x)
{
 assert(width(x)==3, 0, "Width of x is not 3 (it is %d)", width(x));
 return x+1;
}

void main(void)
{
 int 4 y;
 y = f(y);
}

x will be inferred to have a width of 4, so the following message will be displayed.

F:\proj\test.hcc(4)(2) : Assertion failed : Width of x is not 3 (it is 4)

Using assert as an expression
In the example below, assert is used as an expression.

Functions and macros: overview

 Page 127
www.agilityds.com

set clock = external "C1";
unsigned func(unsigned p, unsigned q)
{
 macro expr WidthSum(a, b) = width(a) + width(b);
 macro expr CheckWidths(a, b) = assert((WidthSum(a, b)==32
 || WidthSum(a, b)==16), WidthSum(a, b),
 "Sum of widths of function parameters is not 16 or 32 (it is %d)",
 WidthSum(a, b));
 unsigned 16 ReturnVal;

 ReturnVal = CheckWidths(p, q);

 return ReturnVal;
}

void main(void)
{
 static unsigned 9 x;
 static unsigned 7 y;
 unsigned result;

 result = func(x, y);
}

9.5 WARNING
warning allows you to generate messages at compile-time if a condition is met. The messages can be
used to check compile-time constants and help guard against possible problematic code alterations.
The user uses an expression to check the value of a compile-time constant, and if the expression
evaluates to false, a warning message is sent to the standard error channel in the format

filename:line number, start column - end column::Warning: user-defined error string

The default error message is:

"Warning : (W0166) User warning"

warning can be used as a statement by passing 0 as the Value. If the condition is true, the whole
warning statement is replaced by 0 (a null statement). This is shown in the example below. If the width
of x is 3 (the condition is true), the whole statement is replaced by the Value of 0, so nothing happens.

warning (width(x)==3, 0, "Width of x is not 3 (it is %d)", width(x));

A more detailed example is given below. warning can also be used as an expression, where its return
value is assigned to something. This is illustrated in the second example below, where the return value
is assigned to ReturnVal.

Functions and macros: overview

 Page 128
www.agilityds.com

Syntax
warning(condition,[Value, [string with format specification(s) {,argument(s)}]]);

If condition is true, the whole expression reduces to Value. If condition is false, string is sent to the
standard error channel, with each format specification replaced by an argument. When warning
encounters the first format specification (if any), it converts the value of the first argument into that
format and outputs it. The second argument is formatted according to the second format specification
and so on. If there are more expressions than format specifications, the extra expressions are ignored.
The results are undefined if there are not enough arguments for all the format specifications.

The format specification is one of:

%c Display as a character %s Display as a string

%d Display as a decimal %f Display as a floating-point
%o Display as an octal %x Display as a hexadecimal
%% Display % character

 A warning evaluates to an empty statement and can only appear after all

declarations in a macro or function

Using warning as a statement
In the example below warning is used as a statement.

set clock = external "C1";
int f(int x)
{
 warning(width(x)==3, 0, "Width of x is not 3 (it is %d)", width(x));
 return x+1;
}

void main(void)
{
 int 4 y;
 y = f(y);
}

x will be inferred to have a width of 4, so the following message will be displayed.

F:\proj\test.hcc(4)(2) : Assertion warning : Width of x is not 3 (it is 4)

Functions and macros: overview

 Page 129
www.agilityds.com

Using warning as an expression
In the example below, warning is used as an expression.

set clock = external "C1";
unsigned func(unsigned p, unsigned q)
{
 macro expr WidthSum(a, b) = width(a) + width(b);
 macro expr CheckWidths(a, b) = warning((WidthSum(a, b)==32
 || WidthSum(a, b)==16), WidthSum(a, b),
 "Sum of widths of function parameters is not 16 or 32 (it is %d)",
 WidthSum(a, b));
 unsigned 16 ReturnVal;

 ReturnVal = CheckWidths(p, q);

 return ReturnVal;
}

void main(void)
{
 static unsigned 9 x;
 static unsigned 7 y;
 unsigned result;

 result = func(x, y);
}

9.6 BIT MANIPULATION OPERATORS
The following bit manipulation operators are provided in Handel-C:

<< Shift left

>> Shift right
<- Take least significant bits
\\ Drop least significant bits
@ Concatenate bits
[] Bit selection
width(Expression) Width of expression

Functions and macros: overview

 Page 130
www.agilityds.com

9.6.1 SHIFT OPERATORS

The shift operators shift a value left or right by a variable number of bits resulting in a value of the
same width as the value being shifted. Any bits shifted outside this width are lost.

When shifting unsigned values, the right shift pads the upper bits with zeros. When right shifting
signed values, the upper bits are copies of the top bit of the original value. Thus, a shift right by 1
divides the value by 2 and preserves the sign. For example:

static unsigned 4 a = 0b1101;
static unsigned (log2ceil(width(a)+1)) b = 2;

a = a >> b; //a becomes 0b0011
b--;
a = a >> b; //a becomes 0b0001

The width of b needs to have a width equal to log2(width(a)+1) rounded up to the nearest whole
number. This can be calculated using the log2ceil macro which is provided as part of the standard
library in the Platform Developer's Kit.

9.6.2 TAKE / DROP OPERATORS

The take operator, <-, returns the n least significant bits of a value. The drop operator, \\, returns all
but the n least significant bits of a value. n must be a compile-time constant. For example:

macro expr four = 8 / 2;
unsigned int 8 x;
unsigned int 4 y;
unsigned int 4 z;

x = 0xC7;
y = x <- four;
z = x \\ 4;

This results in y being set to 7 and z being set to 12 (or 0xC in hexadecimal).

9.6.3 CONCATENATION OPERATOR

The concatenation operator, @, joins two sets of bits together into a result whose width is the sum of
the widths of the two operands. For example:

Functions and macros: overview

 Page 131
www.agilityds.com

unsigned int 8 x;
unsigned int 4 y;
unsigned int 4 z;

y = 0xC;
z = 0x7;
x = y @ z;

This results in x being set to 0xC7. The left operand of the concatenation operator forms the most
significant bits of the result.

You may also use the concatenation operator to zero pad a variable to a given width.

unsigned int 8 x;
unsigned int 8 y;
unsigned int 16 z;

//width of zero constant inferred to be 8 bits
z = (0 @ x) * (0 @ y);

If you want to use sign extension, you need to copy the 1 or the 0 from the most significant bit into the
new bits. For example:

signed int 8 i;
signed int 12 j;
j = i[7] @ i[7] @ i[7] @ i[7] @ i;

9.6.4 BIT SELECTION

Individual bits or a range of bits may be selected from a value by using the [] operator. Bit 0 is the
least significant bit and bit n-1 is the most significant bit where n is the width of the value. For
example:

unsigned int 8 x;
unsigned int 1 y;
unsigned int 5 z;

x = 0b01001001;
y = x[4];
z = x[7:3];

This results in y being set to 0 and z being set to 9. Note that the range of bits is of the form
MSB:LSB and is inclusive. Thus, the range 7:3 is 5 bits wide.

The bit selection values must be fixed at compile time.

The value before or after ':' can be omitted. If you omit the value after the semi-colon, then zero is
assumed, so the LSBs are taken. If you omit the value before the semi-colon, then n–1 is assumed, so

Functions and macros: overview

 Page 132
www.agilityds.com

the MSBs are taken.

Bit selection is allowed in RAM, ROM and array elements. For example:

ram int 7 w[23];
int 5 x[4];
int 3 y;
unsigned int 1 z;

y = w[10][4:2];
z = (unsigned 1)x[2][0];

The 10 specifies the RAM entry and the 4:2 selects three bits from the middle of the value in the RAM
w is set to the value of the selected bits.

Similarly, z is set to the least significant bit in the x[2] variable.

 You cannot assign to bit ranges, only read from them.

9.6.5 WIDTH OPERATOR

The width() operator returns the width of an expression. It is a compile time constant. For example:

x = y <- width(x);

This takes the least significant bits of y and assigns them to x. The width() operator ensures that the
correct number of bits is taken from y to match the width of x.

9.7 ARITHMETIC OPERATORS
The following arithmetic operators are provided in Handel-C:

Operator Meaning

+ Addition
- Subtraction
* Multiplication
/ Division
% Modulo arithmetic

Any attempt to perform one of these operations on two expressions of differing widths or types results

Functions and macros: overview

 Page 133
www.agilityds.com

in a compiler error. For example:

int 4 w;
int 3 x;
int 4 y;
unsigned 4 z;

y = w + x; // ILLEGAL
z = w + y; // ILLEGAL

The first statement is illegal because w and x have different widths. The second statement is illegal
because w and y are signed integers and z is an unsigned integer.

Width of results
All operators return results of the same width as their operands. Thus, all overflow bits are lost. For
example:

unsigned int 8 x;
unsigned int 8 y;
unsigned int 8 z;

x = 128;
y = 192;
z = 2;

x = x + y;
z = z * y;

This example results in x being set to 64 and z being set to 128.

By using the bit manipulation operators to expand the operands, it is possible to obtain extra
information from the arithmetic operations. For instance, the carry bit of an addition or the overflow
bits of a multiplication may be obtained by first expanding the operands to the maximum width
required to contain this extra information. For example:

unsigned int 8 u;
unsigned int 8 v;
unsigned int 9 w;
unsigned int 8 x;
unsigned int 8 y;
unsigned int 16 z;

w = (0 @ u) + (0 @ v);
z = (0 @ x) * (0 @ y);

In this example, w and z contain all the information obtainable from the addition and multiplication
operations. Note that the constant zeros do not require a width specification because the compiler can
infer their widths from the usage. The zeros in the first assignment must be 1 bit wide because the

Functions and macros: overview

 Page 134
www.agilityds.com

destination is 9 bits wide while the source operands are only 8 bits wide. In the second assignment,
the zero constants must be 8 bits wide because the destination is 16 bits wide while the source
operands are only 8 bits wide.

9.8 RELATIONAL OPERATORS

Operator Meaning

== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal
>= Greater than or equal
These operators compare values of the same width and return a single bit wide unsigned int value of 0
for false or 1 for true. This means that this conventional C code is invalid:

unsigned 8 w, x, y, z;

w = x + (y >z); // NOT ALLOWED

Instead, you should write:

w = x + (0 @ (y > z));

9.8.1 SIGNED/UNSIGNED COMPARES

Signed/signed compares and unsigned/unsigned compares are handled automatically. Mixed signed
and unsigned compares are not handled automatically. For example:

unsigned 8 x;
int 8 y;

if (x>y) // Not allowed
 ...

To compare signed and unsigned values you must sign extend each of the parameters. The above
code can be rewritten as:

Functions and macros: overview

 Page 135
www.agilityds.com

unsigned 8 x;
int 8 y;

if ((int)(0@x) > (y[7]@y))
 ...

9.8.2 IMPLICIT COMPARES

The Handel-C compiler inserts implicit compares with zero if a value is used as a condition on its own.
For example:

while (1)
{
 ...
}

Is directly expanded to:

while (1 != 0)
{
 ...
}

9.9 LOGICAL OPERATORS

Operator Meaning

&& Logical and
|| Logical or
! Logical not
These operators are provided to combine conditions as in conventional C. Each operator takes 1-bit
unsigned operands and returns a 1-bit unsigned result.

Note that the operands of these operators need not be the results of relational operators. This feature
allows some familiar looking conventional C constructs.

Example
if (x || y > z)
 w = 0;

In this example, the variable x need not be 1 bit wide. If it is wider, the Handel-C compiler inserts a
compare with 0.

Functions and macros: overview

 Page 136
www.agilityds.com

if (x != 0 || y > z)
 w = 0;

The condition of the if statement is true if x is not equal to 0 or y is greater than z.

C-like example
while (x || y)
{
 ...
}

Again, if the variables are wider than 1-bit, the Handel-C compiler inserts compares with 0.

9.9.1 BITWISE LOGICAL OPERATORS

Operator Meaning

& Bitwise and
| Bitwise or
^ Bitwise exclusive or
~ Bitwise not
These operators perform bitwise logical operations on values. Both operands must be of the same
type and width: the resulting value will also be this type and width. For example:

unsigned int 6 w;
unsigned int 6 x;
unsigned int 6 y;
unsigned int 6 z;

w = 0b101010;
x = 0b011100;
y = w & x;
z = w | x;
w = w ^ ~x;

This example results in y having the value 0b001000, z having the value 0b111110 and w having the
value 0b001001.

9.10 CONDITIONAL OPERATOR
Handel-C provides the conditional expression construct familiar from conventional C. Its format is:

Functions and macros: overview

 Page 137
www.agilityds.com

Expression ? Expression : Expression

The first expression is evaluated and if true, the whole expression evaluates to the result of the second
expression. If the first expression is false, the whole expression evaluates to the result of the third
expression. For example:

x = (y > z) ? y : z;

This sets x to the maximum of y and z. This code is directly equivalent to:

if (y > z)
 x = y;
else
 x = z;

The advantage of using this construct is that the result is an expression so it can be embedded in a
more complex expression. For example:

x = ((w==0) ? y : z) + 4;

In this case, the signedness and widths of x, y and z must match (as the value of y or z may be
assigned to x), but those of w need not.

9.11 MEMBER OPERATORS (. / ->)
The structure member operator (.) is used to access members of a structure or mpram, or to access a
port within an interface.

The structure pointer operator (->) can be used, as in ANSI-C. It is used to access the members of a
structure or mpram, when the structure/mpram is referenced through a pointer.

mpram Fred
{
 ram <unsigned 8> ReadWrite[256]; // Read/write port
 rom <unsigned 8> Read[256]; // Read only port
} Joan;

mpram Fred *mpramPtr;
mpramPtr = &Joan;
x = mpramPtr->Read[56];

If a memory is made up of structures, the structure member operator can be used to reference
structure members within the memory.

ram struct S compRAM[100];
ram struct S (*ramStructPtr)[];
ramStructPtr = &compRAM;
x = (*ramStructPtr)[10].a;

Functions and macros: overview

 Page 138
www.agilityds.com

10 FUNCTIONS AND MACROS: OVERVIEW
Handel-C includes and extends the range of functions and macros offered by ANSI-C.

Return
value?

Typed return
values and
parameters?

Called by
reference?

Shared
hardware?

Functions Can have Yes No Yes
Arrays of functions Can have Yes No Yes
Inline functions Can have Yes No No
Preprocessor macros Can have No Yes No
Macro expressions Must have No Yes No
Shared expressions Must have No Yes Yes
Macro procedures None No Yes No

10.1 COMPARISON OF FUNCTIONS AND MACROS
Handel-C includes a range of functions and macros. These can be compared with respect to:

• Size of logic created in hardware
• Speed of logic created in hardware
• Language issues:
• typed and untyped parameters
• calling by reference or by value
• recursion

10.1.1 FUNCTIONS AND MACROS: LANGUAGE ISSUES

Called by reference or value
Functions employ call-by-value on their parameters, whereas macros effectively employ call-by-
reference. Consider the code:

Functions and macros: overview

 Page 139
www.agilityds.com

void inline f_pseudoswap (int 12 x, int 12 y)
{
 par
 {
 x = y;
 y = x;
 }
}

macro proc mp_swap (x, y)
{
 par
 {
 x = y;
 y = x;
 }
}

If you call mp_swap(a,b) the values of a and b will be swapped.

If you call call f_pseudoswap(a,b) the values a and b are copied to the formal parameters x and y of
f_pseudoswap. x and y are swapped, but a and b are unaffected. The swap function with the same
behaviour as the macro procedure is therefore

void inline f_swap (int 12 * x, int 12 * y)
{
 par
 {
 * x = * y;
 * y = * x;
 }
}

with a call of the form f_swap(&a,&b).

Typed or untyped parameters
Function parameters must have a type, although the width can sometimes be inferred by the compiler.

Macro expressions and procedures are un-typed in the sense that their formal parameters can’t be
given types. The type of macro parameters is inferred from the type in the call statement.

This means that it is better to use macros for parameterizable code. For example, macro procedures
can be used in libraries if you want to create multiple instances of hardware, but leave them untyped to
make the code more generic.

Recursion
In Handel-C, functions may not be recursive. Macro procedure and macro expressions can be used to

Functions and macros: overview

 Page 140
www.agilityds.com

capture compile-time recursion.

If you use recursive macro procedures you need to use ifselect to guard the base case (the condition
where the recursion terminates). If you use recursive macro expressions, you need to use select to
guard the base case.

Macro procedure example:

unsigned 4 g;
macro proc p(x)
{
 ifselect(width(x) != 0)
 {
 g = 0@x;
 p(x\\1);
 }
 else
 delay;
}

set clock = external;
void main()
{
 unsigned 4 i;
 p(i);
}

Macro expression example:

macro expr copycat (copies, bits) =
 select (copies <= 0, (unsigned 0) 0,
 bits @ copycat (copies - 1, bits));

10.1.2 FUNCTIONS AND MACROS: SHARING HARDWARE

Calls to functions and shared expressions result in a single shared piece of hardware. This is
equivalent to an ANSI-C function resulting in a single shared section of machine code.

Shared hardware will reduce the size of your design, but care is needed if you have parallel code
where multiple branches access the shared hardware. Shared hardware may also compromise the
speed of your design as it tends to lead to an increase in logic depth.

Each call to an inline function, macro procedure or macro expression results in a separate piece of
hardware.

Arrays of functions allow a specified number of copies to be created.

Functions and macros: overview

 Page 141
www.agilityds.com

10.1.3 FUNCTIONS AND MACROS: CLOCK CYCLES

Macro expressions and shared expressions are evaluated in a single clock cycle, where the
expression is assigned to a variable. Functions and macro procedures may involve control logic, and
may take many cycles.

10.1.4 FUNCTIONS AND MACROS: EXAMPLES

There are many ways in which a much-used code fragment can be expressed. The examples below
all multiply a value by 1.5. For hints on when to use the different types of macros and functions, see:

• Functions and macros: overview
• Comparison of macros and functions

Preprocessor macro
#define de_sesqui(s) ((s) + ((s) >> 1))
#define dp_sesqui(d,s) ((d) = (s) + ((s) >> 1))

Macro expression
macro expr me_sesqui (s) = s + (s >> 1);

Shared expression
shared expr se_sesqui (s) = s + (s >> 1);

Macro procedure
macro proc mp_sesqui (d, s)
{
 d = s;
 d += (d >> 1);
}

Function
void f_sesqui (int * d, int s) //"shared" function without return
{
 * d = s;
 * d += ((* d) >> 1);
}

Functions and macros: overview

 Page 142
www.agilityds.com

int rf_sesqui (int s) //"shared" function with return
{
 int ret;
 ret = s;
 ret += (ret >> 1);
 return ret;
}

Array of functions
void af_sesqui [5] (int * d, int s) //function array without return
{
 * d = s;
 * d += ((* d) >> 1);
}

int arf_sesqui [5] (int s) // function array with return
{
 int ret;
 ret = s;
 ret += (ret >> 1);
 return ret;
}

Inline function
void inline if_sesqui (int * d, int s) // inline function without return
{
 * d = s;
 * d += ((* d) >> 1);
}

// inline function with return
int inline irf_sesqui (int s)
{
 int ret;
 ret = s;
 ret += (ret >> 1);
 return ret;
}

How to call the example macros and functions
 The example macros and functions above can be called using code such as:

Functions and macros: overview

 Page 143
www.agilityds.com

{
 int 5 x, y;
 x = 10;

 y = de_sesqui (x);
 dp_sesqui (y, x);

 y = me_sesqui (x);

 y = se_sesqui (x);

 mp_sesqui (y, x);

 f_sesqui (& y, x);
 y = rf_sesqui (x);

 af_sesqui[2] (& y, x);
 y = arf_sesqui[2] (x);

 if_sesqui (& y, x);
 y = irf_sesqui (x);
}

10.1.5 ACCESSING EXTERNAL NAMES

You can refer to functions, macros and shared expressions that have been defined in another file by
prototyping them. You prototype by declaring an object at the top of the file in which it is used.

Function prototypes are in the following format:

returnType functionName(parameterTypeList);

Macro prototypes are of the form:

macro expr Name(parameterList);

macro proc Name(parameterList);

Functions and macros may be static or extern. static functions and macros may only be used in the file
where they are defined.

You can collect all the prototypes into a single header file and then #include it within your code files.

You can access variables declared in other files by using the extern keyword.

 You cannot use variables to communicate between clock domains. Variables

are restricted to a single clock domain. The only items that can connect across separate clock

Functions and macros: overview

 Page 144
www.agilityds.com

domains are channels and mprams.

10.1.6 RECURSION IN MACROS AND FUNCTIONS

Macros can be recursive in Handel-C, but due to the absence of a stack in Handel-C, functions cannot
be recursive.

The depth of recursion, though unbounded, must be determinable at compile-time.

10.2 FUNCTIONS

10.2.1 INTRODUCTION TO FUNCTIONS

Functions are similar to functions in ANSI-C. A function is compiled to be a single shared piece of
hardware, much as a C compiler generates a single shared block of machine code.

Handel-C has been extended to provide arrays of functions and inline functions.

Arrays of functions provide multiple copies of a function. You can select which copy is used at any
time.

Inline functions are similar to macros in that they are expanded wherever they are used.

You may also use a macro proc (a parameterized macro procedure).

Functions take arguments and return values. A function that does not return a value is of type void.
Valid return types are integers and structs. The default return type is int undefined. Functions that do
not take arguments have void as their parameter list, for example:

void main(void)

As in ANSI-C, function arguments are passed by value. This means that a local copy is created that is
only in scope within the function. Changes take place on this copy.

To access a variable outside the function, you must pass the function a pointer to that variable. A local
copy will be made of the pointer, but it will still point to the same variable. This is known as passing by
reference.

Architectural types (hardware constructs) must be passed by reference (a pointer to or address of the
construct). The only architectural type that can be passed to or returned by a function by value is a
signal. All others (and structures containing them) must be passed by reference. Arrays and functions
can also only be passed by reference.

Functions and macros: overview

 Page 145
www.agilityds.com

10.2.2 FUNCTION DEFINITIONS AND DECLARATIONS

Function definitions and declarations are defined as in ANSI-C. Functions must be declared in every
file that they are used in, though they should only be defined once. It is common to put function
declarations into a header file and #include that in every file where they are used.

Function definition
The definition of a function consists of its name and parameters followed by the function body (the
block of code that it performs when it is called).

The syntax is:

returnType Name(parameterList)
{
 declarations
 statements
}

For example:

int 4 add (int 4 left, int 4 right)
{
 int 4 sum;
 sum = left + right;
 return sum;
}

If there is nothing returned from the function, a void return type must be specified.

Old-style ANSI-C function definitions, where the types of the parameters are specified between the
parameter list and the function body, are not supported. For example:

int 4 add (left, right) //old-style not supported
int 4 left, right;
{
 return left + right;
}

Function declaration
A function declaration lists the function name, return type and the types of the parameters. The syntax
is:

returnType Name(parameterType_1 parameter_1, parameterType_n parameter_n);

Note the semicolon following the parameter list.

You may omit the parameter names in a declaration. The parameter types are used by the compiler to
check that the correct types are used for the function arguments within the rest of the file.

Old-style ANSI-C declarations, where the names but not the type of the parameters are given, are not

Functions and macros: overview

 Page 146
www.agilityds.com

supported.

10.2.3 FUNCTIONS: SCOPE

Functions cannot be defined within other functions. By default, functions are extern (they can be used
anywhere). Functions can also be defined as static (they can only be used in the file in which they are
defined).

10.2.4 ARRAYS OF FUNCTIONS

An array of functions is a collection of identical functions. It is not the same as an array of function
pointers (each of whose elements can point to a different function). A function array allows you to run
different copies of the same function in parallel. Without this construct, the only safe way to run a
function in parallel with itself would be to explicitly declare two functions with different names.

Function arrays allow functions to be copied and shared neatly. For example:

unsigned func[2](unsigned x, unsigned y)
{
 return (x + y);
}

Syntax
The syntax is a normal function declaration, with square brackets added to specify that this is an array
declaration as well as a function declaration. The general form of a function array declaration is:

returnType Name[Size](parameterList);

Functions and macros: overview

 Page 147
www.agilityds.com

Function arrays: example
set clock = external "P1";

// Function array prototype
unsigned func[2](unsigned x, unsigned y);

// Main program
void main(void)
{
 unsigned a, b, c, d, e, f;
 unsigned short r1, r2, r3, r4;
 unsigned result;

 par
 {
 a = 12;
 b = 22;
 c = 32;
 d = 42;
 e = 52;
 f = 62;
 }

 par
 {
 r1 = func[0](a, b);
 r2 = func[1](c, d);
 }

 par
 {
 r3 = func[0](e, f);
 r4 = func[1](r1, r2);
 }

 result = func[0](r3, r4);
}

Functions and macros: overview

 Page 148
www.agilityds.com

// Function array definition
unsigned func[2](unsigned x, unsigned y)
{
 return (x + y);
}

Function arrays example with static variables
In the example below each function in the array has its own copy of the static variable ‘t’. Thus, if
func[0]’s copy of ‘t’ is modified, func[1]’s copy remains unaffected.

Functions and macros: overview

 Page 149
www.agilityds.com

set clock = external "C1";

unsigned func[2](unsigned a, unsigned b)
{
 static unsigned t = 0;
 t++;
 return a + b + t;
}

void main(void)
{
 unsigned 7 p, q, r, s, t, u, v, w, x, y, z;

 par
 {
 p = 1;
 q = 1;
 r = 1;
 s = 1;
 t = 1;
 u = 1;
 }

 par
 {
 v = func[0](p, q); // v = 3 (t in func[0] is 1)
 w = func[1](r, s); // w = 3 (t in func[1] is 1)
 }

 x = func[0](t, u); // x = 4 (t in func[0] is 2)
 y = func[0](v, w); // y = 9 (t in func[0] is 3)

 z = func[1](x, y); // z = 15 (t in func[1] is 2)
}

10.2.5 FUNCTION POINTERS

These are a very powerful, yet potentially confusing feature. In situations where any one of a number
of functions can be called at a particular point, it is neater and more concise to use a function pointer,
where the alternative might be a long if-else chain, or a long switch statement (see example).

Function pointers can be assigned with or without the address operator & (similar to assigning array
addresses). Functions pointed to can be called with or without the indirection operator.

Functions and macros: overview

 Page 150
www.agilityds.com

A function name can be assigned to a pointer without the &

p = addeven;

although the & format is clearer:

p = &addeven;

A function pointed to can be called by writing

(*chk)(a, b);

This can also be written in the shorthand form:

chk(a, b);

The first form is preferable, as it tips off anyone reading the code that a function pointer is being used.

Function pointers example
Consider the following program:

Functions and macros: overview

 Page 151
www.agilityds.com

set clock = external "P1";

unsigned 1 check(short int *a, short int *b,
 unsigned 1 (*chk)(const short int *,
 const short int *));

unsigned 1 addeven(const short int *x, const short int *y);
unsigned 1 minuseven(const short int *x, const short int *y);
unsigned 1 diveven(const short int *x, const short int *y);
unsigned 1 modeven(const short int *x, const short int *y);

void main(void)
{
 short int m, n;
 unsigned 2 choice;
 unsigned 1 result;
 unsigned 1 (*p)(const short *, const short *);

 par
 {
 m = 19;
 n = 47;
 }

 do
 {
 switch (choice)
 {
 case 0:
 p = addeven;
 break;
 case 1:
 p = minuseven;
 break;
 case 2:
 p = diveven;
 break;
 case 3:
 p = modeven;
 break;
 default:
 delay;
 break;

Functions and macros: overview

 Page 152
www.agilityds.com

 }

 par
 {
 result = check(&m, &n, p);
 choice++;
 }
 }
 while(choice);
}

unsigned 1 check(short int *a, short int *b,
 unsigned 1 (*chk)(const short int *,
 const short int *))
{
 return (*chk)(a, b);
}

unsigned 1 addeven(const short int *x, const short int *y)
{
 return (unsigned)(*x + *y)[0];
}

unsigned 1 minuseven(const short int *x, const short int *y)
{
 return (unsigned) (*x - *y)[0];
}

unsigned 1 diveven(const short int *x, const short int *y)
{
 return (unsigned) (*x / *y)[0];
}

unsigned 1 modeven(const short int *x, const short int *y)
{
 return (unsigned) (*x % *y)[0];
}

The function addeven checks whether the sum of two numbers is even. Similar checks are carried out
by minuseven (difference of two numbers), diveven (division) and modeven (modulus). The function
check simply calls the function whose pointer it receives, with the arguments it receives. This gives a
consistent interface to the xxxeven functions. Pay close attention to the declaration of check, and of
function pointer p. The parentheses around *p (and *chk in the declaration of check) are necessary for
the compiler to make the correct interpretation.

Functions and macros: overview

 Page 153
www.agilityds.com

Possible code optimization
Inside the main program body, check was called like this:

check(&m, &n, p);

It could have been written like this:

check(&m, &n, xxxeven);

eliminating the need for an additional pointer variable.

Here is the main section written using this form of expression:

void main(void)
{
 short int m, n;
 unsigned 2 choice;
 unsigned 1 result;

 par
 {
 m = 19;
 n = 47;
 }

 do
 {
 switch (choice)
 case 0:
 result = check(&m, &n, &addeven);
 break;
 case 1:
 result = check(&m, &n, &multeven);
 break;
 case 2:
 result = check(&m, &n, &diveven);
 break;
 case 3:
 result = check(&m, &n, &modeven);
 break;
 default:
 break;
 choice++;
 }
 while(choice);
}

Functions and macros: overview

 Page 154
www.agilityds.com

10.2.6 SIMULTANEOUS FUNCTION CALLS

In Handel-C, a function corresponds to a shared piece of hardware, which may only be used by one
thread at a time. Simultaneous calls to a function, or even overlapping execution of a function, will
cause problems.

You can check for simultaneous accesses to a function when you are debugging your code by using
the Detection of simultaneous function calls option on the Debug tab in Project Settings, or the -S+parfunc
option in the command line compiler.

You can ensure that the function usage does not overlap by declaring functions to be inline (so they
are expanded whenever they are used) or by declaring an array of functions, one to be used in each
parallel branch. This is illustrated in the example below.

Example
int func(int x, int y);

void main(void)
{
 int a, b, c, d, e, f, foo;
 // etc ...

 par
 {
 a = func(b, c);
 {
 b = foo;
 d = func(e, f); // NOT ALLOWED
 }
 }
 // etc ...
}

Functions and macros: overview

 Page 155
www.agilityds.com

int func(int x, int y)
{
 if (x == y)
 delay;
 else
 {
 x = x % y;
 }
 x *= 10;

 return(x);
}
This is not allowed because part of the single function is used twice in the same clock cycle.

The code can be re-written to use inline functions, or an array of functions:

inline int func(x, y);

par
{
 a = func(b, c);
 {
 b = foo;
 d = func(e, f);
 }
}

or

int func[2](x, y);

par
{
 a = func[0](b, c);
 {
 b = foo;
 d = func[1](e, f);
 }
}

10.2.7 MULTIPLE FUNCTIONS IN A STATEMENT

Because each statement in Handel-C must take a single clock cycle, you cannot have multiple

Functions and macros: overview

 Page 156
www.agilityds.com

functions in a single statement.

Instead of

y = f(g(x));// illegal

you can write

z=g(x);
y=f(z);

Instead of

y = f(x) + g(z); // illegal

you can write:

par
{
 a = f(x);
 b = g(z);
}
y = a+b;

10.3 MACROS

10.3.1 INTRODUCTION TO MACROS

The Handel-C compiler passes source code through a standard C preprocessor before compilation
allowing the use of #define to define constants and macros in the usual manner. Since the
preprocessor can only perform textual substitution, some useful macro constructs cannot be
expressed. For example, there is no way to create recursive macros using the preprocessor.

Handel-C provides additional macro support to allow more powerful macros to be defined (for
example, recursive macro expressions). In addition, Handel-C supports shared macro expressions to
generate one piece of hardware which is shared by a number of parts of the overall program similar to
the way that procedures allow conventional C to share one piece of code between many parts of a
conventional program.

10.3.2 NON-PARAMETERIZED MACRO EXPRESSIONS

Non-parameterized macro expressions are of two types:

• simple constant equivalent to #define
• a constant expression

Functions and macros: overview

 Page 157
www.agilityds.com

Constant
This first form of the macro is a simple expression. For example:

macro expr DATA_WIDTH = 15;

int DATA_WIDTH x;

This form of the macro is similar to the #define macro. Whenever DATA_WIDTH appears in the
program, the constant 15 is inserted in its place.

Constant expression
To provide a more general solution, you can use a real expression. For example:

macro expr sum = (x + y) @ (y + z);

v = sum;
w = sum;

10.3.3 PARAMETERIZED MACRO EXPRESSIONS

Handel-C allows macros with parameters. For example:

macro expr add3(x) = x+3;

y = add3(z);

This is equivalent to the following code:

y = z + 3;

This form of the macro is similar to the #define macro in that every time the add3() macro is
referenced, it is expanded in the manner shown above. In this example, an adder is generated in
hardware every time the add3() macro is used.

10.3.4 SELECT OPERATOR

The select(...) operator is used to mean ‘select at compile time’. Its general usage is:

select(Expression1, Expression2, Expression3)

Expression1 must be a compile time constant. If Expression1 evaluates to true then the Handel-C
compiler replaces the whole expression with Expression2. If Expression1 evaluates to false then the
Handel-C compiler replaces the whole expression with Expression3.

Comparison with conditional operator
The difference between select and the conditional operator is seen in this example:

Functions and macros: overview

 Page 158
www.agilityds.com

w = (width(x)==4 ? y : z);

The example generates hardware to compare the width of the variable x with 4 and set w to the value
of y or z depending on whether this value is equal to 4 or not.

This is probably not what was intended because both width(x) and 4 are constants. What was
probably intended was for the compiler to check whether the width of x was 4 and then simply replace
the whole expression above with y or z according to the value. This can be written as follows:

w = select(width(x)==4 , y , z);

In this example, the compiler evaluates the first expression and replaces the whole line with either
w=y; or w=z;. No hardware for the conditional is generated.

Combining with macros
This is more useful when macros are combined with this feature.

macro expr adjust(x, n) =
 select(width(x) < n, (0 @ x), (x <- n));

unsigned 4 a;
unsigned 5 b;
unsigned 6 c;

b = adjust(a, width(b));
b = adjust(c, width(b));

This example is for a macro that equalizes widths of variables in an assignment. If the right hand side
of an assignment is narrower than the left hand side then the right hand side must be padded with
zeros in its most significant bits. If the right hand side is wider than the left hand side, the least
significant bits of the right hand side must be taken and assigned to the left hand side.

The select(...) operator is used here to tell the compiler to generate different expressions depending
on the width of one of the parameters to the macro. The last two lines of the example could have
been written by hand as follows:

b = 0 @ a;
b = c <- 5;

The macro comes into its own if the width of one of the variables changes. Suppose that during
debugging, it is discovered that the variable a is not wide enough and needs to be 8 bits wide to hold
some values used during the calculation. Using the macro, the only change required would be to alter
the declaration of the variable a. The compiler would then replace the statement b = 0 @ a; with b = a
<- 5; automatically.

This form of macro also comes in useful when variables of undefined width are used. If the compiler is
used to infer widths of variables, it may be tedious to work out by hand which form of the assignment
is required. By using the select(...) operator in this way, the correct expression is generated without
you having to know the widths of variables at any stage.

Functions and macros: overview

 Page 159
www.agilityds.com

10.3.5 IFSELECT

ifselect checks the result of a compile-time constant expression at compile time. If the condition is true,
the following statement or code block is compiled. If false, it is dropped and an else condition can be
compiled if it exists. Thus, whole statements can be selected or discarded at compile time, depending
on the evaluation of the expression.

The ifselect construct allows you to build recursive macros, in a similar way to select. It is also useful
inside replicated blocks of code as the replicator index is a compile-time constant. Hence, you can use
ifselect to detect the first and last items in a replicated block of code and build pipelines.

Syntax
ifselect (condition)
 statement 1
[else
 statement 2]

Example
int 12 a;
int 13 b;
int undefined c;

ifselect(width(a) >= width(b))
 c = a;
else
 c = b;

c is assigned to by either a or b, depending on their width relationship.

Pipeline example
unsigned init;
unsigned q[15];
unsigned 31 out;

init = 57;
par (r = 0; r < 16; r++)
{
 ifselect(r == 0)
 q[r] = init;
 else ifselect(r == 15)
 out = q[r-1];
 else
 q[r] = q[r-1];
}

Functions and macros: overview

 Page 160
www.agilityds.com

10.3.6 RECURSIVE MACRO EXPRESSIONS

Preprocessor macros (those defined with #define) cannot generate recursive expressions. By
combining Handel-C macros (those defined with macro expr) and the select(...) operator, recursive
macros can express complex hardware simply. This type of macro is particularly important in Handel-
C where the exact form of the macro may depend on the width of a parameter to the macro.

Variable sign extension example
When assigning a narrow signed variable to a wider variable, the most significant bits of the wide
variable should be padded with the sign bit (MSB) of the narrow variable.

Value 4-bit
representation

Conversion to 8-bit
representation

-2 0b1110 0b11111110

6 0b0110 0b00000110

The following code suffices for a 4-bit to 8-bit conversion

int 8 x;
int 4 y;

x = y[3] @ y[3] @ y[3] @ y[3] @ y;

but it is tedious for variables that differ by a significant number of bits. It also does not deal with the
case when the exact widths of the variables are not known. What is needed is a macro to sign extend
a variable. For example:

macro expr copy(x, n) =
 select(n==1, x, (x @ copy(x, n-1)));

macro expr extend(y, m) =
 copy(y[width(y)-1], m-width(y)) @ y;

int a;
int b; // Where b is known to be wider than a

b = extend(a, width(b));

The copy macro generates n copies of the expression x concatenated together. The macro is
recursive and uses the select(...) operator to evaluate whether it is on its last iteration (in which case it
just evaluates to the expression) or whether it should continue to recurse by a further level.

The extend macro concatenates the sign bit of its parameter m-k times onto the most significant bits
of the parameter. Here, m is the required width of the expression y and k is the actual width of the
expression y.

The final assignment correctly sign extends a to the width of b for any variable widths where width(b)

Functions and macros: overview

 Page 161
www.agilityds.com

is greater than width(a).

Recursive macro expressions example
This example illustrates the generation of large quantities of hardware from simple macros. The
example is a multiplier whose width depends on the parameters of the macro. Although Handel-C
includes a multiplication operator as part of the language, this example serves as a starting point for
generating large regular hardware structures using macros.

The multiplier generates the hardware for a single cycle long multiplication operation from a single
macro. The source code is:

macro expr multiply(x, y) = select(width(x) == 0, 0,
 multiply(x \\ 1, y << 1) +
 (x[0] == 1 ? y : 0));
a = multiply (b , c);

At each stage of recursion, the multiplier tests whether the bottom bit of the x parameter is 1. If it is
then y is added to the ‘running total’. The multiplier then recurses by dropping the LSB of x and
multiplying y by 2 until there are no bits left in x. The overall result is an expression that is the sum of
each bit in x multiplied by y. This is the familiar long multiplication structure. For example, if both
parameters are 4 bits wide, the macro expands to:

a = ((b \\ 3)[0]==1 ? c<<3 : 0) +
 ((b \\ 2)[0]==1 ? c<<2 : 0) +
 ((b \\ 1)[0]==1 ? c<<1 : 0) +
 (b[0]==1 ? c : 0);

This code is equivalent to:

a = ((b & 8)==8 ? c*8 : 0) +
 ((b & 4)==4 ? c*4 : 0) +
 ((b & 2)==2 ? c*2 : 0) +
 ((b & 1)==1 ? c : 0);

which is a standard long multiplication calculation.

10.3.7 SHARED EXPRESSIONS

By default, Handel-C generates all the hardware required for every expression in the whole program.
This can mean that large parts of the hardware are idle for long periods. Shared expressions allow
hardware to be shared between different parts of the program to decrease hardware usage.

The shared expression has the same format as a macro expression but does not allow recursion. You
can use recursive macro expressions or let...in to generate recursive shared expressions.

Functions and macros: overview

 Page 162
www.agilityds.com

Example
a = b * c;
d = e * f;
g = h * i;

This code generates three multipliers. Each one will only be used once and none of them
simultaneously. This is a massive waste of hardware. You can improve the hardware efficiency with a
shared expression:

shared expr mult(x, y) = x * y;

a = mult(b, c);
d = mult(e, f);
g = mult(h, i);

In this example, only one multiplier is built and it is used on every clock cycle. If speed is required, you
can build three multipliers executing in parallel.

Warning
It is not always the case that less hardware is generated by using shared expressions because
multiplexors may need to be built to route the data paths. Some expressions use less hardware than
the multiplexors associated with the shared expression.

10.3.8 USING RECURSION TO GENERATE SHARED EXPRESSIONS

Although shared expressions cannot use recursion directly, macro expressions can be used to
generate hardware which can then be shared using a shared expression. For example, to share a
recursive multiplier you could write:

macro expr multiply(x, y) = select(width(x) == 0, 0,
 multiply(x \\ 1, y << 1) +
 (x[0] == 1 ? y : 0));

shared expr mult(x, y) = multiply(x, y);

a = mult(b, c);
d = mult(e, f);

The macro expression builds a multiplier and the shared expression allows that hardware to be shared
between the two assignments.

10.3.9 RESTRICTIONS ON SHARED EXPRESSIONS

Shared expressions must not be shared by two different parts of the program on the same clock cycle.
For example:

Functions and macros: overview

 Page 163
www.agilityds.com

shared expr mult(x, y) = x * y;

par
{
 a = mult(b, c);
 d = mult(e, f); // NOT ALLOWED
}

This is not allowed because the single multiplier is used twice in the same clock cycle.

You need to ensure that shared expressions in parallel branches are not shared on the same clock
cycle.

10.3.10 LET ... IN

let and in allow you to declare macro expressions within macro expressions. In this way, complex
macros may be broken down into simple ones, whilst still being grouped together in a single block of
code. They also provide easy sharing of recursive macros.

The let keyword starts the declaration of a local macro; the in keyword ends the declaration and
defines its scope.

Example
macro expr Fred(x) =
 let macro expr y = x*2; in
 y+3; // Returns x*2+3

The top line defines the macro name and parameters. The second line defines y within the macro
definition. The last line expresses the value of the macro in full.

Independent let ...in definitions
macro expr op(a, b) =
 let macro expr t2(x) = x * 2; in
 let macro expr d3(x) = x / 3; in
 let macro expr t4(x) = x * 4; in
 t2(a) + d3(b) + t4(a - b) + t2(b - a);

is equivalent to writing

macro expr op(a, b) = (a * 2) + (b / 3) + ((a-b) * 4) + ((b-a) * 2);

Related let ...in definitions
macro expr op(a, b) =
 let macro expr sum(x, y) = x + y; in
 let macro expr mult(x, y) = x * sum(x, y); in
 mult(a, b) - (b * b);

Functions and macros: overview

 Page 164
www.agilityds.com

sum is defined within the macro definition, then mult is defined using sum. This example is equivalent
to:

macro expr op(a, b) = (a * (a + b)) - (b * b);

Shared recursive macro
A recursive multiplier illustrating the way in which let...in can be used to share recursive macros.

shared expr mult(p, q) =
 let macro expr multiply(x, y) =
 select(width(x) == 0, 0, multiply(x \\ 1, y << 1)
 + (x[0] == 1 ? y : 0)); in
 multiply(p, q)

Scope of definitions
The inner macros are not accessible outside the outer macro

{
 chanout <unsigned 16> och;
 int 16 i, j, k;
 {
 macro expr Cube(x) =
 let macro expr Sqr(x) = x*x; in
 x * Sqr(x)
 i = Cube(3) // Correct use
 j = Sqr(3) // Error - out of scope
 }
 k = Cube(2); //Error - out of scope
}

10.3.11 MACRO PROCEDURES

Macro procedures may be used to replace complete statements to avoid tedious repetition while
coding. A single macro procedure can be expanded into a complex block of code. It generates the
hardware for the statement each time it is referenced.

The general syntax of macro procedures is:

macro proc Name(Params) Statement

Macros may be prototyped (like functions). This allows you to declare them in one file and use them in
another. A macro prototype consists of the name of the macro plus a list of the names of its
parameters. E.g.

macro proc work(x, y);

If you have local or static declarations within the macro procedure, a copy of the variable will be

Functions and macros: overview

 Page 165
www.agilityds.com

created for each copy of the macro.

Macro procedures that don't take any parameters require an empty parameter list. For example:

macro proc MyMacro ();

Example
macro proc output(x, y)
 {
 out ! x;
 out ! y;
 }

output(a + b, c * d);
output(a + b, c * d);

This example writes the two expressions a+b and c*d twice to the channel out. This example also
illustrates that the statement may be a code block - in this case two instructions executed sequentially.

It expands to 4 channel output statements.

10.3.12 MACRO PROCEDURES COMPARED TO PRE-PROCESSOR MACROS

Macro procedures differ from preprocessor macros in that they are not simple text replacements. The
statement section of the definition must be a valid Handel-C statement.

The following code is valid as a #define pre-processor macro but not as a macro procedure:

#define test(x,y) if (x!=(y<<2)) // not valid as a macro procedure as not a
complete statement

test(a,b)
{
 a++;
}
else
{
 b++;
}

Incomplete statements will not compile as macro procedures:

macro proc test(x,y) if (x!=(y<<2)) // Incomplete statement, will not
compile

A complete statement will not successfully replace an incomplete one:

Functions and macros: overview

 Page 166
www.agilityds.com

macro proc test(x,y) if (x!=(y<<2)); // Complete statement will compile

test(a,b) // will expand to if (x!=(y<<2));
{
 a++;
}
else // this else has no associated if
{
 b++;
}

Here, the macro procedure is not defined to be a complete statement so the Handel-C compiler
generates an error. This restriction provides protection against writing code which is generally
unreadable and difficult to maintain.

10.3.13 PREPROCESSOR MACROS

Simple macros
The preprocessor supports several types of macros. Simple macros (or manifest constants) involve
the simplest form of macro substitution and are defined with the form:

#define name sequence-subsitute

Any occurrences of the token name found in the source code are replaced with the token sequence
sequence-substitute, which may include spaces. All leading and trailing white spaces around the
replacement sequence are removed. For example:

#define FOO 1024
#define loop_forever while (1)

Parameterized macros
You can also define macros with arguments. This allows replacement text to be passed as
parameters. For example:

#define mul(A, B) A*B

This will replace

x = mul (2, 3);

with

x = 2 * 3;

Take care to preserve the intended order of evaluation when passing parameters. For example the
line

x = mul (a – 2, 3);

Functions and macros: overview

 Page 167
www.agilityds.com

will be expanded into

x = a – 2 * 3;

The multiplication is evaluated first, then the result subtracted from variable a. This is almost certainly
not the intention, and errors of this type may be difficult to locate.

If a parameter name is preceded by a # when declared as part of a macro, it is expanded into a
quoted string by the preprocessor. E.g., if a macro is defined:

#define quickassert(X) assert (width(X)==1,O "Width of " #X " is not
1!\n");

The line:

quickassert(length);

will expand into:

assert (width(X)==1,O "Width of length is not 1!\n");

Undefining identifiers
To undefine an identifier, the #undef directive may be used. E.g.

#undef FOO

Note that no error will occur if the identifier has not previously been defined.

 Preprocessor directives cannot be used unexpanded in a library; use macro

procedures instead.

Functions and macros: overview

 Page 168
www.agilityds.com

10.3.14 MACRO/SHARED EXPRS/PROCS: SYNTAX

macro_declaration ::= macro_proc_decl
 | macro_expr_decl

macro_proc_decl ::= [static | extern]
 macro_proc_spec identifier
 [([macro_param{, macro_param}])] statement
 [with initializer ;]

macro_expr_decl ::= [static | extern]
 macro_expr_spec identifier
 [([macro_param{, macro_param}])] ;
 | [static | extern] macro_expr_spec identifier
 [([macro_param{, macro_param}])] = let_initializer
 [with initializer] ;

macro_proc_spec ::= macro proc

macro_expr_spec ::= macro expr
 | shared expr

let_initializer ::= initializer
 | let macro_expr_decl in let_initializer

macro_param ::= identifier

Introduction to timing

 Page 169
www.agilityds.com

11 INTRODUCTION TO TIMING
A Handel-C program executes with one clock source for each main statement. It is important to be
aware exactly which parts of the code execute on which clock cycles. This is not only important for
writing code that executes in fewer clock cycles but may mean the difference between correct and
incorrect code when using Handel-C’s parallelism. Experienced programmers can immediately tell
which instructions execute on which clock cycles. This information becomes very important when your
program contains multiple interacting parallel processes.

Knowing about clock cycles also becomes important when considering interfaces to external
hardware. It is important to understand timing issues before moving on to implementing such
interfaces because it is likely that the external device will place constraints on when signals should
change.

Avoiding certain constructs has a dramatic influence on the maximum clock rate that your Handel-C
program can run at.

11.1 STATEMENT TIMING
The basic rule for working out the number of cycles used in a Handel-C program is:

 Assignment and delay take 1 clock cycle. Everything else is free.

• One clock cycle is used every time you write an assignment statement or a delay statement.
releasesema also uses one clock cycle.
A special case statement is supported of the form:
a = f(x);
to allow function calls which take multiple clock cycles.
• Channel communications use one clock cycle in the same clock domain if both ends are ready to
communicate. If one of the branches is not ready for the data transfer then execution of the other
branch waits until both branches become ready.
• You can write any other piece of code and not use any clock cycles to execute it.

11.1.1 EXAMPLE TIMINGS

Statements
x = y;
x = (((y * z) + (w * v))<<2)<-7;

Each of these statements takes one clock cycle.

Introduction to timing

 Page 170
www.agilityds.com

Notice that even the most complex expression can be evaluated in a single clock cycle. Handel-C
builds the combinational hardware to evaluate such expressions; they do not need to be broken down
into simpler assembly instructions as would be the case for conventional C.

Parallel statements
par
{
 x = y;
 a = b * c;
}

This code executes in a single cycle because each branch of the parallel statement takes only one
clock cycle. This example illustrates the benefits of parallelism. You can have as many non-
interdependent instructions as you wish in the branches of a parallel statement. The total time for
execution is the length of time that the longest branch takes to execute. For example:

par
{
 x = y;
 {
 a = b;
 c = d;
 }
}

This code takes two clock cycles to execute. On the first cycle, x = y and a = b take place. On the
second clock cycle, c = d takes place. Since both branches of the par statement must complete before
the par block can complete, the first branch delays for one clock cycle while the second instruction in
the second branch is executed.

While loop
x = 5;
while (x>0)
{
 x--;
}

This code takes a total of 6 clock cycles to execute. One cycle is taken by the assignment of 5 to x.
Each iteration of the while loop takes 1 clock cycle for the assignment of x-1 to x and the loop body is
executed 5 times. The condition of the while loop takes no clock cycles as no assignment is involved.

Introduction to timing

 Page 171
www.agilityds.com

For loop
for (x = 0; x < 5; x ++)
{
 a += b;
 b *= 2;
}

This code has an almost direct equivalent:

{
 x = 0;
 while (x<5)
 {
 a += b;
 b *= 2;
 x ++;
 }
}

This code takes 16 clock cycles to execute. One is required for the initialization of x and three for
each execution of the body. Since the body is executed 5 times, this gives a total of 16 clock cycles.

Decision
if (a>b)
{
 x = a;
}
else
{
 x = b;
}

This code takes exactly one clock cycle to execute. Only one of the branches of the if statement is
executed, either x = a or x = b. Each of these assignments takes one clock cycle. Notice again that
no time is taken for the test because no assignment is made. A slightly different example is:

if (a>b)
{
 x = a;
}

Here, if a is not greater than b, there is no else branch. This code therefore takes either 1 clock cycle
if a is greater than b or no clock cycles if a is not greater than b.

Channels
Channel timings can be complex. The simplest example is with a channel link of fifolength 0 (default):

Introduction to timing

 Page 172
www.agilityds.com

chan unsigned 8 link;
par
{
 link ! x; // Transmit
 link ? y; // Receive
}

This code takes a single clock cycle to execute because both the transmitting and receiving branches
are ready to transfer at the same time. All that is required is the assignment of x to y which, like all
assignments, takes 1 clock cycle. A more complex example is:

chan unsigned 8 link;
par
{
 { // Parallel branch 1
 a = b;
 c = d;
 link ! x;
 }

 link ? y; // Parallel branch 2
}

Here, the first branch of the par statement takes three clock cycles to execute. However, the second
branch of the par statement also takes three clock cycles to execute because it must wait for two
cycles before the transmitting branch is ready. The usage of clock cycles is as follows:

Cycle Branch 1 Branch 2

1 a = b; delay

2 c = d; delay
3 Channel output Channel input

FIFOs
FIFOs add another layer of complexity.

Introduction to timing

 Page 173
www.agilityds.com

chan unsigned link_FIFO with {fifolength=4};
int i = 0;

par
{
 while(1)
 {
 i++; //Cannot be in parallel to channel write
 //Do not change a variable in parallel with sending
it
 link_FIFO ! i; // Parallel branch 1
 }
 // Parallel branch 2
 a = b; //Parallel code: used here instead of delay
 c = d;
 link_FIFO ? y;
 }
}

Here, the write branch of the par statement takes two clock cycles to execute and the read branch
takes three clock cycles to execute. If it were a simple channel, the write branch would have to wait
until the channel had been read, before it could write the next value of i. However, because it is a
FIFO, the write branch can keep writing until the FIFO is full. On the third clock cycle, the read branch
reads the first value from the FIFO.

When the FIFO is full the first branch must wait until the FIFO is read from before it can write to it
again.

 The precise timing of FIFOs depends on many different factors. The

throughput will be close to one word per cycle for sufficiently large FIFOs.

FIFO: channel and FIFO comparison code
This example shows a loop using a channel to communicate between two processes.

Introduction to timing

 Page 174
www.agilityds.com

Process A:
static unsigned 4 Val = 1;
while(1)
{
 Val = Val[2:0]@Val[3];
 MyChan ! Val; // Send
 delay;
}

Process B:
static unsigned 4 Count;
while(1)
{ // wait 0 or more cycles
 while (Count != 0)
 {
 Count--;
 }
 MyChan ? Count; // Receive
 delay;
}
The delay statements in each process always take place on the same clock cycle in the same clock
domain.

Example with FIFO
This shows the same process, but using a FIFO with fifolength 4. The loop in process A would execute
4 times without pausing and then run after each time process B reads from the FIFO.

Introduction to timing

 Page 175
www.agilityds.com

chan myFIFO with {fifolength = 4};

Process B:
static unsigned 4 Count;
while(1)
{ // wait 0 or more cycles
 while (Count != 1)
 {
 Count--;
 }
 MyFIFO ? Count; // Receive
 delay;
}

Process A:
static unsigned 4 Val = 1;
while(1)
{
 Val = Val[2:0]@Val[3];
 MyFIFO ! Val; // Send
 delay;
}
 See the summary of statement timings for more detail.

11.1.2 STATEMENT TIMING SUMMARY

Introduction to timing

 Page 176
www.agilityds.com

Statement Timing

{...} Sum of all statements in
sequential block

par {...} Length of longest branch in
block

Function(), break, goto,
continue

No clock cycles

return(Expression); 1 clock cycle if Expression
is assigned on return,
otherwise none.

Variable = Expression; 1 clock cycle

Variable ++; 1 clock cycle
Variable --; 1 clock cycle
++ Variable; 1 clock cycle
-- Variable; 1 clock cycle
Variable += Expression; 1 clock cycle
Variable -= Expression; 1 clock cycle
Variable *= Expression; 1 clock cycle
Variable /= Expression; 1 clock cycle
Variable %= Expression; 1 clock cycle
Variable <<= Constant; 1 clock cycle

Variable >>= Constant; 1 clock cycle
Variable &= Expression; 1 clock cycle
Variable |= Expression; 1 clock cycle
Variable ^= Expression; 1 clock cycle
Channel ? Variable; 1 clock cycle when

transmitter is ready (in same
clock domain)

Channel ! Expression; 1 clock cycle when receiver
is ready (in same clock
domain)

if (Expression) {...} else {...} Length of executed branch
while (Expression) {...} Length of loop body *

number of iterations
do {...} while (Expression); Length of loop body *

number of iterations

Introduction to timing

 Page 177
www.agilityds.com

for (Init; Test; Iter) {...} Length of Init + (Length of
body + length of Iter) *
number of iterations

switch (Expression) {...} Length of executed case
branch

prialt {...} 1 clock cycle for case
communication when other
party is ready plus length of
executed case branch
or length of default branch if
present and no
communication case is ready
or infinite if no default branch
and no communication case
is ready

releasesema(); 1 clock cycle
delay; 1 clock cycle

 The Handel-C compiler may insert delay statements to break combinational

loops.

11.2 AVOIDING COMBINATIONAL LOOPS
If you wish to wait for a variable to be modified in a parallel process before continuing, you might write:

while (x!=3); // WARNING!!

This is bad Handel-C code because it generates a combinational loop in the logic (This is because of
the way that Handel-C expressions are built to evaluate in zero clock cycles.)

This is easier to see if it is written as

while (x!=3)
{
 // wait until x == 3
}

This empty loop must be broken by changing the code to:

while (x!=3)
{
 delay;
}

Introduction to timing

 Page 178
www.agilityds.com

This code takes no longer to execute but does not contain a combinational loop because of the clock
cycle delay in the loop body.

The Handel-C compiler spots this form of error, inserts the delay statement, and generates a warning.
It is considered better practice to include the delay statement in the code to make it explicit

Similar problems occur with do ... while loops and switch statements in similar circumstances. for
loops with no iteration step can also cause combinational loops.

Further combinational loop code example
Code may look correct but still include an empty loop. For example:

while (x!=3)
{
 if (y>z)
 {
 a++;
 }
}

This if statement may take zero clock cycles to execute if y is not greater than z so even though this
loop body does not look empty a combinational loop is still generated. This is more obvious written as

while (x!=3)
{
 if (y>z)
 {
 a++;
 }
 else
 {
 // do nothing
 }
}

The solution is to add the else part of the if construct as follows:

Introduction to timing

 Page 179
www.agilityds.com

while (x!=3)
{
 if (y>z)
 {
 a++;
 }
 else
 {
 delay;
 }
}

11.3 PARALLEL ACCESS TO VARIABLES
The rules of parallelism state that the same variable must not be accessed from two separate parallel
branches. This avoids resource conflicts on the variables.

The rule may be relaxed to state that the same variable must not be assigned to more than once on
the same clock cycle but may be read as many times as required. This gives powerful programming
techniques. For example:

par
{
 a = b;
 b = a;
}

This code swaps the values of a and b in a single clock cycle.

Since exact execution time may be run-time dependent, the Handel-C compiler cannot determine
when two assignments are made to the same variable on the same clock cycle. You should therefore
check your code to ensure that the relaxed rule of parallelism is still obeyed.

Example
Using this technique, a four-place queue can be written:

Introduction to timing

 Page 180
www.agilityds.com

while(1)
{
 par
 {
 int x[3];

 x[0] = in;
 x[1] = x[0];
 x[2] = x[1];
 out = x[2];
 }
}

The value of out is the value of in delayed by 4 clock cycles. On each clock cycle, values will move
one place through the x array. For example:

Clock in x[0] x[1] x[2] out

1 5 0 0 0 0
2 6 5 0 0 0
3 7 6 5 0 0
4 8 7 6 5 0
5 9 8 7 6 5
6 10 9 8 7 6
7 11 10 9 8 7
8 12 11 10 9 8
9 13 12 11 10 9

11.4 DETAILED TIMING EXAMPLE
This is an analyzed example that generates signals tied to real-world constraints. It shows the
generation of signals for a real time clock. The signals required are for microseconds, seconds,
minutes and hours.

The hardware generated will eventually be driven from an external clock. In order to write the program,
the rate of this clock must be known. It has been assumed to be 5 MHz on pin P1.

The loop body takes one clock cycle to execute. The Count variable is used to divide the clock by 5 to
generate microsecond increments. As each variable wraps round to zero, the next time step up is
incremented.

Introduction to timing

 Page 181
www.agilityds.com

set clock = external "P1";
void main(void)
{
 unsigned 20 MicroSeconds;
 unsigned 6 Seconds;
 unsigned 6 Minutes;
 unsigned 16 Hours;
 unsigned 3 Count;

 par
 {
 Count = 0;
 MicroSeconds = 0;
 Seconds = 0;
 Minutes = 0;
 Hours = 0;
 }
 while (1)
 {
 if (Count!=4)
 Count++;
 else
 par
 {
 Count = 0;
 if (MicroSeconds!=999999)
 MicroSeconds++;
 else
 par
 {
 MicroSeconds = 0;
 if (Seconds!=59)
 Seconds++;
 else
 par
 {
 Seconds = 0;
 if (Minutes!=59)
 Minutes++;
 else
 par
 {
 Minutes = 0;

Introduction to timing

 Page 182
www.agilityds.com

 Hours++;
 }
 }
 }
 }
 }
}

11.5 TIME EFFICIENCY OF HANDEL-C HARDWARE
Handel-C requires that the clock period for a program is longer than the longest path through
combinational logic in the whole program. This means that, for example, once FPGA or PLD place
and route has been completed, the maximum clock rate for the system can be calculated from the
reciprocal of the longest path delay in the circuit.

For example, suppose the FPGA place and route tools calculate that the longest path delay between
flip-flops in a design is 70ns. The maximum clock rate that that circuit should be run at is then 1/70ns =
14.3MHz.

If this calculated rate is not fast enough for the system performance or real time constraints you can
optimize your program to reduce the longest path delay and increase the maximum possible clock
rate. You can also use the retiming option to try and match your target clock rate.

One standard technique for optimizing efficiency is to use pipelining.

11.5.1 REDUCING LOGIC DEPTH

Certain operations in Handel-C combine to produce deep logic. Deep logic results in long path delays
in the final circuit so reducing logic depth should increase clock speed.

Guidelines for reducing logic depth
• Division and modulo operators produce the deepest logic. Multiplication also produces deep logic.
A single cycle divide, mod or multiplier produces a large amount of hardware and long delays through
deep logic so you should avoid using them wherever possible.
• Most common division and multiplications can be done with the shift operators. Also consider
using a long multiplication with a loop, shift and add routine or a pipelined multiplier.
• Most common modulo operations can be done with the AND operator.
• Wide adders require deep logic for the carry ripple. Consider using more clock cycles with shorter
adders.
• Avoid greater than and less than comparisons - they produce deep logic.
• Reduce complex expressions into a number of stages.
• Avoid long strings of empty statements. Empty statements result from, for example, missing else
conditions from if statements.

Introduction to timing

 Page 183
www.agilityds.com

Adder example
To reduce a single, 8-bit wide adder to 3, narrower adders:

unsigned 8 x;
unsigned 8 y;
unsigned 5 temp1;
unsigned 4 temp2;

par
{
 temp1 = (0@(x<-4)) + (0@(y<-4));
 temp2 = (x \\ 4) + (y \\ 4);
}
x = (temp2+(0@temp1[4])) @ temp1[3:0];

Comparison example
while (x<y)
{

 x++;
}

can be replaced with:

while (x!=y)
{

 x++;
}

The == and != comparisons produce much shallower logic although in some cases it is possible to
remove the comparison altogether. Consider the following code:

Introduction to timing

 Page 184
www.agilityds.com

unsigned 8 x;

x = 0;
do
{

 x = x + 1;
} while (x != 0);

This code iterates the loop body 256 times but it can be re-written as follows:

unsigned 9 x;

x = 0;
do
{

 x = x + 1;
} while (!x[8]);

By widening x by a single bit and just checking the top bit, we have removed an 8-bit comparison.

Complex expression example
x = a + b + c + d + e + f + g + h;

reduces to:

par
{
 temp1 = a + b;
 temp2 = c + d;
 temp3 = e + f;
 temp4 = g + h;
}
par
{
 temp1 = temp1 + temp2;
 temp3 = temp3 + temp4;
}
x = temp1 + temp3;

This code takes three clocks cycles as opposed to one but each clock cycle is much shorter and so
the rest of the circuit should be speeded up by the faster clock rate permitted.

Introduction to timing

 Page 185
www.agilityds.com

Empty statement example
if (a>b)
 x++;
if (b>c)
 x++;
if (c>d)
 x++;
if (d>e)
 x++;
if (e>f)
 x++;

If none of these conditions is met then all the comparisons must be made in one clock cycle. By filling
in the else statements with delays, the long path through all these if statements can be split at the
expense of having each if statement take one clock cycle whether the condition is true or not.

11.5.2 PIPELINING

A classic way to increase clock rates in hardware is to pipeline. A pipelined circuit takes more than one
clock cycle to calculate any result but can produce one result every clock cycle. The trade off is an
increased latency for a higher throughput so pipelining is only effective if there is a large quantity of
data to be processed: it is not practical for single calculations.

Introduction to timing

 Page 186
www.agilityds.com

Pipelined multiplier example
unsigned 8 sum[8];
unsigned 8 a[8];
unsigned 8 b[8];
//ina.dat is a data file. You must provide your own
chanin inputa with {infile = "ina.dat"};
chanin inputb with {infile = "ina.dat"};
chanout output with {outfile = "out.dat"};

par
{
 while(1)
 inputa ? a[0];

 while(1)
 inputb ? b[0];

 while(1)
 output ! sum[7];

 while(1)
 {
 par
 {
 macro proc level(x)
 par
 {
 sum[x] = sum[x - 1] +
 ((a[x][0] == 0) ? 0 : b[x]);
 a[x] = a[x - 1] >> 1;
 b[x] = b[x - 1] << 1;
 }

 sum[0] = ((a[0][0] == 0) ? 0 : b[0]);
 par (i=1; i <=7; i++)
 {
 level (i);
 }
 }
 }
}

This multiplier calculates the 8 LSBs of the result of an 8-bit by 8-bit multiply using long multiplication.
The multiplier produces one result per clock cycle with a latency of 8 clock cycles. This means that

Introduction to timing

 Page 187
www.agilityds.com

although any one result takes 8 clock cycles, you get a throughput of 1 multiply per clock cycle. Since
each pipeline stage is very simple, combinational logic is shallow and a much higher clock rate is
achieved than would be possible with a complete single cycle multiplier.

At each clock cycle, partial results pass through each stage of the multiplier in the sum array. Each
stage adds on 2n multiplied by the b operand if required. The LSB of the a operand at each stage tells
the multiply stage whether to add this value or not. Stages are generated with a macro procedure
instantiated several times using a replicator

Operands are fed in on every clock cycle through a[0] and b[0]. Results appear 8 clock cycles later on
every clock cycle through sum[7].

Clocks overview

 Page 188
www.agilityds.com

12 CLOCKS OVERVIEW
You can have multiple clocks interfacing with your design. Each main() function must be associated
with a single clock. If you have more than one main function in the same source file, they must all use
the same clock.

Clocks may be fed from expressions (internal clocks) or fed from a pin (external clocks).

The current clock may be referred to using the keyword _ _clock

You can specify the maximum delay in MHz allowed between components fed from a clock by using
the rate specification.

The general syntax of the clock specification is:

set clock = Location with {Rate_spec, periodSpec};

If you are communicating between clock domains, you also need to set timing specifications
(resolutiontime or minperiod). These control the synchronization hardware generated.

You must specify a clock. When generating simulation output, a dummy clock such as 'set clock =
external "P1";' is valid.

12.1 LOCATING THE CLOCK
Since each Handel-C main() code block generates synchronous hardware, a single clock source is
required for each one.

The general syntax of the clock specification is:

set clock = Location;

Location may be any of the following:

Location Meaning

internal Expression Clock from expression
internal_divide Expression
Factor

Clock from expression with
integer division

external [Pin] Clock from device pin
external_divide [Pin]
Factor

Clock from device pin with
integer division

12.1.1 EXTERNAL CLOCKS

External clocks may be accessed by associating the clock with a specific pin using set clock external =
"pin_Name" or set clock external_divide = "pin_Name" factor, where the external_divide keyword is a

Clocks overview

 Page 189
www.agilityds.com

constant integer. For example:

set clock = external "P35";
set clock = external_divide "P35" 3;
set clock = external_divide 3;

The first of these examples specifies a clock taken from pin P35. The second specifies a clock taken
from pin P35 which is divided on the FPGA/PLD by a factor of 3. The third option shows a clock
divided by 3 with no pin number specified.

When the pin number is omitted, the place and route tools will choose an appropriate pin. Omitting pin
specifications can speed up the clock rate of the design.

You can also define an interface that reads an external clock. If the clock is associated with a specific
pin, you can use the interface sort bus_in. You would only need to do this if the external clock has
been divided, otherwise you can use the intrinsic __clock.

Example
interface bus_in(unsigned 1 in with {clockport=1})
 InputBus() with {data={"Pin1"}};
set clock = external_divide "Pin1" 4;

You can now use InputBus.in to get an undivided external clock.

12.1.2 INTERNAL CLOCKS FED FROM EXPRESSIONS

You can set the clock to be any expression or any expression divided by a given factor.

set clock = internal <Expression>;

set clock = internal_divide <Expression> factor;

The clock division factor specified with the internal_divide keyword must be a constant integer.

Example
This allows you to set the clock to a value read from an interface.

interface port_in(unsigned 1 clk with {clockport = 1}) ClockPort();
set clock = internal ClockPort.clk;

12.2 CURRENT CLOCK
The current clock used by a function can be referenced using the keyword __clock. This allows the
function to pass the current clock to an external interface. The value of the system variable __clock will
be the value after any divide. The clock may be an internal or an external clock.

Clocks overview

 Page 190
www.agilityds.com

Example
The code below shows the assignment of the current clock to a port in an interface.

interface reg32x1k() registers(unsigned addr=address,
 unsigned data=data_in, unsigned 1 clk = __clock,
 unsigned out = write);

12.3 MULTIPLE CLOCK DOMAINS
You can have multiple clock domains in your Handel-C design by declaring more than one main()
function. If you have more than one main() function in the same source file, they must all use the same
clock. The clock is defined in each file using the set clock construct.

You can communicate between clock domains by:

• using channels with time constraints set on the clock
• using a defined custom interface. You cannot use multiple clock domains within the pre-defined
Handel-C interface sorts.
Variables, signals and functions cannot be written to by one clock domain and read in another.

Communicating between clock domains means that you need to consider metastability issues.

 If you reset one clock domain without synchronously resetting any clock

domains that it communicates with, the communicating channels will go to an undefined state.

12.3.1 CHANNELS COMMUNICATING BETWEEN CLOCK DOMAINS

Channels that connect between clock domains can only be written to in a single domain and read from
in a single domain. Their first use defines their direction and the domains in which they transmit and
receive. If you attempt to re-use the channel in a different direction or to or from a different clock
domain, the compiler generates an error.

Channels used between clock domains must be defined in one file and then declared as extern in
another.

The timing between domains is unspecified, but the transmission is guaranteed to occur provided
metastability is resolved. If fifolength is 0, both sides will wait until the transmission is certain to
complete. Otherwise, the channel will write as soon as the FIFO is ready (and has space) and read as
soon as the FIFO is ready (and isn't empty).

If you use channels to communicate between clock domains you must specify the rate and the
resolutiontime for both clocks.

Clocks overview

 Page 191
www.agilityds.com

 Most cases will be dealt with by setting the resolution time to three-quarters of

the clock period.

Timing constraints are ignored for VHDL/Verilog outputs. If you are using VHDL/Verilog, you can
either:

• synthesise the channel communication as EDIF, along with its timing constraints, and instantiate
this from VHDL

or

• use a FIFO provided by the synthesis tool provider.

Example
For a 10ns clock

set clock = external "A22" with {rate=100, resolutiontime=7.5};
Note that the rate is in MHz and the resolutiontime is in nanoseconds.

If you need to adjust the channel timing due to latency issues, you may do so by adjusting the
resolutiontime and the number of flip-flops used to prevent metastability being propagated through the
circuit.

 If the resolution time is set incorrectly then intermittent failures due to

metastability may cause the generated hardware to be unreliable. You must test channels
communicating between clock domains extremely thoroughly (unless you know that resolutiontime is
sufficiently long to guarantee an acceptable probability of failure).

Timing issues for channels communicating between clock domains
Crossdomain channels need timing constraints to function correctly. The EDIF backend produces the
required constraints but the Verilog and VHDL backends do not. There are several possible solutions:

• Use native FIFOs where available. Currently implemented for Xilinx Virtex-4 and later FPGAs, see
Native FIFOs.
• Use the blackbox specification to generate black boxes instead of cross-domain FIFOs and then
replace the non-synthesisable prototype of BlackBoxFIFO in either agility.vhd or agility.v with a reliable
implementation that already has the required constraints in a form understood by the synthesis tool
used.
• Use the DK implementation of FIFOs but implement the required constraints for cross-domain
synchronizers and cross-domain paths. There are non-synthesisable implementations in agility.vhd or
agility.v that can be used for simulation. See HDL channel constraints.

If constraints are not used, the timing of channels across clock domains is unspecified. The values

Clocks overview

 Page 192
www.agilityds.com

read into i and j may differ in the example below, as the reads may not complete on the same clock
cycle.

Domain 1:
set clock = external with { paranoia=1, minperiod=2.0,
unconstrainedperiod=9, rate=101 };

chan <unsigned 8> ch1, ch2;

unsigned 8 i = 0;
while (1) par
{
 while (1) i ++;
 ch1 ! i;
 ch2 ! i;
}

Domain 2:
set clock = external with { minperiod=2.0, unconstrainedperiod=10, rate=100
}

extern chan ch1, ch2;

unsigned 8 i, j;

while (1)
{
 par {
 ch1 ? j;
 ch2 ? i;
 }
}

Channel communication example
This example uses a channel to communicate between two clock domains. One clock domain runs at
half the speed of the other.

Clocks overview

 Page 193
www.agilityds.com

/*
 * File: receive.hcc: primary clock domain
 */

set clock = external "A22" with { rate=100, resolutiontime = 7.5 };
unsigned 4 result;
interface bus_out() O(unsigned o = result) with {warn = 0};

//channel defined in other file
extern chan unsigned 4 ReturnData;

void main(void)
{
 while(1)
 {
 delay;
 //program will wait until data received
 ReturnData ? result;
 }
}

/*
 * File: transmit.hcc:secondary clock domain,
 * running at half the speed of the primary one
 */

set clock = external_divide "R25" 2;

chan unsigned 4 ReturnData; //channel must have global scope

void main(void)
{
 static unsigned 4 x;

 while(1)
 {
 x++;
 ReturnData ! x;
 }
}

Clocks overview

 Page 194
www.agilityds.com

Example: channels between clock domains
//File: transmit.hcc
chan 8 c ; // channel must have global scope

set clock = external "P1" with (paranoia =2);
void main(void)
{
 int 8 x, y;
 c ! x; //program will wait until data successfully transmitted
 c ! y;
}

//File: receive.hcc
extern chan c;

set clock = external "P2";
void main(void)
{
 int 8 p, q;

 c ? p;
 c ? q;
}

Resetting channels
When startup="immediate" is specified in any clockdomain connected to another clockdomain via a
channel, neither domain may attempt to communicate over that channel until both clockdomains have
started. That is, after the first clock edge following the reset signal de-assertion.

 Communication before both clockdomains have started will result in lost data.

There are no restrictions when startup="safe" is specified in both clockdomains.

Crossdomain channels may not exhibit the specified length when the receiving clockdomain has not
started yet. This is because the implementation pipelines the datapath in the receiving domain in order
to decrease the length of the critical path.

HDL channel constraints
When fifokind="dkfifo" is used, crossdomain channels output by the VHDL or Verilog backends are

Clocks overview

 Page 195
www.agilityds.com

implemented in terms of two primitives that require timing constraints in order to function correctly.

The purpose of a CrossdomainSynchroniser is to copy the data on its input in one clockdomain to its
output in another. There is no constraint on the amount of time it can take to do this, however it needs
to guarantee that the output is not metastable. It also needs to ensure that as long as only one bit of
the input changes per clock cycle in the sending domain, the value of the output will transition once
from the old value to the new one. The usual implementation is as a chain of registers. The minperiod
constraint needs to be applied as shown. Further registers can be added to the receiving domain to
increase reliability. All registers must be initialized to zero.

A RegisterPair is simply a pair of registers, each in one clockdomain. The path between them needs to
be constrained to (paranoia+1)*(period of receiving domain).

Managing channel timing
The timing of channels between clock domains is controlled by:

• the number of flip-flops used to resolve metastability (this is set by the paranoia specification,
defaulting to 1)
• the value of resolutiontime (how long it is before you sample a signal

OR

the value of minperiod (how long is available before the signal is moved on)

• the value of unconstrainedperiod. This is the timing constraint on the compiler generated
synchronizing control paths.

tr time to transfer between domains (paranoia in domain B + 1) X tp

tp clock period in domain B

Clocks overview

 Page 196
www.agilityds.com

tup unconstrainedperiod

tmp minperiod

Using clock specifications to manage timing between clock domains
You can use clock specifications to specify the timing of the synchronization hardware. Set the values
on a clock to affect the timing of ALL channels to and from that domain.

set clock = external "C43" with {rate = 40, resolutiontime = 20};
This gives a clock period of 25ns. It assumes that 20ns is required for the control signal to stabilize,
leaving 5ns for it to be routed onwards.

RESOLUTION TIME AND PROPAGATION TIME IN ONE CLOCK TICK

If it takes longer for the data to stabilize, you can increase the number of flip-flops used to stabilize the
data by setting the paranoia specification. In this case, the stabilization time in each clock period is
(resolutiontime / paranoia)

If paranoia is set to 3, then the resolution time required in each clock tick is 1/3 the value of
resolutiontime, giving a larger possible value for data to be routed on.

Speed versus metastability
When you increase the paranoia specification on the clock domains, you increase the latency of
channels into the domain. The value of the paranoia specification sets the number of flip-flops used to
give the synchronization data time to stabilize. The higher the value of paranoia, the more stable the

Clocks overview

 Page 197
www.agilityds.com

data and the greater the latency.

Setting paranoia to 0 to decrease latency
If you know there is not going to be a metastability problem (e.g, the clock domains you are working
with have a low clock rate or are synchronous with each other), you may choose to set paranoia to 0.
In this case, you must use the minperiod constraint rather than the resolutiontime constraint.

tr time to transfer between domains (clock period in domain B when paranoia =
0)

tup unconstrainedperiod

tmp minperiod

Latency between clock domains
The latency of channels between clock domains is unpredictable. It is dependent on:

• the value of resolutiontime
• the value of paranoia
• the value of unconstrainedperiod
For FIFOs whose size is an exact power of two, latency is higher.

In addition, it may be affected by

• the way a channel has been implemented in hardware the sequence of communications sent
across the channel
• the number of clock cycles elapsed since power-up
• environmental factors such as temperature and supply voltage
• the individual FPGA

Clocks overview

 Page 198
www.agilityds.com

Program your code so it can deal with variable latency. It is unsafe to rely on a particular observed
latency, either in hardware or in simulation.

 Do not make assumptions about the latency of cross clock-domain channels

The effect of constraining unconstrained paths
Unconstrained paths are created in the synchronization hardware used to connect channels across
clock domains.

set clock = external "C43" with {rate = 40, unconstrainedperiod = 100,
minperiod=5};
unconstrainedperiod can be given a value to stop place and route tools giving an unconstrained period
warning. If latency is critical in your design, note that as the value of unconstrainedperiod increases,
latency may increase.

Throughput between clock domains using channels
To ensure a throughput of one word per cycle between clock domains, you need to have a sufficiently
large FIFO.

The table below shows the average clock cycles needed to send 1000 words from one clock domain
to another of a similar frequency and back again. It was measured in the originating domain using
timing accurate simulation of a back-annotated netlist.

Clocks overview

 Page 199
www.agilityds.com

paranoia fifolength

0 1 2

0 5008 7010 9011
1 5008 7010 9011
2 3009 5011 7012
3 1341 2010 5013
4 1808 2513 4013
5 1510 2155 3215
6 1343 1888 2731
7 1008 1010 2389
8 1102 1443 2269
9 1012 1348 1926
10 1012 1265 1771
11 1012 1192 1634
12 1012 1128 1521
13 1012 1070 1422
14 1012 1010 1354
15 1008 1010 1304
16 1012 1018 1239
17 1012 1018 1188
18 1012 1018 1142
19 1012 1018 1060
20 1012 1018 1060
This demonstrates that timing between different clock domains cannot be predicted accurately. FIFOs
with a length of a power of 2 are slower. Other differences may be accounted for by layout.

It will not vary widely over different devices and different clock rates.

Synchronization between clock domains
You may use a zero-width channel to convey synchronization information between clock domains.
Sending 0 along a 0 width channel will create the synchronization hardware, such that subsequent
statements will be synchronized.

For example, if you have two statements in different clock domains and you want one to execute if and
only if the other one does then you can do something like:

Domain 1:

Clocks overview

 Page 200
www.agilityds.com

chan unsigned 0 ch;
ch!0;
<statement 1>

Domain 2:

extern chan ch;
unsigned 0 junk;
ch?junk;
<statement 2>

In this example, each domain will wait for the other before statement 1 and statement 2 are executed

Using interfaces to communicate between clock domains
If you are using interfaces rather than channels to communicate between hardware components in
separate clock domains, you will need to insert resynchronizing hardware if it is not included in the
components. For example, if data is sent from port_out A in domain bbA and received from port_in B
in domain bbB, the data must be resynchronized to the clock in domain bbB.

Using interfaces: External resynchronizing example
This example shows the three files required to connect two EDIF blocks (bbA and bbB) which use
different clocks. The small files bbA.hcc and bbB.hcc compile to the EDIF code using the port_out
from and port_in to interfaces. The metastable.hcc file connects the two together and generates one
flip –flop that resynchronizes the data by reading the value from bbA into a variable.

File: metastable.hcc

Clocks overview

 Page 201
www.agilityds.com

/*
* Black box code to resynchronize
* Needs to be clocked from the reading clock
* (i.e. bbB.hcc's clock)
*/

int 1 x;
interface bbA(int 1 from) A();
interface bbB() B(int 1 to=x, unsigned 1 clk = __clock);

set clock = external "P1";
void main(void)
{
 while(1)
 {
 /*
 * stabilize the data by adding resynchronization FF
 */
 x = A.from;
 }
}

File: bbA.hcc

/*
* Domain bbA
* Compiles to bbA.edf
*/
interface port_in(unsigned 1 clk with { clockport = 1 }) clk();
set clock = internal clk.clk;
void main(void)
{
 int 1 y;
 interface port_out() from (int 1 from = y);
}

File: bbB.hcc

Clocks overview

 Page 202
www.agilityds.com

/*
*Domain bbB
* Compiles to bbB.edf
*/

set clock = external "P2";
void main(void)
{
 int 1 q;

 interface port_in(int 1 to) to();
 par
 {
 while(1)
 {
 q = to.to; // Read data
 }
 }
}

Internal resynchronizing example
The resynchronizing flip-flop can be placed in the file that reads the data from the foreign code block.

This example shows the three files required to connect two EDIF blocks (bbA and bbB) which use
different clocks. The small files bbA.hcc and bbB.hcc compile to the EDIF code using the port_out
from and port_in to interfaces. The toplevel.hcc file connects them together. The data is
resynchronized in the bbB.hcc file.

File: toplevel.hcc

Clocks overview

 Page 203
www.agilityds.com

/*
* Code to connect data between two cores
*/

interface bbA(int 1 from) A();
interface bbB() B(int 1 to=A.from);

File: bbA.hcc

/*
* Domain bbA
* Compiles to bbA.edf
*/
set clock = external "P1";
void main(void)
{
 int 1 y;
 interface port_out() from (int 1 from = y);
}

File: bbB.hcc

/*
*Domain bbB
* Complies to bbB.edf
*/

set clock = external "P2";
void main(void)
{
 int 1 q, y;

 interface port_in(int 1 to) to();
 while(1)
 {
 par
 {
 q = to.to; // Resynchronize data
 y = q;
 }
 }
}

Clocks overview

 Page 204
www.agilityds.com

12.3.2 SIMULATING MULTIPLE CLOCK DOMAINS

You may simulate your design by

• using the DK simulator
• untimed simulation of generated VHDL code
• simulation of back-annotated netlist
Note that as the timing accuracy of the simulation increases, it is harder to relate errors to the original
Handel-C code.

Using the DK simulator

 The DK simulator may not simulate the timing of channels between clock

domains identically to that in the generated hardware. You must not rely on observed latency or timing
behaviour in either simulation or hardware.

When you simulate designs with multiple clocks, you will get a Select Clock dialog in the GUI asking you
which clock you want to follow. If you want to synchronize the clocks in a simulation, use the
DKSync.dll plugin.

Targeting hardware and simulation

 Page 205
www.agilityds.com

13 TARGETING HARDWARE AND SIMULATION

13.1 RESETS
A reset is required to start a design. This may either be a reset on configuration, (only available for
RAM-based FPGAs) or a global reset. Since each Handel-C main() code block generates
synchronous hardware, a global reset can be defined for each one. If you have not specified a reset
for a clock domain, it will be reset on configuration.

 If your device does not support reset on configuration, you must specify a

reset using set reset.

13.1.1 SPECIFYING A GLOBAL RESET

set reset allows you to reset your device into a known state at any time. It is particularly useful for
setting up devices which are not in a known state at start up.

set reset causes the program to return to its initial state and resets global and static variables to their
initial values. However, it does not reset any RAMs (distributed or block). By default, the reset is
asynchronous and thus occurs immediately (it does not wait for the next clock tick.)

Specifying reset conditions
You may specify resets to be internal, external, active high, active low, synchronous or asynchronous.

The default is an active high, asynchronous reset. To change from this you can use the following
syntax:

set reset = external with {active_low=1};

specifies an active low reset.

set reset = external with {synchronous=1};

specifies a synchronous reset (i.e., one that does not occur until the next clock tick).

Examples
signal unsigned 1 x;
set reset = external "P1" with {active_low=1}; // resets when signal sent
to named pin

Targeting hardware and simulation

 Page 206
www.agilityds.com

set reset = external with {synchronous=1}; // connects to pin, but
doesn't specify which

13.1.2 CURRENT RESET VALUE: __RESET

The current reset state can be referenced using the __reset keyword. You can use the __reset
keyword to pass a reset condition to a black box.

For example:

set reset = external "P1";

interface UserBlock(unsigned 1 Status)
 UserBlockInstance(unsigned 1 reset_port = __reset);

13.2 INTERFACING WITH THE SIMULATOR
Communication with the simulator takes place over channels. They are declared using the keywords
chanin and chanout. Standard channel communication statements can then be used to transfer data.
It is assumed that channels to and from the simulator never block and will always complete a transfer
in one clock cycle.

 Channels to and from the simulator are declared using chanin and chanout

instead of chan.

The special channels chanin and chanout are normally connected to files. Only integer values can be
used as input data, and files connected to chanin must be correctly formatted. An unconnected
channel that outputs data to the simulator will be displayed in the debug window. You can declare
multiple channels for input and output and connect more than one channel to the same file, but you
cannot read from the same channel more than once in a clock cycle. If the simulation is still running
when the end of the file has been reached, the simulator will read in zeroes.

You cannot use chanin or chanout in a struct. Use pointers to chanin or chanout instead.

Targeting hardware and simulation

 Page 207
www.agilityds.com

Simple example
chanin unsigned Input with {infile = "../Data/source.dat"};
chanout unsigned Output;

input ? x;
output ! y;

This example declares two channels: one for input from the simulator and one for output to the
simulator. The input channel connects to a file managed by the simulator; the output channel connects
to the simulator's standard output (the debug window in the DK GUI).

Multiple channel example
chanin int 8 input_1 with
 {infile = "../Data/source_1.dat"};
chanin int 16 input_2 with
 {infile = "../Data/source_2.dat"};
chanout unsigned 3 output_1;
chanout char output_2;

int 8 a;
int 16 b;

input_1 ? a;
input_2 ? b;
output_1 ! (unsigned 3)(((0 @ a) + b) <- 3);
output_2 ! a;

When simulated, such a program displays the name of channels before outputting their value on the
simulating computer screen.

13.2.1 SIMULATOR INPUT FILE FORMAT

The data input file should have one number per line separated by newline characters (either DOS or
UNIX format text files may be used). Each number may be in any format normally used for constants
by Handel-C. You can only use integer values. Blank lines are ignored as are lines prefixed by //
(comments). For example:

56
0x34
0654
0b001001

//is a comment, blank lines ignored
27

Targeting hardware and simulation

 Page 208
www.agilityds.com

If EOF file is reached while reading an input file, zeroes will be read in until the simulation completes.

13.2.2 BLOCK DATA TRANSFERS

The Handel-C simulator has the ability to read data from a file and write results to another file. For
example:

chanin int 16 input with {infile = "in.dat"};
chanout int 16 output with {outfile = "out.dat"};

void main (void)
{
 while (1)
 {
 int value;

 input ? value;
 output ! value+1;
 }
}

This program reads data from the file in.dat and writes its results to the file out.dat. The simulator will
open and close the specified files for reading or writing as appropriate. If EOF file is reached while
reading an infile file, zeroes will be read in until the simulation completes.

If the in.dat file consists of:

56
0x34
0654
0b001001

the out.dat will contain the decimal results as follows:

57
53
429
10

The base specification can be used to write to the outfile in different formats.

Block data transfers allow algorithms to be debugged and tested without needing to build actual
hardware. For example, an image processing application may store a source image in a file and place
its results in a second file. All that need be done outside the Handel-C compiler is a conversion from
the image (e.g. JPEG file) into the text file (which can then be used by the simulator) and a conversion
back from the output file to the image format. The results can then be viewed and the correct
operation of the Handel-C program confirmed.

Targeting hardware and simulation

 Page 209
www.agilityds.com

13.3 TARGETING FPGA AND PLD DEVICES
The Handel-C language is designed to target real hardware devices. To do this, you must supply this
information to the compiler:

• the FPGA/PLD family and part that the design will be implemented in
These are supplied on the Chip tab of the Project>Settings dialog. They can also be specified in the
source code using the set family and set part statements or they can be supplied to the command line
using the -f family and -p part switches. They will be passed to the FPGA/PLD place and route tool to
inform it of the device it should target.
• in some cases, the location of a reset source. The reset source is specified using the set reset
command.

 Your license may restrict the devices you can target. The devices available to

you are listed in the Family box on the Chip tab in Project Settings.

13.3.1 SUMMARY OF SUPPORTED DEVICES

In order to target a specific FPGA or PLD, the compiler must be supplied with the part number.
Ultimately, this information is passed to the place and route tool to inform it of the device it should
target.

You can specify your target device using the Chip tab on the Project Settings dialog, or within your
source code.Your license may restrict the devices you can target. The devices available to you are
visible in the Family list on the Chip tab.

Recognized families are:

Targeting hardware and simulation

 Page 210
www.agilityds.com

Description On-chip
asynchronous
RAMs

On-chip
synchronous
RAMs

Altera Apex 20K series
PLDs

Block RAM (in
ESBs), dual-port

Block RAM (in
ESBs), dual-port

Altera Apex 20KE series
PLDs

Block RAM (in
ESBs), dual port

Block RAM (in
ESBs), dual port

Altera Apex 20KC series
PLDs

Block RAM (in
ESBs), dual port

Block RAM (in
ESBs), dual port

Altera ApexII series PLDs Block RAM (in
ESBs), dual-port

Block RAM (in
ESBs), dual-port

Altera Cyclone PLDs - M4K dual port
RAM

Altera Cyclone II PLDs - M4K dual port
RAM

Altera Excalibur ARM
series PLDs

Block RAM (in
ESBs), dual-port

Block RAM (in
ESBs), dual-port

Altera Flex10K series
PLDs

Block RAM (in
EABs), dual-port

Block RAM (in
EABs), dual-port

Altera Flex10KA series
PLDs

Block RAM (in
EABs), dual-port

Block RAM (in
EABs), dual-port

Altera Flex10KB series
PLDs

Block RAM (in
EABs), dual-port

Block RAM (in
EABs), dual-port

Altera Flex10KE series
PLDs

Block RAM (in
EABs), dual-port

Block RAM (in
EABs), dual-port

Altera Stratix PLDs - 3 types of dual-
port RAM in
TriMatrix blocks

Altera Stratix GX PLDs - 3 types of dual-
port RAM in
TriMatrix blocks

Altera Stratix II PLDs - 3 types of dual-
port RAM in
TriMatrix blocks

Xilinx Spartan series
FPGAs

SelectRAM, dual-port -

Xilinx Spartan-XL series
FPGAs

SelectRAM, dual-port -

Xilinx Spartan-II series
FPGAs

SelectRAM, dual-port Block RAM

Targeting hardware and simulation

 Page 211
www.agilityds.com

Xilinx Spartan-IIE series
FPGAs

SelectRAM, dual-port Block RAM, dual-
port

Xilinx Spartan-3 series
FPGAs

SelectRAM, dual-port Block RAM, dual-
port

Xilinx Spartan-3E series
FPGAs

SelectRAM, dual-port Block RAM, dual-
port

Xilinx Spartan-3L series
FPGAs

SelectRAM, dual-port Block RAM, dual-
port

Xilinx Virtex series FPGAs SelectRAM, dual-port Block RAM, dual-
port

Xilinx VirtexE series
FPGAs

SelectRAM, dual-port Block RAM, dual-
port

Xilinx Virtex-II series
FPGAs

SelectRAM, dual-port Block RAM, dual-
port

Xilinx Virtex-II Pro series
FPGAs

SelectRAM, dual-port Block RAM, dual-
port

Xilinx Virtex-II Pro X series
FPGAs

SelectRAM, dual-port Block RAM, dual-
port

Xilinx Virtex-4 series
FPGAs

SelectRAM, dual-port Block RAM, dual-
port

"Generic" (VHDL or
Verilog projects only.
Results in HDL without
target-specific constructs.)

- -

13.3.2 DETECTING THE CURRENT DEVICE FAMILY

The __isfamily construct allows you to detect what the current device family is. If you are writing
platform-independent libraries, you can use this to conditionally select pieces of the source code to
exploit the resources available on different FPGAs.

The construct takes a device string and returns true or false. The possible device names are the same
as those used to specify devices with the set family construct. An error is returned if the string
specified inside the construct is not a recognized family string.

Targeting hardware and simulation

 Page 212
www.agilityds.com

Example
set family = XilinxVirtex;

macro expr DoThis() =
 select (__isfamily(XilinxVirtex) : DoThing1() :
 select (__isfamily(AlteraApex20K) : DoThing2() :
 select (__isfamily(MadeUpDevice) : DoThing3() : DoThing4())
)
);

The first use of __isfamily() would return true, the second would return false, and the third would result
in a compiler error. The source code specified in the DoThing1() function would be selected.

13.3.3 TARGETING SPECIFIC DEVICES VIA SOURCE CODE

If you are not using the GUI or the command line to specify the target device, you must insert lines in
the code to specify it. In order to target a specific FPGA or PLD, the compiler must be supplied with
the FPGA part number. Ultimately, this information is passed to the FPGA/PLD place and route tool to
inform it of the device it should target.

Targeting devices is in two parts: specifying the target family and the target device. The general syntax
is:

set family = Family;
set part = Chip Number;

Targeting hardware and simulation

 Page 213
www.agilityds.com

Family name Description

AlteraFlex10K Flex10K series Altera PLDs
AlteraFlex10KA Flex10KA series Altera PLDs
AlteraFlex10KB Flex10KB series Altera PLDs
AlteraFlex10KE Flex10KE series Altera PLDs
AlteraApex20K Apex 20K series Altera PLDs
AlteraApex20KE Apex 20KE series Altera PLDs
AlteraApex20KC Apex 20KC series Altera PLDs
AlteraApexII Apex II series PLDs
AlteraStratix Altera Stratix PLDs
AlteraStratixII Altera Stratix II PLDs
AlteraStratixGX Altera Stratix GX PLDs
AlteraCyclone Altera Cyclone PLDs
AlteraCycloneII Altera Cyclone II PLDs
AlteraCycloneIII Altera Cyclone III PLDs

AlteraExcaliburARM Altera Excalibur ARM series PLDs

Targeting hardware and simulation

 Page 214
www.agilityds.com

XilinxVirtex Virtex Xilinx FPGAs
XilinxVirtexE VirtexE Xilinx FPGAs
XilinxVirtexII Virtex-II Xilinx FPGAs
XilinxVirtexIIPro Virtex-II Pro Xilinx FPGAs
XilinxVirtexIIProX Virtex-II Pro X Xilinx FPGAs
XilinxVirtex4 Virtex-4 Xilinx FPGAs
XilinxVirtex5 Virtex-5 Xilinx FPGAs
XilinxSpartan Spartan Xilinx FPGAs
XilinxSpartanXL Spartan-XL Xilinx FPGAs
XilinxSpartanII Spartan-II Xilinx FPGAs
XilinxSpartanIIE Spartan-IIE Xilinx FPGAs
XilinxSpartan3 Spartan-3 Xilinx FPGAs
XilinxSpartan3A Spartan-3A Xilinx FPGAs
XilinxSpartan3ADSP Spartan-3ADSP Xilinx FPGAs
XilinxSpartan3E Spartan-3E Xilinx FPGAs
XilinxSpartan3L Spartan-3L Xilinx FPGAs

 Your license may restrict the devices you can target. The devices available to

you are visible in the Family list on the Chip tab in Project Settings.

The part string is the complete Altera or Xilinx device string. For example:

set family = XilinxVirtex;
set part = "V1000BG560-4";

This instructs the compiler to target a v1000 device in a BG560 package. It also specifies that the
device is a -4 speed grade. This last piece of information is required for the timing analysis of your
design by the Xilinx tools.

The family is used to inform the compiler of which special blocks it may generate.

To target Altera Flex 10K devices:

set family = AlteraFlex10K;
set part = "EPF10K20RC240-3";

This instructs the compiler to target an Altera Flex 10K20 device in a RC240 package. It also specifies
that the device is a -3 speed grade. This last piece of information is required for the timing analysis of
your design by the Altera Max Plus II or Quartus tools. Note that when performing place and route on
the resulting design, the device and package must also be selected via the menus in the Max Plus II or
Quartus software.

Targeting hardware and simulation

 Page 215
www.agilityds.com

13.3.4 SUPPORTED FAMILIES

Family name Description

AlteraFlex10K Flex10K series Altera PLDs
AlteraFlex10KA Flex10KA series Altera PLDs
AlteraFlex10KB Flex10KB series Altera PLDs
AlteraFlex10KE Flex10KE series Altera PLDs
AlteraApex20K Apex 20K series Altera PLDs
AlteraApex20KE Apex 20KE series Altera PLDs
AlteraApex20KC Apex 20KC series Altera PLDs
AlteraApexII Apex II series PLDs
AlteraStratix Altera Stratix PLDs
AlteraStratixII Altera Stratix II PLDs
AlteraStratixGX Altera Stratix GX PLDs
AlteraCyclone Altera Cyclone PLDs
AlteraCycloneII Altera Cyclone II PLDs
AlteraCycloneIII Altera Cyclone III PLDs

AlteraExcaliburARM Altera Excalibur ARM series PLDs

Targeting hardware and simulation

 Page 216
www.agilityds.com

XilinxVirtex Virtex Xilinx FPGAs
XilinxVirtexE VirtexE Xilinx FPGAs
XilinxVirtexII Virtex-II Xilinx FPGAs
XilinxVirtexIIPro Virtex-II Pro Xilinx FPGAs
XilinxVirtexIIProX Virtex-II Pro X Xilinx FPGAs
XilinxVirtex4 Virtex-4 Xilinx FPGAs
XilinxVirtex5 Virtex-5 Xilinx FPGAs
XilinxSpartan Spartan Xilinx FPGAs
XilinxSpartanXL Spartan-XL Xilinx FPGAs
XilinxSpartanII Spartan-II Xilinx FPGAs
XilinxSpartanIIE Spartan-IIE Xilinx FPGAs
XilinxSpartan3 Spartan-3 Xilinx FPGAs
XilinxSpartan3A Spartan-3A Xilinx FPGAs
XilinxSpartan3ADSP Spartan-3ADSP Xilinx FPGAs
XilinxSpartan3E Spartan-3E Xilinx FPGAs
XilinxSpartan3L Spartan-3L Xilinx FPGAs

13.4 USE OF RAMS AND ROMS WITH HANDEL-C
Handel-C provides support for:

• interfacing to on-chip and off-chip RAMs and ROMs using the ram and rom keywords.
• specifying RAMs and ROMs external to the Handel-C code by using the ports specification
keyword.
• controlling the timing for read/write cycles by using specification keywords that define the
relationship between the RAM strobe and the Handel-C clock.

The usual technique for specifying timing in synchronous and asynchronous RAM is to have a fast
external clock which is divided down to provide the Handel-C clock and used directly to provide the
pulses to the RAM.

13.4.1 ASYNCHRONOUS RAMS

There are three techniques for timing asynchronous RAMs, depending on the clock available

• Fast external clock. Use the Handel-C westart and welength specifications to position the write
strobe.
• External clock at the same speed as the Handel-C clock. Use multiple reads to give the RAM
enough time to respond.

Targeting hardware and simulation

 Page 217
www.agilityds.com

• Use the wegate specification to position the write enable signal within the Handel-C clock.

Fast external clock
This method of timing asynchronous RAMs depends on having an external clock that is faster than the
internal clock (i.e. the location of the clock is internal_divide or external_divide with a division factor
greater than 1). If so, Handel-C can generate a write strobe for the RAM which is positioned within the
Handel-C clock cycle. This is done with the westart and welength specifications. For example:

set clock = external_divide "P78" 4;
ram unsigned 6 x[34] with { westart = 2,
 welength = 1 };

The write strobe can be positioned relative to the Handel-C clock cycle by half cycle lengths of the
external (undivided) clock. The above example starts the pulse 2 whole external clock cycles into the
Handel-C clock cycle and gives it a duration of 1 external clock cycle. Since the external clock is
divided by a factor of 4, this is equivalent to a strobe that starts half way through the internal clock
cycle and has a duration of one quarter of the internal clock cycle. This signal is shown below:

TIMING DIAGRAM: POSITIONED WRITE STROBE

This timing allows half a clock cycle for the RAM set-up time on the address and data lines and one
quarter of a clock cycle for the RAM hold times. This is the recommended way to access
asynchronous RAMs.

Targeting hardware and simulation

 Page 218
www.agilityds.com

Fast external clock example

To declare a 16Kbyte by 8-bit RAM:
set clock = external_divide "P99" 4;

ram unsigned 8 ExtRAM[16384] with {
 offchip = 1,
 westart = 2,
 welength = 1,
 data = {"P1", "P2", "P3", "P4",
 "P5", "P6", "P7", "P8"},
 addr = {"P9", "P10", "P11", "P12",
 "P13", "P14", "P15", "P16",
 "P17", "P18", "P19", "P20",
 "P21", "P22"},
 we = {"P23"},
 oe = {"P24"},
 cs = {"P25"}};

The compiled hardware generates the following cycle for a write to external RAM:

Targeting hardware and simulation

 Page 219
www.agilityds.com

The compiled hardware generates the following cycle for a read from external RAM:

Same rate external clock
This method of timing asynchronous RAMs uses multiple Handel-C RAM accesses to meet the setup
and hold times of the RAM.

ram unsigned 6 x[34];

Dummy = x[3];
x[3] = Data;
Dummy = x[3];

This code holds the address constant around the RAM write cycle, enabling a write to an
asynchronous RAM.

Targeting hardware and simulation

 Page 220
www.agilityds.com

The timing diagram below shows the address being held constant during the write strobe. It is held
constant by the two assignments to Dummy.

Undivided external clock
This method of accessing asynchronous RAMs is a compromise between the other two methods (fast
external clock and multiple RAM accesses). wegate is used with an undivided external clock and
keeps the write strobe in the first or second half of the clock cycle. It is still necessary to hold the
address constant either in the clock cycle before or in the clock cycle after the access. For example:

ram unsigned 6 x[34] with { wegate = 1 };

x[3] = Data;
Dummy = x[3];

This places the write strobe in the second half of the clock cycle (use a value of -1 to put it in the first
half) and holds the address for the clock cycle after the write. The RAM therefore has half a clock
cycle of set-up time and one clock cycle of hold time on its address lines.

wegate example
The wegate specification may be used when a divided clock is not available. For example, to declare a
16Kbyte by 8-bit RAM:

Targeting hardware and simulation

 Page 221
www.agilityds.com

ram unsigned 8 ExtRAM[16384] with {
 offchip = 1,
 wegate = 1,
 data = {"P1", "P2", "P3", "P4",
 "P5", "P6", "P7", "P8"},
 addr = {"P9", "P10", "P11", "P12",
 "P13", "P14", "P15", "P16",
 "P17", "P18", "P19", "P20",
 "P21", "P22"},
 we = {"P23"},
 oe = {"P24"},
 cs = {"P25"}};

The compiled hardware generates the following cycle for a write to external RAM:

The compiled hardware generates the following cycle for a read from external RAM:

Note that the timing diagram above may violate the hold time for some asynchronous RAM devices. If
the delay between rising clock edge and rising write enable is longer than the delay between rising
clock edge and the change in data or address then corruption in the write may occur in these devices.

Targeting hardware and simulation

 Page 222
www.agilityds.com

The two cycle access does not solve the problem since it is not possible to hold the data lines constant
beyond the end of the clock cycle. If this causes a problem then a multiplied external clock must be
used as described above.

 Using the wegate specification may violate the hold time for some

asynchronous RAM devices.

Targeting external asynchronous RAMs
Handel-C provides support for accessing off-chip static RAMs in the same way as you access internal
RAMs. The syntax for an external RAM declaration is:

ram Type Name[Size] with {
 offchip = 1,
 data = Pins,
 addr = Pins,
 we = Pins,
 oe = Pins,
 cs = Pins};

To declare a 16Kbyte by 8-bit RAM:
ram unsigned 8 ExtRAM[16384] with {
 offchip = 1,
 data = {"P1", "P2", "P3", "P4",
 "P5", "P6", "P7", "P8"},
 addr = {"P9", "P10", "P11", "P12",
 "P13", "P14", "P15", "P16",
 "P17", "P18", "P19", "P20",
 "P21", "P22"},
 we = {"P23"},
 oe = {"P24"},
 cs = {"P25"}};

Note that the lists of address and data pins are in the order of most significant to least significant. It is
possible for the compiler to infer the width of the RAM (8 bits in this example) and the number of
address lines used (14 in this example) from the RAM’s usage. This is not recommended since this
declaration deals with real external hardware which has a fixed definition.

Accessing RAM
Accessing the RAM is the same as for accessing internal RAM. For example:

Targeting hardware and simulation

 Page 223
www.agilityds.com

ExtRAM[1234] = 23;
y = ExtRAM[5678];

Similar restrictions apply as with internal RAM - only one access may be made to the RAM in any one
clock cycle.

The compiled hardware generates the following cycle for a write to external RAM:

The compiled hardware generates the following cycle for a read from external RAM:

This cycle may not be suitable for the RAM device in use. In particular, asynchronous static RAM may
not work with the above cycle due to set-up and hold timing violations. For this reason, the westart,
welength and wegate specifications may also be used with external RAM declarations.

13.4.2 SYNCHRONOUS RAMS

SSRAM clocks
Handel-C timing semantics require that any assignment takes one clock cycle. Typically, SSRAMs
have a latency of at least one clock cycle. Therefore, in order for accesses to a SSRAM device to
conform to Handel-C's one-clock-cycle-per-assignment rule, the SSRAM clock needs to be offset from

Targeting hardware and simulation

 Page 224
www.agilityds.com

the Handel-C clock. If the SSRAM has a latency of more than one clock cycle, its clock needs to be
faster than the Handel-C clock, as well as being offset from it.

This is done by using an independent fast clock (RAMCLK) to match the SSRAM timings with the
Handel-C timing constraints.

A fast external clock (CLK) is divided to provide the Handel-C clock (HCLK), and is also used to
generate pulses to clock the SSRAM, where the pulses can be placed within a single HCLK cycle.
This placed clock is the RAMCLK. It can be carried to an external SSRAM using the clk specification.

By default, the Handel-C compiler uses an inverted copy of the Handel-C clock to drive synchronous
on-chip memories. This may mean you need to run your design at a lower clock frequency than you
want to. You can increase the efficiency of your design by:

• using pipelined memory accesses, for certain on-chip SSRAMs. This is illustrated by the
Pipelined on-chip SSRAM examples (see page 230), and the Pipelined on-chip SSRAM timing
diagrams (see page 228).
• using the clock position specifications to alter the position of the RAM clock relative to the Handel-
C clock, to enable full memory accesses to be performed within 1 Handel-C clock cycle. For example,
you might want to advance the write-clock, or delay the read-clock.

This is most suitable for off-chip RAMs, and is illustrated by the Flow-through SSRAM
example (see page 234) and the Pipelining off-chip SSRAM example (see page 236).

SSRAM devices supported
Handel-C supports ZBT-compatible (Zero Bus Turnaround) flow-through and pipelined output devices.
DDR (double data rate) and QDR (quad data rate) devices are not supported directly; you can write
your own interfaces.

SSRAM write-enable
The Handel-C compiler checks the block and offchip specifications to find out what type of RAM is
being built and generates the appropriate write-enable signal (e.g. active low for ZBT SSRAM devices
and active-high for block RAMs within Xilinx Virtex chips).

Targeting hardware and simulation

 Page 225
www.agilityds.com

SSRAM read and write cycles
The inputs to most inputs to SSRAMs are captured on the rising edge of the input clock. During a read
cycle there is a latency of at least one clock cycle between an address being captured at the input and
data becoming available at the output. This is also true for the write cycle in many devices: an address
is captured on one clock cycle, and data on the next. A diagram of a typical timing for a read (or write)
cycle for an SSRAM device is shown below.

TIMING DIAGRAM: SSRAM READ AND WRITE

Specifying SSRAM timing
You can place the RAM clock pulses at different points within the Handel-C clock if the Handel-C clock
is divided using external_divide or internal_divide.

If you have a fast undivided clock CLK, a divided clock HCLK, and you want to generate a RAM clock
RAMCLK, the following apply:

• The SSRAM clock (RAMCLK) is generated from the fast clock (CLK) according to the
specifications: rclkpos, wclkpos and clkpulselen. These specifications can be in whole or half cycles of
the external clock (i.e. the specifications are in multiples of 0.5).
• rclkpos specifies the positions of the clock cycles of clock RAMCLK for a read cycle. These
positions are specified in terms of cycles and half-cycles of CLK, counting forwards from a HCLK rising
edge.
• wclkpos specifies the positions of the clock cycles of RAMCLK for a write cycle. These are also
counted forward from an HCLK rising edge.

Targeting hardware and simulation

 Page 226
www.agilityds.com

• clkpulselen specifies the length of the RAMCLK pulses in CLK cycles. This is specified once per
RAM. It applies to both the read and write clocks.

TIMING DIAGRAM: SSRAM READ CYCLE USING GENERATED RAMCLK

The pulse positions and lengths are specified in cycles and half-cycles of CLK.

The westart and welength specifications are used to place the write enable strobe where it is required.

Pipelining on-chip SSRAM
By default, the DK compiler uses an inverted version of the main Handel-C clock to drive on-chip
synchronous memories. This allows it to conform to Handel-C's timing semantics of 1 clock cycle per
assignment. But it can potentially halve the maximum clock rate for a design.

Handel-C can pipeline accesses to on-chip SSRAMs if you write your code in a certain way. The effect
is that the memory is driven by the main (non-inverted) Handel-C clock, potentially doubling the clock
rate for the design, and accesses are performed with 1 clock cycle of latency.

Creating pipelined SSRAM accesses
For memory accesses to be pipelined, the following rules must be satisfied:

• The memory must always be read into an uninitialized register, and nowhere else.
• Nothing else must write to this register.

For multi-port memories, both rules must be satisfied for every readable port.

If these rules are satisfied, the compiler removes the output register and drives the memory with the
main (non-inverted) Handel-C clock.

You can disable the transform by using the -N-piperam command line switch, or by de-selecting the
Enable memory pipelining transformations box on the Synthesis tab in Project Settings.

Targeting hardware and simulation

 Page 227
www.agilityds.com

The transform only applies to certain devices and configurations. It is effective for all forms of
hardware output. Simulation is not affected.

Altera devices supporting pipelined on-chip SSRAM

Family EAB M512 M4K M9K M-RAM

Altera Apex20K,
Altera Apex20KE,
Altera Apex20KC,
Altera Excalibur ARM

yes n/a n/a n/a n/a

Altera ApexII yes, except for
single-port
RAMs and true
dual-port RAMs

n/a n/a n/a n/a

Altera Stratix,
Altera StratixGX,
Altera Stratix II

n/a yes, except for
true dual-port
RAMs;

yes, except for
single-port
RAMs and true
dual-port RAMs

n/a no

Altera Cyclone,
Altera Cyclone II,
Altera Cyclone III

n/a no except for
single-port
RAMs and true
dual-port RAMs

n/a no

Xilinx devices supporting pipelined on-chip SSRAM

Family BlockRAM

Xilinx Virtex,
Xilinx Spartan-II

no

Xilinx Virtex-II,
Xilinx Virtex-II Pro,
Xilinx Spartan-3
Xilinx Spartan-3E
Xilinx Spartan-3L
Xilinx Spartan-3A
Xilinx Spartan-3-ADSP
Xilinx Virtex-5

yes

Targeting hardware and simulation

 Page 228
www.agilityds.com

Pipelined on-chip SSRAM timing diagrams
The timing diagrams below illustrate the difference between pipelined accesses to SSRAM and non-
pipelined accesses. The non-pipelined RAM can be transformed into a pipelined RAM if the memory is
read into an uninitialized register reserved specifically for the use of the memory.

Non-pipelined access to RAM

3 write cycles are performed:

• At time t0, the rising edge of the main Handel-C clock CLK initiates a write cycle.
• At event e1, WE is asserted and Addr and Din, are set up, so that when the memory is next
clocked, the data at Din will be written at the location specified in Addr.
• At time t0.5, the inverted clock rising edge clocks the memory, causing it to execute the write
operation.
• At event e2, after the write operation has completed, the data that has been written becomes
available at the output from the memory Dout.

Two further write cycles are performed, starting at time t1 and t2. This is followed by a read cycle:

• At time t3, the main Handel-C rising clock edge initiates a read cycle.
• At event e3, WE is de-asserted and Addr is set up, so that when the memory is next clocked, the
location specified at Addr will be read.

Targeting hardware and simulation

 Page 229
www.agilityds.com

• At time t3.5, the inverted clock rising edge clocks the memory, causing it to execute the read
operation.
• At event e4, after the read operation has completed, the data that has been read becomes
available at the output from the memory Dout.
• At time t4, the main Handel-C rising clock edge clocks the data that has been read from the
memory into the pipeline register, as well as initiating the next read cycle.
• At event e5, after the write-to-register operation has completed, the data that has been written
becomes available at the register output Rout.
• At time t5, the data that was read via the pipeline register (D0 in this case) is ready to be clocked
into its destination.

Two further read cycles are performed, starting at time t4 and t5.

Pipelined access to RAM

3 write cycles are performed:

• At time t0, the main Handel-C rising clock edge initiates a write-cycle.
• At event e1, WE is asserted and Addr and Din are set up, meaning that when the memory is next
clocked, the data at Din will be written at the location specified in Addr.
• At time t1, the main Handel-C rising clock edge clocks the memory, as well as initiating the next
write cycle.
• At event e2, after the write operation has completed, the data that has been written becomes
available at the output from the memory Dout.

Two further write cycles are performed, starting at time t1 and t2. This is followed by a read cycle:

Targeting hardware and simulation

 Page 230
www.agilityds.com

• At time t3, the main Handel-C rising clock edge initiates a read cycle.
• At event e3, WE is de-asserted and Addr is set up, meaning that when the memory is next
clocked, the location specified at Addr will be read.
• At time t4, the main Handel-C clock rising edge clocks the memory, as well as initiating the next
read cycle.
• At event e4, after the read operation has completed, the data that has been read becomes
available at the output from the memory Dout.
• At time t5, the data that was read (D0 in this case) is ready to be clocked into its destination.

Two further read cycles are performed, starting at time t4 and t5.

Effect of performing a pipelining transform
The output from the pipeline register (Rout) in the non-pipelined version and the output from the
memory (Dout) in the pipelined version are equivalent, showing that the transformation does not
change the overall behaviour of the circuit. Valid data is available from the memory output one whole
clock cycle later in the pipelined version, which is why the transform is only valid when there’s a
‘pipeline’ register.

Pipelined SSRAM examples
The following examples demonstrate how you can pipeline accesses to on-chip SSRAM (see page
226). If the correct conditions are met, the RAM will use the main Handel-C clock instead of an
inverted clock, and the output register will be removed.

SPRAM Example 1: transform is performed
void main(void)
{
 ram unsigned 4 rax[4] with {block = "BlockRAM"};
 static unsigned 2 i;
 unsigned 4 x; // x is un-initialized
 interface bus_in(unsigned 4 i) I();
 interface bus_out() O(unsigned 4 o = x);

 while(1)
 {
 rax[i] = I.i;
 i++;
 x = rax[i]; // RAM only read into x
 }
}

Targeting hardware and simulation

 Page 231
www.agilityds.com

SPRAM Example 2: transform is not performed (register is initialized)
void main(void)
{
 ram unsigned 4 rax[4] with {block = "BlockRAM"};
 static unsigned 2 i;
 static unsigned 4 x; // x is initialized to zero
 interface bus_in(unsigned 4 i) I();
 interface bus_out() O(unsigned 4 o = x);
 while(1)
 {
 rax[i] = I.i;
 i++;
 x = rax[i]; // RAM only read into x
 }
}

SPRAM Example 3: transform is not performed (memory read into two destinations)
void main(void)
{
 ram unsigned 4 rax[4] with {block = "BlockRAM"};
 static unsigned 2 i;
 unsigned 4 x; // x is un-initialized
 unsigned 4 y; // y is un-initialized
 interface bus_in(unsigned 4 i) I();
 interface bus_out() O(unsigned 4 o = x);
 while(1)
 {
 rax[i] = I.i;
 i++;
 x = rax[i]; // RAM read into x...
 y = rax[i]; // ...but also into y
 }
}

Targeting hardware and simulation

 Page 232
www.agilityds.com

SPRAM Example 4: transform is not performed (pipeline register written to from elsewhere)
void main(void)
{
 ram unsigned 4 rax[4] with {block = "BlockRAM"};
 static unsigned 2 i;
 unsigned 4 x; // x is un-initialized
 interface bus_in(unsigned 4 i) I();
 interface bus_out() O(unsigned 4 o = x);
 while(1)
 {
 rax[i] = I.i;
 i++;
 x = rax[i]; // RAM only read into x...
 x = 1; // ...but x also written to from elsewhere
 }
}

MPRAM Example 1: transform is performed
void main(void)
{
 mpram
 {
 ram unsigned 4 rax1[4];
 ram unsigned 4 rax2[4];
 } max with {block=1};
 static unsigned 2 i1, i2;
 unsigned 4 x; // x is un-initialized
 unsigned 4 y; // y is un-initialized
 interface bus_in(unsigned 4 i1) I1();
 interface bus_out() O1(unsigned 4 o1 = x);
 interface bus_in(unsigned 4 i2) I2();
 interface bus_out() O2(unsigned 4 o2 = y);
 while(1)
 {
 max.rax1[i1] = I1.i1;
 max.rax2[i2] = I2.i2;
 i1++;
 i2++;
 x = max.rax1[i1]; // mpram port rax1 only read into x
 y = max.rax2[i2]; // mpram port rax2 only read into y
 }
}

Targeting hardware and simulation

 Page 233
www.agilityds.com

MPRAM Example 2: transform is not performed (port ‘rax2’ does not read into a register)
void main(void)
{
 mpram
 {
 ram unsigned 4 rax1[4];
 ram unsigned 4 rax2[4];
 } max with {block=1};
 static unsigned 2 i1, i2;
 unsigned 4 x; // x is un-initialized
 interface bus_in(unsigned 4 i1) I1();
 interface bus_out() O1(unsigned 4 o1 = x);
 interface bus_in(unsigned 4 i2) I2();
 // port rax2 read directly into an interface, not a ‘pipeline’ register
 interface bus_out() O2(unsigned 4 o2 = max.rax2[i2]);

 while(1)
 {
 max.rax1[i1] = I1.i1;
 max.rax2[i2] = I2.i2;
 i1++;
 i2++;
 x = max.rax1[i1]; // mpram port rax1 only read into x...
 }
}

Targeting external synchronous RAMs
Off-chip synchronous SRAMs can be specified in exactly the same way as on-chip synchronous
SRAMs, with the addition of the rclkpos, wclkpos, clkpulselen and clk specifications. clk specifies the
pin on which the generated RAMCLK will appear, when the SSRAM in question is external (offchip =
1).

Targeting hardware and simulation

 Page 234
www.agilityds.com

Example
macro expr addressPins = {Pin List...};
macro expr dataPins = {Pin List...};
macro expr csPins = {Pin List...};
macro expr wePins = {Pin List...};
macro expr oePins = {Pin List...};
macro expr clkPins = {Pin List...};

ram unsigned 32 ExtBank[1024] with {offchip = 1,
 addr = addressPins,
 data = dataPins,
 cs = csPins,
 we = wePins,
 oe = oePins,
 westart = 2,
 welength = 1,
 rclkpos = {1.5, 2.5},
 wclkpos = {1.5, 2.5, 3.5},
 clkpulselen = 0.5,
 clk = clkPins};

Flow-through SSRAM example
ram unsigned 18 FlowBank[1024]
 with {block = 1,
 westart = 2,
 welength = 1,
 rclkpos = {1.5},
 wclkpos = {2.5, 3.5},
 clkpulselen = 0.5};

This code instructs the compiler to build hardware to generate SSRAM control signals as shown
below. It is also applicable for reading from block RAMs in Xilinx FPGAs and Altera ESB and tri-matrix
memories.

Targeting hardware and simulation

 Page 235
www.agilityds.com

Read cycle for a flow-through SSRAM
The timing diagram shows a read-cycle from a flow-through SSRAM.

The rising HCLK edge at t0 initiates the read cycle. Some time later, the address A1 is set up, which
is sampled somewhere in the middle of the HCLK cycle: t0+1.5 in this case. By the time the next
HCLK rising edge occurs at t1, the data is available for reading. The cycle completes within one
Handel-C clock cycle.

Write cycle for a flow-through SSRAM
Flow-through SSRAMs perform a "late" write cycle; the data is clocked in one clock cycle after the
address is sampled.

The timing diagram shows the complete write cycle.

Targeting hardware and simulation

 Page 236
www.agilityds.com

The HCLK rising edge at t0 initiates the write cycle, causing the ADDRESS and DATAIN signals to
change. Two cycles of RAMCLK are needed to clock the new data into the RAM at the specified
address: the first to sample the address, the second to sample the data. However, since we’re not
expecting to read from the RAM’s output, we can wait until the last possible moment. In this case, the
two rising edges of RAMCLK occur at t0+2.5 and t0+3.5.

The write enable signal must be low during the rising edge of RAMCLK that samples the address, but
not during the one that samples the data. This can be done by setting westart and welength as shown.
The entire cycle completes within a single Handel-C clock cycle.

Pipelining off-chip SSRAM example
This method of pipelining SSRAM is most suitable for off-chip RAMs. For on-chip SSRAM, it is usually
more efficient to use a pipelining transformation.

ram unsigned 18 PipeBank[1024]
 with {block = 1,
 westart = 1.5,
 welength = 1,
 rclkpos = {1.5, 2.5},
 wclkpos = {1.5, 2.5, 3.5},
 clkpulselen = 0.5};

Targeting hardware and simulation

 Page 237
www.agilityds.com

Read cycle for a pipelined-output SSRAM
The timing diagram shows the read cycle

This read cycle is very similar to that for a flow through RAM. The rising HCLK edge at t0 initiates the
read cycle. Some time later, the address A1 is set up, which is sampled somewhere near the middle of
the HCLK cycle: (t0+1.5 in this case). The RAM contents at address A1 are then piped to the RAM’s
output register; it must be made available at the RAM output. A second RAMCLK pulse (at t0+2.5 in
this case) is used to do this. By the time the next HCLK rising edge occurs at t1, the data is available
for reading by the Handel-C design. The cycle completes within one Handel-C clock cycle.

Write cycle for a pipelined-output SSRAM
Pipelined-output SSRAMs perform a "late-late" write cycle. This means that data is written to memory
two clock cycles after the address is sampled.

Targeting hardware and simulation

 Page 238
www.agilityds.com

The timing diagram shows the complete cycle.

The HCLK rising edge at t0 initiates the write cycle, causing the ADDRESS and DATAIN signals to
change. Three cycles of RAMCLK are needed to clock the new data into the RAM at the specified
address: the first to sample the address and the third to sample the data. Since you will not read from
the RAM on a write strobe, you can sample the data as late as possible to give the circuit maximum
time to set up the data. In this case, the three rising edges of RAMCLK occur at t0+1.5, t0+2.5 and
t0+3.5.

The write enable signal must be low during the rising edge of RAMCLK that samples the address, but
not during the one that samples the data. This can be done by setting westart and welength as shown.
The entire cycle completes within a single Handel-C clock cycle.

13.4.3 TARGETING STRATIX AND CYCLONE MEMORY BLOCKS

Altera Stratix, Stratix GX and Stratix II devices have 3 types of embedded memory: M512, M4K and
M-RAM. Cyclone and Cyclone II devices only have M4K. Cyclone III devices have M9K. You can
specify what type of memory you want to build by using the block specification.

Type of memory block specification

M512 with {block = "M512"}

M4K with {block = "M4K"}

M-RAM with {block = "M-RAM"}

M9K with {block = "M9K"}

Targeting hardware and simulation

 Page 239
www.agilityds.com

If you do not use the block specification the memory is set to "AUTO" and Quartus determines the
most appropriate memory type when you place and route.

All Stratix memories are fully synchronous. If you try to make them asynchronous, for example by
using the westart and welength specifications, you will get a compiler error.

M-RAM cannot be initialized. This means that you cannot have a ROM built out of M-RAM. You will
get a compiler error if you build a ROM using the with {block = "M-RAM"} specification.

M512 memory cannot be configured as a bi-directional dual-port MPRAM. If you try to create this, the
compiler will issue a warning.

Example
set family = AlteraStratix;
set part = "EP1S10B672C7";
set clock = external;

ram unsigned 8 autoRam[16]; // Let Quartus select a suitable memory
structure
ram unsigned 8 m512Ram[16] with {block = "M512"}; // Use M512 blocks
ram unsigned 8 m4kRam[16] with {block = "M4K"}; // Use M4K blocks
ram unsigned 8 mRam[16] with {block = "M-RAM"}; // Use M-RAM blocks

void main(void)
{
 autoRam[0] = 1;
 m512Ram[0] = 1;
 m4kRam[0] = 1;
 mRam[0] = 1;

 ...etc...
}

13.4.4 USING ON-CHIP RAMS IN ALTERA DEVICES

EAB structures
On-chip RAMs in Altera Flex10K devices use the EAB structures. These blocks can be configured in a
number of data width/address width combinations. When writing Handel-C programs, you must be
careful not to exceed the number of EAB blocks in the target device or the design will not place and
route successfully. While it is possible to use RAMs that do not match one of the data width/address
width combinations, EAB space may be wasted by such a RAM.

Targeting hardware and simulation

 Page 240
www.agilityds.com

Synchronous and asynchronous access
RAM blocks in Flex, Apex, and Excalibur parts can be configured to be either synchronous or
asynchronous. If you do not apply any clock or write-enable specifications, Handel-C will create RAMs
with a synchronous write port and asynchronous read port as long as the target hardware supports it.

If you apply clock position specifications to the RAM, the read and write ports will both be
synchronous.

If you apply any of the write-enable specifications (westart, welength or wegate) to the RAM, both write
and read access will be asynchronous.

When declaring a memory as a MPRAM, if you only apply write-enable specifications to the read port
AND you apply clock specifications to the write port, you will get a compiler error, as you cannot have
an asynchronous write port and a synchronous read port.

Initialization
RAM/ROM initialization files with a .mif extension will be generated on compilation to feed into the Max
Plus II or Quartus software. This process is transparent if they are in the same directory as the EDIF
(.edf extension) file generated by the Handel-C compiler.

Creating RAMs without an inverted clock
If you declare a single-port RAM for Altera Flex, Apex 20 or Excalibur devices, the Handel-C compiler
converts this into an MPRAM with a ROM port and a WOM port. This removes the inverted clock, and
so increases the possible clock rate. If you want to remove the inverted clock from an on-chip memory
on an ApexII device, you need to do this manually by creating an MPRAM instead of a RAM. The
compiler does not do this automatically as the hardware created for an MPRAM is larger than that for
a RAM on ApexII devices.

Stratix and Cyclone memories are totally synchronous, so creating an MPRAM with a ROM and a
WOM port does not automatically result in the inverted clock being removed. Instead, you can
pipeline the MPRAM, or you can customize the clock using the rclkpos, wclkpos and clkpulselen
specifications.

13.4.5 USING ON-CHIP RAMS IN XILINX DEVICES

Handel-C supports the synchronous RAMs on Virtex series and Spartan-II and Spartan-3 parts directly
simply by declaring a RAM or ROM. For example:

ram unsigned 6 x[34];

This will declare a RAM with 34 entries, each of which is 6 bits wide.

When writing Handel-C programs, you must be careful not to exceed the number of memory blocks in
the target device or the design will not place and route successfully.

Targeting hardware and simulation

 Page 241
www.agilityds.com

13.4.6 USING EXTERNAL ROMS

An external ROM is declared as an external RAM with an empty write enable pin list. For example:

ram unsigned 8 ExtROM[16384] with {
 offchip = 1,
 data = {"P1", "P2", "P3", "P4",
 "P5", "P6", "P7", "P8"},
 addr = {"P9", "P10", "P11", "P12",
 "P13", "P14", "P15", "P16",
 "P17", "P18", "P19", "P20",
 "P21", "P22"},
 we = {},
 oe = {"P24"},
 cs = {"P25"}};

Note that no westart, welength or wegate specification is required since there is no write strobe signal
on a ROM device.

13.4.7 CONNECTING TO RAMS IN FOREIGN CODE

You can create ports to connect to a RAM by using the ports = 1 specification to your memory
definition. This will generate VHDL, Verilog or EDIF wires which can be connected to a component
created elsewhere. The ports specification cannot be used in conjunction with the offchip=1
specification, but all other specifications will apply.

The interface generated will have separate read (output) and write (data) ports, write enable, data
enable and clock wires. This ensures that it can be connected to any device. Pin names provided in
the addr, data, cs, we, oe, and clk specifications will be passed through to the generated EDIF. They
are not passed through to VHDL or Verilog, since VHDL and Verilog interfaces are generated as n-bit
wide buses rather than n 1-bit wide wires. This means that it is ambiguous to specify a separate
identifier for each wire. If they are used when compiling to VHDL or Verilog, the compiler issues a
warning.

For VHDL or Verilog output, the compiler generates meaningful port names. For example, with the
following RAM declaration compiled to VHDL:

ram unsigned 4 rax[4] with
 {ports = 1, data = dataPins, addr = addrPins,
 we = wePins, cs = csPins, oe = oePins};

the compiler will warn that all the pins specifications have been ignored, and will generate an interface
in VHDL with the following ports:

Targeting hardware and simulation

 Page 242
www.agilityds.com

component rax_SPPort
port(
rax_SPPort_addr: in unsigned(1 downto 0);
rax_SPPort_clk: in std_logic;
rax_SPPort_cs: in std_logic;
rax_SPPort_data_en: in std_logic;
rax_SPPort_data_in: out unsigned(3 downto 0);
rax_SPPort_data_out: in unsigned(3 downto 0);
rax_SPPort_oe: in std_logic;
rax_SPPort_we: in std_logic
);

The port names consist of the memory name (rax in this case), description of the memory type
(SPPort : single port in this case) and an identifier describing the ports function.

A clock port will always be generated.

If you use the ports specification with an MPRAM, a separate interface will be generated for each port.

Generating an interface to a foreign code RAM
set family = XilinxVirtex;
set part = "V1000BG560-4";
set clock = external "C1";

unsigned 4 a;
ram unsigned 4 rax[4] with {ports = 1};

void main(void)
{
 static unsigned 2 i = 0;

 while(1)
 {
 par
 {
 i++;
 a++;
 rax[i] = a;
 }
 a = rax[i];
 }
}

The declaration of rax would produce wires

Targeting hardware and simulation

 Page 243
www.agilityds.com

rax_SPPort_addr<0> // Address
rax_SPPort_addr<1>
rax_SPPort_data_in<0> // Data In
rax_SPPort_data_in<1>
rax_SPPort_data_in<2>
rax_SPPort_data_in<3>
rax_SPPort_data_out<0> // Data Out
rax_SPPort_data_out<1>
rax_SPPort_data_out<2>
rax_SPPort_data_out<3>
rax_SPPort_data_en // Data Enable
rax_SPPort_clk // Clock
rax_SPPort_cs // Chip Select
rax_SPPort_oe // Output Enable
rax_SPPort_we // Write Enable

Targeting hardware and simulation

 Page 244
www.agilityds.com

Generating an interface to a foreign code MPRAM
set family = XilinxVirtex;
set part = "V1000BG560-4";
set clock = external "C1";

unsigned 4 a;

mpram Mpaz
{
 wom unsigned 4 wox[4];
 rom unsigned 4 rox[4];
} mox with {ports = 1};

void main(void)
{
 static unsigned 2 i = 0;

 while(1)
 {
 par
 {
 i++;
 a++;
 mox.wox[i] = a;
 }
 a = mox.rox[i];
 }
}

The declaration of the read only port rox would produce wires

mox_rox_addr_0 // Address
mox_rox_addr_1
mox_rox_clk // Clock
mox_rox_cs // Chip select
mox_rox_data_en // Data enable
mox_rox_oe // Output enable
mox_rox_we // Write enable
mox_rox_data_in_0 // Data into Handel-C, out from foreign code memory
mox_rox_data_in_1
mox_rox_data_in_2
mox_rox_data_in_3

The declaration of the read only port wox would produce wires

mox_wox_addr_0 // Address

Targeting hardware and simulation

 Page 245
www.agilityds.com

mox_wox_addr_1
mox_wox_clk // Clock
mox_wox_cs // Chip select
mox_wox_data_en // Data enable
mox_wox_data_out_0 // Data out from Handel-C, into foreign code memory
mox_wox_data_out_1
mox_wox_data_out_2
mox_wox_data_out_3
mox_wox_oe // Output enable
mox_wox_we // Write enable

13.4.8 USING OTHER RAMS

The interface to other types of RAM such as DRAM should be written by hand using interface
declarations. Macro procedures can then be written to perform complex or even multi-cycle accesses
to the external device.

Interfacing with external hardware

 Page 246
www.agilityds.com

14 INTERFACING WITH EXTERNAL HARDWARE
All off-chip accesses are based on the idea of a bus which is just a collection of external pins. Handel-
C provides the ability to read the state of pins for input from the outside world and set the state of pins
for writing to the outside world. Tri-state buses are also supported to allow bi-directional data transfers
through the same pins.

The pins used may be defined in Handel-C by using pin specifications (e.g. data). If this is omitted, the
pins will be left unconstrained and can be assigned by the place and route tools.

Note that Handel-C provides no information about the timing of the change of state of a signal within a
Handel-C clock cycle. Timing analysis is available from the FPGA or PLD manufacturer's place-and-
route tools.

Handel-C programs can also interface to external logic (other Handel-C programs, programs written in
VHDL or Verilog etc.) by using user-defined interfaces or Handel-C ports.

 Your license may not allow you to use interfaces. If this is the case you can

only interface to external devices using macros provided in any Agility libraries you have licenses for,
such as PAL.

14.1 INTERFACE SORTS
Handel-C provides a number of predefined interface sorts.

"bus-type" interfaces (bus_*) generate the hardware for buses connected to pins.

"port-type" interfaces (port_*) generate the hardware for floating ports (buses which are not connected
to pins).

These can be of any width, and can carry signals between different sections of Handel-C code, or to
software or hardware beyond the Handel-C program.

You can also define your own sorts to interface to external blocks of code ("generic" or custom
interface sorts).

Interfacing with external hardware

 Page 247
www.agilityds.com

Predefined interface sorts

Sort identifier Description

bus_in Input bus from pins
bus_latch_in Registered input bus from pins
bus_clock_in Clocked input bus from pins
bus_out Output bus to pins
bus_ts Bi-directional tri-state bus
bus_ts_latch_in Bi-directional tri-state bus with

registered input
bus_ts_clock_in Bi-directional tri-state bus with clocked

input
port_in Input port from logic
port_out Output port to logic

Custom or generic interface sorts
You can define your own interface sorts to connect to non-Handel-C objects:

• Hardware descriptions written in another language.
VHDL, Verilog and EDIF are currently supported. For a VHDL code interface, the interface sort would
be the name of the VHDL entity. For a Verilog code interface, the interface sort would be the name of
the Verilog module.

• Native PC object code used in simulation.
Programs that run on your PC for simulation and connect to a Handel-C interface are known as
plugins. There are special port specifications to enable you to connect user-defined interfaces with a
plugin for simulation. These are extlib, extfunc, and extinst.

14.1.1 READING FROM EXTERNAL PINS BUS_IN

The bus_in interface sort allows Handel-C programs to read from external pins. Its general usage is:

interface bus_in(type portName)
 Name()
 with {data = {Pin List}};

Reading the bus is performed by accessing the identifier Name.portName as a variable which will
return the value on those pins at that clock edge. If no input port name is given, the port name defaults
to in.

Interfacing with external hardware

 Page 248
www.agilityds.com

Example
interface bus_in(int 4 To) InBus()
 with {data = {"P4", "P3", "P2", "P1"}};
int 4 x;

x = InBus.To;

This declares a bus connected to pins P1, P2, P3 and P4 where pin P4 is the most significant bit and
pin P3 is the least significant bit.

The variable x is set to the value on the external pins. The type of InBus.To is int 4 as specified in the
type list after the bus_in keyword.

14.1.2 REGISTERED READING FROM EXTERNAL PINS: BUS_LATCH_IN

The bus_latch_in interface sort is similar to bus_in but allows the input to be registered on a condition.
This may be required to sample the signal at particular times. Its general usage is:

interface bus_latch_in(type portName)
 Name(type conditionPortName=Condition)
 with {data = {Pin List}};

Reading the bus is performed by accessing the identifier Name.portName as a variable which will
return the value on those pins at that clock edge. If no input port name is given, the port name defaults
to in. Condition specifies a signal that is used to clock the input registers in the FPGA or PLD. The
rising edge of this signal clocks the external signal into the internal value.

Example
unsigned 1 get;
int 4 x;

interface bus_latch_in(int 4 To)
 InBus(unsigned 1 condition = get)
 with {data = {"P4", "P3", "P2", "P1"}};

get = 0;
get = 1; // Register the external value
x = InBus.To; // Read the registered value

14.1.3 CLOCKED READING FROM EXTERNAL PINS: BUS_CLOCK_IN

The bus_clock_in interface sort is similar to the bus_in interface sort but allows the input to be clocked
continuously from the Handel-C global clock. This may be required to synchronize the signal to the
Handel-C clock. Its general usage is:

Interfacing with external hardware

 Page 249
www.agilityds.com

interface bus_clock_in(type portName) Name()
 with {Specs};

Reading the bus is performed by accessing the identifier Name.portName as a variable which will
return the value on those pins at that clock edge. If no input port name is given, the port name defaults
to in. The rising edge of the Handel-C clock clocks the external signal into the internal value. For
example:

interface bus_clock_in(int 4 InTo) InBus() with
 {data = {"P4", "P3", "P2", "P1"}};

x = InBus.InTo; // Read flip-flop value

14.1.4 WRITING TO EXTERNAL PINS: BUS_OUT

The bus_out interface sort allows Handel-C programs to write to external pins. Its general usage is:

interface bus_out()
 Name(type portName=Expression)
 with {data = {Pin List}};

A specific example is:

interface bus_out () OutBus(int 4 OutPort=x+y)
 with {data = {"P4", "P3", "P2", "P1"}};

This declares a bus connected to pins 1, 2, 3 and 4 where pin 4 is the most significant bit and pin 1 is
the least significant bit. The value appearing on the external pins is the value of the expression x+y at
all times.

14.1.5 BIDIRECTIONAL DATA TRANSFER: BUS_TS

The bus_ts interface sort allows Handel-C programs to perform bi-directional off-chip communications
via external pins. Its general usage is:

interface bus_ts (type inPortName)
 Name(type outPortName = Value,
 type conditionPortName = Condition)
 with {Specs};
Value is an expression giving the value to output on the pins. Condition is an expression giving the
condition for driving the pins. When Condition is non-zero (i.e. true), the value of Value is driven on
the pins. When the value of Condition is zero, the pins are tri-stated and the value of the external bus
can be read using the identifier Name. inPortName. If inPortName is not defined, the port name
defaults to in.

If you attempt to read from a tri-state bus when it is in write mode (i.e. condition is non-zero), you will
get the value that you are writing to the bus.

Interfacing with external hardware

 Page 250
www.agilityds.com

Example
unsigned 1 condition;
int 4 x;

interface bus_ts(int 4 read)
 BiBus(int write=x+1,
 unsigned 1 enable= condition)
 with {data = {"P4", "P3", "P2", "P1"}};

condition = 0; // Tri-state the pins
x = BiBus.read; // Read the value
condition = 1; // Drive x+1 onto the pins

This example reads the value of the external bus into variable x and then drives the value of x + 1 onto
the external pins.

 Take care when driving tri-state buses that the FPGA/PLD and another device

on the bus cannot drive simultaneously as this may result in damage to one or both of them.

14.1.6 BIDIRECTIONAL DATA TRANSFER WITH REGISTERED INPUT:
BUS_TS_LATCH_IN

The bus_ts_latch_in interface sort allows Handel-C programs to perform bidirectional off-chip
communications via external pins with inputs registered on a condition. Its general usage is:

interface bus_ts_latch_in (type inPortName)
 Name(type outPortName = Value,
 type conditionPortName = Condition,
 type clockPortName = Clock)
 with {Specs};

Value is an expression giving the value to output on the pins. Condition is an expression giving the
condition for driving the pins. Clock is an expression giving the signal to clock the input from the pins.
When Condition is non-zero (i.e. true), the value of Value is driven on the pins. When the value of
Condition is zero, the pins are tri-stated and the registered value of the external bus can be read
using the identifier Name. inPortName. If inPortName is not defined, the port name defaults to in.

The rising edge of the value of the third expression clocks the external values through to the internal
values on the chip.

If you attempt to read from a tri-state bus when it is in write mode (i.e. condition is non-zero), you will
get the value that you are writing to the bus.

Interfacing with external hardware

 Page 251
www.agilityds.com

Example
int 1 get;
unsigned 1 condition;
int 4 x;

interface bus_ts_latch_in(int 4 read)
 BiBus(int write = x+1,
 unsigned 1 enable = condition,
 unsigned 1 clock_port = get)
 with {data = {"P4", "P3", "P2", "P1"}};

condition = 0; // Tri-state external pins
get = 0;
get = 1; // Register external value
x = BiBus.read; // Read registered value
condition = 1; // Drive x+1 onto external pins

This example samples the external bus and reads the registered value into variable x and then drives
the value of x + 1 onto the external pins.

 Take care when driving tri-state buses that the FPGA/PLD and another device

on the bus cannot drive simultaneously as this may result in damage to one or both of them.

14.1.7 BIDIRECTIONAL DATA TRANSFER WITH CLOCKED INPUT:
BUS_TS_CLOCK_IN

The bus_ts_clock_in interface sort allows Handel-C programs to perform bidirectional off-chip
communications via external pins with inputs clocked continuously with the Handel-C clock. Its general
usage is:

interface bus_ts_clock_in (type inPortName)
 Name(type outPortName = Value,
 type conditionPortName = Condition)
 with {Specs};

Value is an expression giving the value to output on the pins. Condition is an expression giving the
condition for driving the pins. When Condition is non-zero (i.e. true), the value of Value is driven on
the pins. When the value of Condition is zero, the pins are tri-stated and the value of the external bus
can be read using the identifier Name. inPortName. If inPortName is not defined, the port name
defaults to in.

If you attempt to read from a tri-state bus when it is in write mode (i.e. condition is non-zero), you will
get the value that you are writing to the bus.

Interfacing with external hardware

 Page 252
www.agilityds.com

The rising edge of the Handel-C clock reads the external values into the internal flip-flops on the chip.
For example:

unsigned 1 condition;
int 4 x;

interface bus_ts_clock_in (int 4 read)
 BiBus(int 4 writePort=x+1,
 unsigned 1 enable=condition)
 with {data = {"P4", "P3", "P2", "P1"}};

condition = 0; // Tri-state external pins
x = BiBus.read; // Read registered value
condition = 1; // Drive x+1 onto external pins

This example reads the value from the flip-flop into variable x and then drives the value of x + 1 onto
the external pins.

 Take care when driving tri-state buses that the FPGA/PLD and another device

on the bus cannot drive simultaneously as this may result in damage to one or both of them.

14.1.8 EXAMPLE HARDWARE INTERFACE

The example shows the use of buses. The scenario is of an external device connected to the
FPGA/PLD which may be read from or written to. The device has a number of signals connected to
the FPGA/PLD.

Signals connected

Signal Name FPGA pin Description

D3..0 1, 2, 3, 4 Data Bus
Write 5 Write strobe
Read 6 Read strobe
WriteRdy 7 Able to write to device
ReadRdy 8 Able to read from device

Interfacing with external hardware

 Page 253
www.agilityds.com

Read cycle timing
A read from the device is performed by waiting for ReadRdy to become active (high). The Read signal
is then taken high for one clock cycle and the data sampled on the falling edge of the strobe.

Write cycle timing
A write to the device is performed by waiting for WriteRdy to become active (high). The Write signal is
then taken high for one clock cycle while the data is driven to the device by the FPGA. The device
samples the data on the falling edge of the Write signal.

Bus declarations
The first stage of the code declares the buses associated with each of the external signals.

int 4 Data;
int 1 En = 0;
interface bus_ts_clock_in(int 4 DataIn)
 dataB(int outPort=Data, int EnableSignal=En) with
 {data = {"P4", "P3", "P2", "P1"}};

int 1 Write = 0;
interface bus_out() writeB(int WriteSignal = Write) with
 {data = {"P5"}};

int 1 Read = 0;
interface bus_out() readB(int readSignal=Read) with
 {data = {"P6"}};

Interfacing with external hardware

 Page 254
www.agilityds.com

interface bus_clock_in(int 1 wr)
 WriteReady() with {data = {"P7"}};

interface bus_clock_in(int 1 readySignal)
 ReadReady() with {data = {"P8"}};

void main (void)
{
 int 4 Data, Reg;

 // Read word from external device
 while (ReadReady.readySignal == 0)
 delay;

 Read = 1; // Set the read strobe
 par
 {
 Data = dataB.DataIn; // Read the bus
 Read = 0; // Clear the read strobe
 }

 // Write one word back to external device
 Reg = Data + 1;
 while (WriteReady.wr == 0)
 delay;

 par
 {
 En = 1; // Drive the bus
 Write = 1; // Set the write strobe
 }

 Write = 0; // Clear the write strobe
 En = 0; // Stop driving the bus
}

Writing data
You can change the values on the output buses by setting the values of the Data, Write and Read
variables. You can drive the data bus with the contents of Data by setting En to 1.

The variables that drive buses have been initialized to 0. That means that these variables must be
static or global. This may be important when driving write strobes. Care should be taken during
configuration that the FPGA pins are disconnected in some way from the external devices because the
FPGA pins become tri-state during this time.

Interfacing with external hardware

 Page 255
www.agilityds.com

The main program
The main program reads a word from the external device before writing one word back.

void main (void)
{
 int 4 Data, Reg;

 // Read word from external device
 while (ReadReady.readySignal == 0)
 delay;
 Read = 1; // Set the read strobe
 par
 {
 Data = dataB.DataIn; // Read the bus
 Read = 0; // Clear the read strobe
 }

 // Write one word back to external device
 Reg = Data + 1;
 while (WriteReady.wr == 0)
 delay;
 par
 {
 En = 1; // Drive the bus
 Write = 1; // Set the write strobe
 }
 Write = 0; // Clear the write strobe
 En = 0; // Stop driving the bus
}

Note that during the write phase, the data bus is driven for one clock cycle after the write strobe goes
low to ensure that the data is stable across the falling edge of the strobe.

14.2 SIMULATING INTERFACES
You can combine the hardware and simulation versions of your program by using the #ifdef construct.
For example:

Interfacing with external hardware

 Page 256
www.agilityds.com

#define SIMULATE

#ifdef SIMULATE
{
 ...
}
#else
{
 ...
}
#endif

There are several ways to simulate the reading and writing of data across an interface.

Bus-type and port-type interfaces
If you have a bus-type interface or a port-type interface (port_in or port_out) you can use the infile and
outfile specifications to read and write data. (Bus-type interfaces are bus_in, bus_latch_in,
bus_clock_in, bus_out, bus_ts, bus_ts_latch_in and bus_ts_clock_in).

For example:

set clock = external "P1";

unsigned 8 out;
interface port_in(unsigned 8 i) pi() with {infile = "in.txt"};
interface port_out() po(out) with {outfile = "out.txt"};
void main (void)
{
 do
 {
 out = pi.i;
 }while(out != 0);
}

infile and outfile can only connect to files with data in a simple format. If your data is more complex,
you could write a C/C++ function and call it to bring in the data.

If you want to model the hardware as well as the functionality of your design, you will need to co-
simulate your interface with a model of the component to which it will be connected (see below).

Generic interfaces
If you have written a custom (generic) interface, you will need to co-simulate the interface with a model
of the component to which it will be connected in hardware. If you write the model in Handel-C, you
can co-simulate it with your Handel-C interface using dkconnect.dll. To synchronize the simulations,
use dksync.dll. If your model is in VHDL or Verilog, you can co-simulate it with your Handel-C design
using the Co-simulation Bridge for ModelSim provided in the Platform Developer's Kit.

Interfacing with external hardware

 Page 257
www.agilityds.com

14.3 BUSES AND THE SIMULATOR
The Handel-C simulator cannot simulate buses directly, because the simulation of buses cannot
determine when input and output should occur. The recommended process for debugging is:

For simple data, use a channel or a chanin/chanout to connect to a file. This is the simplest method.

For more complex buses/interfaces, write a C/C++ function and call it to bring in data. This allows you
to operate on the data or read it in a complex format. This models functionality but not hardware.

To model buses accurately, use the Plugin Library to write a plugin which can be co-simulated. This is
precise and allows you to read I/O signals using the Waveform Analyzer, but can be slow and
cumbersome.

Using preprocessor definitions
By using the #define and #ifdef...#endif constructs of the preprocessor, it is possible to combine both
the simulation and hardware versions of your program into one.

Channel example
#define SIMULATE
#ifdef SIMULATE
 input ? value;
#else
 value = BusIn.in;
#endif

External function call example
#define SIMULATE

#ifdef SIMULATE
 extern "C++" int 8 bus_input_function(void);
 data_in = bus_input_function();
#else
 interface bus_in(int 8 in) BusIn();
 data_in = BusIn.in;
#endif

Example with plugin
To simulate a tri-state bus:

Interfacing with external hardware

 Page 258
www.agilityds.com

interface bus_ts (int 32 in with
 {extlib = "MyPlugin.dll", extinst = "1", extfunc = "DataBusIn"})
 DataBus(int 32 out = DataOut with {extlib = "MyPlugin.dll",
 extinst = "1", extfunc = "DataBusOut"},
 int 1 enable = !WriteBus.in with {extlib = "MyPlugin.dll",
 extinst = "1", extfunc = "DataBusEnable"})
 with {data = pinList};

In this case, the functions DataBusIn, DataBusOut and DataBusEnable would be provided in the
plugin MyPlugin.dll and called by the simulator. The extlib, extfunc and extinst specifications are
ignored if compiled to HDL so the interface definition does not have to be within an #ifdef.

14.4 MERGING PINS

14.4.1 MERGING CLOCK PINS

You can merge clock pins as long as:

• any pins specifications given to the two clocks match.
• there are no conflicts between any timing specifications given to the clocks.

For example, if you specified two clock domains in the same project with the following code:

set clock = external "C1" with {rate = 10}; //clock declaration in file
one.hcc
set clock = external "C1" with {rate = 20}; //clock declaration in file
two.hcc

you would get a compiler error, as the rate specifications don't match.

If one of the clocks is divided you need to divide the value of the rate specification to match. For
example:

set clock = external "C1" with {rate = 10}; // file one.hcc
set clock = external_divide 3 "C1" with {rate = 3.3333333333333333}; //
file two.hcc

If you need to use decimal places to specify the rate for the divided clock, the compiler will round up
the value to the nearest whole number as long as you use at least 16 decimal places (3
x3.3333333333333333 is rounded up to 10).

14.4.2 MERGING INPUT PINS

Input pins can be merged so that pins can be read simultaneously into multiple variables. This can be
done by specifying multiple interfaces (bus_in, bus_clock_in, bus_latch_in) which have some pins in
common. If required, a different subset of pins can be specified for each instance of the interface. For

Interfacing with external hardware

 Page 259
www.agilityds.com

example:

interface bus_in(int 8 wide) wideDataBus() with
 {data ={"P7", "P6", "P5", "P4", "P3",
 "P2", "P1", "P0"}};
interface bus_in(int 3 thin) thinDataBus() with
 {data ={"P5", "P4", "P3"}};

wideDataBus.wide would give the values of pins P0 – P7, whereas thinDataBus.thin would give the
three bit value on pins P3, P4 and P5.

If the input pins have an intime specification, you need to ensure that these match.

14.4.3 MERGING TRI-STATE PINS

Tri-state bus pins can be merged, though doing so will generate a compiler warning, as the compiler
cannot detect whether the outputs for both pins might be enabled at the same time. If both outputs are
enabled at the same time, the result is undefined. If you have used any intime and outtime
specifications, make sure that they match.

You might wish to merge output pins for a tri-state bus if you wished to switch the circuit connections
from one external piece of logic to another. For example:

int 1 en1, en2;
int 4 x, y;
interface bus_ts_clock_in (int 4 read)
 BiBus1(int 4 writePort=x+1, unsigned 1 enable = (en1==1))
 with {data = {"P4", "P3", "P2", "P1"}};
interface bus_ts_clock_in (int 4 read)
 BiBus2(int 4 writePort=y+1, unsigned 1 enable = (en2==1))
 with {data = {"P4", "P3", "P2", "P1"}};

 Take care when driving tri-state buses that the FPGA/PLD and another device

on the bus cannot drive simultaneously as this may result in damage to one or both of them.

14.5 TIMING CONSIDERATIONS FOR BUSES

bus_in interfaces
This form of bus is built with no register between the external pin and the points inside the FPGA or
PLD where the data is used. If the value on the external pin changes asynchronously with the Handel-
C clock then routing delays within the FPGA can cause the value to be read differently in different
parts of the circuit. The solution to this problem is to use either a bus_latch_in or a bus_clock_in
interface sort.

Interfacing with external hardware

 Page 260
www.agilityds.com

bus_out interfaces
The output value on pins cannot be guaranteed except at rising Handel-C clock edges. In between
clock edges, the value may be in the process of changing. Since the routing delays through different
parts of the logic of the output expression are different, some pins may change before others giving
rise to intermediate values appearing on the pins. This is particularly apparent in deep combinational
logic. Adding a flip-flop to the output (as shown in the bus_out example) will minimize these effects.

Race conditions within the combinational logic can lead to glitches on output pins between clock
edges. When this happens, pins may glitch from 0 to 1 and back to zero or vice versa as signals
propagate through the combinational logic. Adding a flip-flop at the output removes these effects.

Bi-directional tri-state buses
The timing considerations for bus_in and bus_out interfaces should also be taken into account when
using bi-directional tri-state buses since these are effectively a combination of an input bus and an
output bus.

14.5.1 EXAMPLE TIMING CONSIDERATIONS FOR INPUT BUSES

interface bus_in(int 1 read) a() with
 {data = {"P1"}};

par
{
 x = a.read;
 y = a.read;
}

Even though a.read is assigned to both x and y on the same clock cycle, if the delay from pin 1 to the
flip-flop implementing the x variable is significantly different from that between pin 1 and the flip-flop
implementing the y variable then x and y may end up with different values.

The delay between pin 1 and the input of y is slightly longer than the delay between pin 1 and the

Interfacing with external hardware

 Page 261
www.agilityds.com

input to x. As a result, when the rising edge of the clock registers the values of x and y, there is one
clock cycle when x and y have different values.

This effect can also occur in places that are more obscure.

interface bus_in(int 1 read) a() with
 {data = {"P1"}};

while (a.read==1)
{
 x = x + 1;
}

Although a.read is only apparently used once, the implementation of a while loop requires the signal to
be routed to two different locations giving the same problem as before. The solution to this problem is
to use either a bus_latch_in or a bus_clock_in interface sort.

The compiler will detect any occurrences of a pin feeding more than one register, and issue a warning.

14.5.2 EXAMPLE TIMING CONSIDERATIONS FOR OUTPUT BUSES

int 8 x;
int 8 y;

interface bus_out() output(int out = x * y)
 with {data = {"P7", "P6", "P5", "P4",
 "P3", "P2", "P1", "P0"}};

A multiplier contains deep logic so some of the 8 pins may change before others leading to
intermediate values. It is possible to minimize this effect (although not eliminate it completely) by
adding a variable before the output. This effectively adds a flip-flop to the output. The above example
then becomes:

int 8 x;
int 8 y;
int 8 z;

interface bus_out() output(int out = z)
 with {data = {"P7", "P6", "P5", "P4",
 "P3", "P2", "P1", "P0"}};

z = x * y;

You must now take care to update the value of z whenever the value output on the bus must change.

Interfacing with external hardware

 Page 262
www.agilityds.com

14.6 METASTABILITY
If the input of a flip-flop is connected to a signal which is not synchronous with the flip-flop's clock then
its setup or hold time may be violated. This can result in the flip-flop entering a metastable state when
it is clocked. The output of the flip-flop will then have an unpredictable value for an indeterminate
period of time but will eventually become either 0 or 1.

In some circumstances (such as when two independent clocks are involved) metastability cannot be
avoided. While a metastable flip-flop may remain so for any length of time, there is a high probability
that it will enter a stable state after a relatively short delay.

The metastability characteristics of digital logic devices vary enormously. Refer to product data sheets
for details.

The diagram shows flip-flops in separate clock domains. The central flip-flop receives data from the
other clock domain. Its value is copied to the second flip-flop after 1 clock tick.

In that clock tick, it must resolve metastability and pass through any routing and output and setup
delays.

14.6.1 TECHNIQUES TO MINIMIZE THE PROBLEM

• use extra registers to stabilize the data
• decouple the FPGA/PLD from external synchronous hardware by using external buffer storage

Stabilizing the data
The ideal system is designed such that when data is clocked into a register it is guaranteed to be
stable.

The solution is to clock the data into the Handel-C program more than once, so it is clocked into one
register, and the output of that register is then clocked into another register. On the first clock edge the
data could be changing state so the output could be metastable for a short time after the clock.
However, as long as the clock period is long relative to the possible metastable period, the second
clock edge will clock stable data. Even more clock edges further reduce the possibility of metastable
states entering the program, however the move from one clock to two clock ticks is the most significant
and should be adequate for most systems.

The example below has 4 clock edges. The first is in the bus_clock_in procedure, and the next 3 are in

Interfacing with external hardware

 Page 263
www.agilityds.com

the assignments to the variables x, y, and z.

int 4 x,y,z;

interface bus_clock_in(int 4 read) InBus() with
 {data = {"P4", "P3", "P2", "P1"}};

par
{
 while(1)
 x = InBus.read;

 while(1)
 y = x;

 {

 z = y;
 }
}

Designing the system to minimize the problem
Remember to keep the problem in perspective by examining the details of the board to estimate the
probability of metastability. You can use external buffers to stabilize data from synchronous hardware
before it is input to the FPGA.

Techniques to minimize the problem
If using channels to communicate between clock domains, you may use clock specifications to
balance speed and metastability issues

If using interfaces to communicate between clock domains, you can insert extra stabilizing flip-flops to
reduce the likelihood of metastability being propagated through the circuit

Timing constraints used for channels across clock domains
Within a single clock tick, data transmitted from another asynchronous clock domain must settle (stop
being metastable) and be routed to the next flip flop.

Interfacing with external hardware

 Page 264
www.agilityds.com

If you are using channels to communicate between clock domains, you can set the timing constraints
which specify how long it is before you sample data (the amount of time for it to settle) OR the amount
of time available for it to move onwards.

The amount of time used for it to settle is known as the resolution time (tres). You can specify a
maximum period for this by using the resolutiontime specification. A sensible value for resolutiontime
is three-quarters of the clock period.

The amount of time left is the amount of time for the control signal to get from one flip-flop to the next,
including all output, setup and routing delays. This is the minperiod specification. This would normally
only be used if paranoia is set to 0.

How channels are designed to deal with metastability
When you use a channel to communicate across clock domains, synchronization hardware is built
automatically.

tr time to transfer between domains (paranoia in domain B + 1) X tp

tp clock period in domain B

tup unconstrainedperiod

Interfacing with external hardware

 Page 265
www.agilityds.com

tmp minperiod

The control signals are clocked through a number of flip-flops specified by paranoia. On each clock
edge, the data is moved through another flip-flop, such that it is less likely to be metastable.

14.6.2 USING INTERFACES: EXTERNAL RESYNCHRONIZING EXAMPLE

This example shows the three files required to connect two EDIF blocks (bbA and bbB) which use
different clocks. The small files bbA.hcc and bbB.hcc compile to the EDIF code using the port_out
from and port_in to interfaces. The metastable.hcc file connects the two together and generates one
flip –flop that resynchronizes the data by reading the value from bbA into a variable.

File: metastable.hcc

Interfacing with external hardware

 Page 266
www.agilityds.com

/*
* Black box code to resynchronize
* Needs to be clocked from the reading clock
* (i.e. bbB.hcc's clock)
*/

int 1 x;
interface bbA(int 1 from) A();
interface bbB() B(int 1 to=x, unsigned 1 clk = __clock);

set clock = external "P1";
void main(void)
{
 while(1)
 {
 /*
 * stabilize the data by adding resynchronization FF
 */
 x = A.from;
 }
}

File: bbA.hcc

/*
* Domain bbA
* Compiles to bbA.edf
*/
interface port_in(unsigned 1 clk with { clockport = 1 }) clk();
set clock = internal clk.clk;
void main(void)
{
 int 1 y;
 interface port_out() from (int 1 from = y);
}

File: bbB.hcc

Interfacing with external hardware

 Page 267
www.agilityds.com

/*
*Domain bbB
* Compiles to bbB.edf
*/

set clock = external "P2";
void main(void)
{
 int 1 q;

 interface port_in(int 1 to) to();
 par
 {
 while(1)
 {
 q = to.to; // Read data
 }
 }
}

14.7 PORTS: INTERFACING WITH EXTERNAL LOGIC
Handel-C provides the interface sorts port_in, port_out and port_ts. These allow you to have a set of
wires, unconnected to pins, which you can use to connect to a simulated device or to another function
within the FPGA or PLD. Handel-C supplies the interface declaration for these sorts, and you supply
the instance definition.

port_in
For a port_in, you define the port(s) carrying data to the Handel-C code and any associated
specifications.

interface port_in(Type data_TO_hc [with {port_specs}])
 Name() [with {Instance_specs}];

For example:

interface port_in(int 4 signals_to_HC) read();

You can then read the input data from the variable Name.data_TO_hc, in this case
read.signals_to_HC

port_out
For a port_out, you define the port(s) carrying data from the Handel-C code, the expression to be

Interfacing with external hardware

 Page 268
www.agilityds.com

output over those ports, and any associated specifications.

interface port_out() Name(Type data_FROM_hc =
 output_Expr[with {port_specs}])
 [with {Instance_specs}];

For example:

int X_out;
interface port_out()
 drive(int 4 signals_from_HC = X_out);

In this case, the width of X_out would be inferred to be 4, as that is the width of the port that the data
is sent to.

port_ts
For a port_ts, you define both sets of ports.

interface port_ts(Type data_TO_hc [with {port_specs}]) Name() (Type data_FROM_hc [with
{port_specs}]) [with {Instance_specs}];

For example:

unsigned 1 x, enable;

interface port_ts(unsigned 1 i) MyInOutPort(unsigned 1 o = x, unsigned 1 en
= enable);

Port names
The name of each port in a port_in or port_out interface must be different, as they will all be built to
the top level of the design.

The examples below would both generate a compiler error.

Example 1:

interface port_in(unsigned 1 soggy) In1();
interface port_in(unsigned 1 soggy) In2();

Example 2:

interface port_in(unsigned 1 soggy) In1();
void main(void)
{
 interface port_in(unsigned 1 wet with {portname = "soggy") In2();
 ...
}

Both examples build two ports to the top level of the design called soggy. When they were integrated
with external code, the PAR tools wouldn’t know which soggy to use where.

Interfacing with external hardware

 Page 269
www.agilityds.com

14.8 SPECIFYING THE INTERFACE
You can specify your own interface format. This allows you to communicate with code written in
another language such as VHDL, Verilog or EDIF and allows the Handel-C simulator to communicate
with an external plugin program (e.g., a connection to a VHDL simulator).

The expected use for this is to allow you to incorporate bought-in or handcrafted pieces of low-level
code in your high-level Handel-C program. It also allows your Handel-C program code to be
incorporated within a large EDIF, VHDL or Verilog program. You can also use it to communicate with
programs running on a PC that simulate external devices.

To use such a piece of code requires that you include an interface definition in the Handel-C code to
connect it to the external code block. This interface definition also tells the simulator to call a plugin
(which in turn may invoke a simulator for the foreign code).

14.9 TARGETING PORTS TO SPECIFIC TOOLS
When compiling to EDIF, Handel-C has the capacity to format the names of wires to external logic
according to the different syntaxes used by any external components generated by foreign tools. You
can do this using the busformat specification to a port. This allows you to specify how the bus name
and wire number are formatted.

To specify a format, you use the syntax

with {busformat = "formatString"}

formatstring can be one of the following strings. B represents the bus name, and I represents the
wire number.

Interfacing with external hardware

 Page 270
www.agilityds.com

BI
B_I
B[I]
B(I)
B<I>
B specifies a bus

B[N:0], B<N:0> or B(N:0) specify a bus of width (N+1).

Example format B[I]
interface port_in(int 4 signals_to_HC with
 {busformat="B[I]"}) read();

would produce wires

signals_to_HC[0]
signals_to_HC[1]
signals_to_HC[2]
signals_to_HC[3]

Example format B<I>
ram unsigned 4 rax[4] with
 {ports = 1, busformat="B<I>"};

would produce wires

rax_SPPort_addr<0> // Address
rax_SPPort_addr<1>
rax_SPPort_data_in<0> // Data In
rax_SPPort_data_in<1>
rax_SPPort_data_in<2>
rax_SPPort_data_in<3>
rax_SPPort_data_out<0> // Data Out
rax_SPPort_data_out<1>
rax_SPPort_data_out<2>
rax_SPPort_data_out<3>
rax_SPPort_data_en // Data Enable
rax_SPPort_clk // Clock
rax_SPPort_cs // Chip Select
rax_SPPort_oe // Output Enable
rax_SPPort_we // Data In

Object specifications

 Page 271
www.agilityds.com

15 OBJECT SPECIFICATIONS
Handel-C provides the ability to add ‘tags’ to certain objects (variables, channels, ports, buses, RAMs,
ROMs, mprams, clocks, resets and signals) to control their behaviour. These tags or specifications are
listed after the definition of the object using the with keyword. All specifications can be applied to
generic output. Others are only valid for simulation (Debug or Release) or for hardware output.

When defining multiple objects, the specification must be given at the end of the line and it applies to
all objects defined on that line. For example:

extern unsigned x, y;
unsigned x, y with {show=0};

This attaches the show specification with a value of 0 to both x and y variables.

Specifications can only be applied to the definition of objects, not to declarations:

extern rom unsigned 32 SomeRom[1] with {Spec}; // Wrong; spec applied to de
claration
rom unsigned 32 SomeRom[1]={1} with {Spec}; // OK; spec applied to definiti
on

The with keyword takes one or more of the following attributes.

Compiler atttributes
These specifications are interpreted by the compiler.

Specification Possible
values

Default Applies to Meaning

warn 0, 1 1 variables
memories
channels
interfaces
clocks

Enable warnings
for object

extpath Name of port
TO Handel-C
on the same
interface

None port FROM
Handel-C

Specify any direct
logic
(combinational
logic) connections
to another port

Simulator attributes
These specifications are interpreted by the simulator.

Object specifications

 Page 272
www.agilityds.com

Specification Possible
values

Default Applies
to

Meaning

show 0, 1 1 variables
channels
o/p
interfaces
tri-state
interfaces

Show variable
during simulation

base 2, 8, 10, 16 10 variables
chanouts
o/p
interfaces
tri-state
interfaces

Print variable in
specified base

infile Any valid
filename

None chanins
i/p
interfaces
tri-state
interfaces

Redirect from file

outfile Any valid file
name

None chanouts
o/p
interfaces
tri-state
interfaces,
variables

Redirect to file

extlib Name of a
plugin .dll

None interface
or
port

Specify external
plugin for simulator

extfunc Name of a
function
within the
plugin

PlugInSet or
PlugInGet
depending
on port
direction

interface
or
port

Specify external
function within the
simulator for this
port

extinst Instance
name (with
optional
parameters)

None interface
or
port

Specify simulation
instance used

Clock attributes
These specifications apply to a clock, and affect the hardware built in that clock domain.

Object specifications

 Page 273
www.agilityds.com

Specification Possible
Values

Default Applies to Meaning

clockport 0, 1 0 for a port
on an
interface, 1
for a clock
declaration

ports on
interfaces,
external clocks

Mark port as feeding
a clock. When
applied to a generic
interface port, it
marks that port as
feeding a clock.
When applied to an
external clock, it
marks that clock as
using a dedicated
clock pin.

minperiod Any time in
nanoseconds

None clocks with
channels to
other clock
domains

minimum period for
place and route tools
to achieve between
flip-flops

paranoia 0 or any
positive integer
(above 10
causes a
warning)

1 clocks specifies number of
extra flip-flops used
in stabilizing
synchronization data

rate Any floating-
point frequency
in MHz

None clocks Minimum frequency
at which the clock in
question should be
capable of running

resolutiontime Any time in
nanoseconds

None clocks with
channels to
other clock
domains

Time for metastability
to resolve on
channels into clock
domains

retime 0 or 1 1 clocks,
variables

Prevent flip-flops in a
specific clock domain
or generated by a
variable from being
moved by the retimer

startupparanoia 0 or any
positive integer
(above 10
causes a
warning)

1 clocks with
asynchronous
reset on
domain

specifies number of
extra flip-flops used
in stabilizing clock
and reset startup
data

Object specifications

 Page 274
www.agilityds.com

startuppipeline 0 or any
positive integer
(above 10
causes a
warning)

1 clocks in
domains with
large start-up
fan

specifies number of
flip-flops used to
breakup fan over
multiple clock cycles

startup safe or
immediate

safe clocks specifies whether
startup timing circuit
is added

unconstrainedperi
od

Any time in
nanoseconds

None clocks with
channels to
other clock
domains

Constraint for
compiler-generated
control paths into
clock domain

Channel attributes
This specification defines how channels are built.

Specification Possible values Default Applies to Meaning

fifokind dkfifo, dkslow, dkfast,
native, blackbox

dkfifo channel Determines the
exact FIFO
implementation

fifolength 0 or any positive integer 0 channel Create FIFO of
specified length

minfifolength any positive integer 0 channel Specify minimum
length to use for a
FIFO

maxfifolength any positive integer 0 channel Specify maximum
length to use for a
FIFO

Channel and memory attributes
This specification defines where memories and FIFOs are built.

Specification Possible values Default Applies to Meaning

block "AUTO" for any device;
"LUT", "EAB", "M512",
"M4K" or "M-RAM" for
Altera; "BlockRAM" or
"SelectRAM" for Xilinx

"AUTO" memories
(on-chip)
FIFOs of two
or more parts

Specify memory
resource type to
use for RAM/ROM

Object specifications

 Page 275
www.agilityds.com

Memory attributes
These specification defines how memories are built.

Specification Possible Values Default Applies to Meaning

offchip 0, 1 0 memories Set RAM/ROM to be
off chip. Cannot be
used in conjunction
with ports

ports 0, 1 0 memories Set RAM/ROM to be
in external code.
Cannot be used in
conjunction with
offchip

read synchronous
asynchronous

asynchrono
us

RAMs Set RAMs/ROMs to
synchronous read

wegate -1, 0, 1 0 RAMs Place write enable
signal

westart in multiples of 0.5
to (clock division
-0.5)

None RAMs Position write enable
signal

welength in multiples of 0.5
to clock division

None RAMs Set length of write
enable signal

rclkpos in multiples of 0.5
to (clock division
-0.5)

None memories Set read cycle
position of SSRAM
clock

wclkpos in multiples of 0.5
to (clock division
-0.5)

None memories Set write cycle
position of SSRAM
clock

clkpulselen in multiples of 0.5
to clock division

None memories Set pulse length of
SSRAM clock

clk Any valid pin list None memories
(off-chip)

Set pins for external
RAM or ROM clock

addr Any valid pin list None memories (off-
chip)

Set address pins

oe Any valid pin list None memories (off-
chip)

Set output enable
pin(s)

we Any valid pin list None RAMs
(off-chip)

Set write enable
pin(s)

cs Any valid pin list None memories (off-
chip)

Set chip select pin(s)

Object specifications

 Page 276
www.agilityds.com

Interface and memory attributes
This specification defines how interfaces and memory connections are built.

Specification Possible
Values

Default Applies to Meaning

speed 0, 1
(Altera and
Xilinx)

1 for Altera
and Xilinx
Virtex,
Spartan-
II/IIE/3/3E/3
L series

o/p or tri-state
interfaces

Set buffer speed

intime Any
floating-
point delay
(ns)

None input port or
interfaces or tri-
state interfaces
external RAMs

Maximum allowable
delay between
interface and variable

outtime Any
floating-
point delay
(ns)

None output port or
interfaces or tri-
state interfaces
external RAMs

Maximum allowable
delay between
variable and interface

standard Specified
keywords
representin
g I/O
standards

LVCMOS33
for ProASIC
/ ProASIC+
LVTTL for
other
devices

any external
interface or
external clock
(dependent on
FPGA type), and
off-chip
memories

I/O standard used
(electrical
characteristics)

strength 2, 4, 6, 8,
12, 16, 24
(mA)

Various,
refer to
device
datasheets

external
interfaces and
off-chip
memories

Signal strength.

 OR

 0 (Min), -1
(Max)

Object specifications

 Page 277
www.agilityds.com

dci 0, 0.5, 1 0 (No DCI) external
interfaces and
external clocks
(Virtex-II,
Virtex-II Pro and
Spartan-3/3E/3L
only) and off-
chip memories

Digital control
impedance enabled
(only valid with some
standards)

busformat Format
string

BI generic
interfaces, port-
type interfaces
and ports to
memories in
external logic

Specify the way that
wire names are
formatted in EDIF

pull 0, 1 None Xilinx and ApexII
interfaces

Add pull up or pull
down resistor(s)

vhdl_component 0,1 1 VHDL output Controls component
declaration in the
VHDL output

data Any valid
pin list

None memories
interfaces

Set data pins

Interface attributes
These specifications defines how interfaces are built.

Object specifications

 Page 278
www.agilityds.com

Specification Possible
values

Default Applies to Meaning

bind 0,1 0 interface,
port

Bind component to
work library

buffer string
value

Depends on
target
architecture
and type of
interface

bus-type
interfaces,
external
clocks &
resets

In EDIF: specify type
of buffer to build

instancename (see page
292)

string-
value

None interface specifies the EDIF
instance name of the
interface

portname string-
value

None ports on all
interface
types

specifies the name of
the port

properties string-
value pair
OR string-
value-
string
triplet

None generic
interfaces

In EDIF: Parameterize
instantiations of
external black boxes
In VHDL: Define
generics
In Verilog: Define
parameters

quartus_proj_assign string-
value pair

None bus-type
interfaces,
offchip RAM

In EDIF: specify
Quartus project pins
assignments

sc_type string-
value

bool for 1 bit
wide ports,
uint
otherwise

port_in,
port_out or
generic
interfaces

Create a SystemC
port of a specified type

vhdl_type string-
value

std_logic for
1 bit wide
ports,
unsigned
otherwise

port_in,
port_out or
generic
interfaces

Create a VHDL port of
a specified type

reset attributes
These specifications defines how reset signals are implemented.

Object specifications

 Page 279
www.agilityds.com

Specification Possible
values

Default Applies to Meaning

active_low 0,1 0 reset signal Make signal active low
synchronous 0,1 0 reset signal Make reset signal

synchronous

Examples
Specifications can be added to objects as follows:

unsigned 4 w with {show=0};
int 5 x with {show=0, base=2};
chanout char y with {outfile="output.dat"};
chanin int 8 z with {infile="input.dat"};
interface bus_clock_in(int 4 in) InBus() with
 { pull = 1, data = {"P4", "P3", "P2", "P1"} };

15.1 ACTIVE_LOW SPECIFICATION
The active_low specification may be given to a reset signal. The value of this specification controls
whether the reset is active high or active low. The default is active high (0)

Example
set reset = external with {active_low=1};

15.2 BASE SPECIFICATION
The base specification may be given to variable, output channel, output bus and tri-state bus
declarations. You can only use it for simulation output (Debug or Release). The value that this
specification is set to tell the Handel-C compiler which base to display the value of the object in. Valid
bases are 2, 8, 10 and 16 for binary, octal, decimal and hexadecimal respectively.

The default value of this specification is 10. If you write with {base = 0} this is equivalent to not
specifying a base.

Example
int 5 x with {base=2};

15.3 BIND SPECIFICATION
The bind specification may be given to a user-defined interface that connects to a component in

Object specifications

 Page 280
www.agilityds.com

external logic. It only has meaning when instantiating an external block of code from Handel-C
generated VHDL or Verilog. If bind is set to 1, it is assumed that the definition of the component exists
in HDL elsewhere. If it is set to 0, it does not and the component is assumed to be a black box.

In VHDL, setting bind to 1 instantiates the component and generates a declaration of this component
of which the definition is assumed to be within the work library. Setting bind to 0 (default) instantiates
the component, generates a black box component declaration and sets the dont_touch attribute on the
component to ensure that it is not optimized away.

In Verilog, setting bind to 1 instantiates the component but does not declare it. Setting bind to 0
instantiates the component and generates a black box component declaration. This black box
component declaration is an empty module, which merely describes the interfaces of the component.

VHDL example 1: with bind set to 0:
interface Bloo(unsigned 1 myin)
 B(unsigned 1 myout = x) with {bind = 0};

results in Handel-C generating this VHDL instantiation of the Bloo component:

 -- External component declaration
 COMPONENT Bloo
 PORT (
 myin : OUT std_logic;
 myout : IN std_logic
);
 END COMPONENT;
...
 ATTRIBUTE dont_touch : vhdl_boolean;
 ATTRIBUTE dont_touch OF I0_B_b7696_5 : label IS true;
...
 -- External component instance 'B'
 I0_B_b7696_5 : Bloo
 PORT MAP (
 myin => S_0,
 myout => I0_B_b7696_5_myout_x
);
...

Verilog example 1: with bind set to 0:
interface Bloo(unsigned 1 myin)
 B(unsigned 1 myout = x) with {bind = 0};

results in Handel-C generating this Verilog instantiation of the Bloo component:

Object specifications

 Page 281
www.agilityds.com

module Bloo;
 input myin;
 output myout;
endmodule;

module MyModule;
 ...
 wire a, b;
 ...
 Bloo MyInstance (.myin(a), .myout(b));
 ...
endmodule;

Note that the code includes a black box declaration of Bloo.

Verilog example 2: with bind set to 1:
interface Bloo(unsigned 1 myin) B(unsigned 1 myout = x) with {bind = 1};

results in Handel-C generating this Verilog instantiation of the Bloo component:

module MyModule;
 ...
 wire a, b;
 ...
 Bloo MyInstance (.myin(a), .myout(b));
 ...
endmodule;

(The VHDL or Verilog synthesizer expects the declaration of Bloo to be provided in another block of
HDL.)

15.4 BLOCK SPECIFICATION
The block specification may be given to a RAM or ROM declaration, for EDIF, VHDL or Verilog output.
The block specification may also given to channels where fifolength is 2 or greater.

The specification takes a string to specify the type of block memory required. There are three
technology-independent values, the rest are technology-dependent. Possible values are:

• Altera devices: "LUT", "EAB", "M512", "M4K", "M9K", "M-RAM" ("EAB" should be used for both
EABs and ESBs)
• Xilinx devices: "SelectRAM", "BlockRAM"
• All devices: "AUTO". This is the same as not using the block specification, but can be used as a
placeholder to pass in an active value.

Object specifications

 Page 282
www.agilityds.com

15.5 BUFFER SPECIFICATION
The buffer specification can be applied to all bus-type interfaces and external clock/reset declarations.
It accepts a string, and it specifies the type of buffer that should be built on the corresponding
interface. "None" may be used to specify that no buffer should be built.

Where no buffer spec is used, the default buffer type is used.

Example 1:
interface bus_in(unsigned 3 i) I() with {buffer = "IBUFG"};
builds a standard bus_in interface, where the buffer is of type IBUFG, specifying that the bus_in
should feed a global buffer (for Xilinx) instead of a basic input buffer (for connecting to DCMs, for
instance).

Example 2:
interface bus_in(unsigned 3 i) I() with {buffer = "None"};
builds a standard bus_in interface with no buffer. That is, any logic reading from I.i will be fed by pins
directly.

15.6 BUSFORMAT SPECIFICATION
The busformat specification may be given to

• generic and port-type (port_in and port_out) interfaces (but not bus-type interfaces)
• port memories (memories using with {ports = 1} to connect to external code)

busformat specifications are ignored for VHDL and Verilog output and for bus-type interfaces (bus_in,
bus_ts etc).

When compiled to EDIF, the busformat string defines the format of the wire names. Valid values for
the busformat string are

BI B_I B[I] B(I) B<I>

B represents the bus name and I the wire number. The default format is BI

If you want to specify a single port for the entire bus, use

B B[N:0] B<N:0> B(N:0)

B specifies a bus without specifying a width and B[N:0] and B<N:0> specify a bus of width (N +1). A 6-
bit port could therefore be generated as port, port[5:0]or port<5:0> depending on the value of
busformat.

 If data specifications are used with busformat, they are ignored and a warning

Object specifications

 Page 283
www.agilityds.com

is issued.

You can place the busformat specification after any port, or at the end of an interface statement. If you
place a specification at the end of the interface declaration, it will apply to all ports in the declaration,
except for any ports that have their own specification. For example:

interface Bloo (unsigned 4 in)
 InstBloo (unsigned 4 out = x
 with {busformat = "BI"})
 with {busformat = "B(I)"};
 // first port has spec B(I) and second port has spec BI

If you want to apply a busformat specification to a 1-bit wide bus, you need to place the specification
after the port. If the specification is applied to the whole interface, it will be ignored for any 1-bit wide
buses in the interface (to enable these to be used as signals etc.).

Examples
interface port_in(int 4 signals_to_HC with {busformat="B[I]"}) read();

creates four ports named signals_to_HC[0], signals_to_HC[1], signals_to_HC[2] and
signals_to_HC[3].

interface port_in(unsigned 6 myvar) MyFunction()
 with {busformat = "B[N:0]"};

creates a single 6-bit port: myvar[5:0].

unsigned 6 x;
interface ExtThing(unsigned 6 myvar)
 Inst1ExtThing(unsigned 6 anothervar = x)
 with {busformat = "B[N:0]"};

creates two ports: myvar[5:0] and anothervar[5:0].

interface ExtThing(unsigned 5 a,
 unsigned 1 b with {busformat = "B[I]"},
 unsigned 1 c)
 InstExtThing(unsigned 6 d)
 with {busformat = "B[I]"};

In this example, the busformat specification is applied to ports a and d, because they are more than 1-
bit wide, and to port b, as this has an individual busformat specification, but not to port c as this is 1-bit
wide and does not have an individual busformat specification.

15.7 SPECIFYING THE CLOCK PIN FOR SSRAM
The clk specification is used for external SSRAM or ROM declarations, for EDIF, VHDL or Verilog

Object specifications

 Page 284
www.agilityds.com

output. It specifies the pin(s) that carry the RAM/ROM clock to the external SSRAM/ROM. To use this
specification, you must be using the external_divide or internal_divide clock types with a division factor
of 2 or more, and you must use the wclkpos, rclkpos and clkpulselen specifications to define the clock
that will appear at the specified pin(s).

Example
set clock = external_divide "C1" 4;

ram unsigned 4 ExtSyncMem[32] with
{
 offchip = 1,
 wclkpos = {2.5},
 rclkpos = {2.5},
 clkpulselen = 1,
 clk = {"P22"},
 westart = 2,
 welength = 1,
 we = {"P23"},
 cs = {"P24"},
 oe = {"P25"}
};

void main(void)
{
 static unsigned index;
 static unsigned data;

 ExtSyncMem[index] = data;
 etc...

 data = ExtSyncMem[index];
 etc...
}

The clock pattern defined by the wclkpos, rclkpos and clkpulselen specifications appears at pin "P22".
The write enable strobe defined by westart and welength appears at pin "P23".

15.8 CLOCKPORT SPECIFICATION
The clockport specification can be used when declaring a port on an interface to a black box device
(for all outputs), or when declaring a clock (to assign it to a dedicated Xilinx clock buffer in EDIF).

Object specifications

 Page 285
www.agilityds.com

Port declaration
You can use the clockport specification to indicate that a port on an interface is used to drive a clock in
the Handel-C design. You must do this when the port connects to an external 'black box' component.
For example

unsigned 1 En;
interface BlackBox(unsigned 1 CLK with {clockport=1})
 Instance(unsigned 1 Enable = En);

set clock = internal Instance.CLK;

 If you don't use the clockport specification you may end up with combinational

loops.

Clock declaration
You can use the clockport specification, with {clockport=1}, when declaring external clocks to assign
the clock to a dedicated clock input resource on the target device. This will only have an effect in EDIF
output.

If you apply the clockport specification to Xilinx Virtex parts, you can use it to specify a particular
"input" clock buffer.

If clockport is set to 0, the clock is assigned to a pin that is not a dedicated clock input and the I/O
standard and dci specifications are not available.

Example clock declarations
set family = XilinxVirtexII;
set clock = external with {standard = "LVCMOS33", dci = 1};
OR

set family = XilinxVirtexII;
set clock = external with {clockport = 1, standard = "LVCMOS33", dci = 1};

both instruct the compiler to build an external clock interface, using a dedicated Virtex-II clock input
(IBUFG) resource. That is, the clock interface logic built will be:

Object specifications

 Page 286
www.agilityds.com

set family = XilinxVirtexII;
set clock = external with {clockport = 0, standard = "LVCMOS33", dci = 1};

This instructs the compiler to build an external clock interface, without using a dedicated Virtex-II clock
input resource. That is, the clock interface logic built will be:

15.9 DATA SPECIFICATION (PIN CONSTRAINTS)
The data specification can be used to constrain pin location or to name ports:

• When applied to bus-type interfaces or off-chip memories, data specifies pin locations as a list of
pin numbers separated by commas. If you are using a differential I/O standard, the pins must be
specified as pairs enclosed in braces.
• When applied to foreign code memories (using with {ports=1}), port-type interfaces and generic
interfaces, data specifies port names as a list of names separated by commas
If the data specification is omitted for bus-type interfaces or off-chip memories, the place and route
tools will assign the pins. The pins are listed in order MSB to LSB, but the LSB pin (rightmost element
of list) is assigned first. If you do not assign all the pins used, the MSB pins remain unassigned.

If you are targeting EDIF output, the data specification can also be used for a port_in or port_out
interface to specify the names of the ports to be exported. (This part of the data specification is
ignored for VHDL or Verilog output.)

If you are compiling your Handel-C code to VHDL or Verilog, you can only use the data specification to
constrain pin locations for Precision and Synplify style outputs. If you compile for ModelSim or Active-
HDL, the data specification is ignored. In Precision VHDL or Verilog output styles, pin constraints are
implemented using the pin_number attribute. In Synplify-style output, pin constraints are implemented
using the loc attribute.

 If the busformat specification is used as well as data specifications for port-

type or generic interfaces, the data specifications are ignored and a warning is issued.

Object specifications

 Page 287
www.agilityds.com

Bus-type interface example
macro expr dataPins = {"P3", "P2", "P1", "P0"};
interface bus_in(unsigned 4 inPort) hword()
 with {data = dataPins, intime = 5};

Port-type interface example
macro expr dataInNames = {"I3", "I2", "I1", "I0"};
macro expr dataOutNames = {"O3", "O2", "O2", "O1"};

unsigned 4 x;
interface port_in(unsigned 4 in) Ig()
 with {data = dataInNames};
interface port_out() Og(unsigned 4 out = x)
 with {data = dataOutNames};

Generic interface example
macro expr dataInNames = {"I3", "I2", "I1", "I0"};
macro expr dataOutNames = {"O3", "O2", "O2", "O1"};

unsigned 4 x;
interface Igator
 (
 unsigned 4 in with {data = dataInNames}
)
 InstIgator
 (
 unsigned 4 out = x with {data = dataOutNames}
);

15.10 DCI SPECIFICATION
The dci specification may be used with the standard specification on external bus interfaces connected
to pins (not port_in or port_out) to select whether Digital Controlled Impedance is to be used on all
pins of that interface. You can also use it with the standard specification when declaring external
clocks. The dci specification may also be applied to off-chip memories. The specification is only valid
for EDIF, and is ignored for all other outputs.

The only devices that currently support DCI are Xilinx Virtex-II, Virtex-II Pro, Virtex-4 and Spartan-
3/3E/3L. For more information on DCI, please refer to the Xilinx Data Book.

If you have used the clockport specification and set it to 0, dci specifications will be ignored. (The
default for clockport is 1.)

Standards supporting dci are:

Object specifications

 Page 288
www.agilityds.com

GTL GTL+

HSTL Class I HSTL Class II HSTL Class III HSTL Class
IV

LVCMOS33 LVCMOS25 LVCMOS18 LVCMOS15
SSTL2 Class I SSTL2 Class II SSTL3 Class I SSTL3 Class

II

The possible values for the dci specification are:

0 No DCI (default)
1 DCI with single termination
0.5 DCI with split termination. This can only be used with

LVCMOS standards.

 If dci is used on a device or standard that does not support it, a warning is

issued and the specification is ignored.

Examples
// Use dci on all pins
interface bus_out() Eel(int 4 outPort = x)
 with {data = dataPinsO, standard = "HSTL_I", dci=1};

//Use dci for clock pin
set clock = external "C1" with {standard = "HSTL_III", dci=1};

15.11 EXTINST, EXTLIB, EXTFUNC SPECIFICATIONS
The extlib, extfunc and extinst specifications are used when connecting a Handel-C
interface to a simulation .dll. There is a default value for extfunc, but extlib and extinst
must both be specified.

Object specifications

 Page 289
www.agilityds.com

Specification Possible values Default Meaning

extlib Name of a plugin
.dll

None Specify external
plugin for simulator

extfunc Name of a
function within the
plugin

PlugInSet or
PlugInGet
depending on
port direction

Specify external
function within the
simulator for this port

extinst Instance name
(with optional
parameters)

None Specify simulation
instance used

extlib
extlib takes the name of a .dll. It specifies that the named .dll plugin will be connected to the
port or interface.

extfunc
extfunc specifies the name of an external function within the .dll.

On output ports, this function is called by the simulator to pass data from the Handel-C simulator to the
plugin (default PlugInSet). It is guaranteed to be called every time the value on the port changes
but may be called more often than that.

On input ports, this function is called by the simulator to get data from the plugin (default
PlugInGet). It is guaranteed to be called at least once every clock cycle.

extinst
extinst takes a string, which is passed to the PlugInOpenInstance function within the plugin. If
parameters must be passed to the .dll instance, they can be done so in the string. A new instance of
the plugin will be generated for each unique extinst string.

Examples
interface bus_out() MyBusOut(outPort=MyOutExpr) with
 {extlib="pluginDemo.dll", extinst="0", extfunc="MyBusOut"};

interface TTL7446(unsigned 7 segments, unsigned 1 rbon)
 decode(unsigned 1 ltn=ltnVal, unsigned 1 rbin=rbinVal,
 unsigned 4 digit=digitVal, unsigned 1 bin=binVal)
 with {extlib="PluginModelSim.dll",
 extinst="decode; model=TTL7446_wrapper; delay=1"};

15.12 EXTPATH SPECIFICATION
The extpath specification is used when connecting a Handel-C interface to external (black-box) logic. It

Object specifications

 Page 290
www.agilityds.com

is valid for any DK output.

extpath is used during simulation to tell the simulator about ports within the black box, so that it knows
what order to update the ports in. It specifies that a Handel-C output port on an interface will have
direct logic connections via the black box to one or more input ports on the same interface.

Its usage is

portName with {extpath={portNameList}}

portNameList is a comma-separated list of port names.

Example
interface blackBox
 (int 1 Two, int 1 Four)
 bb1(int 1 One = out with {extpath = {bb1.Two}},
 int 1 Three = bb1.Two with {extpath={bb1.Four}});

This example tells the compiler that there are direct connections within the black box between ports 1
and 2, and between ports 3 and 4. The interface also specifies an external connection from port 2 to
port 3 (this connection is outside the black box).

15.13 FIFOLENGTH SPECIFICATION
The fifolength specification converts a channel into a FIFO of the given length. If fifolength is two or
greater the block specification can be used.

If fifolength is not a power of 2, and the paranoia specification is 0 or 1 (default), the FIFO will be
created with low latency, else it will be created with a higher latency.

Example

chan <int 8> chan_FIFO with {fifolength = 7, block = "M4K"}
//creates a FIFO in Altera Cyclone block RAM

15.14 FIFOKIND SPECIFICATION
The fifokind specification determines the exact FIFO implementation to be used for a given channel.
You can set fifokind to be one of the following options:

Object specifications

 Page 291
www.agilityds.com

• dkfifo (default)
Suitable for:

• channels within one clockdomain
• cross-domain channels when the EDIF backend is used
• cross-domain channels when the VHDL and Verilog backends are used provided that the user
implements the parts of the circuit that cross clockdomains and correctly constrains them. See HDL
channel constraints.
• dkslow

As dkfifo but may have a lower latency and a correspondingly longer critical path.

• dkfast
As dkfifo but may have a shorter critical path and a higher latency.

• native
Uses native FIFOs available on the target device. Currently supported only for Xilinx
Virtex 4 and later FPGAs.

• blackbox
Generates an HDL black box that can be replaced by a custom implementation suited to
the used design flow. This option can only be used when targeting VHDL or Verilog.

15.15 INFILE AND OUTFILE SPECIFICATIONS
The infile specification may be given to chanin, port_in, port_out, bus_in, bus_latch_in, bus_clock_in,
bus_ts, bus_ts_latch_in and bus_ts_clock_in declarations. The outfile specification may be given to
chanout, bus_out, bus_ts, bus_ts_latch_in and bus_ts_clock_in declarations. The strings that these
specifications are set to will inform the simulator of the file that data should be read from (infile) or the
file that data should be written to (outfile).

Note that when applying the outfile specification, it should not be given to multiple channels. For
example, the following declarations are allowed, but it would be better to place them in separate files
to avoid undefined results:

chanout int x, y with {outfile="out.dat"};
chanout unsigned a, b with {outfile="out.dat"};

The filename passed to infile and outfile is a standard string and follows all string rules, including the
need to specify the backslash character as '\\'.

15.16 INOUTPORTS SPECIFICATION
The inoutports specification can be used to add bidirectional ports to a generic interface. Bi-directional
ports specified in this way connect directly from a pin to a named port in external code. They cannot
be accessed within the Handel-C program.

You can use the inoutports specification with EDIF, VHDL or Verilog output. It has no effect in

Object specifications

 Page 292
www.agilityds.com

simulation code.

The specification is given as a list of items delimited by braces. Each item contains a port name,
followed by an optional pin specification:

{"portname" [, "pinX"]}

If you do not specify a pin, the compiler will issue a warning that the pin is unconstrained for that port.
Errors are issued if illegal values are entered.

Example
interface Plod(unsigned 1 Fred)
 InstPlod(unsigned 1 Bob = x)
 with {inoutports = { {"reset", "Pin1"}, {"preset"} } };

This would create the following ports in the instantiation of component Plod in an EDIF netlist. (The
reset port is assigned to Pin1.)

(port Fred (direction IN))
(port Bob (direction OUT))
(port reset (direction INOUT))
(port preset (direction INOUT))

Port format
If you use the inoutports specification, you can specify the format of the port in a similar way to using
the busformat specification. For example:

MyEdif()
 Instance()
 with {inoutports = {{"MyBus<0>", "P1"},
 {"MyBus<1>", "P2"}};

15.17 INSTANCENAME SPECIFICATION
The instancename specification can be given to generic interfaces to specify the EDIF instance name.
The name specified is used, unless it is found to be a duplicate. In this case, a warning is issued and
a compiler-generated unique name is used.

Example
unsigned 6 x;
interface ExtThing(unsigned 6 myvar)
 Inst1ExtThing(unsigned 6 anothervar = x)

 with {instancename = "name_string", busformat = "B[N:0]"};

This interface will generate an EDIF block with the instance name name_string.

Object specifications

 Page 293
www.agilityds.com

15.18 INTIME AND OUTTIME SPECIFICATIONS
The intime specification may be given to an input port or bus, tri-state bus, foreign code memory or off-
chip memory. The outtime specification may be given to an output port or bus, tri-state bus, foreign
code memory or off-chip memory. The specifications are only valid for EDIF output.

intime specifies the maximum delay in ns allowed between an interface or memory interface and the
sequential elements it feeds. outtime specifies the maximum delay in ns allowed between an interface
or memory interface and the sequential elements it is fed from. They can be floating-point numbers.
For example:

macro expr memoryPins = {"P13", "P12", "P11",
 "P10", "P9", "P8", "P7", "P6"};
macro expr dataPins = {"P4", "P3", "P2", "P1"};

interface bus_in(unsigned 4 dataIn) hword()
 with {data = dataPins, intime = 5};
interface port_out()
 new_hword(unsigned 4 out = hword.dataIn + 1)
 with {outtime = 5.2};
ram int 8 a[15][43] with {outtime = 5.2,
 offchip = 1,
 data = memoryPins};

When applied to Altera devices, Handel-C generates ACF or TCL files. When applied to Xilinx chips,
Handel-C generates a Netlist Constraints File (NCF). These files are used by the place-and-route tools
to constrain the relevant paths.

15.19 TIMING CONSTRAINTS EXAMPLE
This example shows the use of the rate specification and the intime and outtime specifications to
constrain a design for speed. The use of these specifications causes the generation of a timing
constraints file (with the type of file determined by the target platform).

The design is constrained for a clock speed of 40MHz, with input data from two sources, taking a
maximum of 5.5 and 5.0 nanoseconds, and output data taking a maximum of 4 nanoseconds to
transmit.

Object specifications

 Page 294
www.agilityds.com

// Clock
set clock = external "C13" with {rate = 40};

// Data path width
macro expr OpWidth = 8;

// Data pins
macro expr DataInA = {"D5","C5","E7","G8","H9","A5","A6","B5"};
macro expr DataInB = {"B6","D7","F8","E8","G9","F9","G10","H10"};
macro expr DataOut = {"B12","D12","D13","F13","G13","H13","H14","C14"};

// Data In/Out timing requirements
macro expr InTimeRequirementA = 5.5;
macro expr InTimeRequirementB = 5.0;
macro expr OutTimeRequirement = 4;

// Input data
interface bus_in(unsigned OpWidth dina) DINA() with
{
 data = DataInA,
 intime = InTimeRequirementA
};
interface bus_in(unsigned OpWidth dinb) DINB() with
{
 data = DataInB,
 intime = InTimeRequirementB
};

// Output data
unsigned result;
interface bus_out() DOUT(unsigned OpWidth dout = result) with
{
 data = DataOut,
 outtime = OutTimeRequirement
};

// Main program - pipelined multiplier
void main(void)
{
 unsigned xx[OpWidth];
 unsigned yy[OpWidth];
 unsigned rr[OpWidth];

Object specifications

 Page 295
www.agilityds.com

 while (1)
 {
 par
 {
 // Read operands from input interfaces
 xx[0] = DINA.dina;
 yy[0] = DINB.dinb;
 rr[0] = xx[0][0] ? yy[0] : 0;

 /*
 * Replicator: generates the pipeline stages of
 * the long multiplier, which are done in parallel.
 */
 par (Stage=1; Stage<OpWidth; Stage++)
 {
 xx[Stage] = xx[Stage-1] >> 1;
 yy[Stage] = yy[Stage-1] << 1;
 rr[Stage] = rr[Stage-1] + (xx[Stage][0] ? yy[Stage] : 0);
 }

 // Update result
 result = rr[OpWidth-1];
 }
 }
}

15.20 MAXFIFOLENGTH SPECIFICATION
You can use maxfifolength to select a range from which the compiler can choose a FIFO length that
can be efficiently implemented on the target architecture. See also minfifolength.

 Native Xilinx FIFOs require wider ranges. See Native FIFOs.

15.21 MINFIFOLENGTH SPECIFICATION
You can use minfifolength to select a range from which the compiler can choose a FIFO length that
can be efficiently implemented on the target architecture. See also maxfifolength.

Object specifications

 Page 296
www.agilityds.com

 Native Xilinx FIFOs require wider ranges. See Native FIFOs.

15.22 MINPERIOD SPECIFICATION
minperiod specifies the maximum delay in nanoseconds between flip-flops in a synchronizer, including
output delay, setup time and skew at either end). Its value must be less than the clock period.

The higher the value for minperiod, the less time will be available within a clock tick for control signals
to stabilize (resolutiontime). You may set the value of minperiod or resolutiontime, but not both. If
paranoia has been set to zero, you should use minperiod.

Object specifications

 Page 297
www.agilityds.com

PERIODS WITH PARANOIA AT ITS DEFAULT OF 1

tmp minperiod

tup unconstrainedperiod

tp clock period

PERIODS IF PARANOIA SET TO 0

In this case, it is possible that the control signal may be metastable within the first flip-flop, and if
minperiod is inadequate, the metastability may be propagated into the rest of the circuit.

15.23 OFFCHIP SPECIFICATION
The offchip specification may be given to a RAM or ROM declaration (you cannot have offchip

Object specifications

 Page 298
www.agilityds.com

MPRAMs). When set to 1, the Handel-C compiler builds an external memory interface for the RAM or
ROM using the pins listed in the clk, addr, data, cs, we and oe specifications. When set to 0, the
Handel-C compiler builds the RAM or ROM on the FPGA or PLD and ignores any pins given with other
specifications. You can use the offchip specification for EDIF, VHDL or Verilog output.

The compiler generates an error if the ports and offchip specification are both set to 1 for the same
memory.

You cannot initialize an offchip RAM.

Example
ram int 8 a[15][43] with {offchip = 1};

15.24 PARANOIA SPECIFICATION
The paranoia specification controls the number of flip-flops used in synchronization hardware for
channels across clock domains. The higher the value for paranoia, the higher the stability and latency
of the channels. The default is 1, which should be adequate in most cases. If latency is an issue, it is
possible to set paranoia to 0, but the circuit is more likely to be metastable.

Circuit with paranoia set to default of 1
The diagram below shows a circuit with paranoia set to 1. In this case the synchronization data goes
through one extra flip flop before generating the clock enable signal for the register.

TIMES WITH PARANOIAAT ITS DEFAULT OF 1

tr time to transfer between domains paranoia +1) x tp

tup unconstrainedperiod

tmp minperiod

Object specifications

 Page 299
www.agilityds.com

tp clock period

Circuit showing constraints if paranoia is set to 0

TIMES WITH PARANOIA SET TO 0

15.25 PIN SPECIFICATIONS
The addr, data, we, cs and oe specifications each take a list of device pins and are used to define the
connections between the FPGA/PLD and external devices. The specifications only have meaning for
EDIF, VHDL and Verilog output. If the specifications are omitted, the place and route tools will assign
the pins. The specifications apply to the following objects:

Specification Meaning Input
bus

Output
bus

Tri-
state
bus

RAM ROM

addr Address pins - - - • •
data Data pins • • • • •
we Write Enable pin - - - • -
cs Chip Select pin - - - • •
oe Output Enable pin - - - • •
clk Clock pin - - - • •

Pin lists are always given in the order most significant to least significant. Multiple write enable, chip
select and output enable pins can be given to allow external RAMs and ROMs to be constructed from
multiple devices. For example, when using two 4-bit wide chips to make an 8-bit wide RAM, the

Object specifications

 Page 300
www.agilityds.com

following declaration could be used:

ram unsigned 8 ExtRAM[256]
 with {offchip=1,
 addr={"P1", "P2", "P3", "P4", "P5", "P6", "P7", "P8"},
 data={"P9", "P10", "P11", "P12", "P13", "P14", "P15", "P16"},
 we={"P17", "P18"},
 cs={"P19", "P20"},
 oe={"P21", "P22"}
};

15.26 PORTNAME SPECIFICATION
The portname specification can be given to a port on any interface to specify the port name. The name
specified is used, unless it is found to be a duplicate. In this case, an error is generated and
compilation stops. If no portname is present, the pin location is used. If neither are present, a compiler-
generated unique name is used.

It may be used in conjunction with the busformat specification when generating EDIF output.

Examples
interface bus_in(unsigned 1 Sel with {busformat = "B[I]"}) ClkSelectBus()
 with { data = {"B17"}, portname = "port_string" };

This interface will generate an EDIF block port_string[0].

interface port_in(unsigned 1 MyPort) In1()
 with {portname = "MyPort_test"};

Generates a port labelled as MyPort_test in the output file.

interface clever_port (int 4 inPort1 with {portname = "MyInPortTest1"},
 int 4 inPort2 with {portname = "MyInPortTest2"})
 MyCleverPort (unsigned outPort = x with {portname =
"MyOutPortTest3"});

Generates 3 ports labelled as MyInPortTest1, MyInPortTest2 and MyOutPortTest3 in the output file.

15.27 PORTS SPECIFICATION
The ports specification may be given to a RAM, ROM or MPRAM declaration and is valid for EDIF,

Object specifications

 Page 301
www.agilityds.com

VHDL and Verilog output. When set to 1 the compiler builds an external memory interface, allowing
you to connect to dedicated memory resources on an FPGA/PLD or to connect to RAMs in external
code. You can only use "simple" types for memories with the ports specification (e.g. int, unsigned; not
array or struct).

The compiler generates an error if the ports and offchip specification are both set to 1 for the same
memory. All other specifications can be applied.

If you use the ports specification with an MPRAM, a separate interface will be generated for each port.

You cannot initialize a memory that uses the ports specification.

By default, the memories are indeed synchronous write, asynchronous read. You can set the read
synchronicity by using the read specification.

Examples
mpram
{
 ram <unsigned 8> ReadWrite[256]; // Read/write port
 rom <unsigned 8> Read[256]; // Read only port
} Joan with {ports = 1, busformat = "B<I>"};

generates EDIF ports with names prefixed by Joan_Read and Joan_ReadWrite. For example:

(interface
 (port Joan_Read_addr<0> (direction INPUT))
 (port Joan_Read_addr<1> (direction INPUT))

(interface
 (port Joan_ReadWrite_addr<0> (direction INPUT))
 (port Joan_ReadWrite_addr<1> (direction INPUT))

15.28 PROPERTIES SPECIFICATION
The properties specification can be given to generic interfaces.

If you are generating EDIF, it is used to parameterize instantiations of external black boxes. Each valid
property is propagated through to the EDIF netlist as an EDIF property.

If you are generating VHDL or Verilog, the result of the properties specification depends on the value
of the bind specification. When the bind specification has a value of 1, it is used to define generics
(VHDL) or parameters (Verilog) when creating a user-defined interface to an existing VHDL or Verilog
code block. When the bind specification is 0, the properties specification is used to define attributes for
black boxes.

Properties are specified as a list of property items, where each item comprises two or three values:

Object specifications

 Page 302
www.agilityds.com

{property_name, property_value [, property_type]}

• property_name is a string
• property_value can be a string or an integer
• property_type is optional, with 3 possible values (all strings): "integer", "boolean" or "string"

If your property is a boolean, you need to specify 0 (false) or 1 (true) as the property value, and specify
"boolean" as the type.

If your property is an integer or string, the type can be inferred from the property value and you do not
need to specify it.

Compiler warnings are issued if illegal values are entered, or if there is a mismatch between the
property type and property value.

EDIF Example
unsigned 6 x;
interface ExtThing(unsigned 6 myvar)
 Inst1ExtThing(unsigned 6 anothervar = x)

 with {properties = {{"LPM_TYPE", "LPM_RAM_DQ"},

 {"LPM_WIDTH", 6, "integer"}}, busformat = "B[N:0]"};

This interface will generate an EDIF block with the following EDIF properties: LPM_TYPE and
LPM_WIDTH.

VHDL/Verilog example (bind = 1)
interface ExtThing (unsigned 6 myvar)
 Inst1ExtThing(unsigned 6 anothervar = x)
 with {bind = 1,
 properties = {{"prop1", 0, "integer"},
 {"prop2", "SomeString", "string"},
 {"prop3", 0, "boolean"},
 {"prop4", 1, "boolean"}}};

For Verilog, this interface will generate the instantiation:

 ExtThing #(O, // prop1
 "SomeString", // prop2
 0, // prop3
 1) // prop4
 InstanceN (.anothervar(x_Out),
 .myvar(W_10))

For VHDL, the interface will generate the following component declaration:

Object specifications

 Page 303
www.agilityds.com

 component ExtThing
 generic (
 prop1 : integer := 0;
 prop2 : string := "SomeString";
 prop3 : boolean := false;
 prop4 : boolean := true
);
 port (
 anothervar : in unsigned(5 downto 0);
 myvar : out unsigned(5 downto 0)
);
end component;

and the following component instantiation:

 InstanceN : ExtThing
 generic map (prop1 => 0,
 prop2 => "SomeString",
 prop3 => false,
 prop4 => true)
 port map (anothervar => x_Out,
 myvar => globals_W_10
);

VHDL/Verilog example (bind = 0)
When the bind specification has a value of 0, attributes are produced instead of generics or
parameters, for example:

interface ExtThing (unsigned 6 myvar)
 Inst1ExtThing(unsigned 6 anothervar = x)
 with {bind = 0,
 properties = {{"prop1", 0, "integer"},
 {"prop2", "SomeString", "string"},
 {"prop3", 0, "boolean"},
 {"prop4", 1, "boolean"}}};

For Verilog and Precision as an output style, this interface will generate a module instantiation with the
following Precision attributes:

 // pragma attribute InstanceN prop1 0
 // pragma attribute InstanceN prop2 SomeString
 // pragma attribute InstanceN.prop3 0
 // pragma attribute InstanceN prop4 1

For VHDL, the interface will generate a component instantiation with the following VHDL attributes:

Object specifications

 Page 304
www.agilityds.com

 attribute prop1: integer;
 attribute prop2: string;
 attribute prop3: boolean;
 attribute prop4: boolean;
 attribute prop1 of InstanceN : label is 0;
 attribute prop2 of InstanceN : label is "SomeString";
 attribute prop3 of InstanceN : label is false;
 attribute prop4 of InstanceN : label is true;

 For Verilog the properties specification with a bind specification value of 0 is

only supported for Precision output style

15.29 PULL SPECIFICATION
The pull specification may be given to an input or tri-state bus. It is only valid for EDIF output. When
set to 1, a pull up resistor is added to each of the pins of the bus. When set to 0, a pull down resistor is
added to each of the pins of the bus. When this specification is not given for a bus, no pull up or pull
down resistor is used.

Most Altera devices do not have pull-up or pull-down resistors. ApexII, Stratix and Cyclone devices
have a pull-up resistor but no pull-down resistor. Refer to the appropriate data sheet for details.

Refer to the Xilinx FPGA data sheet for details of pull up and pull down resistors.

By default, no pull up or pull down resistors are attached to the pins.

Example
interface bus_clock_in(int 4 in) InBus() with
 { pull = 1,
 data = {"P4", "P3", "P2", "P1"}
 };

15.30 QUARTUS_PROJ_ASSIGN SPECIFICATION
The quartus_proj_assign specification can be given to bus-type interfaces or offchip RAM for EDIF
output. It allows you to specify Quartus project pins assignments.

Assignments are specified as a list of pairs of items enclosed in braces. The items are strings, and
enclosed in quotes. The first item in each pair specifies the item you are assigning, and the second
item specifies its value:

Object specifications

 Page 305
www.agilityds.com

{"assignment_name", "assignment_value"}

Example
interface bus_out() MyBusOut(unsigned 3 outPort = MyOutExpr)
 with {quartus_proj_assign = {{"TERMINATION", "Series"},
 {"ENABLE_BUS_HOLD_CIRCUITRY", "On"}},
 standard = "HSTL_I", strength = -1}

15.31 RATE SPECIFICATION
The rate specification may be given to a clock, and is used to specify the frequency (in MHz) at which
the clock will need to be driven. The specification only applies to EDIF output (it is ignored for other
outputs). The rate specification causes Handel-C to generate one of the following:

• an Assignments and Constraints File (ACF) for use with Max+PlusII for non-Apex Altera devices
• a TCL script (for use with Quartus) for Altera Apex, Cyclone and Stratix devices
• a Netlist Constraints File (NCF) for Xilinx devices

The place-and-route tools then use these timing requirements to constrain the relevant paths so that
the part of the design connected to the clock in question can be clocked at the specified rate. In the
example below, the clock will need to run at 17.5MHz.

set clock = external_divide "D17" 4
 with {rate = 17.5};

When rate is applied to a divided clock (as shown), it is the divided clock that will be constrained by
the specification, not the external clock. Undivided clocks are also constrained to the appropriate value
as calculated from the specified rate and the division factor.

15.32 RCLKPOS, WCLKPOS AND CLKPULSELEN
SPECIFICATIONS (SSRAM TIMING)
The rclkpos, wclkpos and clkpulselen may be given to internal or external SSRAM declarations. They
are valid for EDIF, VHDL and Verilog outputs. They are specified as floating-point numbers in
multiples of 0.5. To use these specifications, you must be using the external_divide or internal_divide
clock types with a division factor of 2 or more.

rclkpos specifies the positions of the clock cycles of the RAM clock for a read cycle. These positions
are specified in terms of cycles of a fast external clock, counting forwards from the rising edge of the
divided Handel-C clock rising edge. You need to write the value(s) for the specification in braces. For
example, with {rclkpos = {1.5}}.

wclkpos specifies the positions of the clock cycles of the RAM clock, for a write cycle. You need to
write the value(s) for the specification in braces. For example, with {wclkpos = {1.5, 2.5}}.

clkpulselen specifies the length of the pulses of the RAM clock, in terms of cycles of a fast external

Object specifications

 Page 306
www.agilityds.com

clock.

rclkpos, wclkpos and clkpulselen can be applied to the whole of a RAM or MPRAM, or to individual
ports within a memory. Specifications applied to the whole memory will apply to each port that does
not have its own specification. If you apply rclkpos or wclkpos to the whole memory, the compiler will
issue a warning as rclkpos only applies to the read port(s) and wclkpos only applied to the write
port(s). However, the memory will build correctly.

Illustration

Examples
• Applying RAM clock specifications to ports:
 mpram
 {
 rom int 1 ro[16]
 with {rclkpos = {1}, clkpulselen = 0.5};
 wom int 1 wo[16]
 with {wclkpos = {1.5}, clkpulselen = 0.5};
 } Mympram;

• Pipelined-out SSRAM timing
• Flow through SSRAM
• Targeting external synchronous RAMs

15.33 READ SPECIFICATION
The read specification is used in conjunction with the ports specification to allow you to create black
box memories. The default value is asynchronous.

Object specifications

 Page 307
www.agilityds.com

Example
ram unsigned 16 myRam[256] with {ports = 1, read = "synchronous"};

15.34 RESOLUTIONTIME SPECIFICATION
 resolutiontime specifies the maximum time in nanoseconds for metastability to resolve in the channel
synchronization hardware. It is needed when you are using channels to communicate between
multiple clock domains. The higher the value for resolutiontime the less time will be available within a
clock tick for combinational logic in the synchronizer. This only matters if you have set paranoia to
zero.

Its value must be less than (clock period x paranoia)where paranoia is greater than zero. If paranoia
has been set to zero, you should use minperiod rather than resolutiontime.

Either resolutiontime or minperiod may be set, but not both.

Achieving a given value of resolution time
If you need a higher value of resolutiontime, you can increase the value of the paranoia specification.
The resultant value for minperiod will be clock period - (resolutiontime/paranoia).

RESOLUTION TIME SUMMED OVER THREE CLOCK TICKS WHEN PARANOIA= 3

Object specifications

 Page 308
www.agilityds.com

15.35 RETIME SPECIFICATION
In some circumstances it is desirable to prevent some flip-flops in a circuit from being moved by the
retimer. This often occurs when writing interfaces to devices external to the FPGA or to other IP on the
FPGA. The retime specification can be added to any variable declaration to lock the position of the flip-
flops generated by that variable.

unsigned 16 In1, In2 with { retime = 0 };
unsigned 8 SomeOtherVar;
For instance in the code above, variables In1 and In2 are prevented from moving whereas
SomeOtherVar can be moved as required by the retimer to meet the specified clock rate.

To disable all flip-flops from being retimed in a specific clock domain, the retime specification can be
applied to a clock, for instance:

set clock = external "D17" with { retime = 0 };

15.36 SC_TYPE SPECIFICATION
The sc_type specification may be given to port_in, port_out or generic interfaces to specify the type of
a port in SystemC.

Valid string values of this specification are:

sc_int sc_uint bool sc_logic sc_lv

The default type of a port is bool if the port is 1 bit wide, sc_uint otherwise. You can apply the sc_type
specification to individual ports. If you place the specification at the end of the interface statement, it
will be applied to all the ports.

Example 1: Handel-C ports in SystemC without sc_type specification set:
int X_out;
interface port_in(int 1 To) read();
interface port_out() drive(int 4 From = X_out);

results in Handel-C generating the SystemC ports:

sc_in< bool > To;
sc_out< sc_uint<4> > From;

Example 2: Handel-C ports in SystemC with sc_type specification set:
int X_out;
interface port_in(int 1 To) read() with {sc_type = "sc_logic"};
interface port_out() drive(int 4 From = X_out} with {sc_type = "sc_int"};

results in Handel-C generating the SystemC ports:

Object specifications

 Page 309
www.agilityds.com

sc_in< sc_logic > To;
sc_out< sc_int<4> > From;

15.37 SHOW SPECIFICATION
The show specification may be given to variable, channel, output bus and tri-state bus declarations.
When set to 0, this specification tells the Handel-C simulator not to list this object in its output. This
means that it will not appear in the Variables debug window in the GUI, but it can be seen in the Watch
window.

The default value of this specification is 1.

int 5 x with {show=0};

15.38 SPEED SPECIFICATION
The speed specification may be given to an output or tri-state bus. It only applies to EDIF output. The
value of this specification controls the slew rate of the output buffer for the pins on the bus.

For Altera devices, Xilinx Virtex series and Xilinx Spartan-II and Spartan-3 series, 0 is slow, 1 is fast,
and the default value is 1. Refer to the Altera or Xilinx data sheets for details of slew rate control.

Example
interface bus_out()
 drive(int 4 signals_from_HC = X_out) with {speed=0};

15.39 STANDARD SPECIFICATION
The standard specification may be applied to any external bus interface (not port_in or port_out)
connected to pins to select the I/O standard to be used on all pins of that interface. It may also be
applied to external clocks and to off-chip memories. If the standard supports it, you can use the
strength specification to set the drive current and the dci specification to set digital controlled
impedance. The standard specification only applies to EDIF output (it is ignored for other outputs).

standard and dci specifications are ignored if you have used the clockport specification and set it to 0.
(The default for clockport is 1.)

Different device families support different standards. Consult the data sheet for a specific device for
details of which standard it supports. The compiler will issue errors if a non-supported standard is
selected for a particular device, or if the standard specification is used on a family not supporting
selectable I/O standards.

Object specifications

 Page 310
www.agilityds.com

Available I/O standards

I/O
standard

Handel-C
keyword

I/O
standard

Handel-C
keyword

I/O standard Handel-C

keyword

LVTTL "LVTTL" HSTL
(1.8v)
Class I

"HSTL18_II" LVDS (2.5V)
see note 1

"LVDS25"

Object specifications

 Page 311
www.agilityds.com

LVCMOS
(3.3 V)

"LVCMOS33" HSTL
(1.8v)
Class II

"HSTL18_II" LVDS (3.3V) "LVDS33"

LVCMOS
(2.5 V)

"LVCMOS25" HSTL
(1.8v)
Class III

"HSTL18_III" BLVDS (2.5V)
see note 1

"BLVDS25"

LVCMOS
(1.8 V)

"LVCMOS18" HSTL
(1.8v)
Class IV

"HSTL18_IV" LVPECL (3.3V)
see note 1

"LVPECL"

LVCMOS
(1.5 V)

"LVCMOS15" SSTL
(2.5v)
Class I

"SSTL2_I" LVDCI (3.3 V) -
see note 2

"LVDCI_33"

LVCMOS
(1.2 V)

"LVCMOS12" SSTL
(2.5v)
Class II

"SSTL2_II" LVDCI (2.5V) -
see note 2

"LVDCI_25"

PCI (33
MHz, 3.3 V)

"PCI33_3" SSTL(
3.3v) Class
I

"SSTL3_I" LVDCI (1.8 V) -
see note 2

"LVDCI_18"

PCI (33
MHz, 5.0 V)

"PCI33_5" SSTL
(3.3v)
Class II

"SSTL3_II" LVDCI (1.5 V) -
see note 2

"LVDCI_15"

PCI (66
MHz, 3.3 V)

"PCI66_3" SSTL
(1.8v)
Class I

"SSTL18_I" LVDCI (3.3 V,
split
termination) -
see note 3

"LVDCI_DV2_33"

PCI-X "PCIX" SSTL
(1.8v)
Class II

"SSTL18_II" LVDCI (2.5 V,
split
termination) -
see note 3

"LVDCI_DV2_25"

GTL "GTL" CTT "CTT" LVDCI (1.8 V,
split
termination) -
see note 3

"LVDCI_DV2_18"

GTL+ "GTL+" AGP (1x) "AGP-1X" LVDCI (1.5 V,
split
termination) -
see note 3

"LVDCI_DV2_15"

HSTL (1.5v)
Class I

"HSTL_I" AGP (2x) "AGP-2X"

HSTL (1.5v)
Class II

"HSTL_II" HyperTransport "HyperTransport"

HSTL (1.5v)
Class III

"HSTL_III"

Object specifications

 Page 312
www.agilityds.com

HSTL (1.5v)
Class IV

"HSTL_IV"

Notes:

1. The only differential I/Os supported for tri-state interfaces are BLVDS25 on the VirtexII,
VirtexII-Pro and Virtex-4 and LVDS25 and LVPECL33 on the VirtexE.

2. LVDCI standards are equivalent to using LVCMOS standards with a dci specification of 1
3. LVDCI split termination standards are equivalent to using LVCMOS standards with a dci

specification of 0.5
If no I/O standard is specified, the default for devices is LVTTL (with a drive current of 12mA in the
case of Xilinx families supporting Select I/O).

Examples
set clock = external "C1" with {standard = "HSTL_III"};
interface bus_out()
 Eel(int 4 outPort=x)
 with {data = dataPinsO, standard = "HSTL_I"};

interface bus_ts(unsigned 3)
 Baboon(unsigned 3 ape1 = y, unsigned 1 ape2 = en)
 with {data = dataPinsT, standard = "LVTTL", strength = 24};

15.39.1 I/O STANDARDS SUPPORTED BY DIFFERENT CHIPS

You can specify the I/O standard for a particular device using the standard specification. Consult the
manufacturer's datasheet for the standards supported by a particular chip.

• Spartan, Spartan XL and Flex10 series devices do not support selectable standards.

15.39.2 I/O STANDARD DETAILS

The following input/output standards are available in Handel-C. To select a standard, use the standard
specification.

AGP (1x, 2x) – Advanced Graphics Port
The AGP standard is specified by the Advanced Graphics Port Interface Specification Revision 2.0
introduced by Intel Corporation for graphics applications. AGP is a voltage-referenced standard
requiring a reference voltage of 1.32 V, an input/output source voltage of 3.3 V and no termination.
This standard requires a Differential Amplifier input buffer and a Push-Pull output buffer.

Object specifications

 Page 313
www.agilityds.com

BLVDS - Bus Low Voltage Differential Signal
BLVDS is a differential I/O scheme, although it is not currently defined by any IEEE/EIA/TIA industry
standards. Unlike LVDS and LVPECL, which are intended for point-to-point communications, BLVDS
allows for bi-directional data transfer over the same set of transmitter-receiver pin pairs (also known as
transceivers). It thus enables transmission of high-speed differential signals over multipoint
backplanes. Due to the bi-directional transfer capability, 50 ohm termination resistors are needed at
both ends of the transmission line.

CTT – Center Tap Terminated
The CTT standard is a 3.3V memory bus standard, specified by JEDEC Standard JESD 8-4, Center-
Tap-Terminated (CTT) Low-Level, High-Speed Interface Standard for Digital Integrated Circuits, and
sponsored by Fujitsu. CTT is a voltage-referenced standard requiring a reference voltage of 1.5 V, an
input/output source voltage of 3.3 V and a termination voltage of 1.5 V. The CTT standard is a
superset of LVTTL and LVCMOS. CTT receivers are compatible with LVCMOS and LVTTL standards.
CTT drivers, when un-terminated, are compatible with the AC and DC specifications for LVCMOS and
LVTTL. This standard requires a Differential Amplifier input buffer and a Push-Pull output buffer.

GTL+ – Gunning Transceiver Logic Plus
The GTL+ standard is a high-speed bus standard (JESD 8-3) first used by Intel Corporation for
interfacing with the Pentium Pro processor and is often used for processor interfacing or
communication across a backplane. GTL+ is a voltage-referenced standard requiring a 1.0 V input
reference voltage and board termination voltage of 1.5 V. The GTL+ standard is an open-drain
standard that requires a minimum input/output source voltage of 3.0 V.

HSTL – High-speed Transceiver Logic
The HSTL standard, specified by JEDEC Standard JESD 8-6, High-Speed Transceiver Logic (HSTL),
is a 1.5 V output buffer supply voltage based interface standard for digital integrated circuits. This is a
voltage-referenced standard, and has four variations or classes. Classes I & II require a reference
voltage of 0.75 V and a termination voltage of 0.75 V; classes III & IV require a reference voltage of
0.9 V and a termination voltage of 1.5 V. All four classes require an input/output source voltage of 1.5
V. This standard requires a Differential Amplifier input buffer and a Push-Pull output buffer.

HyperTransport
HyperTransport technology is a differential high-speed, high-performance I/O interface standard. It is
a point-to-point standard requiring a 2.5-V VCCIO, in which each HyperTransport technology bus
consists of two point-to-point unidirectional links. Each link is 2 to 32 bits. The HyperTransport
technology standard does not require an input reference voltage. However, it does require a 100-ohm

Object specifications

 Page 314
www.agilityds.com

termination resistor between the two signals at the input buffer.

LVCMOS (3.3 V) – 3.3 Volt Low-Voltage CMOS
This standard is an extension of the LVCMOS standard and is defined in JEDEC Standard JESD 8-A,
Interface Standard for Nominal 3.0 V/3.3 V Supply Digital Integrated Circuits. This is a single-ended
general-purpose standard also used for 3.3V applications. It uses a 5V-tolerant CMOS input buffer and
a Push-Pull output buffer. This standard requires a 3.3V input/output source voltage, but does not
require the use of a reference voltage or a board termination voltage.

LVCMOS (2.5 V) – 2.5 Volt Low-Voltage CMOS
This standard is an extension of the LVCMOS standard and is documented by JEDEC Standard JESD
8-5, 2.5 V ± 0.2 V (Normal Range) and 1.7 V to 2.7 V (Wide Range) Power Supply Voltage and
Interface Standard for Non-terminated Digital Integrated Circuit. This is a single-ended general-
purpose standard, used for 2.5V (or lower) applications. It uses a 5V-tolerant CMOS input buffer and a
Push-Pull output buffer. This standard requires a 2.5V input/output source voltage, but does not
require the use of a reference voltage or a board termination voltage. Altera documentation refers to
this standard as simply "2.5 V".

LVCMOS (1.8 V) – 1.8 Volt Low-Voltage CMOS
This standard is an extension of the LVCMOS standard and is documented by JEDEC Standard JESD
8-7, 1.8 V ± 0.15 V (Normal Range) and 1.2 V to 1.95 V (Wide Range) Power Supply Voltage and
Interface Standard for Non-terminated Digital Integrated Circuit. This is a single-ended general-
purpose standard, used for 1.8V power supply levels and reduced input and output thresholds. It uses
a 5V-tolerant CMOS input buffer and a Push-Pull output buffer. This standard does not require the use
of a reference voltage or a board termination voltage. Altera documentation refers to this standard as
simply "1.8 V".

LVCMOS (1.5 V) – 1.5 Volt Low-Voltage CMOS
This standard is an extension of the LVCMOS standard. This is a single-ended general-purpose
standard, used for 1.5V applications. It uses a 5V-tolerant CMOS input buffer and a Push-Pull output
buffer. This standard does not require the use of a reference voltage or a board termination voltage.
Altera documentation refers to this standard as simply "1.5 V".

LVCMOS (1.2 V) - 1.2 Volt Low-Voltage CMOS
This standard is an extension of the LVCMOS standard. This is a single-ended general-purpose
standard, used for 1.2V applications. It uses a 5V-tolerant CMOS input buffer and a Push-Pull output
buffer. This standard does not require the use of a reference voltage or a board termination voltage.

Object specifications

 Page 315
www.agilityds.com

LVDCI - Low Voltage Digital Controlled Impedance
Xilinx Virtex II devices are able to provide controlled impedance input buffers and output drivers that
eliminate reflections without an external source termination. Output drivers can be configured as
controlled impedance drivers, or as controlled impedance drivers with half impedance. Inputs can be
configured to have termination to VCCO or to VCCO/2 (split termination), where VCCO is the input/output
source voltage. All of these are available at four voltage levels: 1.5 V, 1.8 V, 2.5 V and 3.3 V. For
further details, please refer to the Xilinx Data Book.

LVDS – Low Voltage Differential Signal
LVDS is a differential I/O standard. It requires that one data bit be carried through two signal lines. The
LVDS I/O standard is used for very high-performance, low-power-consumption data transfer. Two key
industry standards define LVDS: IEEE 1596.3 SCI-LVDS and ANSI/TIA/EIA-644. Both standards have
similar key features, but the IEEE standard supports a maximum data transfer of 250 Mbps. The use
of a reference voltage or a board termination voltage is not required, but a 100 ohm termination
resistor is required between the two traces at the input buffer.

LVPECL – Low Voltage Positive Emitter Coupled Logic
LVPECL is a differential I/O standard. It requires that one data bit be carried through two signal lines.
The LVPECL standard is similar to LVDS. In LVPECL, the voltage swing between the two differential
signals is approximately 850 mV. The use of a reference voltage or a board termination voltage is not
required, but an external termination resistor is required.

LVTTL – Low Voltage TTL
The Low-Voltage TTL, or LVTTL standard is a single ended, general purpose standard for 3.3V
applications that uses an LVTTL input buffer and a Push-Pull output buffer. The LVTTL interface is
defined by JEDEC Standard JESD 8-A, Interface Standard for Nominal 3.0 V/3.3 V Supply Digital
Integrated Circuits. This standard requires a 3.3V output source voltage, but does not require the use
of a reference voltage or a termination voltage.

PCI (33 MHz, 3.3 V) & PCI (66 MHz, 3.3 V) – 3.3 Volt PCI
The PCI standard specifies support for 33 MHz, 66 MHz and 133 MHz PCI bus applications. It uses a
LVTTL input buffer and a Push-Pull output buffer. This standard requires a 3.3V input output source
voltage, but not the use of input reference voltages or termination.

Object specifications

 Page 316
www.agilityds.com

PCI (33 MHz, 5.0 V) – 5.0 Volt PCI
Some Xilinx devices may be configured in this mode (an extension of the 3.3 Volt PCI standard),
which makes them 5V tolerant. No Altera devices currently support this mode.

PCI-X
The PCI-X standard is an enhanced version of the PCI standard that can support higher average
bandwidth and has more stringent requirements.

SSTL2 – Stub Series Terminated Logic for 2.5 V
The SSTL2 standard, specified by JEDEC Standard JESD 8-9, Stub-Series Terminated Logic for 2.5
Volts (SSTL-2), is a general purpose 2.5 V memory bus standard sponsored by Hitachi and IBM. This
is a voltage-referenced standard, and has two variations or classes, both of which require a reference
voltage of 1.25 V, an input/output source voltage of 2.5 V and a termination voltage of 1.25 V. This
standard requires a Differential Amplifier input buffer and a Push-Pull output buffer. SSTL2 is used for
high-speed SDRAM interfaces.

SSTL3 – Stub Series Terminated Logic for 3.3 V
The SSTL2 standard, specified by JEDEC Standard JESD 8-8, Stub-Series Terminated Logic for 3.3
Volts (SSTL-3), is a general purpose 3.3 V memory bus standard sponsored by Hitachi and IBM. This
is a voltage-referenced standard, and has two variations or classes, both of which require a reference
voltage of 1.5 V, an input/output source voltage of 3.3 V and a termination voltage of 1.5 V. This
standard requires a Differential Amplifier input buffer and an Push-Pull output buffer. SSTL3 is used
for high-speed SDRAM interfaces.

SSTL18 - Stub Series Terminated Logic for 1.8 V
The SSTL18 standard, specified by JEDEC Preliminary Standard JC42.3, is a general purpose 1.8V
memory bus standard. This is a voltage-referenced standard, and has two variations or classes, both
of which require a reference voltage of 0.90 V, an input/output source voltage of 1.8 V and a
termination voltage of 0.90 V. This standard requires a Differential Amplifier input buffer and a Push-
Pull output buffer. SSTL18 is used for high-speed SDRAM interfaces.

GTL – Gunning Transceiver Logic Terminated
The GTL standard is a high-speed bus standard (JESD 8-3) invented by Xerox. Xilinx has
implemented the terminated variation for this standard (Altera has not). This standard requires a
differential amplifier input buffer and an Open Drain output buffer.

Object specifications

 Page 317
www.agilityds.com

15.39.3 DIFFERENTIAL I/O STANDARDS

Differential I/O standards can be used with bus-type interfaces, offchip memories and external clocks
in EDIF output. They are specified using the standard specification. The differential I/O standards
supported by Handel-C are LVDS25, LVDS33, BLVDS25, LVPECL33 and HyperTransport.

If you want to build a tri-state interface, you can use only the BLVDS25 standard.

To specify pins for a bus_type interface with a differential I/O, use the data specification. Pins are
specified in pairs enclosed in braces:

interface bus_in (unsigned 2 datain) I()
 with {standard = "LVDS25",
 data = {{"P1", "P2"}, {"P3", "P4"}}}

The first pin in a pair is the positive one. You can omit the second pin of each pair, but you still need to
enclose the single pins within braces.

You also need to specify pair of pins enclosed in braces for pin specifications for offchip memories
(addr, we, cs, oe and clk) when you are using a differential I/O. For example:

ram unsigned 4 ExtRAM[256]
 with {offchip=1, standard = "LVPECL33",
 addr={{"P1", "P2"}, {"P3", "P4"}, {"P5", "P6"}, {"P7", "P8"}},
 data={{"P9", "P10"}, {"P11", "P12"}, {"P13", "P14"}, {"P15", "P16"}},
 we={{"P17", "P18"}},
 cs={{"P19", "P20"}},
 oe={{"P21", "P22"}}
 };

If you use a differential I/O for an external clock, the pins are specified using the set clock construct,
rather than the data specification:

set clock = external {"C1", "C2"}
 with {standard = "LVDS25"}

The standard specification is ignored for VHDL and Verilog output, but if you have used a data
specification with pairs of pins, and then build the code for VHDL or Verilog output, the first pin in each
pair will be assigned and the other pin will be ignored.

15.40 STD_LOGIC_VECTOR SPECIFICATION
The std_logic_vector specification is no longer supported and should be replaced by the vhdl_type
specification.

Object specifications

 Page 318
www.agilityds.com

15.41 STARTUP SPECIFICATION
The startup specification determines how a clockdomain starts up after power-on or reset. It is
attached to the clock.

set clock = external "P1" with { rate= ..., startup = value}
value can be "safe" or "immediate". The default is "immediate" when compiling for simulation, or for
simulation HDL styles (ModelSim and Active HDL), and "safe" in all other cases.

-forceimmediatestartup. This makes the compiler behave as if startup="immediate" was specified in all
clockdomains. This works even if the design has already been compiled into a .hco file.

Because the default modes are different, depending on the -syn style, a design compiled for ModelSim
will give different startup behaviour in simulation to the same design compiled for Precision (using the
default startup mode for both).

15.42 STARTUPPARANOIA SPECIFICATION
You can reduce the start-up circuit delay by using the extra specifications:

• startupparanoia = N (N must be a non-negative integer)
• minperiod (see page 296) OR resolutiontime (see page 307)

The default values for these specifications are safe and will work well under most circumstances. Only
the EDIF backend currently allows constraints to be produced.

15.43 STARTUPPIPELINE SPECIFICATION
startuppipeline = N

(N must be a non-negative integer)

The startuppipeline specification makes the compiler inserts N flip-flops between the output of the
startup circuit and the rest of the circuitry in the clockdomain. This allows extra optimisation by place
and route tools if the startup circuit drives a clock-enable net with a large fanout.

Example
The following settings could be used if fast startup is required and the skew of any global reset net is
less than the clock period. If the skew is longer then a higher value of startupparanoia must be used. If
fast startup is not needed then it is best to use the defaults.

set clock = external "P1" with
 { rate= ..., startup="safe", startupparanoia=1, resolutiontime=2.5,
 startuppipeline=0 };

Object specifications

 Page 319
www.agilityds.com

15.44 STRENGTH SPECIFICATION
The strength specification may be used in conjunction with the standard specification on any external
bus interface (not port_in or port_out) connected to pins to select the drive current (in mA) to be used
on all pins of that interface. It may also be applied to off-chip memories. You can only use the strength
specification for EDIF output.

Different device families support different values. The compiler will issue warnings if a non-supported
value is selected for a particular device. Check the device datasheet to confirm what values it
supports

The following standards do not support drive strength selection: PCI, GTL, HSTL III, HSTL IV, CTT,
AGP(1x), AGP(2x), LVDS, LVPECL, LVDCI and BLVDS.

The following devices do not support drive strength selection for any standards: Excalibur, Apex 20,
Apex 20KE and Apex 20KC.

Example
interface bus_out() Eel(int 4 outPort = x)
 with {data = dataPinsO, standard = "HSTL_I", strength = -1};
interface bus_ts(unsigned 3 inPort) Baboon(ape1 = y, ape2 = en)
 with {data = dataPinsT, standard = "LVTTL",
 strength = 24};

15.45 SYNCHRONOUS SPECIFICATION
The synchronous specification may be given to a reset signal. The value of this specification controls
whether the reset is synchronous (occurs on next clock tick) or asynchronous (occurs immediately).
The default is asynchronous (0)

Example
set reset = external with {synchronous=1};

Object specifications

 Page 320
www.agilityds.com

15.46 UNCONSTRAINEDPERIOD SPECIFICATION
unconstrainedperiod gives the maximum period in nanoseconds on channel control paths between
clock domains. If this specification is not used, the place and route tools may generate a warning for
affected paths crossing the clock domain.

If the specification is used, it applies to unconstrained paths into the clock domain. The diagram below
shows where it is used.

TIMES WITH PARANOIAAT ITS DEFAULT OF 1

Object specifications

 Page 321
www.agilityds.com

tr: time to transfer between domains (paranoia +1) x tp

tup: unconstrainedperiod

tmp: minperiod

tp: clock period

set clock = external with {unconstrained period=10};

15.47 UNCONSTRAINEDPERIOD
unconstrainedperiod gives the maximum period in nanoseconds on channel control paths between
clock domains. If this specification is not used, the place and route tools may generate a warning for
affected paths crossing the clock domain.

Object specifications

 Page 322
www.agilityds.com

If the specification is used, it applies to unconstrained paths into the clock domain. The diagram below
shows where it is used.

TIMES WITH PARANOIAAT ITS DEFAULT OF 1

tr: time to transfer between domains (paranoia +1) x tp

tup: unconstrainedperiod

tmp: minperiod

tp: clock period

15.48 VHDL_TYPE SPECIFICATION
The vhdl_type specification may be given to port_in, port_out or generic interfaces to specify the type
of a port in VHDL.

Valid string values of this specification are:

unsigned signed std_logic std_logic_vector

The default type of a port is std_logic if the port is 1 bit wide, unsigned otherwise. You can apply the
vhdl_type specification to individual ports. If you place the specification at the end of the interface
statement, it will be applied to all the ports.

 The vhdl_type specification replaces the deprecated std_logic_vector

specification

Object specifications

 Page 323
www.agilityds.com

Example 1: Handel-C instantiation of a Bloo component without vhdl_type specification set:
interface Bloo(unsigned 1 myin) B(unsigned 4 myout = x);

results in Handel-C generating this VHDL instantiation of the Bloo component:

COMPONENT Bloo
PORT (
 myin : OUT std_logic;
 myout : IN unsigned (3 DOWNTO 0)
);
END COMPONENT;

Example 2: Handel-C instantiation of a Bloo component with vhdl_type applied to entire
interface:
interface Bloo(unsigned 1 myin)
 B(unsigned 4 myout = x) with {vhdl_type = "std_logic_vector"};

results in Handel-C generating this VHDL instantiation of the Bloo component:

COMPONENT Bloo
PORT (
 myin : OUT std_logic_vector (0 DOWNTO 0);
 myout : IN std_logic_vector (3 DOWNTO 0)
);
END COMPONENT;

Example 3: Handel-C instantiation of a Bloo component with vhdl_type applied to individual
ports:
interface Bloo(unsigned 1 myin with {vhdl_type = "std_logic_vector"})
 B(unsigned 4 myout = x with {vhdl_type = "signed"});

results in Handel-C generating this VHDL instantiation of the Bloo component:

COMPONENT Bloo
PORT (
 myin : OUT std_logic_vector (0 DOWNTO 0);
 myout : IN signed (3 DOWNTO 0)
);
END COMPONENT;

15.49 VHDL_COMPONENT SPECIFICATION
The vhdl_component specification is given to an interface in Handel-C which produces a VHDL
component. When set to zero, it will not produce a component declaration in the VHDL output. When
set to one (the default value) it will produce a component declaration.

Object specifications

 Page 324
www.agilityds.com

15.50 WARN SPECIFICATION
The warn specification may be given to a variable, RAM, ROM, channel, bus or clock. It can be used
for any DK output. When set to zero, certain non-crucial warnings will be disabled for that object.
When set to one (the default value), all warnings for that object will be enabled.

int 5 x with {warn=0};

15.51 WEGATE SPECIFICATION
The wegate specification may be given to external or internal RAM declarations to place the write-
enable strobe. You can only use this specification with an undivided clock. If it is used in the absence
of SRAM clock specifications (rclkpos, wclkpos and clkpulselen), it forces the generation of an
asynchronous memory or memory port. If you have a divided clock, use the westart and welength
specifications instead. The wegate specification is valid for EDIF, VHDL and Verilog output.

When the wegate specification is set to 0, the write strobe will appear throughout the Handel-C clock
cycle. When set to -1, the write strobe will appear only in the first half of the Handel-C clock cycle.
When set to 1, the write strobe will appear only in the second half of the Handel-C clock cycle.

You can apply the specification to the whole of a RAM or MPRAM, or to individual write ports within an
MPRAM. Specifications applied to individual ports take precedence over specifications applied to the
whole memory. Specifications applied to the whole memory apply to each port that does not have its
own specification.

15.52 WESTART AND WELENGTH SPECIFICATIONS
The westart and welength specifications position the write enable strobe within the Handel-C clock
cycle. If they are used in the absence of SRAM clock specifications (rclkpos, wclkpos and clkpulselen),
they force the generation of an asynchronous memory or memory port. The specifications may be
given to internal or external RAM declarations. You can only use these specifications together with
external_divide or internal_divide clock types with a division factor greater than 1. If you have an
undivided clock, use the wegate specification instead. westart and welength are valid for EDIF, VHDL
and Verilog output.

westart is used to specify the starting position of the write enable strobe, and welength is used to
specify its length. For both of these specifications, a unit value corresponds to a single cycle of the fast
clock which has been divided in order to generate the Handel-C clock. The size of welength and
westart can be given in multiples of 0.5, but (westart + welength) must not exceed the clock divide.

You can apply the specification to the whole of a RAM or MPRAM, or to individual write ports within a
memory. Specifications applied to the whole memory will apply to each port that does not have its own
specification.

Object specifications

 Page 325
www.agilityds.com

Examples
//applying the specifications to the whole RAM
set clock = external_divide "P78" 4;
ram unsigned 6 x[34] with {westart = 1, welength = 1.5};

WRITE ENABLE STROBE WITH A WESTART OF 1, A WELENGTH OF 1.5, AND A CLOCK DIVIDE OF 4

//applying the specifications to ports
mpram
{
 wom unsigned 6 r[32}
 with {westart = 1, welength = 1.5};
 wom unsigned 6 s[32];
 rom unsigned 6 t[32];
 rom unsigned 6 u[32};

} with {westart = 1.5, welength = 0.5};

This example would result in a compiler warning as the specifications at the end would be applied to
all ports that do not have their own specification (s, t and u). t and u are read-only ports and therefore
cannot have write-enable specifications. However, the mpram would build correctly with the first set of
specifications applied to port r and the second set to port s.

Handel-C preprocessor

 Page 326
www.agilityds.com

16 HANDEL-C PREPROCESSOR
The preprocessor is invoked by the Handel-C compiler as the first stage in the compilation process,
and is used to manipulate the text of source code files. Correct use of this tool can simplify code
development and the subsequent maintenance process. There are a number of functions performed
by the preprocessor:

• Macro substitution
• File inclusion
• Conditional compilation
• Line splicing
• Line control
• Concatenation
• Error generation
• Predefined macro substitution

Communication with the preprocessor occurs through the use of directives. Directives are lines within
source code which begin with the # character, followed by an identifier known as the directive name.
For example, the directive to define a macro is ‘#define’.

16.1 PREPROCESSOR MACROS

Simple macros
The preprocessor supports several types of macros. Simple macros (or manifest constants) involve
the simplest form of macro substitution and are defined with the form:

#define name sequence-subsitute

Any occurrences of the token name found in the source code are replaced with the token sequence
sequence-substitute, which may include spaces. All leading and trailing white spaces around the
replacement sequence are removed. For example:

#define FOO 1024
#define loop_forever while (1)

Parameterized macros
You can also define macros with arguments. This allows replacement text to be passed as
parameters. For example:

#define mul(A, B) A*B

This will replace

x = mul (2, 3);

Handel-C preprocessor

 Page 327
www.agilityds.com

with

x = 2 * 3;

Take care to preserve the intended order of evaluation when passing parameters. For example the
line

x = mul (a – 2, 3);

will be expanded into

x = a – 2 * 3;

The multiplication is evaluated first, then the result subtracted from variable a. This is almost certainly
not the intention, and errors of this type may be difficult to locate.

If a parameter name is preceded by a # when declared as part of a macro, it is expanded into a
quoted string by the preprocessor. E.g., if a macro is defined:

#define quickassert(X) assert (width(X)==1,O "Width of " #X " is not
1!\n");

The line:

quickassert(length);

will expand into:

assert (width(X)==1,O "Width of length is not 1!\n");

Undefining identifiers
To undefine an identifier, the #undef directive may be used. E.g.

#undef FOO

Note that no error will occur if the identifier has not previously been defined.

 Preprocessor directives cannot be used unexpanded in a library; use macro

procedures instead.

16.2 FILE INCLUSION
File inclusion makes it possible to easily manage and reuse declarations, macro definitions, and other
code. The feature is helpful when writing general purpose functions and declarations which can be
reused for a number of designs. File inclusion is achieved using directives of the form:

#include "filename"

Handel-C preprocessor

 Page 328
www.agilityds.com

or

#include <filename>

Such lines are replaced by the contents of the file indicated by filename. If the file name is enclosed
by quotation marks, the preprocessor looks for the file in the directory containing source code for the
current design. If the file cannot be found there, or the file name is enclosed with angular brackets, the
search examines user-defined include file directories (specified using Tools>Options>Directories), and
the main DK include file directory.

16.3 CONDITIONAL COMPILATION

Conditional directives
You can control preprocessing with conditional directives. These statements can add a great deal of
flexibility to source code. For example, they may be used to alter the behaviour of a design, depending
upon whether a macro definition is present. Conditional statements must begin with an #if directive
and an expression to be evaluated, and end with the #endif directive. Valid directives are:

#if expression

#elif expression
#else

#endif

Example
#if a==b
 // include this section if a is equal to b
#elif a>b
 // include this section if a is greater than b
#else
 // otherwise include this section
#endif

If the expression is evaluated to be zero, then any text following the directive will be discarded until a
subsequent #elif, #else, or #endif statement is encountered; otherwise the lines will be included as
normal. Note that each directive should be placed individually on its own line starting at column 0.

A useful application for conditional directives is easy exclusion of code without the use of comments.
For example:

#if (0)
 // Code for debugging purposes
#endif
 // Code continues

Handel-C preprocessor

 Page 329
www.agilityds.com

By amending the above evaluation to (1), the code can quickly be included during compilation.

Conditional definition
To test for the existence of a macro definition, use the following directives:

#ifdef identifier (equivalent to #if defined (identifier))
#ifndef identifier (equivalent to #if !defined (identifier))
These are used in the same way as #if, but are followed by an identifier, rather than an expression.
The #ifndef directive is often used to ensure that source code is only included once during compilation.
E.g.

#ifndef UTILCODE
#define UTILCODE

// Utility code is written here

#endif

16.4 LINE CONTROL
A directive of the form:

#line integer

instructs the compiler that the next source line is the line number specified by integer. If a filename
token is also present:

#line integer "filename"

the compiler will additionally regard filename as the name of the current input file.

16.5 CONCATENATION IN MACROS
If a macro is defined with a token sequence containing a ## operator, each instance of ## is removed
(along with any surrounding white space), thus concatenating adjacent tokens into one. For example,
if the macro below was declared:

 #define million(X) X ## e6

then

 i = million (3);

is expanded into:

 i = 3e6;

Take care when specifying parameters. In the example above, if 3e6 was passed instead of 3, then

Handel-C preprocessor

 Page 330
www.agilityds.com

the line would be expanded into:

 i = 3e6e6;

which would result in an error.

16.6 ERROR GENERATION
Fatal error messages may be reported during preprocessing using the directive:

#error error_message

This may be useful with conditional compilation if your design only supports certain combinations of
parameter definitions.

16.7 PREDEFINED MACRO SUBSTITUTION
The preprocessor contains a number of useful predefined macros which may be placed into source
code:

_ _FILE_ _ Expands to the name of the current file being
compiled

_ _LINE_ _ Expands to the number of the current source
line

_ _TIME_ _ Expands to the current time of compilation in
the form hh:mm:ss

_ _DATE_ _ Expands to the current date of compilation in
the form mmm dd yyyy

16.8 LINE SPLICING
You can splice multiple lines together by placing a backslash character (‘\’) followed by a carriage
return between them. This feature allows you to break lines for aesthetic purposes when writing code,
which are then joined by the preprocessor prior to compilation. For example, if a macro is defined:

#define ERRORCHECK(error) \
 if (error!=0) \
 return (error)

The line:

ERRORCHECK(i);

Expands to:

Handel-C preprocessor

 Page 331
www.agilityds.com

if (i!=0)
 return i;

Language syntax

 Page 332
www.agilityds.com

17 LANGUAGE SYNTAX
The complete Handel-C language syntax is given in BNF-like notation.

The overall syntax for the program is:

program ::= {external_declaration}

void main(void)
{
 {declaration}
 {statement}
}

Language
external_declaration ::= function_definition
 | declaration
 | set_statement

17.1 LANGUAGE SYNTAX CONVENTIONS
BNF (Backus-Naur Format) is a way to describe the syntax of file formats. It consists of definitions of
the form

identifier ::= definition

The identifier is a word which describes this part of the syntax.
The ::= represents "consists of".
The definition lists the permitted contents of the identifier.

The conventions used in this language reference are:

• Terminal symbols are set in typewriter font like this.
• Non-terminal symbols are set in italic font like this.
• Square brackets [...] denote optional components.
• Braces {...} denotes zero, one or more repetitions of the enclosed components.
• Braces with a trailing plus sign {...}+ denote one or several repetitions of the enclosed components.
• Parentheses (...) denote grouping.

17.2 KEYWORD SUMMARY
The keywords listed below are reserved and cannot be used for any other purpose.

Language syntax

 Page 333
www.agilityds.com

Keyword Meaning Handel-C ANSI-C/C++ ?

= assignment operator Yes Yes
; statement terminator Yes Yes
, comma operator Yes Yes
{ } code block delimiters Yes Yes
<> type clarifier Yes No
() delimiters (precedence,

function and macro calls,
function, macro and
interface declarations)

Yes Yes

[] array index delimiters, bit
selection

Yes Yes

[:] bit range selection Yes No
! logical NOT operator Yes Yes
! output to channel Yes No
+ addition operator Yes Yes
- subtraction operator Yes Yes
- unary minus operator Yes Yes
* multiplication operator Yes Yes
/ division operator Yes Yes
% modulo operator Yes Yes
\\ drop LSBs Yes No
<- take LSBs Yes No
? read from channel Yes No
? conditional expression Yes Yes
^ bitwise XOR Yes Yes
& bitwise AND and reference

operator
Yes Yes

| bitwise OR Yes Yes
~ bitwise NOT Yes Yes
&& logical AND Yes Yes1
|| logical OR Yes Yes1
. structure member operator Yes Yes
<< left-shift operator Yes Yes
>> right shift operator Yes Yes
< less than operator Yes Yes1
> greater than operator Yes Yes1
<= less or equal operator Yes Not standard1

Language syntax

 Page 334
www.agilityds.com

>= greater or equal operator Yes Not standard1
== equality operator Yes Not standard1
!= inequality operator Yes Not standard1
++ increment operator Yes Not standard
-- decrement operator Yes Not standard
+= assignment operator Yes Not standard
-= assignment operator Yes Not standard
*= assignment operator Yes Not standard
/= assignment operator Yes Not standard
%= assignment operator Yes Not standard
<<= assignment operator Yes Not standard
>>= assignment operator Yes Not standard
&= assignment operator Yes Not standard
|= assignment operator Yes Not standard
^= assignment operator Yes Not standard
... Reserved. Not valid in

Handel-C,
but can be
used for
C/C++ calls.

Yes

-> structure pointer operator Yes Yes
@ concatenation operator Yes No
: labelled statements Yes Yes
1 Note, the results of these tests are a single bit unsigned int

Language syntax

 Page 335
www.agilityds.com

Keyword Meaning Handel-C ANSI-C/C++ ?

assert diagnostic macro to
print to stderr

Yes Not standard

auto auto variable Yes Yes
break immediate exit from

code block
Yes Yes

case selection within switch
and prialt

Yes Yes

chan define channel
variable

Yes No

chanin simulator channel in Yes No
chanout simulator channel out Yes No
char 8-bit variable Yes Yes
clock define clock Yes No
const specify that variable's

value will not change
Yes Yes

continue force next iteration of
loop

Yes Yes

default default case within
switch, prialt

Yes Yes

delay wait one clock cycle Yes No
do start do while loop Yes Yes
double Reserved. Not valid in

Handel-C
Not valid in
Handel-C

C-only

else conditional execution Yes Yes
enum enumeration constant Yes Yes
expr define macro as

expression
Yes No

extern define global variable Yes Yes
external clock from device pin Yes No
external_divide clock from device pin

with integer division
Yes No

family define target device's
family

Yes No

float Reserved. Not valid in
Handel-C

C-only

for for loop iteration Yes Yes
goto jump to specified label Yes Yes

Language syntax

 Page 336
www.agilityds.com

if conditional execution Yes Yes
ifselect conditional compilation

on compile-time
selection

Yes No

in define scope for local
macro expression
declaration

Yes No

inline declaration of inline
function

Yes No

int definable width
variable

Yes Yes

interface declaration of off-chip
interface

Yes No

internal use internal clock Yes No
internal_divide internal clock with

integer division
Yes No

intwidth set integer width Yes No
let start declaration of

local macro
expression

Yes No

long declare 32-bit variable Yes Yes
macro declare a macro Yes No
mpram declare a multi-port

RAM
Yes No

par execute statements in
parallel

Yes No

part define target hardware Yes No
prialt execute first ready

channel
Yes No

proc define macro as
procedure

Yes No

ram declare a RAM (array) Yes No
register declare register

variable
Yes Yes

releasesema
(semaphore)

free semaphore Yes No

reset reset design Yes No
return return from function Yes Yes
rom declare a ROM (array) Yes No
select select expression or

macro expr at compile
time

Yes No

Language syntax

 Page 337
www.agilityds.com

sema declare a semaphore Yes No
set specify device family

or part, int width,
target, reset or clock

Yes No

seq execute statements in
sequence

Yes No

shared declare a shared
expression

Yes No

short declare 16-bit variable Yes Yes
signal declare a signal object Yes No
signed declare a signed

variable
Yes Yes

sizeof Reserved. Not valid in
Handel-C

Yes

static specify variable with
limited scope

Yes Yes

struct declare a structure
variable

Yes Yes

switch switch statement
(between cases)

Yes Yes

try reset(Condition)
{...}

execute statements if
Condition is true
during execution
within related try block

Yes No

trysema Test if semaphore
owned. Take if not.

Yes No

typedef define type Yes Yes
typeof return type of

expression
Yes No

undefined specify a variable of
undefined width

Yes No

union Reserved. Not valid in
Handel-C

Yes

unsigned declare an unsigned
variable

Yes Yes

void specify void return
type

Yes Yes

volatile declare volatile
variable

Yes Yes

while loop statement Yes Yes
width return integer width Yes No

Language syntax

 Page 338
www.agilityds.com

with specify interface,
signals, channels,
RAM and ROM types,
variables etc.

Yes No

wom declare a WOM (array) Yes No

The following character sequences are also reserved:

/* */ // # " '

17.3 CONSTANT EXPRESSIONS
The following constants are available in Handel-C

• Identifiers
• Integer constant
• Character constants
• String constant
• Floating-point constants

17.3.1 IDENTIFIERS: SYNTAX

identifier ::= letter {letter | 0...9}

letter ::= A...Z | a...z | _

17.3.2 INTEGER CONSTANTS: SYNTAX

integer_constant ::= [-]{1...9}+{0...9}
 | [-](0x | 0X){0...9 | A...F | a...f}+
 | [-](0){0...7}
 | [-](0b | 0B){0...1}+

17.3.3 CHARACTER CONSTANTS: SYNTAX

character is any printable character or any of the following escape codes.

Language syntax

 Page 339
www.agilityds.com

Escape code ASCII value Meaning

\a 7 Bell (alert)
\b 8 Backspace
\f 12 Form feed
\t 9 Horizontal tab
\n 10 New line
\v 11 Vertical tab
\r 13 Carriage return
\" - Double quote mark
\0 0 String terminator
\\ - Backslash
\’ - Single quote mark
\? - Question mark

17.3.4 STRINGS: SYNTAX

string ::= "{character}"

17.3.5 FLOATING-POINT CONSTANTS: SYNTAX

float_constant::=
 [{0...9}+].{0...9}+[(e | E)[+|-]{0...9}+][f | F | l | L]
 | {0...9}+.[(e | E)[+|-]{0...9}+][f | F | l | L]
 | {0...9}+(e | E)[+|-]{0...9}+[f | F | l | L]

Language syntax

 Page 340
www.agilityds.com

17.4 FUNCTIONS AND DECLARATIONS: SYNTAX
function_definition ::= declaration_specifiers declarator
 compound_ statement [with initializer ;]
 | declarator compound_statement [with initializer ;]

declaration ::= declaration_specifiers [init_declarator_list] [with initializer] ;
 | interface_declaration
 | macro_declaration

declaration_specifiers ::= storage_class_specifier [declaration_specifiers]
 | type_specifier [declaration_specifiers]
 | type_qualifier [declaration_specifiers]

storage_class_specifier ::= auto
 | register
 | inline
 | typedef
 | extern
 | static

type_specifier ::= void
 | char
 | short
 | int
 | long
 | float
 | double
 | signed
 | unsigned
 | typeof (expression)
 | signal_specifier
 | channel_specifier
 | ram_specifier
 | struct_or_union_specifier
 | enum_specifier
 | typedef_name

type_qualifier ::= const
 | volatile

Language syntax

 Page 341
www.agilityds.com

typedef_name ::= identifier

init_declarator_list ::= declarator [= initializer] { ,declarator [= initializer]}

17.5 MACRO/SHARED EXPRS/PROCS: SYNTAX
macro_declaration ::= macro_proc_decl
 | macro_expr_decl

macro_proc_decl ::= [static | extern]
 macro_proc_spec identifier
 [([macro_param{, macro_param}])] statement
 [with initializer ;]

macro_expr_decl ::= [static | extern]
 macro_expr_spec identifier
 [([macro_param{, macro_param}])] ;
 | [static | extern] macro_expr_spec identifier
 [([macro_param{, macro_param}])] = let_initializer
 [with initializer] ;

macro_proc_spec ::= macro proc

macro_expr_spec ::= macro expr
 | shared expr

let_initializer ::= initializer
 | let macro_expr_decl in let_initializer

macro_param ::= identifier

Language syntax

 Page 342
www.agilityds.com

17.6 INTERFACES: SYNTAX
interface_declaration ::= interface identifier ([int_parameter_declaration
 { , int_parameter_declaration}]) identifier
 ([assignment_expr_spec {, assignment_expr_spec }])
 [with initializer];
 | interface_type_declarator
 | old_style_interface_declarator

interface_type_declarator :: = interface identifier
 ([int_parameter_proto{ , int_parameter_proto}])
 identifier ([int_init_parameter_declaration
 { ,
int_init_parameter_declaration}])

This format is deprecated but retained for compatibility reasons:

old_style_interface_declarator ::= interface identifier
 ([int_parameter_declaration {, int_parameter_declaration}])
 identifier ([assignment_expr_spec {,assignment_expr_spec})
 [with initializer] ;

interface ::= [static | extern] interface

 int_parameter_proto::= declaration_specifiers
 | declaration_specifiers declarator
 | declaration_specifiers abstract_declarator
 | declaration_specifiers width

int_parameter_declaration ::= declaration_specifiers [with initializer]
 | declaration_specifiers declarator [with initializer]
 | declaration_specifiers abstract_declarator [with initializer]
 | declaration_specifiers width [with initializer]

int_init_parameter_declaration ::= int_parameter_declaration
 | declaration_specifiers declarator [= initializer] [with initializer]

assignment_expr_spec ::= assignment_expression [with initializer]

Language syntax

 Page 343
www.agilityds.com

17.7 STRUCTURES: SYNTAX
struct_or_union_specifier ::= aggregate_form [identifier] { {struct_declaration}+ }
 | aggregate_form identifier

aggregate_form ::= struct
 | mpram

struct_declaration ::= { type_specifier | type_qualifier}+
 {struct_declarator} + [with initializer];

struct_declarator ::= declarator
 | [declarator]: constant_expression

 The current version of Handel-C does not support unions.

17.8 ENUMERATED TYPES: SYNTAX
enum_specifier ::= enum [identifier] { enumerator {,[enumerator]} }
 | enum identifier
enumerator ::= identifier
 | identifier = constant_expression

17.9 SIGNAL SPECIFIERS: SYNTAX
signal_specifier ::= signal < type_name >
 | signal

17.10 CHANNEL SYNTAX
channel_specifier ::= chan [< type_name >]
 | chanin [< type_name >]
 | chanout [< type_name >]

Language syntax

 Page 344
www.agilityds.com

17.11 RAM SPECIFIERS: SYNTAX
ram_specifier ::= ram [< type_name >]
 | rom [< type_name >]
 | wom [< type_name >]

17.12 DECLARATORS: SYNTAX
declarator ::= [width] pointer direct_declarator

width ::= undefined
 | primary_expression

direct_declarator ::= identifier
 | (pointer direct_declarator)
 | direct_declarator [[constant_expression]]
 | direct_declarator ([{parameter_declaration}+])

pointer ::= *
 | * type_qualifier
 | * pointer
 | * type_qualifier pointer

17.13 FUNCTION PARAMETERS: SYNTAX
parameter_declaration ::= declaration_specifiers
 | declaration_specifiers width
 | declaration_specifiers abstract_declarator
 | declaration_specifiers declarator

Language syntax

 Page 345
www.agilityds.com

17.14 TYPE NAMES AND ABSTRACT DECLARATORS:
SYNTAX
type_name ::= { type_specifier | type_qualifier}+
 | { type_specifier | type_qualifier}+ abstract_declarator
 | { type_specifier | type_qualifier}+ width

abstract_declarator ::= [width] pointer direct_abstract_declarator

direct_abstract_declarator ::= (pointer direct_abstract_declarator)
 | [direct_abstract_declarator][[constant_expression]]
 | [direct_abstract_declarator] ([{parameter_declaration}+])

17.15 STATEMENTS: SYNTAX
statement ::= semi_statement ;
 | non_semi_statement

semi_statement ::= expression_statement
 | do statement while (expression)
 | jump_statement
 | assert (constant_expression [, assignment_expression {,
assignment_expression}])
 | delay
 | channel_statement
 | set_statement

non_semi_statement ::= labelled_statement
 | compound_statement
 | selection_statement
 | iteration_statement

The following statements can appear in for start/end conditions:

Language syntax

 Page 346
www.agilityds.com

for_statement ::= non_semi_statement
 | expression_statement
 | do statement while (expression)
 | assert (constant_expression , constant_expression
 [, assignment_expression{, assignment_expression}])
 | delay
 | channel_statement

These are the statements that can appear in prialt blocks:

Language syntax

 Page 347
www.agilityds.com

prialt_statement ::= semi_statement ;
 | non_semi_prialt_statement

non_semi_prialt_statement ::= prialt_labelled_statement
 | compound_statement
 | selection_statement
 | iteration_statement

labelled_statement ::= identifier : statement
 | case constant_expression : statement
 | default : statement

prialt_labeled_statement ::= identifier : prialt_statement
 | case channel_statement : prialt_statement
 | default : prialt_statement

expression_statement ::= [expression]

channel_statement ::= unary_expression ! expression
 | logical_or_expression ? expression

jump_statement ::= goto identifier
 | continue
 | break
 | return
 | return expression

selection_statement ::= if (expression) statement if
 | if (expression) statement else statement
 | ifselect (constant_expression) statement if
 | ifselect (constant_expression) statement else statement
 | switch (expression) statement
 | prialt { [{ prialt_statement }+] }

set_statement ::= set part = STRING
 | set clock = clock
 | set family = identifier
 | set intwidth = constant_expression
 | set intwidth = undefined
 | set reset = reset

Language syntax

 Page 348
www.agilityds.com

clock ::= internal expression [with initializer]
 | external expression [with initializer]
 | internal_divide expression expression [with initializer]
 | external_divide expression expression [with initializer]

reset ::= internal expression
 | external expression

iteration_statement ::= while (expression) statement
 | for ([for_statement] ; [expression] ;
 [for_statement]) statement

17.15.1 COMPOUND STATEMENTS WITH REPLICATORS

compound_statement ::= [seq | par] {{ declaration} {statement} }
 | [seq | par] ([repl_macro_param{, repl_macro_param}]
;constant_expression;
 [repl_update_param {, repl_update_param}]) {{declaration} {statement} }

17.16 REPLICATORS: SYNTAX

Replicator initialization definitions
repl_macro_param ::= repl_param = initializer
 | (repl_param = initializer)

Replicator update definitions
repl_update_param ::= repl_update_param_body
 | (repl_update_param)

repl_update_param_body ::= repl_param assignment_operator initializer
 | ++ repl_param
 | repl_param ++
 | -- repl_param
 | repl_param --

repl_param ::= identifier
 | (repl_param)

Language syntax

 Page 349
www.agilityds.com

17.17 EXPRESSIONS: SYNTAX
constant_expression ::= assignment_expression

expression ::= assignment_expression
 | expression, assignment_expression}

assignment_expression ::= conditional_expression
 | unary_expression assignment_operator assignment_expression

assignment_operator ::= = | *= | /= | %= | += | -= | <<= | >>=
| &=
 | ^= | |=

initializer ::= assignment_expression

conditional_expression ::= logical_or_expression
 | logical_or_expression ? expression : conditional_expression

logical_or_expression ::= logical_and_expression
 | logical_or_expression || logical_and_expression

logical_and_expression ::= inclusive_or_expression
 | logical_and_expression && inclusive_or_expression

inclusive_or_expression ::= exclusive_or_expression
 | inclusive_or_expression | exclusive_or_expression

exclusive_or_expression ::= and_expression
 | exclusive_or_expression ^ and_expression

and_expression ::= equality_expression
 | and_expression & equality_expression

equality_expression ::= relational_expression
 | equality_expression == relational_expression
 | equality_expression != relational_expression

relational_expression ::= cat_expression
 | relational_expression < cat_expression
 | relational_expression > cat_expression

Language syntax

 Page 350
www.agilityds.com

 | relational_expression <= cat_expression
 | relational_expression >= cat_expression

cat_expression ::= shift_expression
 | cat_expression @ shift_expression

shift_expression ::= additive_expression
 | shift_expression << additive_expression
 | shift_expression >> additive_expression

additive_expression ::= multiplicative_expression
 | additive_expression + multiplicative_expression
 | additive_expression - multiplicative_expression

multiplicative_expression ::= take_drop_expression
 | multiplicative_expression * take_drop_expression
 | multiplicative_expression / take_drop_expression
 | multiplicative_expression % take_drop_expression

take_drop_expression ::= cast_expression
 | take_drop_expression <- cast_expression
 | take_drop_expression \\ cast_expression

cast_expression ::= unary_expression
 | (type_name) cast_expression

unary_expression ::= postfix_expression
 | ++ unary_expression
 | -- unary_expression
 | unary_operator cast_expression
 | sizeof unary_expression
 | sizeof (type_name)
 | width (expression)

unary_operator ::= & | + | - | ~ | ! | *

postfix_expression ::= select_expression
 | postfix_expression [expression]
 | postfix_expression [expression : expression]
 | postfix_expression [: expression]
 | postfix_expression [expression :]

Language syntax

 Page 351
www.agilityds.com

 | postfix_expression []
 | postfix_expression ([assignment_expression {, assignment_expression}])
 | postfix_expression . identifier
 | postfix_expression -> identifier
 | postfix_expression ++
 | postfix_expression --

select_expression ::= primary_expression
 | select (constant_expression , constant_expression ,
 constant_expression)

primary_expression ::= identifier
 | constant
 | (expression)
 | { }
 | {[initializer {, initializer}[,]]}

constant ::= integer_constant
 | character_constant
 | string_constant

integer_constant ::= NUMBER

character_constant ::= CHARACTER

string_constant ::= STRING

Index

 Page 353
www.agilityds.com

18 INDEX

-- (POSTFIX AND PREFIX OPERATORS) 121
- (SUBTRACTION) 132
!

!... 71, 135
!=... 134

(MACRO CONCATENATION) 329
#DEFINE... 166
#ELIF .. 328
#ELSE... 328
#ENDIF... 328
#IFDEF ... 328
#IFNDEF... 328
#INCLUDE.................................... 68, 143, 327
#UNDEF ... 166
%

% (MODULO) ... 132
(

(LINE BREAKER) 330
*

*/ (COMMENTS DELIMITER)....................... 36
.

. (STRUCTURE MEMBER OPERATOR)... 137
/

/ (DIVISION) ... 132
/* (COMMENTS DELIMITER)....................... 36
// (COMMENTS DELIMITER)....................... 36
?

?.. 71, 136
@

@ (CONCATENATION) 130

[

[] (BIT SELECTION)...................................131
\

\ (DROP OPERATOR)................................130
^

^ (BITWISE XOR)136
_

__CLOCK..189
__ISFAMILY() CONSTRUCT211
__RESET..206
+

+ (ADDITION) ...132
++ (prefix and postfix operators).................121
++ (PREFIX AND POSTFIX OPERATORS)
..121
<

< (LESS THAN) ..134
<- (TAKE OPERATOR)...............................130
<< (SHIFT OPERATOR).............................130
<= (LESS THAN OR EQUAL).....................134
<> (TYPE QUALIFIER).................................98
=

= (ASSIGNMENT).......................................108
== (EQUAL TO) ..134
>

> (GREATER THAN)134
-> (STRUCTURE POINTER OPERATOR).137
>= (GREATER THAN OR EQUAL)134
>> (SHIFT OPERATOR).............................130
A

ABSTRACT DECLARATORS.....................345
ACF FILES..293, 305
ACTEL ..209, 212

DEVICES 209, 212

Index

 Page 354
www.agilityds.com

SPECIFYING RESET PIN 205
ACTIVE HIGH/ACTIVE LOW RESET 279
ADDITION... 132
ADDR.. 299
AGP I/O standard 312
AGP I/O STANDARD 309, 312

AGP-1X 309
AGP-2X 309

ALGORITHMS...................................... 28, 208
DEBUGGING 28, 208

ALTERA...................................... 209, 212, 239
DEVICES 209, 212
ON-CHIP RAM 239
ROMS 281

AMPERSAND (ADDRESS OPERATOR)..... 70
ANSI-C.. 22, 32

CALLING FROM HANDEL-C 92
COMPARED TO HANDEL-C 22, 32

APEX DEVICES 209, 212
CONSTRAINTS FILES 305
I/O STANDARDS SUPPORTED 312, 319
MPRAMS 86
RAM 239

ARCHITECTURAL TYPES........................... 71
ARITHMETIC OPERATORS...................... 132
arrays.. 82

functions 147, 148
ARRAYS.............................61, 62, 73, 83, 146

CHANNELS
ARRAYS 73

FUNCTIONS 146
INDICES 62
MULTI-DIMENSIONAL 61, 83

ASSERT ... 124
ASSERTION FAILED 124
ASSIGNMENTS ... 108

ASTERISK (INDIRECTION OPERATOR)....70
asynchronous RAM.....................................222

examples 218, 220
ASYNCHRONOUS RAM216, 324

DIVIDED CLOCK 324
GENERATING 324
TIMING 216
UNDIVIDED CLOCK 324

ASYNCHRONOUS RESET319
ATTRIBUTES..271
AUTO ..91
B

BASE SPECIFICATION..............................279
BASIC CONCEPTS15
BIDIRECTIONAL DATA TRANSFERS......249,
250, 251

CLOCKED INPUT 251
REGISTERED INPUT 250

BINARY...57
BIND SPECIFICATION...............................279
BIT FIELDS...65
BIT MANIPULATION129

OPERATORS 129
BIT SELECTION...131
BITWISE LOGICAL OPERATORS.............136

BITWISE AND 136
BITWISE NOT 136
BITWISE OR 136
BITWISE XOR 136

BLOCK RAM...281
BLOCK SPECIFICATION281
BLOCKS207, 208, 281

DATA TRANSFER 207, 208
BLVDS I/O standard313
BLVDS I/O STANDARD309, 317
BREAK................................105, 113, 114, 115

Index

 Page 355
www.agilityds.com

BREAKING LINES...................................... 330
BUFFER SPECIFICATION......................... 282
BUFG.. 284
BUS_CLOCK_IN 246, 248
BUS_IN... 246, 247
BUS_LATCH_IN................................. 246, 248
BUS_OUT... 246, 249
BUS_TS.. 246, 249
BUS_TS_CLOCK_IN.......................... 246, 251
BUS_TS_LATCH_IN 246, 250
BUSES....77, 79, 247, 248, 249, 257, 259, 269

BIDIRECTIONAL 249, 250, 251
CLOCKED 248
INPUT 247
LATCHED 248
NAMING 269
READ/WRITE 249
READ/WRITE CLOCKED 251
REGISTERED 248, 250
SIMULATING 257
SPECIFICATION 77, 79
TIMING CONSIDERATIONS 259, 260, 261
WRITE 249

BUSFORMAT SPECIFICATION 269, 282
C

C LANGUAGE .. 22, 32
COMPARED TO HANDEL-C 22, 32

C++... 92
CALLING FROM HANDEL-C 92
TYPE MAPPING IN HANDEL-C 92

CASE.. 114
CASTING................................ 23, 66, 122, 123
CHAN.. 71, 343
CHANIN.. 206, 343
channel timing issues 191, 195
channels

between clock domains 192, 196
communication 192
examples 192
metastability 263, 264
restrictions 74, 75

CHANNELS16, 71, 73
ARRAYS 73
BETWEEN CLOCK DOMAINS 190
CHANIN AND CHANOUT 206
COMMUNICATION 16, 71, 190
READING FROM 71
RESTRICTIONS 73
SIMULATING 206
SIMULTANEOUS ACCESS 73
SPECIFYING 343
SYNTAX 343
WRITING TO 71

CHANOUT ..206, 343
CHAR..59
CHARACTER CONSTANTS338
CHIPS ...209
clk..233
CLK ...283
clkpulselen ..225
CLKPULSELEN ..305
CLOCK CYCLES USED169, 175
CLOCK PIN SPECIFICATIONS283
CLOCK POSITION SPECIFICATIONS305
CLOCK RATE...305
CLOCKED READING FROM EXTERNAL
PINS..248
CLOCKPORT SPECIFICATION.................284
clocks

clock domains 200
cycles 121, 225
fast 217
inverted 226

Index

 Page 356
www.agilityds.com

multiple 200
resynchronizing 200
SSRAM 226

CLOCKS...............................21, 188, 189, 190
CLOCK DOMAINS 190
CLOCK PINS 258, 283
CURRENT 189
DUMMY 188
EXTERNAL 188
FAST 223
INTERNAL 189
INVERTED 223
LOCATING 188
MULTIPLE 188, 190
PERIOD 182
POSITION SPECIFICATIONS 305
READING FROM EXTERNAL PINS 248
SIMULATION 188, 204
SOURCE 188
SPECIFYING 188
SSRAM 223

COMBINATIONAL LOOPS 116, 177, 284
COMMENTS... 36
communicating between clock domains..... 200
COMMUNICATING BETWEEN CLOCK
DOMAINS... 190
communication ... 192

between clock domains 192
channels 192

COMMUNICATION 16, 71, 190
BETWEEN CLOCK DOMAINS 190
CHANNELS 16, 71

COMPARISON 134, 135
IMPLICIT 135
OPERATORS 134
SIGNED/UNSIGNED 134

COMPILE-TIME....................96, 124, 157, 159

MESSAGES 124
SELECTION 96, 157, 159

COMPLEX DECLARATIONS96, 98
COMPLEX EXPRESSIONS99, 121
COMPOUND STATEMENTS WITH
REPLICATORS...348
CONCATENATION.............................130, 329

OPERATOR 130
PREPROCESSOR 329

CONDITIONAL COMPILATIONS...............328
CONDITIONAL DIRECTIVES.....................328
CONDITIONAL EXECUTION (IF ... ELSE) 111
CONDITIONAL OPERATOR136, 157
CONST ...97
CONSTANT EXPRESSIONS338
CONSTANT MACRO EXPRESSIONS.......156
CONSTANTS..57, 338

BINARY 57
CHARACTER 338
DECIMAL 57
HEXADECIMAL 57
MANIFEST 166
OCTAL 57

CONSTRAINTS286, 293, 305
FILES 293, 305
PINS 286
TIMING 293, 305

CONTINUE ...109
CONVERSION..............................23, 122, 123
CS ...299
CTT I/O standard ..313
CTT I/O STANDARD309, 312
CURRENT CLOCK.....................................189
CYCLONE DEVICES..........................212, 238

CONSTRAINTS FILES 305
I/O STANDARDS SUPPORTED 312, 319
MPRAMS 84, 86

Index

 Page 357
www.agilityds.com

PULL-UP RESISTORS 304
RAMS 239
TARGETING EMBEDDED MEMORY 238

D

DATA .. 28, 207
FILE FORMAT 207
INPUT AND OUTPUT 28

DATA SPECIFICATION 286
DCI SPECIFICATION................................. 287
DDR DEVICES ... 223
DEBUG... 124

ASSERTIONS 124
DECIMAL.. 57
DECLARATIONS.......................... 55, 145, 344

DISAMBIGUATING 98
FUNCTIONS 145
INTERFACES 76
MPRAM 84
RAM 81
ROM 81
SYNTAX 344

DECLARATORS... 344
DEFAULT ... 105, 114
DEFINING THE CLOCK............................. 188
DELAY.. 116, 169, 175
DEVICE SPECIFIERS................................ 212
DEVICES............................209, 211, 212, 246

DETECTING CURRENT DEVICE 211
EXTERNAL 246
SPECIFYING 212

DIFFERENTIAL I/O STANDARDS............. 317
DIGITAL CONTROLLED IMPEDANCE 287
DISAMBIGUATOR 98
DIVISION.. 132
DKSYNC.DLL ... 204
DO ... WHILE...................................... 113, 115

DOES NOT EQUAL....................................134
domains ..196, 200

channel timing 196
multiple clocks 200

DOMAINS ...190
MULTIPLE CLOCKS 190

DOUBLE ...23, 332
DRAM ...245
DROP OPERATOR130
E

EAB...209, 239, 281
EDIF..269, 282

BUSES 282
WIRE NAMES 269

EFFICIENCY...182
ELSE...111
ENUM ...64, 343
ENUMERATED TYPES........................64, 343
EQUAL TO..134
ERROR GENERATION124, 330
ESB...209, 281
examples

asynchronous RAM 218, 220
between clock domains 192
function pointers 150
functions 147, 148
optimizing code 150
SSRAM 230, 234, 236
targeting external RAM 222, 233

EXAMPLES
FUNCTIONS 141
INTERFACING TO HARDWARE 252
MACROS 141
MPRAMS 87
OPTIMIZING CODE 182, 185
PRIALT 106
TARGETING PORTS TO SPECIFIC TOOLS

Index

 Page 358
www.agilityds.com

 269
TIMING 169, 180, 293

EXCALIBUR DEVICES 209, 212
I/O STANDARDS SUPPORTED 312, 319
RAM 239

EXIT FROM CODE BLOCK 115
expressions

complex 121
EXPRESSIONS............................ 29, 121, 338

COMPARISON WITH ANSI-C 29
COMPLEX 99
CONSTANT 338
SHARED 161, 162
SYNTAX 349
TIMING 121

EXTERN (EXTERNAL VARIABLES) 91
EXTERN (LINKING TO C/C++ CODE) 92
external clocks.................................... 217, 219
EXTERNAL CLOCKS................................. 188
EXTERNAL HARDWARE........................... 246
EXTERNAL ROMS..................................... 241
EXTERNAL VARIABLES.............................. 91
EXTERNAL_DIVIDE................................... 188
EXTFUNC... 288
EXTINST... 288
EXTLIB ... 288
EXTPATH ... 289
F

FAMILIES ... 209, 212
RECOGNIZED 209, 212

fast external clock....................................... 217
FIFOLENGTH... 290
FIFOs

code example 173
timing 172

FIFOS ... 16, 290

CODE EXAMPLE 73
FILES ..327

INCLUDING 327
READING AND WRITING 208
TIMING CONSTRAINTS 293, 305

FLEX DEVICES209, 212
CONSTRAINTS FILES 305
I/O STANDARDS SUPPORTED 312
RAMS 239

FLOAT ..23, 332
FLOATING-POINT ARITHMETIC.................23
FLOATING-POINT CONSTANTS339
FOR LOOPS.......................................113, 115

DIFFERENCES FROM ANSI-C 113
FORMATTING BUS AND WIRE NAMES...269
FPGA DEVICES ...209
FUNCTION CALLS.....................................154

PARALLEL 154
SIMULTANEOUS 154

functions
arrays 147, 148
pointers 150

FUNCTIONS.................25, 138, 141, 144, 145
ARRAYS 146
CLOCK CYCLES 141, 169
COMPARED TO MACROS 138, 140, 141
DEFINITIONS AND DECLARATIONS 145
DIFFERENCES TO ANSI-C 25
EXAMPLES 141
INLINE 94
OVERVIEW 144
PARAMETERS 344
POINTERS 149
PROTOTYPES 145
RESTRICTIONS 144, 154, 155
RETURNING MACRO EXPR 98
SCOPE 146

Index

 Page 359
www.agilityds.com

SHARED 154
SYNTAX 340, 344

G

GCF FILES ... 293, 305
GENERIC INTERFACES 246
GENERICS (VHDL).................................... 301
GETTING STARTED.................................... 14
GOTO ... 110
GREATER THAN 134
GREATER THAN OR EQUAL TO.............. 134
GTL I/O standard.. 316

GTL 316
GTL+ 313

GTL I/O STANDARD.......................... 309, 312
GTL 309, 312
GTL+ 309

H

HANDEL-C14, 15, 22, 32, 38, 40, 55, 56, 102,
121, 138, 271, 332

CODE 15
COMPARED TO ANSI-C 22, 32
DECLARATIONS 55
EXPRESSIONS 121
FUNCTIONS 138
GETTING STARTED 14
KEYWORDS 332
MACROS 138
OBJECT SPECIFICATIONS 271
OPERATORS 38
PROGRAMS 15
STATEMENTS 102
SYNTAX 332
TYPES 40
VALUES AND WIDTHS 56

HANDEL-C PREPROCESSOR.................. 326
HARDWARE... 22

INTERFACES 22, 252
HEXADECIMAL ..57
HSTL I/O standard......................................313
HSTL I/O STANDARD309, 312

CLASS I 309
CLASS II 309
CLASS III 309
CLASS IV 309

I

I/O STANDARDS................287, 309, 312, 317
DIFFERENTIAL 317

IBUFG ...284
IDENTIFIERS..338
IF...ELSE...111
IFSELECT...159
IMPLICIT COMPARES135
IN (LET...IN)..163
INDIRECTION OPERATOR70
INDIRECTION TECHNIQUES................66, 70
inferring widths..82
INFERRING WIDTHS...................................59
INFILE...291
INITIALIZATION....................................86, 100

MPRAM 86
RAM AND ROM 81, 239
STRUCTURES 62
VARIABLES 100

INLINE ..91, 94
INPUT248, 291, 312, 317

CLOCKED 248
FILES 291
LATCHED 248
STANDARDS 309, 312, 317

INSTANCENAME SPECIFICATION...........292
INT ..58
INTEGER..58, 338

Index

 Page 360
www.agilityds.com

CONSTANTS 338
RANGE 58
SYNTAX 338

interfaces
specification 276, 277

INTERFACES........................... 76, 77, 79, 246
BIDIRECTIONAL BUSES 249, 250, 251
BUS_* INTERFACES 247, 248, 249, 250,

251
CUSTOMIZED 246, 269
DEBUGGING 255
DECLARATION 76, 78
DEFINITION 77, 79
FORMAT 269
GENERIC 246, 269
OVERVIEW 76
POINTERS 69
PORT_* INTERFACES 267
SIMULATING 255
SORTS 246
SPECIFICATION 77, 79
SYNTAX 342
TYPES 246

INTERFACING 206, 246, 267
WITH EXTERNAL HARDWARE 246
WITH EXTERNAL LOGIC 246, 267
WITH MEMORY 216, 241
WITH THE SIMULATOR 206

INTERNAL CLOCKS.......................... 188, 189
INTERNAL RAM AND ROM......................... 81
INTERNAL_DIVIDE............................ 188, 189
INTIME.. 293
INTWIDTH .. 59
inverted clocks.. 226
INVERTED CLOCKS.......................... 223, 296
ISO-C.. 22, 32

CALLING FROM HANDEL-C 92

COMPARED TO HANDEL-C 22, 32
K

KEYWORDS...332
L

LABELS ..110
LANGUAGE BASICS....................................35
LANGUAGE SUMMARY22, 32, 35, 332
LANGUAGE SYNTAX332
LATCH ..248

REGISTER 248
latency...197
LATENCY ...75, 185
LEFT SHIFT..130
LESS THAN..134
LESS THAN OR EQUAL TO134
LET ... IN...163
LINE CONTROL ...329
LINE SPLICING ..330
LOC ATTRIBUTE..286
LOCATING THE CLOCK............................188
LOGIC DEPTH..182

REDUCING 182
LOGIC TYPES..58
LOGICAL OPERATORS.............................135
LONG..59
LOOPS..........................26, 112, 113, 115, 177

COMBINATIONAL 177
DO ... WHILE 113
FOR LOOPS 113
TERMINATION 115
WHILE LOOPS 112

LVCMOS I/O standard................................314
1.2V 314
1.5V 314
1.8V 314
2.5V 314

Index

 Page 361
www.agilityds.com

3.3V 314
LVCMOS I/O STANDARD.................. 309, 312

1.2V 309
1.5V 309
1.8V 309
2.5V 309
3.3V 309

LVDCI I/O standard 315
LVDCI I/O STANDARD 287, 309, 312

1.5V 309
1.8V 309
2.5V 309
3.3V 309
SPLIT TERMINATION 287, 309

LVDS I/O standard 315
LVDS I/O STANDARD................ 309, 312, 317
LVPECL I/O standard 315
LVPECL I/O STANDARD 309, 312, 317
LVTTL I/O standard 315
LVTTL I/O STANDARD 309, 312
M

MACRO EXPRESSIONS98, 156, 157, 160,
161, 162

IN WIDTHS 98
MACRO PROCEDURES.................... 164, 165
macros

recursion 161
MACROS....................138, 156, 157, 164, 166

COMPARED TO FUNCTIONS138, 140, 141
DIFFERENCES TO ANSI-C 25
EXAMPLES 141
INTRODUCTION 156
OVERVIEW 156
PARAMETERIZED 157, 164
PREPROCESSOR 166
RECURSION 160, 162
SUBSTITUTION 166, 330

SYNTAX 168
MAIN FUNCTION ...19
MALLOC ...28
MANIFEST CONSTANTS166
MAPPING OF DIFFERENT WIDTH PORTS86
MAXIMUM CLOCK RATE182
MEMBER OPERATORS137
memory ...226

asynchronous 222
synchronous 233

MEMORY..........................81, 84, 88, 216, 223
ALLOCATION 28
ALTERA 239
ASYNCHRONOUS 216, 324
BLOCK 281
INITIALIZATION 81
MULTI-PORT 84
OFF-CHIP 297
ON CYCLONE DEVICES 238
ON STRATIX DEVICES 238
ON-CHIP 209, 239, 240
RAM 81, 216
RESTRICTIONS 123
ROM 81, 216
SIMULTANEOUS ACCESS 123
SPECIFICATIONS 281, 297
SYNCHRONOUS 223, 283, 305
TYPE 281
WOM 88
XILINX 240

MERCURY DEVICES.........................209, 212
I/O STANDARDS SUPPORTED 312, 319
MPRAMS 84
PULL UP RESISTORS 304
RAM 239

MERGING PINS258, 259
MESSAGES

Index

 Page 362
www.agilityds.com

ERROR 124
USER-GENERATED 124, 127
WARNING 127

metastability.. 196
clock domains 196
examples 200
external resynchronization 200

METASTABILITY.. 262
MIF FILES... 239
minperiod.. 196
MINPERIOD 296, 318
MODULO ARITHMETIC............................. 132
MPRAM (MULTI-PORTED RAM)..... 84, 86, 87
MULTIDIMENSIONAL ARRAYS 83
MULTI-FILE PROJECTS............................ 143
MULTIPLE CLOCKS 188, 190
MULTIPLICATION...................................... 132
N

-N option ... 226
NCF FILES ... 293, 305
NOT EQUAL TO... 134
O

OBJECT SPECIFICATIONS 271
OCTAL.. 57
OE... 299
OFFCHIP.. 297
ON-CHIP RAMS 209, 239, 240
OPERATORS38, 129, 130, 132, 134, 135, 136

ARITHMETIC 132
BIT MANIPULATION 129
BITWISE LOGICAL 136
COMPARISON 134
CONCATENATION 130
CONDITIONAL 136
DROP 130
LOGICAL 135

PRECEDENCE 38
RELATIONAL 134, 135
SHIFT 130
SUMMARY 38
TAKE 130
TRYSEMA 119
WIDTH 132

optimizing code...150
examples 150

OPTIMIZING CODE............................182, 185
EXAMPLES 182, 185

OUTFILE...291
OUTPUT291, 309, 312, 317

FILES 291
STANDARDS 309, 312, 317

OUTTIME..293
OVERFLOW ...56
OVERVIEW OF HANDEL-C14, 15, 22, 32, 38,
40, 55, 56, 62, 102, 121, 138, 271, 332
P

PADDING..56, 65, 130
PAR...102, 103
parallel

branch synchronization 192
PARALLEL........................15, 19, 71, 102, 179

ACCESS TO VARIABLES 179
BRANCH SYNCHRONIZATION 16, 71
EXECUTION 102
FUNCTIONS 146
PROGRAMS 15
STATEMENTS 102
STRUCTURE 19

PARAMETERIZED MACRO EXPRESSIONS
..157
PARAMETERS138, 301

FUNCTIONS 138
MACROS 138

Index

 Page 363
www.agilityds.com

VERILOG 301
paranoia.. 197
PARANOIA ... 298
PCI I/O standard................................. 315, 316

33MHz 3.3V 315
33MHz 5.0V 316
66MHz 3.3V 312
PCI-X 316

PCI I/O STANDARD........................... 309, 312
33MHZ 3.3V 309
33MHZ 5.0V 309
66MHZ 3.3V 309
PCI-X 309

PIN SPECIFICATIONS....................... 286, 299
OMITTING 299

PIN_NUMBER ATTRIBUTE....................... 286
PINOUTS.. 299

SPECIFYING 299
PINS246, 258, 259, 286, 299

CONSTRAINING 286
MERGING 258, 259
NAMING 286
RESET 205
SPECIFYING 299
TRI-STATE 259

pipelining... 226, 236
examples 236

PIPELINING 103, 185
PLD DEVICES.................................... 209, 212
pointers

to functions 150
POINTERS 66, 68, 69, 149

ADDRESSES 68
CASTING 23
DECLARATION 66
OPERATIONS 66
TO FUNCTIONS 149

TO INTERFACES 69
PORT_IN ..246, 267
PORT_OUT ..246, 267
PORTING C TO HANDEL-C59
PORTNAME SPECIFICATION...................300
PORTS..267, 300

INTERFACING WITH EXTERNAL LOGIC
 267

PORT NAMES 267, 286
SPECIFICATION 300

PRECEDENCE...38
PREPROCESSOR..............166, 326, 328, 329

CONCATENATION 329
CONDITIONAL COMPILATION 328
ERROR GENERATION 330
FILE INCLUSION 327
LINE CONTROL 329
LINE SPLICING 330
MACROS 165, 166, 330

PRIALT73, 105, 106, 115
PRIALT EXAMPLES 106

PROASIC DEVICES...........................209, 212
CONSTRAINTS FILES 305
I/O STANDARDS SUPPORTED 312, 319
PULL UP RESISTORS 304
SLEW RATE ON OUTPUT BUFFER 309

PROC..164, 165
PROGRAM STRUCTURE19
PROPERTIES...301

SPECIFICATION 301
PROTECTING CRITICAL CODE90
PROTOTYPES143, 145, 156, 164

FUNCTIONS 145
MACROS 143, 156, 164

PULL ...304
Q

QDR DEVICES ...223

Index

 Page 364
www.agilityds.com

QUALIFIERS .. 55
QUARTUS .. 304

ASSIGNMENTS 304
QUARTUS_PROJ_ASSIGN SPECIFICATION
.. 304
R

RACE CONDITIONS.......................... 259, 318
RAMs

accessing 82
arrays 82
asynchronous 222
external 218, 220, 222
initialization 82
off-chip 218, 220, 222
restrictions 83
synchronous 225, 233
targeting 222, 233

RAMS ... 84, 216, 223
ALTERA 239
ARRAYS 83
ASYNCHRONOUS 216, 324
BLOCK RAM 281
DIFFERENT TO ARRAYS 81
FOREIGN CODE 241
INITIALIZATION 81, 83
MULTI-PORTED 84, 87
OFF-CHIP 297
ON-CHIP 209, 239, 240
OVERVIEW 81
RESTRICTIONS 123
SIMULTANEOUS ACCESS 123
SYNCHRONOUS 223, 283, 305
SYNTAX 344
USE OF 216
WRITING TO 81
XILINX 240

RANGE... 58

RATE SPECIFICATION......................293, 305
rclkpos...225
RCLKPOS...305
READING FROM EXTERNAL PINS ..247, 248
RECURSION138, 144, 160
recursive macros...161
RECURSIVE MACROS138, 160, 161, 162,
163

SHARED EXPRESSIONS 161, 162, 163
REDUCING LOGIC DEPTH182
REFERENCE BOOKS..................................13
REGISTER..94
REGISTERED READING FROM EXTERNAL
PINS..248
RELATIONAL OPERATORS......................134
RELEASESEMA().......................................118
REPLICATED CODE..................................103
REPLICATORS...348
reset ..205, 278
RESET117, 205, 279, 319

GLOBAL 205, 318
resolutiontime..196
RESOLUTIONTIME....................................307
RESTRICTIONS73, 123, 144, 154, 162

CASTING 123
FUNCTIONS 144, 154, 155
ON CHANNELS 73
ON RAM AND ROM 123
ON SHARED EXPRESSIONS 162

RETIME SPECIFICATION..........................308
RETURN ...110, 144

TYPES 144
RIGHT SHIFT ...130
ROM..81, 216, 241

EXTERNAL 241
LUT ROM IN ALTERA DEVICES 281
OVERVIEW 81

Index

 Page 365
www.agilityds.com

S

same rate external clock............................. 219
SC_TYPE SPECIFICATION....................... 308
SCOPE ... 18, 55, 146

VARIABLE SHARING 18
SELECT CLOCK DIALOG.......................... 190
SELECT OPERATOR 157
SELECTION WITHIN SWITCH 114
SELECTRAM.. 281
SEMA.. 90
SEMAPHORES 90, 118, 119
SEQ .. 103
SEQUENTIAL AND PARALLEL EXECUTION
.. 102
SEQUENTIAL REPLICATION.................... 103
SET.......................................59, 188, 205, 212

CLOCK 188
FAMILY 212
INTWIDTH 59
PART 212
RESET 205

SET CLOCK ... 188
SET FAMILY... 212
SET PART .. 212
SET RESET.. 205
SHARED CODE140, 143, 154, 161, 162
SHARED EXPRESSIONS.................. 161, 162

RESTRICTIONS 162
SHIFT OPERATORS.................................. 130
SHORT ... 59
SHOW SPECIFICATION............................ 309
SIDE EFFECTS.................................... 24, 121
SIGN EXTENSION 123, 130, 160
SIGNALS .. 89, 343
SIGNED.. 58, 59, 134
SIGNED/UNSIGNED.................... 59, 122, 134

CASTING 122
SIMULATIONS..255

CLOCK REQUIRED 188
FILE I/O 208
SIMULATING BUSES 257
SIMULATING INTERFACES 255

SIMULATOR...207
INPUT FILE FORMAT 207
OUTPUT 309

size..82
SIZEOF ...23
SORTS..246

INTERFACES 246
SPARTAN DEVICES209, 212

CONSTRAINTS FILES 305
I/O STANDARDS SUPPORTED 312, 319
MPRAMS 86
ON-CHIP RAMS 240
RAM TIMING ISSUES 281
SLEW RATE OF OUTPUT BUFFER 309

SPECIFICATIONS..............................271, 299
BASE 279
BIND 279
BLOCK 281
BUFFER 282
BUSFORMAT 282
CLK 283
CLKPULSELEN 305
CLOCK POSITION 305
CLOCKPORT 284
DATA 286
DCI 287
EXTINST EXTLIB EXTFUNC 288
EXTPATH 289
INFILE AND OUTFILE 291
INSTANCENAME 292
INTIME AND OUTTIME 293

Index

 Page 366
www.agilityds.com

OBJECT 271
OFFCHIP 297
PIN 299
PORTNAME 300
PORTS 300
PROPERTIES 301
PULL 304
QUARTUS_PROJ_ASSIGN 304
RATE 305
RCLKPOS 305
RETIME 308
SC_TYPE 308
SHOW 309
SPEED 309
STANDARD 309, 312
STARTUP 318
STARTUPPIPELINE 318
STRENGTH 319
VHDL_TYPE 322
WARN 324
WCLKPOS 305
WEGATE 324
WESTART AND WELENGTH 324

SPEED.. 309
SSRAM...............................223, 225, 283, 305

read and write cycles 225, 228
SSRAMs 225, 226
SSRAMS 223, 283
timing 225, 226, 228, 230
TIMING 305

SSTL I/O standard...................................... 316
SSTL18 Class I 316
SSTL18 Class II 316
SSTL2 Class I 316
SSTL2 Class II 316
SSTL3 Class I 316
SSTL3 Class II 316

SSTL I/O STANDARD309, 312
SSTL18 CLASS I 309
SSTL18 CLASS II 309
SSTL2 CLASS I 309
SSTL2 CLASS II 309
SSTL3 CLASS I 309
SSTL3 CLASS II 309

standard specification
AGP 312
BLVDS 313
CTT 313
GTL 316
HSTL 313
LVCMOS 314
LVDCI 315
LVDS 315
LVPECL 315
LVTTL 315
PCI 315, 316
SSTL 316

STANDARD SPECIFICATION309, 312
AGP 309
BLVDS 309
CTT 309
GTL 309
HSTL 309
LVCMOS 309
LVDCI 309
LVDS 309
LVPECL 309
LVTTL 309
PCI 309
SSTL 309

standards ..310
STARTUP SPECIFICATION318
STARTUPPARANOIA318
STARTUPPIPELINE SPECIFICATION318

Index

 Page 367
www.agilityds.com

STATEMENTS31, 36, 102, 169, 175, 345
COMPARISON WITH ANSI-C 31
COMPOUND 348
SYNTAX 345
TIMING 55, 169, 175

STATIC... 95, 100
INITIALIZING STATIC VARIABLES 100

STD_LOGIC_VECTOR SPECIFICATION . 317
STDLIB.LIB... 28
STORAGE CLASS SPECIFIERS................. 91
STRATIX DEVICES.................... 209, 212, 238

CONSTRAINTS FILES 305
EMBEDDED MEMORY 238
I/O STANDARDS SUPPORTED 312, 319
MPRAMS 86
PULL-UP RESISTORS 304
RAMS 239

STRENGTH SPECIFICATION 319
STRING CONSTANTS................................. 57
STRINGS.. 57, 339
STRUCT ... 62
STRUCTURE MEMBER OPERATOR 137
STRUCTURE POINTER OPERATOR....... 137
STRUCTURE POINTERS............................ 69
STRUCTURES 62, 69, 343

STORAGE 62
SYNTAX 343

SUBTRACTION.. 132
SUMMARIES............................ 36, 38, 40, 332

KEYWORDS 332
OPERATORS 38
STATEMENTS 36
TYPES 40

SUPPORTED 59, 209
DEVICES 209
TYPES FOR PORTING 59

SWITCH.. 114, 115

TERMINATION 115
SYNCHRONIZATION16
synchronous RAMs.............................225, 233

clocks 225, 226
examples 226, 230, 234, 236
read and write cycles 225, 228
timing 226, 228, 230

SYNCHRONOUS RAMS223, 283, 305
CLOCKS 223, 283
GENERATING 305
TIMING 305

synchronous reset.......................................205
SYNCHRONOUS RESET319
SYNTAX..332
T

TAKE OPERATOR130
TARGETING.........................22, 209, 212, 216

FPGA/PLD DEVICES 209, 212, 238
HARDWARE 22
PORTS 269
RAM AND ROM 81, 216
SPECIFIC TOOLS 269

TCL FILES ..293, 305
TEST...19
timing

SSRAM 225
TIMING21, 169, 182, 259

ASYNCHRONOUS RAM 216
BUSES 259, 260, 261
CONSTRAINTS 293, 305
EFFICIENCY 182
EXAMPLES 169, 180, 259
INTRODUCTION 21
SSRAM 305
STATEMENTS 55, 169, 175

TRIMATRIX MEMORY238

Index

 Page 368
www.agilityds.com

TRI-STATE246, 249, 250, 251, 259, 317
BUSES 246, 249, 250, 251
INTERFACES 246, 317
PINS 259

TRY ... RESET ... 117
TRYSEMA().. 119
TS246, 249, 250, 251
TUNING STARTUP HARDWARE.............. 318
TYPE 22, 28, 40, 59, 98

CLARIFIER 98
CONVERSION 23, 122, 123
MAPPING FOR C AND C++ 59, 92
NAMES 345
OPERATORS 22, 94, 96, 98
QUALIFIERS 97, 98
SUMMARY 40

TYPE CLARIFIER <> 98
TYPEDEF ... 96
TYPEOF ... 96
TYPES............................22, 28, 40, 55, 58, 71

ARCHITECTURAL 71
IN C AND HANDEL-C 22, 23, 28
LOGIC 58
OVERVIEW 40, 55
VHDL 317

U

UNCONSTRAINEDPERIOD 320
UNDEFINED... 59
undivided external clock 220
UNIONS.. 27, 332
UNSIGNED..................................... 58, 59, 134
V

VALUES.. 56
OVERFLOW 56

VARIABLES.. 100, 179
AUTO 91

DEFAULT VALUES 100
INITIALIZATION 57, 91, 97, 100
LOCAL 91
PARALLEL ACCESS 179
WIDTH OF VARIABLES 23, 56

VERILOG..301
INSTANTIATING COMPONENTS 279
PARAMETERS 301

VHDL ..317
GENERICS 301
INSTANTIATING COMPONENT 279
TYPES 317
VHDL_TYPE SPECIFICATION 322

VHDL_TYPE SPECIFICATION322
VIRTEX DEVICES209, 212

CONSTRAINTS FILES 305
I/O STANDARDS SUPPORTED 309, 319
MPRAMS 86
ON-CHIP RAM 240
RAM TIMING ISSUES 281
SLEW RATE OF OUTPUT BUFFER 309
SPECIFYING CLOCK INPUT 284
SPECIFYING DCI 287

VIRTEX-II PRO...................................209, 212
VOID ...66, 110, 144
VOLATILE...98
W

WARN SPECIFICATION324
WARNING...127
wclkpos ...225
WCLKPOS..305
WE ..299
wegate ..218, 220, 222
WEGATE ..324
welength..............................217, 218, 220, 222
WELENGTH..324

Index

 Page 369
www.agilityds.com

westart217, 218, 220, 222
WESTART .. 324
WHILE LOOPS................................... 112, 113
WIDTH...................................... 23, 56, 59, 132

ADJUSTMENT 23, 130
INFERENCE 59
OF VARIABLES 23, 56
OPERATOR 132

WIRES.. 89, 269
NAMING 269

WITH... 271
WOM (WRITE-ONLY MEMORY PORTS)... 84,
88
WORK LIBRARY .. 279
WRITE ENABLE......................... 216, 223, 324

ASYNCHRONOUS RAM 216, 324
POSITIONING 324
SYNCHRONOUS RAM 223

write strobe ... 217
WRITE-ONLY MEMORY.............................. 88
WRITING TO EXTERNAL PINS 249
X

XILINX .. 209, 212, 240
BIT MAPPING 86
BLOCK SPECIFICATION 281
DEVICES 209, 212
ON-CHIP RAM 240

Z

ZBT-COMPATIBLE DEVICES.................... 223

	1 INTRODUCTION
	1.1 REFERENCES

	2 GETTING STARTED WITH HANDEL-C
	3 BASIC CONCEPTS
	3.1.1 HANDEL-C PROGRAMS
	3.1.2 PARALLEL PROGRAMS
	3.1.3 CHANNEL COMMUNICATION
	Channel synchronization
	Communication without synchronization

	3.1.4 SCOPE AND VARIABLE SHARING

	3.2 PROGRAM STRUCTURE
	Sequential structure
	Parallel structure
	Overall structure

	4 INTRODUCTION TO TIMING
	5 TARGETING HARDWARE AND SIMULATION
	5.1 COMPARISON OF HANDEL-C AND ANSI-C
	5.1.1 HANDEL-C V C: TYPES AND TYPE OPERATORS
	5.1.2 HANDEL-C V C: FLOATING-POINT VARIABLES
	5.1.3 HANDEL-C V C: VARIABLE WIDTHS AND CASTING
	Handel-C widths
	Casting
	Arithmetic and comparisons on variables of different width
	sizeof

	5.1.4 HANDEL-C V C: SIDE EFFECTS
	5.1.5 HANDEL-C V C: FUNCTIONS
	Re-writing recursive functions

	5.1.6 HANDEL-C V C: LOOP STATEMENTS
	5.1.7 HANDEL-C V C: UNIONS
	5.1.8 HANDEL-C V C: DATA INPUT AND OUTPUT
	5.1.9 HANDEL-C V C: MEMORY ALLOCATION
	5.1.10 HANDEL-C V C: STANDARD LIBRARY
	5.1.11 C AND HANDEL-C TYPES AND OBJECTS
	5.1.12 EXPRESSIONS IN C AND HANDEL-C
	5.1.13 STATEMENTS IN C AND HANDEL-C

	5.2 HANDEL-C CONSTRUCTS NOT FOUND IN ANSI-C
	Parallelism
	Timing
	Compile-time selection and expansion and generic code
	Targeting hardware; FPGAs and PLDs
	Targeting hardware; memory
	Targeting hardware; wires
	Targeting hardware; resets
	Interfacing to existing modules and to peripherals
	Bit manipulation

	6 LANGUAGE BASICS
	6.1 PROGRAM STRUCTURE
	Sequential structure
	Parallel structure
	Overall structure

	6.2 COMMENTS
	6.3 STATEMENT SUMMARY
	6.4 OPERATOR SUMMARY
	6.5 TYPE SUMMARY
	Common logic types
	Architectural types
	Compound types
	Special types

	6.6 COMPARISON OF HANDEL-C AND ANSI-C
	6.6.1 HANDEL-C V C: TYPES AND TYPE OPERATORS
	6.6.2 HANDEL-C V C: FLOATING-POINT VARIABLES
	6.6.3 HANDEL-C V C: VARIABLE WIDTHS AND CASTING
	Handel-C widths
	Casting
	Arithmetic and comparisons on variables of different width
	sizeof

	6.6.4 HANDEL-C V C: SIDE EFFECTS
	6.6.5 HANDEL-C V C: FUNCTIONS
	Re-writing recursive functions

	6.6.6 HANDEL-C V C: LOOP STATEMENTS
	6.6.7 HANDEL-C V C: UNIONS
	6.6.8 HANDEL-C V C: DATA INPUT AND OUTPUT
	6.6.9 HANDEL-C V C: MEMORY ALLOCATION
	6.6.10 HANDEL-C V C: STANDARD LIBRARY
	6.6.11 C AND HANDEL-C TYPES AND OBJECTS
	6.6.12 EXPRESSIONS IN C AND HANDEL-C
	6.6.13 STATEMENTS IN C AND HANDEL-C

	6.7 HANDEL-C CONSTRUCTS NOT FOUND IN ANSI-C
	Parallelism
	Timing
	Compile-time selection and expansion and generic code
	Targeting hardware; FPGAs and PLDs
	Targeting hardware; memory
	Targeting hardware; wires
	Targeting hardware; resets
	Interfacing to existing modules and to peripherals
	Bit manipulation

	7 DECLARATIONS
	7.1 INTRODUCTION TO TYPES
	Specifiers
	Type qualifiers
	Disambiguator
	7.1.1 HANDEL-C VALUES AND WIDTHS
	7.1.2 STRING CONSTANTS
	Special characters:

	7.1.3 CONSTANTS

	7.2 LOGIC TYPES
	7.2.1 INT
	7.2.2 SIGNED | UNSIGNED SYNTAX
	7.2.3 SUPPORTED TYPES FOR PORTING
	7.2.4 INFERRING WIDTHS
	7.2.5 ARRAYS
	Example
	Multidimensional arrays
	Pointers to arrays

	7.2.6 ARRAY INDICES
	7.2.7 STRUCT
	Syntax
	Storage
	Example
	Initialization

	7.2.8 ENUM
	Example

	7.2.9 BIT FIELDS
	Syntax
	Example

	7.3 POINTERS
	Casting pointers
	Pointer arithmetic
	Examples
	7.3.1 POINTERS AND ADDRESSES
	7.3.2 POINTERS TO FUNCTIONS
	7.3.3 POINTERS TO INTERFACES
	Example

	7.3.4 STRUCTURE POINTERS
	7.3.5 ADDRESS AND INDIRECTION OPERATORS
	Example: pointer assignment
	Example: pointer to pointer assignment

	7.4 ARCHITECTURAL TYPES
	7.5 CHANNELS
	Syntax
	 Reading from a channel
	Writing to a channel
	Example
	7.5.1 FIFO CODE EXAMPLE
	7.5.2 ARRAYS OF CHANNELS
	7.5.3 RESTRICTIONS ON CHANNEL ACCESSES
	Simultaneous channel access concealed within prialt
	Examples:

	Restrictions on channels accesses between clock domains

	7.5.4 TIMING AND LATENCY IN FIFOS

	7.6 INTERFACES: OVERVIEW
	7.6.1 INTERFACE DECLARATION
	7.6.2 INTERFACE DEFINITION
	Port definitions
	Example

	7.6.3 EXAMPLE INTERFACE TO EXTERNAL CODE
	7.6.4 INTERFACE SPECIFICATIONS

	7.7 RAMS AND ROMS
	Initialization
	Inferring size from use
	Accessing RAMs and ROMs
	Differences between RAMs and arrays
	RAM and ROM support on different devices
	7.7.1 MULTIDIMENSIONAL MEMORY ARRAYS
	Syntax
	Example

	7.8 MPRAM (MULTI-PORTED RAMS)
	Syntax
	Examples
	7.8.1 INITIALIZATION OF MPRAMS
	7.8.2 MAPPING OF DIFFERENT WIDTH MPRAM PORTS
	Xilinx bit mapping
	ApexII bit mapping

	7.8.3 MPRAMS EXAMPLE
	File 1:
	File 2:

	7.9 WOM (WRITE-ONLY MEMORY)
	Syntax
	Example

	7.10 SIGNAL
	Syntax
	Example

	7.11 SEMA
	Syntax
	Example

	7.12 STORAGE CLASS SPECIFIERS
	7.12.1 AUTO
	Example

	7.12.2 EXTERN (EXTERNAL VARIABLES)
	Example
	Syntax

	7.13 EXTERN LANGUAGE CONSTRUCT
	Examples
	Mapping of types to C/C++
	Mapping of types outside extern

	7.14 REGISTER
	Example

	7.15 INLINE FUNCTIONS
	Example
	Syntax

	7.16 STATIC
	Example
	Syntax
	Static variables in arrays of functions

	7.17 TYPEDEF
	Example

	7.18 TYPEOF
	Syntax
	Example
	7.18.1 CONST
	Example 1
	Example 2

	7.18.2 VOLATILE

	7.19 COMPLEX DECLARATIONS
	7.19.1 MACRO EXPRESSIONS IN WIDTHS
	7.19.2 <> (TYPE CLARIFIER)
	Example

	7.19.3 USING SIGNALS TO SPLIT UP COMPLEX EXPRESSIONS

	7.20 VARIABLE INITIALIZATION
	Global, static and const variables
	All other variables
	Simulation

	8 STATEMENTS
	8.1 SEQUENTIAL AND PARALLEL EXECUTION
	Sequential branches
	8.1.1 SEQ
	8.1.2 REPLICATED PAR AND SEQ
	Syntax
	Example
	Replicated pipeline example

	8.1.3 PRIALT
	Priority
	Default
	Restrictions

	8.1.4 USING PRIALT: EXAMPLES
	Restrictions on using prialt

	8.2 ASSIGNMENTS
	Short cuts
	8.2.1 CONTINUE
	Example

	8.2.2 GOTO
	Example

	8.2.3 RETURN [EXPRESSION]
	Example

	8.2.4 CONDITIONAL EXECUTION (IF . . . ELSE)
	8.2.5 WHILE LOOPS
	8.2.6 DO ... WHILE LOOPS
	8.2.7 FOR LOOPS
	8.2.8 SWITCH
	8.2.9 BREAK
	Loops
	switch
	prialt

	8.2.10 DELAY
	8.2.11 TRY... RESET
	Syntax
	Examples

	8.2.12 RELEASESEMA()
	Example

	8.2.13 TRYSEMA()
	Example

	9 EXPRESSIONS
	9.1 INTRODUCTION TO EXPRESSIONS
	Clock cycles required
	Breaking down complex expressions
	Prefix and postfix operators

	9.2 CASTING OF EXPRESSION TYPES
	Explanation of signed/unsigned casting
	9.2.1 RESTRICTIONS ON CASTING
	Explanation

	9.3 RESTRICTIONS ON RAMS AND ROMS
	Example of disallowed assignment
	Example of disallowed condition evaluation
	Incorrect execution with conditional operator

	9.4 ASSERT
	Syntax
	Using assert as a statement
	Using assert as an expression

	9.5 WARNING
	Syntax
	Using warning as a statement
	Using warning as an expression

	9.6 BIT MANIPULATION OPERATORS
	9.6.1 SHIFT OPERATORS
	9.6.2 TAKE / DROP OPERATORS
	9.6.3 CONCATENATION OPERATOR
	9.6.4 BIT SELECTION
	9.6.5 WIDTH OPERATOR

	9.7 ARITHMETIC OPERATORS
	Width of results

	9.8 RELATIONAL OPERATORS
	9.8.1 SIGNED/UNSIGNED COMPARES
	9.8.2 IMPLICIT COMPARES

	9.9 LOGICAL OPERATORS
	Example
	C-like example
	9.9.1 BITWISE LOGICAL OPERATORS

	9.10 CONDITIONAL OPERATOR
	9.11 MEMBER OPERATORS (. / ->)

	10 FUNCTIONS AND MACROS: OVERVIEW
	10.1 COMPARISON OF FUNCTIONS AND MACROS
	10.1.1 FUNCTIONS AND MACROS: LANGUAGE ISSUES
	Called by reference or value
	Typed or untyped parameters
	Recursion

	10.1.2 FUNCTIONS AND MACROS: SHARING HARDWARE
	10.1.3 FUNCTIONS AND MACROS: CLOCK CYCLES
	10.1.4 FUNCTIONS AND MACROS: EXAMPLES
	Preprocessor macro
	Macro expression
	Shared expression
	Macro procedure
	Function
	Array of functions
	Inline function
	How to call the example macros and functions

	10.1.5 ACCESSING EXTERNAL NAMES
	10.1.6 RECURSION IN MACROS AND FUNCTIONS

	10.2 FUNCTIONS
	10.2.1 INTRODUCTION TO FUNCTIONS
	10.2.2 FUNCTION DEFINITIONS AND DECLARATIONS
	Function definition
	Function declaration

	10.2.3 FUNCTIONS: SCOPE
	10.2.4 ARRAYS OF FUNCTIONS
	Syntax
	Function arrays: example
	Function arrays example with static variables

	10.2.5 FUNCTION POINTERS
	Function pointers example
	Possible code optimization

	10.2.6 SIMULTANEOUS FUNCTION CALLS
	Example

	10.2.7 MULTIPLE FUNCTIONS IN A STATEMENT

	10.3 MACROS
	10.3.1 INTRODUCTION TO MACROS
	10.3.2 NON-PARAMETERIZED MACRO EXPRESSIONS
	Constant
	Constant expression

	10.3.3 PARAMETERIZED MACRO EXPRESSIONS
	10.3.4 SELECT OPERATOR
	Comparison with conditional operator
	Combining with macros

	10.3.5 IFSELECT
	Syntax
	Example
	Pipeline example

	10.3.6 RECURSIVE MACRO EXPRESSIONS
	Variable sign extension example
	Recursive macro expressions example

	10.3.7 SHARED EXPRESSIONS
	Example
	Warning

	10.3.8 USING RECURSION TO GENERATE SHARED EXPRESSIONS
	10.3.9 RESTRICTIONS ON SHARED EXPRESSIONS
	10.3.10 LET ... IN
	Example
	Independent let ...in definitions
	Related let ...in definitions
	Shared recursive macro
	Scope of definitions

	10.3.11 MACRO PROCEDURES
	Example

	10.3.12 MACRO PROCEDURES COMPARED TO PRE-PROCESSOR MACROS
	10.3.13 PREPROCESSOR MACROS
	Simple macros
	Parameterized macros
	Undefining identifiers

	10.3.14 MACRO/SHARED EXPRS/PROCS: SYNTAX

	11 INTRODUCTION TO TIMING
	11.1 STATEMENT TIMING
	11.1.1 EXAMPLE TIMINGS
	Statements
	Parallel statements
	While loop
	For loop
	Decision
	Channels
	FIFOs

	FIFO: channel and FIFO comparison code
	Example with FIFO

	11.1.2 STATEMENT TIMING SUMMARY

	11.2 AVOIDING COMBINATIONAL LOOPS
	Further combinational loop code example

	11.3 PARALLEL ACCESS TO VARIABLES
	Example

	11.4 DETAILED TIMING EXAMPLE
	11.5 TIME EFFICIENCY OF HANDEL-C HARDWARE
	11.5.1 REDUCING LOGIC DEPTH
	Guidelines for reducing logic depth
	Adder example
	Comparison example
	Complex expression example
	Empty statement example

	11.5.2 PIPELINING
	Pipelined multiplier example

	12 CLOCKS OVERVIEW
	12.1 LOCATING THE CLOCK
	12.1.1 EXTERNAL CLOCKS
	Example

	12.1.2 INTERNAL CLOCKS FED FROM EXPRESSIONS
	Example

	12.2 CURRENT CLOCK
	Example

	12.3 MULTIPLE CLOCK DOMAINS
	12.3.1 CHANNELS COMMUNICATING BETWEEN CLOCK DOMAINS
	Example
	Timing issues for channels communicating between clock domains
	Domain 1:
	Domain 2:

	Channel communication example
	Example: channels between clock domains
	Resetting channels
	HDL channel constraints
	Managing channel timing
	Using clock specifications to manage timing between clock domains
	Speed versus metastability
	Setting paranoia to 0 to decrease latency

	Latency between clock domains
	The effect of constraining unconstrained paths

	Throughput between clock domains using channels
	Synchronization between clock domains
	Using interfaces to communicate between clock domains
	Using interfaces: External resynchronizing example
	Internal resynchronizing example

	12.3.2 SIMULATING MULTIPLE CLOCK DOMAINS
	Using the DK simulator

	13 TARGETING HARDWARE AND SIMULATION
	13.1 RESETS
	13.1.1 SPECIFYING A GLOBAL RESET
	Specifying reset conditions
	Examples

	13.1.2 CURRENT RESET VALUE: __RESET

	13.2 INTERFACING WITH THE SIMULATOR
	Simple example
	Multiple channel example
	13.2.1 SIMULATOR INPUT FILE FORMAT
	13.2.2 BLOCK DATA TRANSFERS

	13.3 TARGETING FPGA AND PLD DEVICES
	13.3.1 SUMMARY OF SUPPORTED DEVICES
	13.3.2 DETECTING THE CURRENT DEVICE FAMILY
	Example

	13.3.3 TARGETING SPECIFIC DEVICES VIA SOURCE CODE
	13.3.4 SUPPORTED FAMILIES

	13.4 USE OF RAMS AND ROMS WITH HANDEL-C
	13.4.1 ASYNCHRONOUS RAMS
	Fast external clock
	Fast external clock example
	To declare a 16Kbyte by 8-bit RAM:

	Same rate external clock
	Undivided external clock
	wegate example
	Targeting external asynchronous RAMs
	To declare a 16Kbyte by 8-bit RAM:
	Accessing RAM

	13.4.2 SYNCHRONOUS RAMS
	SSRAM clocks
	SSRAM devices supported
	SSRAM write-enable

	SSRAM read and write cycles
	Specifying SSRAM timing
	Pipelining on-chip SSRAM
	Creating pipelined SSRAM accesses
	Altera devices supporting pipelined on-chip SSRAM
	Xilinx devices supporting pipelined on-chip SSRAM
	Pipelined on-chip SSRAM timing diagrams
	Non-pipelined access to RAM
	Pipelined access to RAM
	Effect of performing a pipelining transform
	Pipelined SSRAM examples
	SPRAM Example 1: transform is performed
	SPRAM Example 2: transform is not performed (register is initialized)
	SPRAM Example 3: transform is not performed (memory read into two destinations)
	SPRAM Example 4: transform is not performed (pipeline register written to from elsewhere)
	MPRAM Example 1: transform is performed
	MPRAM Example 2: transform is not performed (port ‘rax2’ does not read into a register)

	Targeting external synchronous RAMs
	Example
	Flow-through SSRAM example
	Read cycle for a flow-through SSRAM
	Write cycle for a flow-through SSRAM
	Pipelining off-chip SSRAM example
	Read cycle for a pipelined-output SSRAM
	Write cycle for a pipelined-output SSRAM

	13.4.3 TARGETING STRATIX AND CYCLONE MEMORY BLOCKS
	Example

	13.4.4 USING ON-CHIP RAMS IN ALTERA DEVICES
	EAB structures
	Synchronous and asynchronous access
	Initialization
	Creating RAMs without an inverted clock

	13.4.5 USING ON-CHIP RAMS IN XILINX DEVICES
	13.4.6 USING EXTERNAL ROMS
	13.4.7 CONNECTING TO RAMS IN FOREIGN CODE
	Generating an interface to a foreign code RAM
	Generating an interface to a foreign code MPRAM

	13.4.8 USING OTHER RAMS

	14 INTERFACING WITH EXTERNAL HARDWARE
	14.1 INTERFACE SORTS
	Predefined interface sorts
	Custom or generic interface sorts
	14.1.1 READING FROM EXTERNAL PINS BUS_IN
	Example

	14.1.2 REGISTERED READING FROM EXTERNAL PINS: BUS_LATCH_IN
	Example

	14.1.3 CLOCKED READING FROM EXTERNAL PINS: BUS_CLOCK_IN
	14.1.4 WRITING TO EXTERNAL PINS: BUS_OUT
	14.1.5 BIDIRECTIONAL DATA TRANSFER: BUS_TS
	Example

	14.1.6 BIDIRECTIONAL DATA TRANSFER WITH REGISTERED INPUT: BUS_TS_LATCH_IN
	Example

	14.1.7 BIDIRECTIONAL DATA TRANSFER WITH CLOCKED INPUT: BUS_TS_CLOCK_IN
	14.1.8 EXAMPLE HARDWARE INTERFACE
	Signals connected
	Read cycle timing
	Write cycle timing
	Bus declarations
	Writing data
	The main program

	14.2 SIMULATING INTERFACES
	Bus-type and port-type interfaces
	Generic interfaces

	14.3 BUSES AND THE SIMULATOR
	Using preprocessor definitions
	Channel example
	External function call example
	Example with plugin

	14.4 MERGING PINS
	14.4.1 MERGING CLOCK PINS
	14.4.2 MERGING INPUT PINS
	14.4.3 MERGING TRI-STATE PINS

	14.5 TIMING CONSIDERATIONS FOR BUSES
	bus_in interfaces
	bus_out interfaces
	Bi-directional tri-state buses
	14.5.1 EXAMPLE TIMING CONSIDERATIONS FOR INPUT BUSES
	14.5.2 EXAMPLE TIMING CONSIDERATIONS FOR OUTPUT BUSES

	14.6 METASTABILITY
	14.6.1 TECHNIQUES TO MINIMIZE THE PROBLEM
	Stabilizing the data
	Designing the system to minimize the problem
	Techniques to minimize the problem

	Timing constraints used for channels across clock domains
	How channels are designed to deal with metastability

	14.6.2 USING INTERFACES: EXTERNAL RESYNCHRONIZING EXAMPLE

	14.7 PORTS: INTERFACING WITH EXTERNAL LOGIC
	port_in
	port_out
	port_ts
	Port names

	14.8 SPECIFYING THE INTERFACE
	14.9 TARGETING PORTS TO SPECIFIC TOOLS
	Example format B[I]
	Example format B<I>

	15 OBJECT SPECIFICATIONS
	Compiler atttributes
	Simulator attributes
	Clock attributes
	Channel attributes
	Channel and memory attributes
	Memory attributes
	Interface and memory attributes
	Interface attributes
	reset attributes
	Examples
	15.1 ACTIVE_LOW SPECIFICATION
	Example

	15.2 BASE SPECIFICATION
	Example

	15.3 BIND SPECIFICATION
	VHDL example 1: with bind set to 0:
	Verilog example 1: with bind set to 0:
	Verilog example 2: with bind set to 1:

	15.4 BLOCK SPECIFICATION
	15.5 BUFFER SPECIFICATION
	Example 1:
	Example 2:

	15.6 BUSFORMAT SPECIFICATION
	Examples

	15.7 SPECIFYING THE CLOCK PIN FOR SSRAM
	Example

	15.8 CLOCKPORT SPECIFICATION
	Port declaration
	Clock declaration
	Example clock declarations

	15.9 DATA SPECIFICATION (PIN CONSTRAINTS)
	Bus-type interface example
	Port-type interface example
	Generic interface example

	15.10 DCI SPECIFICATION
	Examples

	15.11 EXTINST, EXTLIB, EXTFUNC SPECIFICATIONS
	extlib
	extfunc
	extinst
	Examples

	15.12 EXTPATH SPECIFICATION
	Example

	15.13 FIFOLENGTH SPECIFICATION
	15.14 FIFOKIND SPECIFICATION
	15.15 INFILE AND OUTFILE SPECIFICATIONS
	15.16 INOUTPORTS SPECIFICATION
	Example
	Port format

	15.17 INSTANCENAME SPECIFICATION
	Example

	15.18 INTIME AND OUTTIME SPECIFICATIONS
	15.19 TIMING CONSTRAINTS EXAMPLE
	15.20 MAXFIFOLENGTH SPECIFICATION
	15.21 MINFIFOLENGTH SPECIFICATION
	15.22 MINPERIOD SPECIFICATION
	15.23 OFFCHIP SPECIFICATION
	Example

	15.24 PARANOIA SPECIFICATION
	Circuit with paranoia set to default of 1
	Circuit showing constraints if paranoia is set to 0

	15.25 PIN SPECIFICATIONS
	15.26 PORTNAME SPECIFICATION
	Examples

	15.27 PORTS SPECIFICATION
	Examples

	15.28 PROPERTIES SPECIFICATION
	EDIF Example
	VHDL/Verilog example (bind = 1)
	VHDL/Verilog example (bind = 0)

	15.29 PULL SPECIFICATION
	Example

	15.30 QUARTUS_PROJ_ASSIGN SPECIFICATION
	Example

	15.31 RATE SPECIFICATION
	15.32 RCLKPOS, WCLKPOS AND CLKPULSELEN SPECIFICATIONS (SSRAM TIMING)
	Illustration
	Examples

	15.33 READ SPECIFICATION
	Example

	15.34 RESOLUTIONTIME SPECIFICATION
	Achieving a given value of resolution time

	15.35 RETIME SPECIFICATION
	15.36 SC_TYPE SPECIFICATION
	Example 1: Handel-C ports in SystemC without sc_type specification set:
	Example 2: Handel-C ports in SystemC with sc_type specification set:

	15.37 SHOW SPECIFICATION
	15.38 SPEED SPECIFICATION
	Example

	15.39 STANDARD SPECIFICATION
	Available I/O standards
	Examples
	15.39.1 I/O STANDARDS SUPPORTED BY DIFFERENT CHIPS
	15.39.2 I/O STANDARD DETAILS
	AGP (1x, 2x) – Advanced Graphics Port
	BLVDS - Bus Low Voltage Differential Signal
	CTT – Center Tap Terminated
	GTL+ – Gunning Transceiver Logic Plus
	HSTL – High-speed Transceiver Logic
	HyperTransport
	LVCMOS (3.3 V) – 3.3 Volt Low-Voltage CMOS
	LVCMOS (2.5 V) – 2.5 Volt Low-Voltage CMOS
	LVCMOS (1.8 V) – 1.8 Volt Low-Voltage CMOS
	LVCMOS (1.5 V) – 1.5 Volt Low-Voltage CMOS
	LVCMOS (1.2 V) - 1.2 Volt Low-Voltage CMOS
	LVDCI - Low Voltage Digital Controlled Impedance
	LVDS – Low Voltage Differential Signal
	LVPECL – Low Voltage Positive Emitter Coupled Logic
	LVTTL – Low Voltage TTL
	PCI (33 MHz, 3.3 V) & PCI (66 MHz, 3.3 V) – 3.3 Volt PCI
	PCI (33 MHz, 5.0 V) – 5.0 Volt PCI
	PCI-X
	SSTL2 – Stub Series Terminated Logic for 2.5 V
	SSTL3 – Stub Series Terminated Logic for 3.3 V
	SSTL18 - Stub Series Terminated Logic for 1.8 V
	GTL – Gunning Transceiver Logic Terminated

	15.39.3 DIFFERENTIAL I/O STANDARDS

	15.40 STD_LOGIC_VECTOR SPECIFICATION
	15.41 STARTUP SPECIFICATION
	15.42 STARTUPPARANOIA SPECIFICATION
	15.43 STARTUPPIPELINE SPECIFICATION
	Example

	15.44 STRENGTH SPECIFICATION
	Example

	15.45 SYNCHRONOUS SPECIFICATION
	Example

	15.46 UNCONSTRAINEDPERIOD SPECIFICATION
	15.47 UNCONSTRAINEDPERIOD
	15.48 VHDL_TYPE SPECIFICATION
	Example 1: Handel-C instantiation of a Bloo component without vhdl_type specification set:
	Example 2: Handel-C instantiation of a Bloo component with vhdl_type applied to entire interface:
	Example 3: Handel-C instantiation of a Bloo component with vhdl_type applied to individual ports:

	15.49 VHDL_COMPONENT SPECIFICATION
	15.50 WARN SPECIFICATION
	15.51 WEGATE SPECIFICATION
	15.52 WESTART AND WELENGTH SPECIFICATIONS
	Examples

	16 HANDEL-C PREPROCESSOR
	16.1 PREPROCESSOR MACROS
	Simple macros
	Parameterized macros
	Undefining identifiers

	16.2 FILE INCLUSION
	16.3 CONDITIONAL COMPILATION
	Conditional directives
	Example
	Conditional definition

	16.4 LINE CONTROL
	16.5 CONCATENATION IN MACROS
	16.6 ERROR GENERATION
	16.7 PREDEFINED MACRO SUBSTITUTION
	16.8 LINE SPLICING

	17 LANGUAGE SYNTAX
	Language
	17.1 LANGUAGE SYNTAX CONVENTIONS
	17.2 KEYWORD SUMMARY
	17.3 CONSTANT EXPRESSIONS
	17.3.1 IDENTIFIERS: SYNTAX
	17.3.2 INTEGER CONSTANTS: SYNTAX
	17.3.3 CHARACTER CONSTANTS: SYNTAX
	17.3.4 STRINGS: SYNTAX
	17.3.5 FLOATING-POINT CONSTANTS: SYNTAX

	17.4 FUNCTIONS AND DECLARATIONS: SYNTAX
	17.5 MACRO/SHARED EXPRS/PROCS: SYNTAX
	17.6 INTERFACES: SYNTAX
	17.7 STRUCTURES: SYNTAX
	17.8 ENUMERATED TYPES: SYNTAX
	17.9 SIGNAL SPECIFIERS: SYNTAX
	17.10 CHANNEL SYNTAX
	17.11 RAM SPECIFIERS: SYNTAX
	17.12 DECLARATORS: SYNTAX
	17.13 FUNCTION PARAMETERS: SYNTAX
	17.14 TYPE NAMES AND ABSTRACT DECLARATORS: SYNTAX
	17.15 STATEMENTS: SYNTAX
	17.15.1 COMPOUND STATEMENTS WITH REPLICATORS

	17.16 REPLICATORS: SYNTAX
	Replicator initialization definitions
	Replicator update definitions

	17.17 EXPRESSIONS: SYNTAX

	18 INDEX

