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Abstract

Abstract Algebraic Logic is a general theory of the algebraization of deductive systems
arising as an abstraction of the well-known Lindenbaum-Tarski process. The notions of
logical matrix and of Leibniz congruence are among its main building blocks. Its most
successful part has been developed mainly by BLOK, PIGOZZI and CZELAKOWSKI, and
obtains a deep theory and very nice and powerful results for the so-called protoalgebraic
logics. I will show how the idea (already explored by WÓJCKICI and NOWAK) of deÞning
logics using a scheme of �preservation of degrees of truth� (as opposed to the more usual
one of �preservation of truth�) characterizes a wide class of logics which are not neces-
sarily protoalgebraic and provide another fairly general framework where recent methods
in Abstract Algebraic Logic (developed mainly by JANSANA and myself) can give some
interesting results. After the general theory is explained, I apply it to an inÞnite family of
logics deÞned in this way from subalgebras of the real unit interval taken as an MV-algebra.
The general theory determines the algebraic counterpart of each of these logics without
having to perform any computations for each particular case, and proves some interesting
properties common to all of them. Moreover, in the Þnite case the logics so obtained are
protoalgebraic, which implies they have a �strong version� deÞned from their Leibniz Þl-
ters; again, the general theory helps in showing that it is the logic deÞned from the same
subalgebra by the truth-preserving scheme, that is, the corresponding Þnite-valued logic in
the most usual sense. However, for inÞnite subalgebras the obtained logic turns out to be the
same for all such subalgebras and is not protoalgebraic, thus the ordinary methods do not
apply. After introducing some (new) more general abstract notions for non-protoalgebraic
logics I can Þnally show that this logic too has a strong version, and that it coincides with
the ordinary inÞnite-valued logic of Łukasiewicz.
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1 On Abstract Algebraic Logic

In papers on the algebraic study of a speciÞc logic it is common to read sentences like �[such
and such class of algebras] plays in relation to [such and such logic] a role similar to that played
by Boolean algebras in relation to classical logic�. Many works in the Algebraic Logic literature
are devoted to the study of particular logics and the particular associated class of algebras, and
often the said �role� amounts to very little more than the completeness theorem. Thus most
of the beneÞts of having an algebraic counterpart of a logic were usually obtained by suitably
devised ad-hoc procedures. Abstract Algebraic Logic is the branch or part of Algebraic Logic
where the emphasis is put on the process of algebraization itself rather than on its results for
this or that logic, and where the process is analysed and described at a truly abstract level. The
general theories it develops account for the algebraization of particular logics, and can be used
to obtain properties of the logics from those of the algebras or vice-versa, once their connection
has been established. It also identiÞes, either by metalogical or by algebraic conditions, some
classes of logics where certain methods can be used with particular success, the connection
logic-algebras acquiring varying degrees of intensity.

One of the distinctive features of Abstract Algebraic Logic is the very deÞnition of what a
logic is; not taking this into account may lead to some misunderstandings. TARSKI�s conception
of logic as consequence is adopted: A logic or deductive system S is here identiÞed with a
Þnitary and substitution-invariant consequence relation on the set Fm of formulas; that is, a
binary relation �S ⊆ P(Fm) × Fm such that:

1. Γ �S ϕ whenever ϕ ∈ Γ .

2. Γ �S ϕ whenever ∆ �S ϕ and ∆ ⊆ Γ .

3. Γ �S ϕ whenever ∆ �S ϕ and Γ �S β for every β ∈ ∆.

4. Γ �S ϕ implies σΓ �S σϕ for every substitution σ .

5. Γ �S ϕ implies Γ0 �S ϕ for some Þnite Γ0 ⊆ Γ .

For very general theoretical studies it may be useful to drop the Þnitarity condition 5, as is done
in [11, 15, 44]; in such cases it is better to speak of consequence relations. Note that Abstract
Algebraic Logic departs from the approaches where a logic is identiÞed with a set of formulas
closed under some conditions or rules. It also departs from those where a logic is understood
as a proof system of a certain kind, and from those requiring that each logic should always have
both a semantics and a proof theory. While any of these devices can define a logic, they are not
regarded as part of the notion of logic itself, but as properties a logic may or may not have.

The second distinctive feature of Abstract Algebraic Logic (or of Algebraic Logic in gen-
eral) is that its models are taken on algebras of the same similarity type as the language of the
formulas, and that the interpretations or evaluations are the homomorphisms from the formula
algebra Fm to the algebra where the model resides. The model itself can be some kind of
structure over the algebra, such as a subset or a family of subsets.

The most classical and best developed part of Abstract Algebraic Logic uses subsets as mod-
els; its central notions are those of logical matrix and of Leibniz operator. It is well-known that
the origin of the notion of logical matrix can be traced back to the twenties, or even before.
The general theory of matrix semantics was established through the work of WÓJCICKI [42],
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CZELAKOWSKI [9], RASIOWA [34] and many others, and completed its maturity after the in-
troduction of the notion of Leibniz operator by BLOK and PIGOZZI [2] and its systematic study
by themselves and other people. A (logical) matrix is a pair 〈A, F 〉 where A is an algebra of
suitable similarity type, and F ⊆ A is the set of so-called designated elements, which represent
truth in the model. One says that 〈A, F 〉 is a matrix for S (brießy, an S -matrix) when for every
Γ ⊆ Fm and every ϕ ∈ Fm such that Γ �S ϕ the following holds:

For every v ∈ Hom(Fm,A), if v[Γ ] ⊆ F then v(ϕ) ∈ F . (1)

The set F is then called an S -Þlter. For each algebra A the family of all the S -Þlters on A is
denoted by FiSA.

The Leibniz congruence of a matrix 〈A, F 〉 is deÞned as

ΩA(F ) = max{θ ∈ CoA : if 〈a, b〉 ∈ θ and a ∈ F then b ∈ F} ,

where CoA denotes the set of (algebraic) congruences of the algebra A. A matrix is reduced
when its Leibniz congruence is the identity. The Þrst class of algebras naturally associated with
a logic, denoted by Alg∗S , is the class of the algebraic reducts of the reduced matrices of S ,
that is, the class of algebras A such that there is F ∈ FiSA with 〈A, F 〉 reduced; notice that
this F need not be unique. It sometimes happens that the Leibniz congruence and the reduced
matrices of a given logic can be nicely represented; for instance in the implicative logics studied
in [34] 〈a, b〉 ∈ ΩA(F ) if and only if a→b, b→a ∈ F , and the algebras in Alg∗S , there called
�S -algebras�, are determined by the axioms and rules of the logic plus the familiar condition �if
a → b = b → a = 1 then a = b�. But in less well-behaved cases things can be much different.

The historical development of Abstract Algebraic Logic can be identiÞed with the process
of extending some paradigms of the algebraization of logic, which had proven successful in the
study of the best-behaved logics, to wider and wider classes of logics; the extension has been
performed in a way that obtains deep and meaningful results and as powerful and nice a the-
ory as possible, while keeping the old results in the already studied cases. The generalization
of the Lindenbaum-Tarski process to implicative logics [34] has been extended and specialised
for other (increasingly larger) classes of logics: the algebraizable ones [3, 12], the equivalen-
tial ones [10], and the protoalgebraic ones [2, 4]. Each of these three classes of logics can
be characterized by a certain aspect of the behaviour of the Leibniz operator: the mapping
ΩA : F �→ ΩA(F ) when F ranges over FiSA. The result has been a powerful, complex and
multifaceted theory, which by now forms the established core of Abstract Algebraic Logic, as
developed in [4, 5, 11]; [17] is a compact, yet comprehensive survey of recent work in the area.
I am just going to give the deÞnitions and properties I will use in the paper.

The classes of logics mentioned in the previous paragraph, together with a few others, form
the so-called hierarchy of logics, also called the protoalgebraic hierarchy, the algebraic hier-
archy or the Leibniz hierarchy. A logic S is protoalgebraic when for every A, the Leibniz
operator ΩA is monotonic on FiSA, that is, F ⊆ G implies ΩA(F ) ⊆ ΩA(G) for all
F , G ∈ FiSA. S is equivalential when there is a set ∆(p , q) of formulas in two variables that
deÞnes the Leibniz congruence on S -Þlters in the following sense: For any A, if F ∈ FiSA
and a, b ∈ A, then

〈a , b〉 ∈ ΩA(F ) ⇐⇒ ∆A(a , b) ⊆ F . (2)
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The set ∆ is the set of equivalence formulas of S . When this set can be taken Þnite then S is
called Þnitely equivalential. S is weakly algebraizable when the Leibniz operator in injective
on S -Þlters; it is algebraizable when it is both equivalential and weakly algebraizable. The
original deÞnition of this notion by BLOK and PIGOZZI in [3] is now called Þnitely algebra-
izable, and corresponds to the logics that are both weakly algebraizable (or algebraizable) and
Þnitely equivalential; for these logics the class Alg∗S is a quasivariety, which is called the
equivalent algebraic semantics for S . The links between the logic and this class of algebras are
very strong, for instance the Leibniz operator ΩA becomes an isomorphism between the lattices
FiSA and Co

Alg∗SA (the set of congruences of A yielding a quotient in Alg∗S ). Further
kinds of algebraizability are denoted by an additional adjective to each of the just mentioned
classes: regularly means that each algebra A ∈ Alg∗S has a special element 1 such that S
is complete with respect to the class of matrices

{〈
A , {1}

〉
: A ∈ Alg∗S

}
; strongly means

that the class Alg∗S is a variety. Figure 1 shows the organisation of the main classes of the
hierarchy appearing in this paper.

implicative logics

↓
Þnitely regularly algebraizable logics

↓
Þnitely algebraizable logics → Þnitely equivalential logics

↓ ↓
algebraizable logics −→ equivalential logics

↓ ↓
weakly algebraizable logics → protoalgebraic logics

Figure 1: Some of the main classes of logics in the hierarchy. → means ⊆ .

Protoalgebraic logics, the largest class in the hierarchy, include the vast majority of lo-
gics usually considered in the literature (classical and intuitionistic logics, modal logics, many-
valued logics, etc.). They are considered to be the largest class of logics to which the standard
model-theoretic methods of the theory of logical matrices can be successfully applied, beyond
the most general completeness theorems. The following characterization is of a special interest:
A logic is protoalgebraic if and only if there is a set E(p , q) of formulas in two variables satis-
fying the following two (minimal) requirements, for all formulas ϕ , ψ:

(Law of Identity) �S E(ϕ , ϕ)
(Modus Ponens) E(ϕ , ψ) ∪ {ϕ} �S ψ

From this it results that non-protoalgebraic logics must have no implication at all, or at most a
rather strange one; formerly it was believed that only very pathological logics would be non-
protoalgebraic, but recently their interest has been recognized, in parallel to the identiÞcation
of several families of (natural) examples: the conjunction-disjunction and the implication-less
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fragments of intuitionistic logic [20, 35], some subintuitionistic logics [1, 7, 36, 39, 41], BEL-
NAP�s four-valued logic [13], and the weak version of system R of relevance logic, deÞned by
following WÓJCICKI�s suggestions in [44, p. 165] and algebraically studied in [19]. And, as I
will show in the Þnal section, there is also an inÞnite multiple-valued logic in this group. The
algebraic treatment of these logics clearly calls for another framework with a wider scope.

This recent branch of Abstract Algebraic Logic has grown around the notions of generalized
matrix [42], of Tarski congruence, and of full model. A generalized matrix (called abstract
logic in [6] and in [14]) is a pair 〈A, C〉 where C is a closed-set system (i.e., a family of subsets
closed under arbitrary intersections and containing the whole universe) on an algebra A. It is
a model of a logic S when for every v ∈ Hom(Fm,A), if Γ �S ϕ then v(ϕ) ∈ C(v[Γ ]),
where C is the closure operator associated with the closed-set system C . Obviously, 〈A, C〉 is
a model of S if and only if C ⊆ FiSA; thus on any algebra, an arbitrary collection of S -Þlters
constitutes a model. This means that not much can be said about models in general, but some
can be selected as behaving in more interesting ways. Observe that on any algebra there is a
�largest� model 〈A,FiSA〉; and it turns out that models that are �like� these are seen to have
more interest. Models of this kind are called basic full models, and a generalized matrix is a
full model of S when it is the inverse image of a basic full model of S under a strict surjective
homomorphism between generalized matrices; a surjective h ∈ Hom(B,A) is strict between
〈B,D〉 and 〈A, C〉 when D = h−1[C]. The Tarski congruence of a generalized matrix 〈A, C〉
is deÞned as

∼
ΩA(C) =

⋂{
ΩA(F ) : F ∈ C

}

and 〈A, C〉 is reduced when its Tarski congruence is the identity. Then the class of S -algebras,
the second class of algebras canonically associated with a logic, is deÞned as the class of al-
gebraic reducts of reduced models of S ; it is denoted by AlgS , and it happens to coincide with
the class of algebraic reducts of reduced full models of S . The study of these notions has been
developed mainly in [14], where the thesis is maintained (by developing a consistent general
theory and by analysing many examples) that they account for the algebraization of arbitrary lo-
gics in a faithful and meaningful way. In particular, it seems that AlgS deserves the title of the
algebraic counterpart of a logic much better than Alg∗S , specially in the non-protoalgebraic
cases; moreover, if S is protoalgebraic then AlgS = Alg∗S , hence in the best-behaved and
well-known cases the classical theory is recovered.

In the quest for new and more encompassing general theories the study of examples, either
taken individually or in groups that share certain features, is essential. They are needed to test
the theory against practice, to conÞrm (or, in some cases, surprisingly reject) the intuitive ideas
or the results obtained by ad-hoc constructions not conforming to any precise methodology, to
compare with existing paradigms, to help identify and sort the key notions from the peripheral
ones, etc.

In this paper I try to show how the application of a certain general framework, developed
in [16] in the context just introduced, helps in understanding and describing the algebraic be-
haviour of a certain family of multiple-valued logics deÞned from truth-value algebras that are
subalgebras of the real unit interval endowed with Łukasiewicz�s familiar operations. The way
these logics are deÞned from the algebras is a particular instance of the so-called semilattice-
based logics∗, a general procedure devised in order to formalise a speciÞc view of logics as

∗The term �(semi)lattice-based� has been used in [38], in a non-technical way, to describe a large class of logics

5



inference systems preserving degrees of truth. I devote Section 2 to an informal exposition of
this idea, and Section 3 to summarize the main elements of the general theory of [16] that will be
used in the sequel. Then Sections 4 and 5 contain the detailed treatment of Łukasiewicz-based
logics.

As general references on Abstract Algebraic Logic I recommend [3, 5, 11, 14, 17, 34, 44];
for multiple-valued logics the recent survey monographs [8, 24, 25] contain a lot of information.

2 Logics preserving degrees of truth

Non-standard truth values are the basis of any rationale behind the setting up of a multiple-
valued logic on semantical grounds. When a logic is deÞned through the use of a set of more
than two values, these �values� are presented as encoding different forms, ways or kinds of
being true, and are called �truth-values�; the classical 0 and 1 representing the extreme cases
of absolute truth and absolute falsity. However, the way these truth-values are actually used in
the deÞnition of the logic may point to a different interpretation, and supports the study of an
alternative way of using them.

The most common framework for deÞnition of multiple-valued logics is to start from some
set of truth-values A and among them to select or designate a certain element 1 ∈ A as rep-
resenting truth. Then, given some set Val of evaluations, that is, functions Fm → A, one can
deÞne a consequence relation �1 in the following way: For any Γ ⊆ Fm and any ϕ ∈ Fm,

Γ �1 ϕ ⇐⇒ for all v ∈ Val : v(ϕ) = 1 whenever for all β ∈ Γ , v(β) = 1 . (3)

Logics deÞned in this way are usually said to follow a truth-preserving scheme. However, if one
wants to really believe that all elements of A represent some kind of truth, of which 1 represents
absolute truth, then (3) should be rather regarded as a �preservation of absolute truth� scheme, as
it does not guarantee the preservation of any other truth-value than absolute truth: the elements
of A are used as possible values for the computation of the value v(ϕ) of non-atomic formulas
ϕ from the values of their atomic parts (variables), but then only those evaluations giving Þnal
truth-value 1 to the formulas are taken into account in order to deÞne consequence. This way of
using the truth-values induces one to think that the other values do not carry any kind of truth in
themselves, and that they rather represent �kinds of falsity�, or simply �values� which are not
�truth-values�.

The same comment can be made in case one selects or designates a subset D ⊆ A instead
of a single element: If the deÞnition is

Γ �D ϕ ⇐⇒ for all v ∈ Val : v(ϕ) ∈ D if for all β ∈ Γ , v(β) ∈ D . (4)

then only Þnal values inside D count, and the �truth-content� of values outside D seems not to
be relevant for the logic so deÞned.

An alternative way of using a set A of �truth-values� as truly representing different kinds of
truth, is to think of them as degrees of truth, and to understand consequence in the following
sense: That whenever all premisses attain at least a certain degree of truth, the conclusion should

having both algebraic and relational semantics linked by representation theorems of different kinds.
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have at least that degree of truth too. This means assuming that there is some (partial) ordering
relation ≤ among the elements of A, and deÞning a consequence relation �≤

in the following
way:

Γ �≤
ϕ ⇐⇒ For all v ∈ Val and all t ∈ A : v(ϕ) ≥ t if for all β ∈ Γ , v(β) ≥ t . (5)

This scheme is referred to as preservation of degrees of truth.

In the case where one wants the logic to be truth-functional, one assumes that the set of
truth-values A has an algebraic structure A = 〈A, {λA : λ ∈ L}〉 of the similarity type L of
the formulas, and takes Val = Hom(Fm,A) as the set of evaluations. Then, both deÞnition
schemes can be smoothly represented in a more algebraic-logic style by means of matrices, in
the technical sense described in Section 1: Schemes (3) and (4) correspond to the logic deÞned
by the logical matrices 〈

A, {1}
〉

or 〈A, D〉 (6)

respectively, while (5) corresponds to the logic deÞned by the family of matrices

{ 〈
A, [t)

〉
: t ∈ A

}
(7)

where [t) = {a ∈ A : t ≤ a}. Equivalently, (5) corresponds to the logic deÞned by the
generalized matrix 〈A, C〉 where C is the closed-set system generated by the family of sets{
[t) : t ∈ A

}
.

These deÞnitions might seem too algebraic, and be considered too restrictive as general
schemes for deÞning logics. However, WÓJCICKI has shown in [44, Chapter 5] that any lo-
gic deÞned either locally or globally by a relational semantics of the most general kind, and
hence apparently non-truth-functional, can also be deÞned by a class of matrices or of general-
ized matrices; therefore, it happens to be truth-functional with respect to convenient algebraic
structures, which are obtained through suitable representation constructions from the relational
structures. This issue has also been reviewed, for a large class of particular cases, in [38].

The idea of preservation of the degree of truth is not new. It has been surely discussed in a
variety of works related to multiple-valued logics or even more in general, in connection with
matrix semantics, as in [44, p. 191]†. Its speciÞc algebraic side has been less studied, though. It
is applied to Þnite subalgebras of the real unit interval in [21, 44] (see Section 4 for details) and
it is studied in general by NOWAK in [33]; in NOWAK�s paper the set of truth-values is supposed
to have (or to be embedded in) a complete lattice structure with maximum 1, hence (5) can be
rephrased as

Γ �≤
ϕ ⇐⇒ v(ϕ) ≥ inf

(
{v(β) : β ∈ Γ} ∪ {1}

)
, for all v ∈ Hom(Fm,A). (8)

Notice that this is just one of the several possible notions of �preserving degrees of truth� that
are introduced and characterised in [33]. However, it turns out that the consequence relations
deÞned in any of the preceding ways cannot in general be guaranteed to be finitary, unless the
set A is Þnite, see Theorem 20. I am going to show that, by restricting (3) and (5) to Þnite Γ ,

†Warning: in this book the term �truth-preserving� is used in the sense explained above, except on page 345
where it means �preserving degrees of truth� (and at that place �preserving validity� is used as a replacement for
�truth-preserving�).
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one obtains a reasonably smooth general framework to be exploited with the tools of Abstract
Algebraic Logic, and which includes many usual logics, while it does not require them to be
even protoalgebraic. Moreover, it is not necessary to assume a complete lattice structure, as in
[33]; just assuming an inf-semilattice with maximum is enough. After these two changes, if as
usual the semilattice operation is denoted by ∧ and its maximum is denoted by 1, then condition
(8) can be split into the following two:

ϕ0, . . . , ϕn−1 �≤
ψ ⇐⇒ v(ϕ0) ∧ · · · ∧ v(ϕn−1) ≤ v(ψ) for all v ∈ Hom(Fm,A) (8�)

�≤
ψ ⇐⇒ v(ψ) = 1 for all v ∈ Hom(Fm,A) (8�)

One typical feature of these schemes, which becomes even clearer now, is that the theorems
of the logic �≤

will be the same as those of the logic �1 . It is clear that any possible interest of
the present proposal must lie in the inferential aspect of logics, rather than in their assertional
aspect. The problem of how to associate a consequence, or entailment relation with a given set
of �theorems� or �tautologies� is surely a non-trivial one, and has been discussed many times
and from many points of view. I want to highlight here the discussion in [44, Section 2.10]
because of its connection with the more speciÞc part of the present paper: there, an operation
→ of �implication� is assumed to exist, which establishes a strong connection between the two
key elements at work, namely the ordering relation and the maximum truth-value; applied to the
present case this would become:

For all a, b ∈ A , a ≤ b ⇐⇒ a → b = 1. (9)

Any logic deÞned with (8�) and (8�) from a truth-value algebra where (9) holds, satisÞes

ϕ0, . . . , ϕn−1 �≤
ψ ⇐⇒ �≤

ϕ0 ∧ · · · ∧ ϕn−1 → ψ. (10)

Viewed the other way round: Imagine that a set of �tautologies� has been deÞned from A
and 1 through (8�). Then if one wants to have connectives ∧ and → representing respectively
conjunction and inference inside the language so that (10) holds, then the natural way is to go
for (8�) and Þnd the logic �≤

deÞned by preservation of degrees of truth. However, having (9)
is a rather particular property that may not be present in many cases, for instance in all those
cases where simply there is no such implication in the language, or when one precisely wants to
deal with an implication-less fragment of a richer logic; in those cases (8�) and (8�) still offer a
sound deÞnition of a logic preserving degrees of truth.

Condition (8�) or its more general form (5) are often paraphrased as stating that �the conclu-
sion must have at least the degree of truth of the premisses�. Since in logical inference premises
act collectively, it is generally acknowledged that a reasonable evaluation of the �collective�
degree of truth of the set of premisses is the inÞmum of their degrees of truth. It is interesting to
notice that a similar intuition is present in the characterizations of the notions of a fuzzy subset
being a fuzzy subalgebra of a (crisp) algebra [31] and of canonical fuzzy numbers [32, 30].

3 Semilattice-based logics

The material in this section is excerpted from [15] and [16].
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Let K be a class of algebras of some (arbitrary but Þxed from now on) similarity type having
an upper-bounded inf-semilattice reduct; this means there is a partial ordering relation ≤ on each
A ∈ K having a maximum 1, and a binary connective ∧ (which can be either a primitive one or
deÞned by a term in two variables) such that a ∧ b = inf{a, b} for all a, b ∈ A and all A ∈ K.
There is no harm in assuming that the maximum is represented as a constant � of the language.
It is well-known that this situation can be expressed equationally as the satisfaction in K of the
four following equations

x ∧ x ≈ x

x ∧ y ≈ y ∧ x

x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z

x ∧ � ≈ x

together with the requirement that for all a, b ∈ A (for any A ∈ K),

a ≤ b ⇐⇒ a = a ∧ b.

Definition 1 Let S = 〈Fm,�S〉 be a finitary sentential logic. It is said to be semilattice-based
with respect to K through ∧ when for any ϕ0, . . . , ϕn−1, ψ ∈ Fm the following hold:

ϕ0, . . . , ϕn−1 �S ψ ⇐⇒ v(ϕ0) ∧ · · · ∧ v(ϕn−1) ≤ v(ψ) for all v ∈ Hom(Fm,A) (11)

and all A ∈ K

�S ψ ⇐⇒ v(ψ) = 1 for all v ∈ Hom(Fm,A) and all A ∈ K (12)

Since I am assuming that all the algebras have a maximum and it is denoted by a constant
in the language, it follows from (12) that all these logics will have theorems. A slightly more
general setting can be obtaining by deleting these assumptions, as is done in [16]; however for
the purpose of introducing the multiple-valued cases I want to deal with, one can safely assume
such properties and the exposition is somehow simpliÞed.

Elementary properties

1. Independence from ∧: If S is also semilattice-based with respect to another class K′

through another binary term ∧′ then the varieties generated by K and by K′ are equal,
and modulo this variety the terms ∧ and ∧′ are equivalent.

2. If S is semilattice based with respect to K then it is also so with respect to V(K), and this
variety is the only variety with respect to which S can be semilattice-based.

3. Two formulas ϕ and ψ are interderivable modulo S (a relation I denote by ϕ ��S ψ and
deÞne as �ϕ �S ψ and ψ �S ϕ�) if and only if the equation ϕ ≈ ψ is true in K.

4. The interderivability relation ��S is a congruence of the formula algebra Fm, and the
quotient algebra Fm/��S generates the variety V(K).

5. The term ∧ is a conjunction for S , that is, it satisÞes the three Hilbert-style rules

ϕ ∧ ψ � ϕ , ϕ ∧ ψ � ψ and ϕ, ψ � ϕ ∧ ψ.
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6. The logic S is entirely determined from its interderivability relation ��S , plus condition
(12) for theorems. That is (given the result in item 3 above), the equational theory of K
completely determines the inferential part of S .

A logic S is called selfextensional when its interderivability relation ��S is a congruence
of the formula algebra Fm. The logics with this property enjoy a strong substitutivity property:
If α ��S β then for every ϕ(p) ∈ Fm, ϕ(α) ��S ϕ(β). This notion was highlighted and has
been studied by WÓJCICKI, see [44]. The Þrst important result about semilattice-based logics
is:

Theorem 2 A logic S is semilattice-based if and only if it is selfextensional, has theorems, and
has a conjunction.

This result might be considered to be implicit in [33], although under weakening of some
parts and strengthening of others, as discussed in Section 2.

Examples

The preceding result characterizes by three metalogical properties the logics admitting a deÞn-
ition in terms of preserving degrees of truth in the semilattice case. Despite its perhaps non-
standard or lesser-known phrasing, I want to emphasise that the class of logics covered by these
properties is very large: Conjunction is a very weak and common requirement, and WÓJCICKI

showed that selfextensional logics are exactly the local consequences deÞned by any possible-
world or frame semantics in a very general sense of the word, see [11, Section 6.7] or [44,
Chapter 5]. From this it follows, for instance, that a very large group of modal logics can be
studied under this framework.

Moreover, one can prove that all fragments of classical or intuitionistic logic containing con-
junction ∧ belong to this group. As is shown in the next section, also a big family of multiple-
valued logics belongs to it. And many logics being a strengthening or an expansion of these
will also belong to the same group, for instance, all modal logics referred to above (however,
notice that not every expansion of a logic in this group belongs to it, as being selfextensional is
a property that is not automatically preserved under strengthenings or under expansions).

This group contains many protoalgebraic logics, such as most of the just-mentioned frag-
ments (more precisely, all those fragments containing the implication or equivalence connect-
ives besides conjunction), but also many that are not (and normally these are much less known).
Among the non-protoalgebraic examples are all those cited in Section 1, including an inÞnite
multiple-valued logic, according to Theorem 23.

Algebraic models

It is clear from their deÞnition that the logics I am considering bear a special relationship to
the class K of algebras and also to the generated variety V(K). The application of the general
notions and tools of Abstract Algebraic Logic show that these relations are not just the expres-
sion of the logic�s deÞnition, but something more: They conform to the general framework of
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algebraization of logic put forward in [14], whose particular interest arises in the treatment of
logics that are not necessarily protoalgebraic.

For any algebra A ∈ V(K) I denote by Filt(A) the set of all (semilattice) Þlters of A, that
is, those F ⊆ A satisfying:

1. 1 ∈ F .

2. If a ∈ F and b ∈ F then a ∧ b ∈ F .

3. If a ∈ F and a ≤ b then b ∈ F .

In case A is a lattice then these are just the ordinary lattice Þlters of A. Notice that condition 3
amounts to the converse of 2. One can show:

Theorem 3 If S is semilattice-based with respect to K then for each A ∈ V(K) , FiSA =
Filt(A), the generalized matrix

〈
A,Filt(A)

〉
is reduced, and AlgS = V(K).

Hence V(K) is the class of algebras canonically associated with the logic by the abstract
framework, that is, it is the algebraic counterpart of S . This result, besides its practical applic-
ations for particular logics, has some theoretical signiÞcance, for it answers in the afÞrmative a
recurrent question in Abstract Algebraic Logic; namely, it identiÞes a large class of logics whose
algebraic counterpart is a variety, something in general not guaranteed by the theory: even for
Þnitely and regularly algebraizable logics S , the general theory establishes that the class AlgS
is a quasivariety, and not necessarily a variety.

Also the class of full models of S can be characterized with respect to K:

Theorem 4 Let S be semilattice-based with respect to K and let 〈A, C〉 be a generalized mat-
rix. Then 〈A, C〉 is a full model of S if and only if there is a strict surjective homomorphism
from 〈A, C〉 onto some generalized matrix 〈B,D〉 such that B ∈ V(K) and D = Filt(B).

The protoalgebraic case: the strong version

Although the main virtue of the semilattice-based framework is its independence of protoal-
gebraicity, nevertheless one can take also advantage from the power of the classical theory of
protoalgebraic logics as developed in [2, 11] together with some recent results from [15]; the
combination of the two properties will help in answering a very natural question in the present
context.

Section 2 has described a situation where two logics arise naturally, one being a strengthen-
ing of the other but both sharing the same theorems. There is a more abstract situation where a
similar phenomenon is observed, namely the notion of the �strong version� of a protoalgebraic
logic introduced and studied in [15].

Let S be a protoalgebraic logic with theorems. An S -Þlter F is Leibniz when F ⊆ G for
all G ∈ FiSA with ΩA(F ) = ΩA(G), that is, when it is the least among all S -Þlters on the
same algebra having the same Leibniz congruence. The deÞnition can be given in general, but
for protoalgebraic logics, thanks to the monotonicity of the operator ΩA on the set FiSA for
each algebra A, one can show that Leibniz Þlters exist for every value of ΩA ; more precisely,
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for every S -Þlter F there is a (unique) Leibniz Þlter F+++ with ΩA(F+++) = ΩA(F ); actually
F+++ can be obtained as the intersection of all Þlters with the same Leibniz congruence as F .
A matrix is Leibniz when its Þlter is. Then with each logic S one can associate the logic S+++

deÞned by the class of all Leibniz matrices of the original logic S ; this logic is called the strong
version of S , and, under certain conditions, there are strong relations between S+++ and S , as
described in [15]; the Þrst to be immediately seen are that S+++ is a strengthening of S and
that these two logics have the same theorems (because the least Þlter on each algebra is always
Leibniz). Recall that a logic S ′ is a strengthening of a logic S if and only if �S ⊆ �S′

as binary relations, that is, if and only if Γ �S ψ implies Γ �S′ ψ for all Γ ⊆ Fm and all
ψ ∈ Fm.

Notice that for algebraizable logics (in any of the degrees of this notion: weakly, Þnitely,
strongly, etc.) the Leibniz operator is injective (see Section 1) therefore every S -Þlter is Leibniz
and S+++ = S . Hence this issue is of interest only for protoalgebraic but non-algebraizable logics.
In the case where the starting logic is semilattice-based, in [16] the following facts are proved:

Proposition 5 Let S be a protoalgebraic logic that is semilattice-based (with respect to some
class of algebras) but not weakly algebraizable. Then S+++ is not selfextensional.

Theorem 6 Let S be a protoalgebraic logic that is semilattice-based with respect to K. Then
its strong version S+++ is strongly, finitely and regularly algebraizable and its equivalent algeb-
raic semantics is V(K). As a consequence, S+++ is the logic defined by the class of matrices{〈

A, {1}
〉

: A ∈ V(K)
}

.

The abstract setting can be intuitively read as follows: In the conditions of the theorem,

if S is defined from K by preserving degrees of truth

then its strong version S+++ is defined from V(K) by preserving truth.

Obviously if K is already a variety then K = V(K) and S+++ coincides with the logic deÞned
from K by preserving truth; however this condition is a very strong one, since often one wants
to start with a very small class K (very often, with a single algebra!) and still have some con-
nection between the logics deÞned from K by the two preservation schemes. There is another
condition which will better Þt in the particular situation of later sections; here Q(K) denotes the
quasivariety generated by K. Then:

Theorem 7 Let S be an equivalential logic that is semilattice-based with respect to K. Then its
strong version S+++ coincides with the logic defined by the class of matrices

{〈
A, {1}

〉
: A ∈ K

}

if and only if Q(K) = V(K).

So here there are some conditions under which the relationship between the two logics
deÞned from K by the two multiple-valued schemes analysed in Section 2 can be described in
completely abstract terms, that is, without having to refer to ≤,∧, 1 or K. Moreover, in the
equivalential case the stronger version can be syntactically reduced to the weak version:

Theorem 8 Let S be an equivalential logic that is semilattice-based, let ∆(p, q) be its set of
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equivalence formulas, and put X(p) = ∆(p,�). Then

Γ �S+++ ϕ ⇐⇒ X(Γ ) �S ϕ (13)

for all Γ ⊆ Fm and all ϕ ∈ Fm, where X(Γ ) =
⋃
{X(β) : β ∈ Γ}.

One can Þnd a variety of particular cases where the situation is naturally found. The ex-
amples of normal modal logics are paradigmatic (there the weak and the strong versions corres-
pond to the local and the global consequences generated by a class of Kripke frames) and have
been dealt with at length in [15, Section 2B]; those of quantum logics, analysed in [15, Section
2A], constitute another typical group of examples.

The remaining sections are devoted to the multiple-valued case, where similar situations
occur, although with some interesting particularities.

4 Logics defined from finite subalgebras of the real unit interval

Let [[[0,1]]] be the algebra on the real unit interval, with Łukasiewicz�s well-known operations:

¬x = 1 − x

x → y = min{1, 1 − x + y}
x ∨ y = max{x, y}
x ∧ y = min{x, y}
x ∗ y = max{0, x + y − 1}
x ⊕ y = min{1, x + y}
x ↔ y = min{1 − x + y, 1 − y + x}

where + and − are the ordinary arithmetical operations; as is well-known, one can take just a
small subset of them as primitive and deÞne the remaining ones by suitable equations; see [8,
Chapter 4] for instance, but this issue is not relevant here. I use the customary abbreviations pn

and n p to denote the iterated �star� and �plus� operations respectively; that is, pn+1 = pn ∗ p
and (n + 1) p = (n p) ⊕ p for n ≥ 1, and p1 = 1 p = p.

The algebras in the variety MV = V
(
[[[0,1]]]

)
generated by the algebra [[[0,1]]] have received

several names in the literature; the best-known two are MV-algebras and Wajsberg algebras, the
latter being used mostly when it is presented with the operations ¬ and → as the primitive ones.
I assume that the language has a constant connective � and that �A = 1 in any A ∈ MV;
I also write 0 for ¬1; the elements 0 and 1 are, respectively, the lower and upper bounds of
their lattice structure. For their logical, algebraic and lattice-theoretical properties, and those
of special subvarieties and subquasivarieties, one can read [8, 18, 23] and other papers therein
referenced.

Let S be any subalgebra of [[[0,1]]]; note that 0, 1 ∈ S because I have included � in the
language, but this would be the case even without this, since a → a = 1 and ¬(a → a) = 0
for any a ∈ [0,1]. Moreover, the set S with the natural order of real numbers ≤ is a bounded
lattice, its operations being ∧ and ∨, and 1 its maximum. Therefore, with each such subalgebra
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one can associate two sentential logics following the general schemes previously discussed: the
Þrst one, denoted by Ł

≤
S , is deÞned by the preservation of degrees of truth schemes (11) and

(12), and the second one, denoted by ŁS , is deÞned by the preservation of truth scheme (3); in
both cases K = {S}. Therefore:

Definition 9 For each subalgebra S of [[[0,1]]] the logics Ł
≤
S = 〈Fm,�≤

S〉 and ŁS = 〈Fm,�1
S〉

are the logics defined by the following specifications:

ϕ0, . . . , ϕn−1 �≤
S ψ ⇐⇒ v(ϕ0) ∧ · · · ∧ v(ϕn−1) ≤ v(ψ) (14)

for all v ∈ Hom(Fm,S)

�≤
S ψ ⇐⇒ v(ψ) = 1 for all v ∈ Hom(Fm,S) (15)

and

ϕ0, . . . , ϕn−1 �1
S ψ ⇐⇒ v(ψ) = 1 whenever v(ϕ0) = · · · = v(ϕn−1) = 1 , (16)

for all v ∈ Hom(Fm,S)

Some elementary properties, independent of the particular S , can be immediately derived
from the deÞnitions; it is illustrative to make explicit the Hilbert-style and Gentzen-style rules
common to all these logics which will be used later on. They are formulated with sentential
variables, since they are understood as rule schemes, so that satisfying one of them means sat-
isfying all its substitution instances (this proviso is not necessary for Hilbert-style rules, but it
makes a difference for the Gentzen-style ones).

Proposition 10 For each S , the logic Ł
≤
S satisfies the following rules:

1.
p0, . . . pn−1 � q

pk
0, . . . p

k
n−1 � qk

for all k ≥ 1.

2.
p �� q

pk �� qk
for all k ≥ 1.

3.
� p

� pk
for all k ≥ 1.

4. � p → p.

5. p �� p ↔�.

6. � p → (q → p ∗ q).

7. ps � pt for all s, t with s ≥ t ≥ 1.

Proof: 1: Let a0, . . . , an−1, b ∈ [0, 1] be such that a0 ∧ . . . ∧ an−1 ≤ b. Since the operation
∗ is monotonic and continuous, for each k ≥ 1, ak

0 ∧ . . . ∧ ak
n−1 = (a0 ∧ . . . ∧ an−1)k ≤ bk .

Using this it is straightforward to show 1. 2 is a consequence of a particular case of 1. 3 holds
because 1k = 1 for all k ≥ 1, 4 because a ↔ a = 1 for all a ∈ [0, 1], 5 because a ↔ 1 = a for
all a ∈ [0, 1], and 6 because a → (b → a ∗ b) = 1 for all a, b ∈ [0, 1]. Finally, 7 holds because
for all a ∈ [0, 1], if s ≥ t ≥ 1 then as ≤ at .
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In the present context it makes sense to call non-trivial the subalgebras with more than two
elements, that is, with at least one element different from 0 and from 1. The excluded case
corresponds to S = S2 = {0, 1}, the Boolean algebra associated with classical propositional
logic, and indeed ŁS2 = Ł

≤
S2

= CPL. Then:

Theorem 11 For each non-trivial S , the logic ŁS is a proper strengthening of the logic Ł
≤
S

and these two logics have the same theorems. In other words, ŁS is a proper, purely inferential
strengthening of Ł

≤
S . Moreover, for all ϕ0, . . . , ϕn−1, ψ ∈ Fm,

ϕ0, . . . , ϕn−1 �≤
S ψ ⇐⇒ �≤

S ϕ0 ∧ · · · ∧ ϕn−1 → ψ (17)

⇐⇒ �1
S ϕ0 ∧ · · · ∧ ϕn−1 → ψ. (18)

Proof: That ŁS is a strengthening of Ł
≤
S with the same theorems is a consequence of the general

theory of Section 3, or it directly follows from DeÞnition 9. To see that it is a proper one, one
can show for instance that

p � p ∗ p (19)

is a rule of ŁS that is not a rule of Ł
≤
S : Since 1∗1 = 1 in [[[0,1]]], it is clear that (19) is a rule of ŁS .

But a ≤ a ∗ a is only true when a = 0, 1, while if a �= 0, 1 then a > a ∗ a = max{0, 2a − 1}.
Since by assumption S is non-trivial, there are such a in S , therefore (19) is not a rule of Ł

≤
S .

Finally, the last part of the theorem follows directly from DeÞnition 9 and the fact that on any
MV-algebra, a ≤ b ⇐⇒ a → b = 1.

The equivalence (17) may be regarded as a kind of Weak Deduction Theorem. Together
with (18), these equivalences seem to suggest there is no particular interest in Ł

≤
S , as it can

be reduced to ŁS . However, the ordering structure of the real line is so natural that often it
is simpler to work with Ł

≤
S than with ŁS . Only the traditionally more accepted scheme of

preserving truth has come to make ŁS appear as a more natural logic than Ł
≤
S . To a certain

extent, I would agree with the reverse judgement, and moreover in Theorem 15 below I show
that for a Þnite S the logic ŁS can be reduced to Ł

≤
S in a similar way.

The general theory summarized in Section 3 already explains the main algebraic properties
of the logics. By their very deÞnition the logics Ł

≤
S are semilattice-based with respect to the

single algebra S , and hence with respect to the variety it generates; then Theorems 2, 3 and 4
automatically yield:

Proposition 12 For each subalgebra S of [[[0,1]]], the logic Ł
≤
S is selfextensional and has con-

junction. Its algebraic counterpart is AlgŁ
≤
S = V(S), and on each algebra of this class the

Ł
≤
S -filters coincide with the lattice filters. A generalized matrix 〈A, C〉 is a full model of S if

and only if there is a strict surjective homomorphism from 〈A, C〉 onto a generalized matrix of
the form 〈B,Filt(B)〉 with B ∈ V(S).

Recall from Section 3 that Filt(B) is the set of all lattice-Þlters of B . Hence in case
B ∈ V(S) then Filt(B) = Fi

Ł
≤
S

B .

Proposition 13 For each non-trivial S , the logic ŁS has conjunction, and is not selfexten-
sional.
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Proof: Since having conjunction is expressed by Hilbert-style rules, it is a property inherited by
strengthenings of any kind, so ŁS has it because Ł

≤
S has it, by Proposition 12. Now to show that

ŁS is not selfextensional, let p be any variable, and consider the formulas ϕ = p and ψ = p∗p.
Since for all a ∈ [0, 1], a = 1 ⇐⇒ a ∗ a = 1, ϕ ��1

S ψ for any S . Now let a ∈ S be such that
0 < a ≤ 1/2 (it exists because S is nontrivial and negation makes it symmetric with respect to
1/2). Then ¬a �= 1, a ∗ a = 0 and ¬(a ∗ a) = 1. This implies that ¬ψ �� �1

S ¬ϕ, hence the
interderivability relation of ŁS is not a congruence with respect to negation, therefore this logic
is not selfextensional.

An alternative way of proving that the ŁS are not selfextensional would be to use Proposition
5 and Theorem 11; but this would only work in case Ł

≤
S is protoalgebraic, something we do not

know by now (and, as is shown in the next section, is not always the case), so I had to give a
direct, general argument.

Proposition 12 determines the algebraic counterparts of all Ł
≤
S in both the traditional and the

more abstract senses. Another typical task of Abstract Algebraic Logic is to classify the logics
according to several criteria, notably with respect the so-called hierarchy outlined in Section 1.
However, to go further in this direction it is useful (or perhaps indispensable) to treat separately
the cases where S is Þnite, which have a perfectly standard behaviour, from the cases where S
is inÞnite.

Therefore I am going to assume in the rest of this section that for some m ≥ 2, S = Sm ,
the subalgebra of [[[0,1]]] with m elements, that is, with universe Sm = {0, 1

m−1 , . . . , m−2
m−1 , 1};

here it is more practical to write Ł
≤
m = 〈Fm,�≤

m〉 and Łm = 〈Fm,�m〉 instead of Ł
≤
Sm

and
ŁSm , respectively. WÓJCICKI [43], see also [44, Theorem 4.3.3], showed that the logic here
denoted by Łm fully coincides with the one axiomatized by the tautologies of what is usually
called the m-valued Łukasiewicz logic plus the rule of Modus Ponens. In [44, Theorem 4.3.8]
it is shown that Łm is an �implicative logic� in the sense of [34], therefore by the observation in
page 41 of [3] it is a strongly, regularly and Þnitely algebraizable logic, and by the same result
in [44] and Corollary 5.3 of [3] it follows that its equivalent algebraic semantics is the variety
AlgŁm = V(Sm), often called the variety of m-valued MV-algebras, see [8, DeÞnition 8.5.2].
For m > 2 this variety has been axiomatized in different ways, see [8, Theorem 8.5.1]. In the
case m = 2 one gets S2 = {0, 1}, the two-element Boolean algebra, Ł2 = Ł

≤
2 = CPL, and

AlgŁ2 = V(S2) is the variety of all Boolean algebras.

To see that the pairs
(
Ł

≤
m ,Łm

)
Þt into the general framework of the preceding sections, one

has to obtain directly a few properties of the less-known logics Ł
≤
m . That they are semilattice-

based with respect to Sm was already observed in [44, Section 4.3.14] and in [33]. As logics
preserving degrees of truth they were brießy studied in GIL�s unpublished Ph. D. Thesis [21],
in the context of many-sided sequent calculi; one of his results adds to the general properties
of Theorem 11 and Proposition 12, allowing to be more precise about their classiÞcation in the
Þnite case:

Theorem 14 (GIL) For each m ≥ 2 the logic Ł
≤
m is finitely equivalential, the formula (p ↔

q)m−1 being its single equivalence formula.

Proof: The simplest way to show this is to check that the proposed equivalence formula satisÞes
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the six syntactical conditions from [10, DeÞnition I.10]; see also [11, Chapter 3]:

(E1) �≤
m (p ↔ p)m−1

(E2) (p ↔ q)m−1 �≤
m (q ↔ p)m−1

(E3) (p ↔ q)m−1 , (q ↔ r)m−1 �≤
m (p ↔ r)m−1

(E4) (p ↔ q)m−1 �≤
m (¬p ↔¬q)m−1

(E5) (p ↔ q)m−1 , (p′ ↔ q′)m−1 �≤
m

(
(p → p′) ↔ (q → q′)

)m−1

(E6) p , (p ↔ q)m−1 �≤
m q

(E1) is a consequence of 10.4 and 10.2. (E2) by the symmetry in the truth-valued function
of ↔. (E3) is proved by taking into account that if a ∈ Sm and a �= 1 then am−1 = 0
(actually, an = 0 for all n ≥ m − 1) while 1m = 1, and that a → b = 1 if and only if
a ≤ b; hence a ↔ b = 1 if and only if a = b. Then take any v ∈ Hom(Fm,Sm). If
v(p) �= v(q) or v(q) �= v(r) then v

(
(p ↔ q)m−1

)
∧ v

(
(q ↔ r)m−1

)
= 0 ≤ v

(
(p ↔ r)m−1

)
. If

v(p) = v(q) = v(r) then v
(
(p↔ q)m−1

)
∧v

(
(q↔ r)m−1

)
= 1 = v

(
(p↔ r)m−1

)
. This shows

that (E3) holds. Similar reasonings prove (E4) and (E5). Finally, to show (E6), if v(p) �= v(q)
then v(p) ∧ v

(
(p ↔ q)m−1

)
= 0 ≤ v(q), while if v(p) = v(q) then v(p) ∧ v

(
(p ↔ q)m−1

)
=

v(p) ∧ 1 = v(p) = v(q).

Every equivalential logic is a fortiori protoalgebraic [11, page 185], hence Proposition 5 and
Theorems 6 and 7 apply. As one of the applications of these results one obtains:

Theorem 15 For every m ≥ 2, the logic Łm is the “strong version” of Ł
≤
m in the sense of

Section 3, that is, Łm =
(
Ł

≤
m

)+++
, and for all ϕ0, . . . , ϕn−1, ψ ∈ Fm,

ϕ0, . . . , ϕn−1 �m ψ ⇐⇒ ϕm−1
0 , . . . , ϕm−1

n−1 �≤
m ψ.

Proof: The Þrst part follows from Theorem 7, because by the preceding result the logic Ł
≤
m is

equivalential, and it has been proved in Theorem 3.8 of [23] that for every m ≥ 2, Q(Sm) =
V(Sm); hence the equivalent condition in Theorem 7 holds in this case, and therefore the strong
version of Ł

≤
m coincides with Łm . The second part follows from the Þrst one plus Theorem 8,

after taking into account that the set X(p) mentioned in this last result has the form X(p) =
∆(p,�) for any set ∆ of equivalence formulas for the weak logic, here Ł

≤
m . Hence here X(p) ={

(p↔�)m−1
}

. However, expression (13) clearly shows that any Ł
≤
m-equivalent set can replace

X(p). By 10.5 and 10.2, (p ↔ �)m−1 ��≤
m pm−1 , therefore one can equally use X(p) =

{pm−1}.

Corollary 16 For every m > 2, the logic Ł
≤
m is not weakly algebraizable, hence a fortiori it is

not algebraizable in any sense, while Ł
≤
2 = Ł2 = CPL (classical propositional logic) is.

Proof: As was said in Section 3, weakly algebraizable logics coincide with their strong ver-
sion. Hence, by Theorem 15, if Ł

≤
m is so, then Ł

≤
m = (Ł

≤
m)+++ = Łm . But by Theorem 11

Łm is a proper strengthening of Ł
≤
m , hence different from it. Therefore Ł

≤
m cannot be weakly

algebraizable. All this concerns the case m > 2, while for m = 2 the properties of CPL are
well-known.
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This completes the classiÞcation of the logics Ł
≤
m in the hierarchy. Moreover, Łm is the

“strong version” of Ł
≤
m in two very different senses: On one side, Łm is the logic deÞned by

preserving truth from the same structure (the m-valued algebra Sm) with respect to which Ł
≤
m

is deÞned by preserving degrees of truth. On the other side, the logic Łm is the strong version,
in the general sense of Abstract Algebraic Logic, of the logic Ł

≤
m , that is, Łm is determined

by the Leibniz Þlters of Ł
≤
m . I now show that there is more: Leibniz Þlters of Ł

≤
m not only

constitute a deÞning matrix semantics for Łm but they are exactly all its Þlters; moreover, they
can be nicely characterised on arbitrary algebras of the signature of MV-algebras (i.e., not only
on an MV-algebra):

Theorem 17 Let F be any Ł
≤
m-filter on any algebra A of the signature of MV-algebras. Then

the following conditions are equivalent:

(i) F is a Leibniz filter of Ł
≤
m .

(ii) F is an Łm-filter.

(iii) For all a, b ∈ A, if a ∈ F and a → b ∈ F then b ∈ F .

(iv) For all a, b ∈ A, if a ∈ F and b ∈ F then a ∗ b ∈ F .

(v) For all a ∈ A, if a ∈ F then a ∗ a ∈ F .

(vi) For all a ∈ A, if a ∈ F then am−1 ∈ F .

Proof: (i)⇒(ii) by Theorem 15 and the general deÞnition of
(
Ł

≤
m

)+++
as the logic determined

by the Leibniz Þlters of Ł
≤
m . (ii)⇒(iii) as it is easy to check that p, p → q � q is a rule of

Łm . (iii)⇒(iv) because the formula p → (q → p ∗ q) is a theorem of Ł
≤
m , by 10.6, and F is

a Þlter of this logic. (v) is a particular case of (iv). From (v) one gets, by iteration, that if
a ∈ F then a2k ∈ F for all k �= 0, in particular for 2k ≥ m − 1; but then by 10.7 the rule
p2k � pm−1 holds for Ł

≤
m , so am−1 ∈ F because F is by assumption an Ł

≤
m-Þlter. Finally

only the proof of (vi)⇒(i) remains. By Theorem 14 we can use the characterization (2) of
the Leibniz congruence of any Ł

≤
m-Þlter F on an arbitrary algebra A; this means that for all

a, b ∈ A , 〈a, b〉 ∈ ΩA(F ) ⇐⇒ (a ↔ b)m−1 ∈ F for any Ł
≤
m-Þlter F . So assume now that F

is an Ł
≤
m-Þlter on A satisfying condition (vi), and let G be any Ł

≤
m-Þlter on the same A such

that ΩA(G) = ΩA(F ). Take a ∈ F ; by assumption am−1 ∈ F . But as observed during the
proof of Theorem 15, (p↔�)m−1 ��≤

m pm−1 , and F is closed under all rules of Ł
≤
m , therefore

(a ↔ 1)m−1 ∈ F , that is, 〈a, 1〉 ∈ ΩA(F ) = ΩA(G). Since 1 ∈ G, by compatibility also
a ∈ G. This shows that F ⊆ G and completes the proof that F is Leibniz.

Corollary 18 The logic Łm is the inferential strengthening of the logic Ł
≤
m by any of the fol-

lowing proper rules:

p , p → q � q (i.e., the rule of Modus Ponens)

p , q � p ∗ q

p � p ∗ p

p � pm−1
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One sometimes thinks of Ł
≤
m as �Łm minus Modus Ponens�. It is an open problem to Þnd

a Hilbert-style presentation of Ł
≤
m ; if one is found then adding to it any of the rules in Corollary

18 will yield one of Łm . Unfortunately, the existing presentations of Łm do not help in this
problem because they have only one rule of inference, namely Modus Ponens. A Gentzen-
style presentation of Ł

≤
m has been proposed, without proof, in [22]. There are other syntactical

relations between the two logics; besides that of Theorem 15 there is the following particular
case of Theorem 11: For all ϕ0, . . . , ϕn−1, ψ ∈ Fm,

ϕ0, . . . , ϕn−1 �≤
m ψ ⇐⇒ �m ϕ0 ∧ · · · ∧ ϕn−1 → ψ. (20)

A consequence of these relations is:

Theorem 19 The sets of logics {Ł≤
m : m ≥ 2} and {Łm : m ≥ 2} are isomorphic ordered

sets when ordered under the “strengthening” relation, and have CPL (classical logic) as their
common upper bound. These sets are lattices where the infimum and supremum operations are
given by the following arithmetical operations on subindexes:

m ∧ k = lcm(m − 1, k − 1) + 1 (21)

m ∨ k = gcd(m − 1, k − 1) + 1 (22)

Proof: The �strengthening� relation is clearly an ordering relation between logics, that is,
between the consequence relations considered set-theoretically. From (20) it follows that for
all m, k ≥ 2 , �≤

m ⊆ �≤
k if and only if the set of theorems of �m is included in the set of

theorems of �k . It is well-known [24, Theorem 9.1.2] that this happens if and only if k − 1
divides m − 1, which is equivalent to saying that Sk is a subalgebra of Sm . By the way the
logics are deÞned from the algebras, this obviously implies that �m ⊆ �k . To show that this
in turn implies that �≤

m ⊆ �≤
k one needs just to apply the property (20), which reduces deriv-

ability in Ł
≤
m to theoremhood in Łm , and the same for k . This completes the proof that the

two ordered sets are isomorphic. Using the same fundamental properties it is easy to show that
both sets are lattices with the lattice operations corresponding to the operations on indexes ex-
pressed by (21) and (22), that is, Ł

≤
s = Ł

≤
m ∧ Ł≤

k if and only if Łs = Łm ∧ Łk if and only if

s = lcm(m − 1, k − 1) + 1, and Ł
≤
s = Ł

≤
m ∨ Ł≤

k if and only if Łs = Łm ∨ Łk if and only if

s = gcd(m−1, k−1)+1. Finally, clearly Ł
≤
2 = Ł2 = CPL, and since 1 divides m−1 for all

m ≥ 2, it is clear that CPL is the common upper bound of both sets, in fact their maximum.

In the next section the lower bounds of each of the two sets will be determined.

5 Logics defined from infinite subalgebras of the real unit interval

Logics of this kind have been analysed in [15, Section 3C] as examples of the notion of �strong
version� of a protoalgebraic logic, in a context where the logics need not necessarily be Þnitary,
that is, they are what in Section 1 was called �consequence relations�; they were also denoted
by Ł

≤
S and ŁS , as in the present paper, but the reader should not be confused: the �logics� of

[15] are slightly different from those of the present paper. More precisely:
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Theorem 20 Let S be a non-trivial subalgebra of [[[0,1]]] and consider the two consequence
relations defined by using the non-finitized schemes (3) and (5) by taking A = S and Val =
Hom(Fm,S). Then each of these consequence relations is finitary if and only if the algebra
S is finite.

Proof: I have already observed in Section 2 that these consequences are those deÞned by a
single matrix (6) and by a set of matrices (7), respectively. Now, if S is Þnite then the matrix
(6) is Þnite, while the set of matrices (7) is a Þnite set of Þnite matrices. So both consequence
relations are deÞned by a Þnite set of Þnite matrices, and it is well-known (see [44, Theorem
4.1.7] for instance) that such a consequence is Þnitary. Now assume that the algebra S is inÞnite.
By MCNAUGHTON�s Theorem [24, Theorem 9.1.8], it is easy to see that for each k ∈ ω there

exists a formula ϕk(p) in one variable p such that for all a ∈ [0, 1], ϕ
[[[0,1]]]
k (a) = 0 iff a ≤ k+1

k+3

and ϕ
[[[0,1]]]
k (a) = 1 iff a ≥ k+2

k+3 . Now take Σ = {ϕk(p) : k ∈ ω} and let S ⊆ [[[0,1]]] be an inÞnite
subalgebra. The consequence relations deÞned from S by (3) and (5) will be represented inside
this proof by �1 and �≤

respectively, as in Section 2. Clearly, �≤ ⊆ �1 . It is straightforward
to check that Σ �1 p and Σ �≤

p. However, if Σ0 ⊆ Σ is Þnite, then Σ0 ��1 p: This follows
from the fact, proved in Proposition 3.5.3 of [8], that S , being inÞnite, must be a dense subset
of [0, 1]; therefore for each n ∈ ω there is some an ∈ S with n+2

n+3 < an < 1, hence by the

construction of the formulas ϕS
k (an) = ϕ

[[[0,1]]]
k (an) = 1 for all k ≤ n while an �= 1. This

shows that Σ0 ��1 p and a fortiori Σ0 ��≤
p. Thus, neither of the two consequence relations is

Þnitary.

By DeÞnition 9, the logics Ł
≤
S and ŁS in the present paper are Þnitary, hence they do not

coincide with the consequence relations denoted by the same symbols in [15]. Moreover, since
the general framework of semilattice-based logics summarized in Section 3 relies heavily on the
logics being Þnitary, this also says that whatever results one can obtain from it cannot be based
on those of [15, Section 3C].

The logics deÞned from the whole algebra [[[0,1]]] will play a special role from now on, so
for ease of notation I will denote them by Ł

≤
∞ and Ł∞ instead of Ł

≤
[[[0,1]]] and Ł[[[0,1]]] respectively.

Notice that Ł∞ is the finitary logic deÞned by the matrix
〈
[[[0,1]]] , {1}

〉
; that the consequence

relation deÞned from this matrix is non-Þnitary (as Theorem 20 states for all inÞnite S) was
Þrst noticed by WÓJCICKI in [43]. The tautologies of this matrix form what is usually called
the inÞnite-valued Łukasiewicz logic. After their axiomatization by ROSE and ROSSER, and
independently by CHANG, it was proved by HAY [26] that Ł∞ coincides with the logic ax-
iomatized by those tautologies and the rule of Modus Ponens; see also [8, p. 101] and [25,
Theorem 3.2.13]. RODRÍGUEZ, TORRENS and VERDÚ proved in [37] that it is Þnitely, strongly
and regularly algebraizable, that its equivalent algebraic semantics is the class MV of all MV-
algebras and that on each A ∈ MV the Ł∞-Þlters coincide with the implicative Þlters, i.e.,
those F ⊆ A such that 1 ∈ F and F is closed under Modus Ponens (if a, a → b ∈ F then
b∈ F ). As a consequence, Ł∞ is the logic deÞned by the class of matrices

{
〈A, F 〉 : A ∈ MV , F ⊆ A is an implicative Þlter

}
. (23)

The proofs in [37] show that the set of equivalence formulas for Ł∞ is the set {p→ q , q → p},
which can be replaced in this function by the single formula p ↔ q .
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Recall that, as a particular case of Theorem 11, Ł
≤
∞ and Ł∞ are linked by the relation

ϕ0, . . . , ϕn−1 �≤
∞ ψ ⇐⇒ �∞ ϕ0 ∧ · · · ∧ ϕn−1 → ψ. (24)

Concerning the other logics deÞned by preservation of truth from inÞnite subalgebras of [[[0,1]]],
one Þnds:

Theorem 21 The logics ŁS for an infinite S ⊆ [[[0,1]]] depend only on the rationals contained
in S . That is, if S and T are two infinite subalgebras of [[[0,1]]] then ŁS = ŁT if and only if
S∩Q = T ∩Q. Moreover, all the logics ŁS have the same theorems for all infinite subalgebras
S of [[[0,1]]].

Proof: It is obvious that if S ⊆ [[[0,1]]] then the logic ŁS is a strengthening of Ł∞ . Hence all
these ŁS are algebraizable with equivalent algebraic semantics the quasivariety Q(S), which is
a subclass of the variety MV, and with the same equivalence formula p ↔ q . Now, in Theorem
2.9 of [23] it is shown that Q(S) = Q(T ) if and only if S∩Q = T ∩Q. Since an algebraizable
logic is completely determined by its equivalent algebraic semantics and its deÞning equations,
this establishes the Þrst part of the statement. Now, again by algebraizability, the theorems of
ŁS are translated into the equations holding in the quasivariety Q(S), which are those holding
in the variety generated by S . But it is a straightforward consequence of a well-known theorem
of LINDENBAUM [29, Theorem 16] that this variety is always (for an inÞnite S) the whole
variety MV, hence all these ŁS have the same theorems. This establishes the second part of the
theorem.

Thus, only the logics deÞned by preservation of truth inside a finite truth-value-algebra have
particular theorems. This constitutes another proof that the topic of the present section can only
be of interest for those interested in the inferential side of logic: for inÞnite S , the logics ŁS are
purely inferential strengthenings of Ł∞ . Actually, the general theory of algebraizability shows
that any set of quasiequations deÞning Q(S) relatively to MV yields, when translated through
the equivalence formula, an axiomatization of the additional rules of ŁS with respect to Ł∞ . In
particular, in the cases where S contains all rationals in [0, 1] the ŁS is equal to Ł∞ .

For logics deÞned by preservation of truth, there is not a one-to-one correspondence between
logics and inÞnite subalgebras of [[[0,1]]]. The case of the logics deÞned by preservation of degrees
of truth the situation is even worse:

Theorem 22 If S is an infinite subalgebra of [[[0,1]]] then Ł
≤
S = Ł

≤
∞ .

Proof: This is due to the fact that by deÞnition all these logics are semilattice-based with re-
spect to S and hence, by the properties summarized in Section 3, with respect to V(S). As
I have already recalled in the previous proof, by LINDENBAUM�s result [29, Theorem 16], for
an inÞnite S all these varieties are equal and coincide with MV. Therefore all these logics
coincide with the logic that is semilattice-based with respect to MV, that is, with Ł

≤
∞ .

Thus there is only one logic defined by preservation of an infinite number of degrees of truth
in [[[0,1]]], namely Ł

≤
∞ . Some of its properties follow from the general theory of Section 3: it is

selfextensional and has conjunction, and AlgŁ
≤
∞ = MV; moreover, on each of these algebras
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its Þlters are the lattice Þlters. As a consequence, in parallel with (23), Ł
≤
∞ is the logic deÞned

by the class of matrices
{
〈A , F 〉 : A ∈ MV , F ⊆ A is a lattice Þlter

}
. (25)

From this one can also infer that Ł
≤
∞ it coincides with the logic denoted as CV in [22]. In

this paper a Gentzen calculus is presented that is claimed (without proof) to be a Gentzen-style
presentation of this logic; a reasonable conjecture is that the Gentzen system deÞned by this
calculus is the (unique) Gentzen system fully adequate for Ł

≤
∞ , which exists by the general

theory of [16].

By Theorem 11, each logic ŁS deÞned by the truth-preserving scheme is different from
the corresponding logic Ł

≤
S deÞned by the preservation of degrees of truth scheme. Corollary

18 provides an exact, Hilbert-style relationship between each two them in the case S is Þnite,
and in Theorem 19 a global relationship between the two families has been established. By
Theorems 21 and 22, there is no hope that such results can be replicated in the inÞnite case, for
most of the logics of the Þrst kind coincide, as do all those of the second. It is only reasonable
to expect that something similar holds for the weakest cases of Ł∞ and Ł

≤
∞ . However:

Theorem 23 (GIL, TORRENS, VERDÚ) The logic Ł
≤
∞ is not protoalgebraic.

Proof: This result is in fact a corollary to Theorem 5 of [22] that characterizes the protoalgeb-
raic strengthenings of the logic denoted there as CV , which as observed before should be equal
to the logic here denoted as Ł

≤
∞ . Since [22] appears in a proceedings volume very difÞcult to

Þnd, and moreover contains no proofs, it may be of interest to give here a direct proof.

An element a of an MV-algebra A is archimedean, according to [8, Corollary 6.2.4], when
there is an integer n ≥ 1 such that ¬a ∨ n a = 1; an MV-algebra all whose elements are
archimedean is called hyperarchimedean [8, DeÞnition 6.3]. Let A be any such algebra, for
instance the direct product of the algebras Sm for all m ≥ 2 (see [8, Chapter 6] or [40, Section
3.A]) and let a ∈ A be any non-archimedean element of A. Let F = Fi(¬a) be the implicative
Þlter generated by ¬a; this set is both an Ł

≤
∞-Þlter (thus, a lattice Þlter) and an Ł∞-Þlter.

This last logic is algebraizable, hence equivalential, therefore (2) can be used with ∆(p , q) =
{p → q , q → p}. Since a → 0 = ¬a ∈ F by construction, and 0 → a = 1 ∈ F because all
Þlters contain the maximum, by (2) 〈a, 0〉 ∈ ΩA(F ). If by contradiction one assumes that Ł

≤
∞

is protoalgebraic, then by [11, Corollary 1.1.11] from the fact that 〈a, 0〉 ∈ ΩA(F ) it follows
that a and 0 must belong to the same Ł

≤
∞-Þlters on A that contain F ; in particular this implies

that 0 ∈ Filt(F , a), the lattice Þlter generated by F ∪ {a}. Since F is itself a lattice Þlter, by
standard lattice-Þlter generation this means that 0 = b ∧ a for some b ∈ F = Fi(¬a). Now
the characterization of implicative Þlters in MV-algebras found in [8, Proposition 4.2.9] or [40,
1.19] can be used, which is an algebraic version of the Local Deduction Theorem for Ł∞ , that
is, that Fi(¬a) = {c ∈ A : (¬a)n ≤ c for some n ≥ 1}. Hence (¬a)n ≤ b for some n ≥ 1
and thus (¬a)n ∧ a = 0, which by the De Morgan Laws for both the pairs (∧ ,∨) and (⊕ , ∗) is
equivalent to n a ∨ ¬a = 1, which would mean that a is archimedean, against the assumption.
Therefore Ł

≤
∞ cannot be protoalgebraic.

Thus, the general theory developed in [15] for protoalgebraic logics cannot be applied to
Þnd out an abstract relationship between Ł

≤
∞ and Ł∞ . We can instead consider the following,
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truly general deÞnition of a �strong version� of a logic: Given an arbitrary logic S , one can
always consider the logic Smin deÞned by the class of matrices

{
〈A, F 〉 : A ∈ AlgS , F =

⋂
FiSA

}
,

that is, the logic deÞned by taking only the smallest matrix on each S -algebra. Since each of
these matrices is of course an S -matrix, the logic Smin is a strengthening of S . And in the
present case one obtains:

Theorem 24 (Ł
≤
∞)

min
= Ł∞ .

Proof: Since AlgŁ
≤
∞ = MV and on any MV-algebra the least Ł

≤
∞-Þlter is {1}, the logic

(Ł
≤
∞)

min
is the logic deÞned by the class of matrices

{〈
A , {1}

〉
: A ∈ MV

}
. But MV is

the equivalent algebraic semantics for Ł∞ and {1} is the designated Þlter on each A ∈ MV,

therefore (Ł
≤
∞)

min
coincides with the logic Ł∞ .

Thus the relation between Ł
≤
∞ and Ł∞ is parallel to that found between Ł

≤
m and Łm for

each Þnite m: On one hand Ł∞ is the logic deÞned by preserving truth from the same structure
(the real unit interval) with respect to which Ł

≤
∞ is deÞned by preserving degrees of truth. On

the other side, the logic Ł∞ is the strong version, in a different abstract sense, of the logic Ł
≤
∞ .

There is also a version of Corollary 15:

Theorem 25 The logic Ł∞ is the inferential strengthening of the logic Ł
≤
∞ by any of the fol-

lowing proper rules

p , p → q � q (i.e., the rule of Modus Ponens)

p , q � p ∗ q

p � p ∗ p

or by the infinite set of proper rules

p � pn for all n ≥ 2 .

Proof: AlgŁ
≤
∞ = AlgŁ∞ = MV and by Theorem 2.22 of [14], each logic S is complete

with respect to the class of matrices
{
〈A , F 〉 : A ∈ AlgS , F ∈ FiSA

}
; hence it is enough

to compare the Þlters of the two logics in the class of MV-algebras. It is true that an Ł
≤
∞-

Þlter on an MV-algebra is just a lattice Þlter, and that an Ł∞-Þlter on an MV-algebra is just an
implicative Þlter. And as a consequence of Proposition 9 of [18], see also [8, Lemma 4.2.7],
a lattice Þlter on an MV-algebra is an implicative Þlter if and only if it is closed under Modus
Ponens, and also if and only if it is closed under the rule p, q � p ∗ q . This shows that the
Þrst two rules do axiomatize Ł∞ relatively to Ł

≤
∞ . In order to show that the apparently weaker

rule p � p ∗ p also deÞnes Ł∞ from Ł
≤
∞ , I show that an Ł

≤
∞-theory that is closed under it is

also closed under the rule p, q � p ∗ q: Let Γ be any such theory, and ϕ, ψ ∈ Γ . Take any
t ∈ [0, 1] and any v ∈ Hom(Fm, [[[0,1]]]) such that v(γ) ≥ t for all γ ∈ Γ . In particular
v(ϕ) , v(ψ) ≥ t. Since [0, 1] is linearly ordered, let�s say v(ϕ) ≤ v(ψ). By monotonicity of
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∗, v(ϕ ∗ ϕ) = v(ϕ) ∗ v(ϕ) ≤ v(ϕ) ∗ v(ψ) = v(ϕ ∗ ψ). But by assumption ϕ ∈ Γ implies
ϕ ∗ ϕ ∈ Γ , and one concludes that v(ϕ ∗ ψ) ≥ t. Since t and v are arbitrary, this shows that
Γ �≤

∞ ϕ ∗ ψ , which implies ϕ ∗ ψ ∈ Γ because Γ is assumed to be an Ł
≤
∞-theory. Finally, an

Ł
≤
∞-theory closed under the rule p � p ∗ p is also closed under all rules p � p2k

for all k ≥ 1,
by iteration. Since by p2k � pn when n ≥ 2k is also a rule of Ł

≤
∞ , such theory is also closed

under all rules p � pn for all n ≥ 2. That all these rules are proper follows from Theorem 11
and their mutual equivalence just established.

Again, as in the Þnite case, I do not know of a Hilbert-style presentation of Ł
≤
∞ , while a

Gentzen-style one is proposed, without proof, in [22].

While the last results have been logical applications of the main results, I offer below an
algebraic application of the logical results:

Proposition 26 Let A be an MV-algebra, and let F be a lattice filter on A. Then the largest
implicative filter on A contained in F is the set G = {a ∈ A : ak ∈ F for all k ≥ 1}.

Proof: It is clear that G ⊆ F , because a1 = a. In order to see that G is an Ł
≤
∞-Þlter,

one assumes that ϕ0, . . . , ϕn−1 �≤
∞ ψ and that h(ϕ0), . . . , h(ϕn−1) ∈ G for some h ∈

Hom(Fm,A); by deÞnition of G this means that for all k ≥ 1,
(
h(ϕ0)

)k
, . . . ,

(
h(ϕn−1)

)k ∈
F . Now by Proposition 10.1 also ϕk

0, . . . , ϕ
k
n−1 �≤

∞ ψk , and since F is an Ł
≤
∞-Þlter, one con-

cludes that h(ψk) ∈ F for all k ≥ 1, that is, h(ψ) ∈ G. This shows that G is an Ł
≤
∞-Þlter.

By its own deÞnition G is trivially a model of the rule p � p ∗ p, hence by Theorem 25 it is
an Ł∞-Þlter, that is, an implicative Þlter. Finally, let H ⊆ F be another implicative Þlter, and
a ∈ H . Again by Theorem 25 ak ∈ H for all k ≥ 1, so ak ∈ F for all k ≥ 1, which implies
a ∈ G, that is, H ⊆ G. Thus G is the largest such implicative Þlter.

The Þnal observation on the logics examined in this paper is a relation between the Þnite
and the inÞnite cases. At the end of Section 4 I promised to determine the lower bounds of the
families of logics generated by the two schemes from Þnite subalgebras of [[[0,1]]], that is, of the
families of all Ł

≤
m and of all the Łm . In doing this one Þnds an interesting fact: the desired

inÞma are not the same if computed in the (natural) lattice of all logics over the same language,
or if computed in the larger lattice of all consequence relations over the same language; such
sets are complete lattices, see [44, Section 1.5].

Theorem 27 The infimum of the family {Ł≤
m : m ≥ 2} in the lattice of all (finitary) logics is the

logic Ł
≤
∞ , while the infimum of the same family in the larger lattice of all consequence relations

is a non-finitary logic different from Ł
≤
∞ .

Proof: This uses TARSKI�s theorem [29, Theorem 20] that V
(
{Sm : m ≥ 2}

)
= V

(
[[[0,1]]]

)
=

MV; see also [8, Proposition 8.1.2]. Then the following chain of equivalences should be obvi-
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ous:

ϕ0, . . . , ϕn−1 �≤
m ψ for all m ≥ 2

⇐⇒ �m ϕ0 ∧ · · · ∧ ϕn−1 → ψ for all m ≥ 2 by (20)

⇐⇒ ϕ0 ∧ · · · ∧ ϕn−1 → ψ ≈ � holds in Sm, for all m ≥ 2
⇐⇒ ϕ0 ∧ · · · ∧ ϕn−1 → ψ ≈ � holds in MV by TARSKI�s Theorem

⇐⇒ �∞ ϕ0 ∧ · · · ∧ ϕn−1 → ψ by algebraizability

⇐⇒ ϕ0, . . . , ϕn−1 �≤
∞ ψ by (24).

So Ł
≤
∞ = inf{Ł≤

m : m ≥ 2} in the lattice of (Þnitary) logics (over the same language, of course).
Now put S∞ = infc{Ł

≤
m : m ≥ 2}, the inÞmum of the same family in the bigger lattice of all

consequence relations. That is, for all Γ ⊆ Fm and all ψ ∈ Fm, Γ �S∞ ψ if and only if
for all m ≥ 2 , Γ �≤

m ψ . Therefore, Ł
≤
∞ is the Þnitary part of S∞ , and so seeing that S∞ is

non-Þnitary and seeing that S∞ �= Ł
≤
∞ amount to the same thing. Consider the set of formulas

in two variables ∆(p, q) =
{
(p ↔ q)m−1 : m ≥ 2

}
. By Theorem 14, p, (p ↔ q)m−1 �≤

m q

for each m ≥ 2, hence a fortiori p, ∆(p, q) �≤
m q for all m ≥ 2, and thus p, ∆(p, q) �S∞ q .

However, p, ∆(p, q) ��≤
∞ q . In order to see this, since Ł

≤
∞ is Þnitary and ps � pt whenever

s ≥ t ≥ 1, it is enough to see that p, (p ↔ q)m−1 ��≤
∞ q for each m ≥ 2. For m = 2 it is

enough to take v(q) < v(p) while for m > 2 take v(p) = 1/2 and m−3
2m−4 < v(q) < 1/2; a

straightforward computation shows that in both cases v(q) < v(p) ∧ v
(
(p ↔ q)m−1

)
, which is

against p, (p ↔ q)m−1 ��≤
∞ q .

Thus, this yields a beautiful, natural example that the lattice of all logics on a Þxed language
is not a complete sublattice of the lattice of all consequence relations over the same language;
notice that by [44, Theorem 1.5.6] the former is indeed a sublattice of the latter. At the same
time, since by Theorem 14 all Ł

≤
m are protoalgebraic while by Theorem 23 Ł

≤
∞ is not protoal-

gebraic, this also shows that the set of all protoalgebraic logics (over a Þxed language) is not a
complete sublattice of the lattice of all logics either. As the logics Ł

≤
m are all Þnitely equivalen-

tial, the same applies to the sets of all equivalential logics and of all Þnitely equivalential logics
(always on the same language). However, the issue of the order structure of all these particular
sets has not been touched in depth in the literature; it is however known that each of these sets
is closed under strengthenings, see [11, pages 71,187,316].

Finally, almost the same situation is found for the strong versions:

Theorem 28 The infimum of the family {Łm : m ≥ 2} in the lattice of all (finitary) logics is the
logic Ł∞ , while the infimum of the same family in the larger lattice of all consequence relations
is a non-finitary logic different from Ł∞ .

Proof: The proof of the Þrst part is similar to the Þrst part of the proof of Theorem 27, but
using a much more recent and sophisticated algebraic result. By deÞnition of the logics Łm , the
entailment ϕ0, . . . , ϕn−1 �m ψ holds for all m ≥ 2 if and only if the quasiequation

ϕ0 ≈ � & . . . & ϕn−1 ≈ � ⇒ ψ ≈ � (26)
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holds in Sm for all m ≥ 2, that is, iff (26) holds in the quasivariety generated by the family
of algebras {Sm : m ≥ 2}. Clearly, the union of all their universes contains all the rational
points in [0, 1], hence as a consequence of Theorem 3.8 of [23] this quasivariety coincides with
the variety generated by the same family, which by TARSKI�s Theorem used in the preceding
proof, is the whole class MV. Then, by the algebraizability of Ł∞ with MV as equivalent
algebraic semantics, (26) holds in MV if and only if ϕ0, . . . , ϕn−1 �∞ ψ . This proves that
Ł∞ = inf{Łm : m ≥ 2}. In order to prove the second part of the theorem one considers
S∞ = infc{Łm : m ≥ 2}, the inÞmum of the same family in the bigger lattice of all con-
sequence relations. To reach a contradiction let�s assume that this consequence is Þnitary; then
it belongs to the smaller lattice and hence S∞ = Ł∞ . By deÞnition Ł∞ is the Þnitary part of the
consequence relation deÞned by the inÞnite matrix

〈
[[[0,1]]], {1}

〉
, which I denote by S∞ . As I

recalled before and is well-known, S∞ is not Þnitary, hence it is strictly stronger than its Þnitary
part Ł∞ . But for each m ≥ 2, the matrix

〈
Sm , {1}

〉
is a submatrix of

〈
[[[0,1]]], {1}

〉
, and by [11,

Proposition 0.3.3] the consequence it deÞnes is stronger than that deÞned by the larger matrix:
Each Łm is stronger than S∞ , hence so is their inÞmum in the bigger lattice, that is, S∞ = Ł∞
is stronger than S∞ , which contradicts the fact proved before that S∞ is strictly stronger than
Ł∞ . This shows that S∞ is non-Þnitary and hence different from Ł∞ .

The distinction between the greatest lower bounds of each family in the two different com-
plete lattices does not carry over to their lowest upper bound: By Theorem 19 they coincide
with CPL = Ł2 = Ł

≤
2 , which is a member of both families, hence it is actually their maximum

inside the two lattices.

6 Conclusions

In this paper I have presented the theory of semilattice-based logics as a formalization, in the
context of Abstract Algebraic Logic, of the (already known) idea of preserving degrees of truth,
a scheme for semantic deÞnition of logics particularly suited for multiple-valued logics opposed
to the (more standard) scheme of preservation of truth. After summarizing the main notions
and results in this theory, I have applied it, together with other more general parts of Abstract
Algebraic Logic, to the study of the logics obtained in both ways from a single subalgebra of
the real unit interval, endowed with Łukasiewicz�s operations. The algebraic counterparts of
these logics have been determined, and they have been classiÞed according to the so-called
protoalgebraic hierarchy. Some further properties have been obtained, either of an algebraic or
of a logical character. The behaviour of the logics resulting from Þnite subalgebras has been
seen as much more standard and regular than that of those arising from inÞnite subalgebras; in
particular, the scheme of preservation of degrees of truth obtains only one logic in the latter case,
while the scheme of preservation of truth obtains a different logic for each inÞnite subalgebra
containing different sets of rationals from the real unit interval.

An interesting observation arises, that preservation of truth seems to depend on the rational
points belonging to the deÞning truth-value algebra, while preservation of degrees of truth seems
to do so only in case there are only a Þnite number of degrees of truth to be preserved. No
interpretation of this fact has been attempted at.

The development of the last two sections of the paper shows many examples of how the
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interplay logic-algebra works, and in both directions. General theories of logic and of its al-
gebraization have been used, as well as central notions of universal algebra. More importantly,
several deep facts concerning the algebraic properties of the particular classes of algebras in-
volved have been used in an essential way in order to obtain some of the main logical results.

I have given just a sample of how these methods work when dealing with logics deÞned from
a subalgebra of the real unit interval. Clearly this does not exhaust the family of multiple-valued
logics deÞned by preservation of degrees of truth in this context; actually, there is one such
logic for each proper subvariety of the variety MV of all MV-algebras. By LINDENBAUM�s
and TARSKI�s Theorems quoted before, such a subvariety can contain only a Þnite number of
the subalgebras Sm and can contain no inÞnite subalgebra of [[[0,1]]]; KOMORI [27] described all
such subvarieties. The situation concerning subquasivarieties of MV (which are related with the
logics obtained by preservation of truth) is far more complicated; those generated by families of
subalgebras of [[[0,1]]] have been classiÞed and described in [23].

The paper also shows the importance of having a general framework, as a way of placing
the investigations on particular logics and/or particular classes of algebras in the context of a
more far-reaching research program. I think that the contents of the paper shows that Abstract
Algebraic Logic is a good candidate for playing such a role, and offers some powerful tools for
these tasks.
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