The Rabin- Miller Probabilistic Primality Test: Some Results on the Number of Non-Witnesses to Compositeness

Brian C. Higgins
Division of Science
Penn State Erie-The Behrend College
Erie, PA 16563

Faculty Advisor: Mr. Charles L. Burchard

Abstract

This paper introduces the reader to the Rabin-Miller probabilistic primality test, the concept of non-witnesses to compositeness, and the problem of determining the number of non-witnesses to compositeness. Given in this paper are two conjectures: one on determining the number of non-witnesses to compositeness of numbers with two distinct prime factors, and another on producing composite numbers with a maximal number of non-witnesses. We also present computer generated data that supports these conjectures.

1. Introduction

The problem of determining if a given number is prime is of great interest to both computer scientists and mathematicians. According to the great mathematician Gauss [1], the problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. For example, in today's technological world one needs to be able to identify "large" prime numbers to implement a public key encryption system. An excellent description of public key algorithms can be found in, Schneier [2]. As stated by Schneier [2], the security of a public key encryption system is based on the conjecture that multiplying two large primes is a one-way function. That is, it is easy to multiply the numbers to get a product but hard to factor the product and recover the large primes. This provides the reader with some motivation of the importance of determining the primality of a number. There are several tests that can quickly determine if a given large number is prime with a certain confidence. One such test is the Rabin-Miller probabilistic primality test.

2. Features of The Rabin-Miller Probabilistic Primality Algorithm

The Rabin-Miller probabilistic primality test was developed by Rabin [3], based on Miller's [4] ideas. This algorithm provides a fast method of determining the primality of a number with a controllably small probability of error. The algorithm is described below.

2.1. The Rabin-Miller Probabilistic Primality Algorithm

Given (b, n) where n is the number to test for primality, and b is randomly chosen in [1, $n-1$]. Let $n-1=2^{q} m$, where m is an odd integer. If either
(a) $b^{m} \equiv 1(\bmod n)$ or
(b) there is an integer i in $[0, q-1]$ such that $b^{m 2^{\wedge} i} \equiv-1(\bmod n)$
then return 'inconclusive' else return ' n is composite.'
Rabin [3], shows that the algorithm has the characteristic that for a composite number, n, at most $1 / 4$ of the bases, b, will result in 'inconclusive.' The interpretation of the result 'inconclusive' is that so far the number n is acting as a prime (i.e. n may be prime) This characteristic is described in more detail in section 3 of this paper. However, we will now describe how this allows one to test the primality of a number probabilistically.

2.2. Interpreting the Rabin-Miller Probabilistic Primality Algorithm

The algorithm enables one to probabilistically test the primality of a number n as follows:

1. If n fails the test (i.e. results in ' n is composite') for any b in [1, $n-1$] then n is definitely composite (although, interestingly, no factor is provided by the algorithm).
2. A composite number has at most 1 chance in 4^{k} of passing all k of a series of k tests, where b is chosen randomly from [1, $n-1$] for each test. Therefore, if a suspected prime, n, passes k of k tests, we conclude with a certainty at least $1-(1 / 4)^{k}$ that n is prime.

Rabin [3], gives the following interpretation of step 2 above. This statement does not mean that an integer n asserted as prime by use of 50 random numbers is prime with probability at least $1-(1 / 4)^{50}$. Such an interpretation is nonsensical since n is either prime or not. The correct meaning is that if the test is applied to $m=4^{50}$ integers n_{1}, n_{2}, \ldots, n_{m}, then the expected number of wrong answers is one.

2.3. Implementation of the Algorithm on a Known Prime

We will now demonstrate this algorithm on a number that we definitely know is prime,
say $n=29$. Since $28=2^{2}$ * 7 , we let $q=2$ and $m=7$. To apply this algorithm we need to randomly select a number to use in the test, say $b=10$. Then $10^{7 \equiv 17(\bmod 29)}$ which is not congruent to 1 or -1 so we continue the test. We obtain $\left(10^{7}\right)^{2 \equiv}-1(\bmod$ 29) so the test returns 'inconclusive' (i.e. 29 may be prime).

Let us perform the test with another randomly selected base, say $b=19$. Then $19^{7 \equiv 12}$ (mod 29) which is not congruent to 1 or -1 so we continue the test. We obtain $\left(19^{7}\right)^{2} \equiv-$ 1 (mod 29) so the test again returns 'inconclusive' (i.e. 29 may be prime). If we perform the algorithm on all bases b in [1,28] the test returns 'inconclusive' in each case. In fact for any prime number, p, we know all the bases in [1, $p-1$] result in 'inconclusive'.

2.4. Implementation of the Algorithm on a Composite Number

To demonstrate the result of the test for various bases on a composite number we will use $n=13^{*} 17=221$. Since $220=2^{2 *} 55$, we let $q=2$ and $m=55$. To apply this algorithm we will need a randomly selected base, say $b=5$. Then $5^{55} \equiv 112(\bmod 221)$ which is not congruent to 1 or -1 so we continue the test. We obtain $\left(5^{55}\right)^{2} \equiv 168$ (mod 221) which is not congruent to -1 . Since we used all i in $[0,1]$ the test returns that 221 is definitely composite.

However what happens if we did not randomly choose $b=5$ but say we selected $b=$ 21. Then $(21)^{55} \equiv 200(\bmod 221)$ which is not congruent to 1 or -1 so we continue the test. We obtain $\left(21^{55}\right)^{2} \equiv-1(\bmod 221)$ so the test returns 'inconclusive.' That is for a composite number 221 the test returns 'inconclusive’ (i.e. 221 may be prime) for the base 21 .

We call such a base a non-witness to the compositeness of 221. That is, if the base b in $[1, n-1$] results in 'inconclusive' for a composite number n, then b is a non-witness to the compositeness of n. In fact, 221 has six non-witnesses -- namely 1, 21, 47, 174, 200, and 220. We denote the number of non-witnesses for a number, n, by $n w(n)$. So in our example $n w(221)=6$.

3. The Number of Non- Witnesses to the Compositeness of a Number

Rabin [3], states that the number of witnesses to compositeness has a lower bound. This statement is given as our first theorem.

Theorem 1 If $n>4$ is composite, then the number of bases, b, in [1, $n-1]$ such that b is a witness to the compositeness of n is at least $3(n-1) / 4$.

The following corollary describing the upper bound on non-witnesses to compositeness follows directly from theorem 1.

Corollary 1 If $n>4$ is composite then at most $(n-1) / 4$ of the bases, b, in [1, $n-1]$ are non-witnesses to the compositeness of n.

For the composite number $221=13$ * 17 we expect at least $3(220) / 4=165$ of the bases are witnesses to the compositeness of 221. In fact we found that 221 has 214 witnesses to its compositeness. Similarly, for the composite number $221=13$ * 17 we expect at most $220 / 4=55$ of the bases are non-witnesses. In fact we found that 221 has only 6 non-witnesses.

4. Empirical Evidence

The reader can verify that the composite number 221 has very few non-witnesses. In fact, while implementing the Rabin-Miller probabilistic primality test on very large composite numbers we rarely, if ever, found non-witnesses. We therefore set out to answer two questions which are stated below.

1. As Corollary 1 states, we know the number of non-witnesses is bounded. However we want to determine the exact number of non-witnesses for a composite number.
2. We want to know if we can produce composite numbers whose number of non-witnesses approaches the 1/4 upper bound proven by Rabin.

4.1. Initial Empirical Data

As stated above, we rarely discovered composite numbers with the number of nonwitnesses approaching the upper bound. Table 1 (located at the end of this paper) displays composite numbers, their factorization, the number of non-witnesses, denoted $n w(n)$, and the upper bound of non-witnesses. The number of non-witnesses for any composite number given in the table does not approach the upper bound of $(n-1) / 4$.

When analyzing our data we discovered the most interesting composite numbers appear to be those with two distinct prime factors. Table 2 (found at the end of this paper) shows a list of composite numbers having two distinct prime factors, p and q. Also shown is d , the greatest common divisor of $p-1$ and $q-1$ (i.e. $\mathrm{d}=\operatorname{gcd}(p-1, q-1)$), and the number of non-witnesses of n, denoted $n w(n)$. When analyzing this data we discovered recurring numbers for $n w(n)$. For example, the composite numbers 65, 221, 493, 1073, 1517, 2173, 3233, 9797, 11009, and 12317 all have 6 non-witnesses.

As stated earlier we are interested in determining a method for calculating nw(n). After studying such data as displayed in Table 2, we believe the number of non-witnesses is a function of $d=\operatorname{gcd}(p-1, q-1)$. That is, given $d=\operatorname{gcd}(p-1, q-1)$ the table below can be used to determine the exact number of non-witnesses of $n=p q$ where p and q are distinct primes.
Using this table we conclude that for a composite number $4187=53^{*} 79$ with $d=$ $\operatorname{gcd}(52,78)=26$ the number of non-witnesses is 338 . The reader can verify this claim by looking at
Table 2.
4.1. Our
Conjecture of
the Number of
Non-
Witnesses of n
$=p q$

This table allowed us to discover a formula relating d to $n w(n)$. We state this formula as our first conjecture.

$\frac{d}{2}$	$\frac{n w(n)}{2}$	$\frac{d}{26}$	$\frac{n w(n)}{338}$	$\frac{d}{50}$	$\frac{n w(n)}{}$	$\frac{d}{74}$	$n w(n)$
4	6	28	294	52	1014	76	
6	18	30	450	54	1458	78	3042
8	22	32		56	1078	80	
10	50	34	578	58	1682	82	
12	54	36	486	60	1350	84	
16	98	38		62		86	
18	86	40	550	64		88	2662
20	152	42	882	66		90	
22	242	44		68		92	
24	198	46	1058	70	2450	94	
	48		72	1782	96	3078	

Note: This table was produced after analyzing a great amount of data similar to that shown in Table 2. The table contains gaps because calculations were performed on 32bit integers.
Conjecture 1
Let $n=p q$ with
p and q distinct primes and let $d=\operatorname{gcd}(p-1, q-1)$. Then the number of non-witnesses to the compositeness of n, denoted $n w(n)$ is

$$
r^{2} *\left(2+\left(4^{t}-4\right) / 3\right) \text { where } d=2^{t} * r \text { with } r \text { odd. }
$$

Example Let $n=8321=53^{*} 157$. Then $d=\operatorname{gcd}(52,156)=52$. Also $52=2^{2}{ }^{*} 13$. So from our conjecture $n w(8321)=13^{2}\left(2+\left(4^{2}-4\right) / 3\right)=1014$. In fact Table 2 verifies that the number 8321 has 1014 non-witnesses to its compositeness. So our conjecture holds for 8321.

4.2. Our Conjecture of Composite Numbers with nw(n) Approaching the Upper Bound

The second question we want to answer is if we can produce composite numbers whose number of non-witnesses approaches the upper bound of $(n-1) / 4$. We have found certain numbers whose number of non-witnesses equals one-fourth $\phi(n)$, the Euler Totient function of n. This is stated as our second conjecture.

Conjecture 2 Let $n=p q$ where p and q are prime such that $p=2 r+1$ and $q=4 r+1$ with r an odd positive integer. Then $n w(n)=\phi(n) / 4$. (Note that if $n=p q$ where p and q are distinct primes, then $\phi(n)=(p-1)(q-1))$

Example Let $n=1891=31^{*} 61$. Note $31=2^{*} 15+1$ and $61=4^{*} 15+1$. From Table 2 we see that $n w(1891)=450$, and in fact $4 * 450=30 * 60=1800=\phi(1891)$.

It is important to realize that $\phi(n) / 4$ approaches $n / 4$ as n approaches infinity. Thus for large composite numbers of the form described in conjecture 2 the number of nonwitnesses approaches the upper bound.

4.3. Empirical Data Supporting Conjectures 1 and 2

Next we set out to test our conjectures on larger composite numbers, n. Since testing every number in the interval $[1, n-1]$ to find the number of non-witnesses is infeasible, we randomly sampled this interval to determine the proportion of non-witnesses.

We first need to find prime numbers of the form $2 r+1$ and $4 r+1$ where r is an odd positive integer. Then we compute $n=(2 r+1)(4 r+1)$ and randomly test the numbers in the interval $[1, \mathrm{n}-1]$ for non-witnesses. Table 3 shows a list of numbers r (where $2 r+1$ and $4 r+1$ are prime), the sample size, the number of non-witnesses, and the proportion of non-witnesses to the sample size. Our conjectures suggest this proportion should be close to $1 / 4$. The reader can verify that Table 3 supports this claim.

5. Further Work

We have given empirical evidence to support our conjecture for the number of nonwitnesses to the compositeness of $n=p q$, but we have not yet proven this. Further, we have not extended our conjecture to composite numbers of other forms.

6. Summary

This paper introduced the reader to the Rabin-Miller probabilistic primality test, the concept of non-witnesses to compositeness, and the problem of determining the number of non-witnesses to compositeness. Given in this paper are two conjectures: one on determining the number of non-witnesses to compositeness and another on producing composite numbers with the maximal number of non-witnesses. We also presented computer generated data that supports these conjectures. Our investigation of this problem supports our earlier observations that, except for composite numbers of a very specific form, the number of non-witnesses to compositeness is extremely small.

7. References

1. Gauss, C. F., "Disquistiones Arithmeticae" (A.A Clarke, Transl.) Yale Univ. Press, New Haven, Conn. London, 1966. p. 396.
2. Schneier, Bruce., Applied Cryptography: Protocols, Algorithms, and Source Code in $\underline{\text { C }}$. New York: John Wiley \& Sons, Inc., 1994. pp. 213.
3. Rabin, M.O., "Probabilistic Algorithm for Primality Testing" Journal of Number Theory. Vol. 12, 1980. pp. 128-138.
4. Miller, G.L., "Riemann's Hypothesis and Tests for Primality," Journal of Computer Systems Science, Vol. 13, No. 3, Dec 1976, pp 300-317.

TABLE 1.

$\mathrm{N} \quad \operatorname{phi}(\mathrm{M}) \quad \mathrm{nw}(\mathrm{N})$ $105=3^{*} 5^{*} 7 \quad 48 \quad 2$
$111=3^{*} 37 \quad 72 \quad 2$
$115=5^{*} 23 \quad 88 \quad 2$
$117=3^{\wedge} 2^{*} 1372 \quad 2$
$119=7 * 17 \quad 96 \quad 2$
$121=11^{\wedge} 2 \quad 110 \quad 10$
$123=3 * 41 \quad 80 \quad 2$
$125=5^{\wedge} 3 \quad 100 \quad 4$
$129=3^{*} 43 \quad 2 \quad 2$
$133=7 * 19 \quad 108 \quad 18$
$135=3^{\wedge} 3^{*} 5 \quad 72 \quad 2$
$141=3^{*} 47 \quad 92 \quad 2$
$143=11^{*} 13 \quad 120 \quad 2$
$145=5^{*} 29 \quad 112 \quad 6$
$147=3^{\star 7 \wedge 2} 842$
$153=3^{\wedge} 2^{\star 17} 962$
$155=5^{*} 31 \quad 120 \quad 2$
$159=3 * 53 \quad 104 \quad 2$
$161=7 * 23 \quad 132 \quad 2$
$165=3^{*} 5^{*} 1180 \quad 2$
$169=13^{\wedge} 2 \quad 156 \quad 12$
$171=3^{\wedge} 2^{\star} 191082$
$175=5^{\wedge} 2^{*} 7120 \quad 6$
$177=3 * 59 \quad 116 \quad 2$
$183=3 * 61 \quad 120 \quad 2$
$185=5^{*} 37 \quad 144 \quad 6$
$187=11^{*} 17 \quad 160 \quad 2$
$189=3^{\wedge} 3^{*} 7 \quad 108 \quad 2$
$195=3^{*} 5^{*} 13962$

$N \quad \mathrm{phi}(\mathrm{N})$	phi(N) n	$n w(N)$	
$1903=11^{*} 173$	1720	2	
$1905=3 * 5 * 127$	1008	14	
$1909=23 * 83$	1804	2	
$1911=3^{*} 7^{\wedge} 2^{* 13}$		1008	2
$1915=5 * 383$	1528	2	
1917 = $3^{\wedge} 3^{*} 71$	1260	2	
1919 = 19*101	1800	2	
$1921=17^{*} 113$	1792	86	
$1923=3 * 641$	1280	2	
$1925=5^{\wedge} 2^{*} 7^{*} 11$		1200	2
$1927=41 * 47$	1840	2	
1929 = 3*643	1284	2	
$1935=3^{\wedge} 2^{*} 5^{*} 43$		1008	2
$1937=13 * 149$	1776	6	
$1939=7 * 277$	1656	18	
$1941=3 * 647$	1292	2	
$1943=29 * 67$	1848	2	
$1945=5 * 389$	1552	6	
1947 = 3*11*59	1160	2	
$1953=3^{\wedge} 2^{*} 7 * 31$		1080	2
$1955=5^{*} 17^{*} 23$	1408	2	
1957 = 19*103	1836	18	
1959 = 3*653	1304	2	
$1961=37 * 53$	1872	6	
$1963=13^{*} 151$	1800	18	
$1965=3 * 5 * 131$	1040	2	
1967 = 7*281	1680	2	
1969 = 11*179	1780	2	
$1971=3^{\wedge} 3^{\star} 73$	1296	2	
$1975=5^{\wedge} 2^{*} 79$	1560	6	
1977 = 3*659	1316	2	
$1981=7 * 283$	1692	18	
$1983=3 * 661$	1320	2	
$1985=5 * 397$	1584	6	
$1991=11^{*} 181$	1800	50	
$1995=3 * 5 * 7 * 19$		864	2

TABLE 2.

Table 3. Sample size: 1000

$r=1000185$	$\mathrm{n}=8002966274911$	Non-witnesses:	267
$r=1000365$	$\mathrm{n}=8005847067991$	Non-witnesses:	237
$r=1000875$	$\mathrm{n}=8014012130251$	Non-witnesses:	265
$r=1001163$	$\mathrm{n}=8018624827531$	Non-witnesses:	253
$r=1001169$	$\mathrm{n}=8018720939503$	Non-witnesses:	247
$r=1001193$	$\mathrm{n}=8019105393151$	Non-witnesses:	248
$r=1001403$	$\mathrm{n}=8022469755691$	Non-witnesses:	271
$r=1001433$	$\mathrm{n}=8022950436511$	Non-witnesses:	259
$r=1001595$	$\mathrm{n}=8025546361771$	Non-witnesses:	235
$r=1001919$	$\mathrm{n}=8030739472003$	Non-witnesses:	250
$r=1002003$	$\mathrm{n}=8032086108091$	Non-witnesses:	220
$r=1002045$	$\mathrm{n}=8032759468471$	Non-witnesses:	260
$r=1002285$	$\mathrm{n}=8036607783511$	Non-witnesses:	243
$r=1002465$	$\mathrm{n}=8039494624591$	Non-witnesses:	234
$r=1002723$	$\mathrm{n}=8043633334171$	Non-witnesses:	243
$r=1002759$	$\mathrm{n}=8044210913203$	Non-witnesses:	239
$r=1002789$	$\mathrm{n}=8044692244903$	Non-witnesses:	260
$r=1002843$	$\mathrm{n}=8045558678251$	Non-witnesses:	250
$r=1003143$	$\mathrm{n}=8050373046451$	Non-witnesses:	226
$r=1003389$	$\mathrm{n}=8054321902903$	Non-witnesses:	259
$r=1003479$	$\mathrm{n}=8055766848403$	Non-witnesses:	251
$r=1003533$	$\mathrm{n}=8056633877911$	Non-witnesses:	253
$r=1003743$	$\mathrm{n}=8060006102851$	Non-witnesses:	239
$r=1003809$	$\mathrm{n}=8061066090703$	Non-witnesses:	245

```
r=1003935 n=8063089897411
r=1004025 n=8064535629151
r=1004859 n=8077938908203
```

Non-witnesses: 272
Non-witnesses: 248
Non-witnesses: 251

$r=1004865$	$\mathrm{n}=8078035374991$	Non-witnesses:	223
$r=1005069$	$\mathrm{n}=8081315588503$	Non-witnesses:	227
$r=1005549$	$\mathrm{n}=8089036364503$	Non-witnesses:	248
$r=1005585$	$\mathrm{n}=8089615571311$	Non-witnesses:	236
$r=1005645$	$\mathrm{n}=8090580962071$	Non-witnesses:	242
$r=1005795$	$\mathrm{n}=8092994690971$	Non-witnesses:	263
$r=1005993$	$\mathrm{n}=8096181364351$	Non-witnesses:	232
$r=1006005$	$\mathrm{n}=8096374516231$	Non-witnesses:	263
$r=1006413$	$\mathrm{n}=8102943051031$	Non-witnesses:	247
$r=1006485$	$\mathrm{n}=8104102480711$	Non-witnesses:	229
$r=1006623$	$\mathrm{n}=8106324952771$	Non-witnesses:	235
$r=1006755$	$\mathrm{n}=8108451080731$	Non-witnesses:	269
$r=1006809$	$\mathrm{n}=8109320940703$	Non-witnesses:	245
$r=1006875$	$\mathrm{n}=8110384166251$	Non-witnesses:	228
$r=1007073$	$\mathrm{n}=8113574261071$	Non-witnesses:	266
$r=1007133$	$\mathrm{n}=8114541080311$	Non-witnesses:	261
$r=1007229$	$\mathrm{n}=8116088110903$	Non-witnesses:	216
$r=1007379$	$\mathrm{n}=8118505641403$	Non-witnesses:	276
$r=1007535$	$\mathrm{n}=8121020255011$	Non-witnesses:	259
$r=1007589$	$\mathrm{n}=8121890788903$	Non-witnesses:	258
$r=1007643$	$\mathrm{n}=8122761369451$	Non-witnesses:	246
$r=1007673$	$\mathrm{n}=8123245045471$	Non-witnesses:	256
$r=1007745$	$\mathrm{n}=8124405926671$	Non-witnesses:	242
$\begin{aligned} & 19384720123 \\ & \text { : 30061_38994 } \\ & \text { n-witnesses: } \end{aligned}$	$\begin{aligned} & 1849382748615 \\ & 1 \quad 39985 _49240 _64133 \end{aligned}$	5_42927_45718_	37491

$r=42342342455564745747657475645354531395$
$\mathrm{n}=$
14_34299_17169_94565_94175_96370_67138_75678_09312_55074_72733_09678_48556 39035_24523_56571
Non-witnesses: 279

TABLE 2.

$\mathrm{N} \quad \mathrm{D}$	D NW(N)
$15=3 * 5$	2
$35=5 * 7$	2
$65=5 * 13$	
$77=7^{* 11}$	
$91=7^{*} 13$	$\begin{array}{ll}6 & 18\end{array}$
$143=11^{*} 13$	13
$341=11 * 31$	311050
$221=13^{*} 17$	17
$247=13{ }^{*} 19$	19618
$481=13 * 37$	371254
$323=17^{*} 19$	19
$493=17 * 29$	29
$697=17 * 41$	41822
$1649=17 * 97$	*97 16 86
437 = 19*23	23
$589=19 * 31$	31618
$703=19 * 37$	3718162
$667=23 * 29$	29
$1541=23 * 67$	*67 22242
$899=29 * 31$	31
$1073=29 * 37$	*37
$1247=29 * 43$	*43 1498
3277 = 29*113	*113 28294
$1147=31 * 37$	*37 618
1271 = $31 * 41$	*41 1050
$1891=31 * 61$	*61 30450
$1517=37 * 41$	*41
$1591=37 * 43$	*43 618
2257 = 37*61	*61 1254
$2701=37 * 73$	*73 36486
$1763=41^{*} 43$	*43 2
$2173=41 * 53$	*53
$2501=41^{*} 61$	*61 20150
$9881=41 * 241$	*241 40550
$2021=43 * 47$	*47 22
$2623=43 * 61$	*61 618
$3053=43{ }^{\star} 71$	*71 1498
$5461=43^{*} 127$	*127 42882
$2491=47 * 53$	*53 2
$6533=47^{*} 139$	*139 46105

```
3127 = 53*59 2 2
3233=53*61 4 6
4187 = 53*79 26 338
8321=53*157 52 1014
3599 = 59*61 2 2
4087=61*67 6 18
4331=61*71 10 50
```

$\mathrm{N} \quad \mathrm{D} \operatorname{NW}(\mathrm{N})$
$6161=61^{*} 10120150$
$9211=61^{*} 15130 \quad 450$
$11041=61^{*} 181 \quad 60 \quad 1350$
$4757=67 * 71 \quad 2 \quad 2$
$4891=67 * 73 \quad 6 \quad 18$
$5963=67 * 89 \quad 22 \quad 242$
$13333=67 * 199662178$
$5183=71 * 732$
$7171=71^{*} 10110 \quad 50$
$8023=71^{*} 1131498$
$14981=71 * 211 \quad 70 \quad 2450$
$5767=73^{*} 79618$
$6497=73 * 89 \quad 8 \quad 22$
$7081=73 * 97 \quad 24 \quad 198$
$7957=73^{*} 10936486$
$31609=73 * 433 \quad 72 \quad 1782$
$6557=79 * 83 \quad 2$
$7663=79 * 97 \quad 6 \quad 18$
$10349=79 * 131 \quad 26 \quad 338$
$12403=79^{*} 157 \quad 78 \quad 3042$
$7387=83^{*} 89 \quad 2 \quad 2$
$8633=89 * 97 \quad 82$
$17711=89^{*} 19922242$
$31417=89 * 353 \quad 88 \quad 2662$
$9797=97^{*} 10146$
$9991=97 * 103618$
$10573=97^{*} 109 \quad 12 \quad 54$
$10961=97^{*} 1131686$
$18721=97^{*} 193963078$
$11009=101^{*} 10946$
$13231=101 * 1311050$
$15251=101 * 15150 \quad 1250$
$11021=103^{*} 10722$
$11227=103^{*} 109618$
$14111=103^{*} 13734578$
$31621=103 * 3071025202$
$11663=107 * 10922$
$12317=109 * 11346$
$13843=109 * 12718 \quad 162$

```
17767 = 109*163 54 1458
14351 = 113*127 14 98
21809 = 113*193 16 86
22261 = 113*197 28 294
31753 = 113*28156 1078
16637 = 127*131 2 2
17653 = 127*139 6 18
20701 = 127*163 18 162
26797 = 127*21142 }88
```

Table 3. Sample size: 1000

$\mathrm{r}=1000185$	$\mathrm{n}=8002966274911$
$\mathrm{r}=1000365$	$\mathrm{n}=8005847067991$
$\mathrm{r}=1000875$	$\mathrm{n}=8014012130251$
$\mathrm{r}=1001163$	$\mathrm{n}=8018624827531$
$\mathrm{r}=1001169$	$\mathrm{n}=8018720939503$
$\mathrm{r}=1001193$	$\mathrm{n}=8019105393151$
$\mathrm{r}=1001433$	
$\mathrm{r}=1001595$	$\mathrm{n}=8022469755691$
$\mathrm{r}=1001919$	$\mathrm{n}=8022950436511$
$\mathrm{r}=1002003$	$\mathrm{n}=8025546361771$
$\mathrm{r}=1002045$	$\mathrm{n}=8032086108091$
$\mathrm{r}=1002285$	$\mathrm{n}=8032759468471$
$\mathrm{r}=1002465$	$\mathrm{n}=8039494624591$
$\mathrm{r}=1002723$	$\mathrm{n}=8043633334171$
$\mathrm{r}=1002759$	$\mathrm{n}=8044210913203$
$\mathrm{r}=1002789$	$\mathrm{n}=8044692244903$
$\mathrm{r}=1002843$	$\mathrm{n}=8045558678251$
$\mathrm{r}=1003143$	$\mathrm{n}=8050373046451$

Non-witnesses: 267
Non-witnesses: 237
Non-witnesses: 265
Non-witnesses: 253
Non-witnesses: 247
Non-witnesses: 248

Non-witnesses: 271
Non-witnesses: 259
Non-witnesses: 235
Non-witnesses: 250
Non-witnesses: 220

Non-witnesses: 260

Non-witnesses: 243

Non-witnesses: 234
Non-witnesses: 243
Non-witnesses: 239
Non-witnesses: 260
Non-witnesses: 250

Non-witnesses: 226

$r=1003389$	$\mathrm{n}=8054321902903$
$r=1003479$	$\mathrm{n}=8055766848403$
$r=1003533$	$\mathrm{n}=8056633877911$
$r=1003743$	$\mathrm{n}=8060006102851$
$r=1003809$	$\mathrm{n}=8061066090703$
$r=1003935$	$\mathrm{n}=8063089897411$
$r=1004025$	$\mathrm{n}=8064535629151$
$r=1004859$	$\mathrm{n}=8077938908203$
$r=1004865$	$\mathrm{n}=8078035374991$
$r=1005069$	$\mathrm{n}=8081315588503$
$r=1005549$	$\mathrm{n}=8089036364503$
$r=1005585$	$\mathrm{n}=8089615571311$
$r=1005645$	$\mathrm{n}=8090580962071$
$r=1005795$	$\mathrm{n}=8092994690971$
$r=1005993$	$\mathrm{n}=8096181364351$
$r=1006005$	$\mathrm{n}=8096374516231$
$r=1006413$	$\mathrm{n}=8102943051031$
$r=1006485$	$\mathrm{n}=8104102480711$
$r=1006623$	$\mathrm{n}=8106324952771$
$r=1006755$	$\mathrm{n}=8108451080731$
$r=1006809$	$\mathrm{n}=8109320940703$
$r=1006875$	$\mathrm{n}=8110384166251$
$r=1007073$	$\mathrm{n}=8113574261071$
$r=1007133$	$\mathrm{n}=8114541080311$

Non-witnesses: 259
Non-witnesses: 251
Non-witnesses: 253
Non-witnesses: 239
Non-witnesses: 245
Non-witnesses: 272
Non-witnesses: 248
Non-witnesses: 251
Non-witnesses: 223
Non-witnesses: 227
Non-witnesses: 248
Non-witnesses: 236
Non-witnesses: 242
Non-witnesses: 263
Non-witnesses: 232
Non-witnesses: 263
Non-witnesses: 247
Non-witnesses: 229
Non-witnesses: 235
Non-witnesses: 269
Non-witnesses: 245
Non-witnesses: 228
Non-witnesses: 266
Non-witnesses: 261

```
    r=1007229 n=8116088110903 Non-witnesses: 216
    r=1007379 n=8118505641403 Non-witnesses: 276
    r=1007535 n=8121020255011 Non-witnesses: 259
    r=1007589 n=8121890788903 Non-witnesses: 258
    r=1007643 n=8122761369451
    r=1007673 n=8123245045471
    r=1007745 n=8124405926671
r=193847201237490271849382748615
n = 30061_38994_20864_39985_49240_64133_18286_92398_52965_42927_45718_37491
Non-witnesses: }23
r = 42342342455564745747657475645354531395
n =
14_34299_17169_94565_94175_96370_67138_75678_09312_55074_72733_09678_48556
    _39035_24523_56571
Non-witnesses: }27
```

