
Michael Barrett, OpenSolaris Technical Marketing Engineer

Version 1.0 | Last updated: 05/22/09

HOW to USE the AUTOMATED
INSTALLER

> OpenSolaris™ How To Guides

Contents

Overview Page 1
Environment Page 1

Design Concepts Page 2

Prerequisites, Assumptions, and Defaults Page 2

Installing Automated Installer Software Packages Page 3

Using the Automated Installer Page 3
On the SPARC Target Page 4

On the AI Server Page 5

AI Server Tasks for the x86 Target Page 7

Command Summary Page 11

For More Information Page 12

About This OpenSolaris How To Guide
There is an exciting new OS provisioning technology in OpenSolaris called Automated Installer (AI). Much like Solaris

Jumpstart, Red Hat Kickstart, and Novell AutoYast, AI allows an user to install OpenSolaris remotely and in a non-

interactive manner with tremendous freedoms around customization and configuration. This OpenSolaris How To

Guide will briefly explain the concepts involved in the new network installation service and show how to quickly get

started by walking the reader through two examples involving a SPARC and an Intel/AMD targeted machine. AI

involves many technologies from DHCP, DNS, IPS, and others. Those topics will not be the focus of this brief. For a

more in depth discussion of AI, see http://dlc.sun.com/osol/docs/content/dev/AIinstall/.

Starting with OpenSolaris 2009.06, users will be able to install OpenSolaris on SPARC based machines in a supported

manner. At first release, the only way to install on SPARC will be via Automated Installer (AI). AI only supports the

remote provisioning of OpenSolaris and not Solaris. Jumpstart, the AI predecessor, does not support the remote

provisioning of OpenSolaris. Thus there will be a large set of new users experiencing AI for the first time that are

especially interested in SPARC. Hopefully this How To Guide will expedite their experimentation with OpenSolaris.

http://dlc.sun.com/osol/docs/content/dev/AIinstall/

Overview
Automated Installer represents an evolution in network based OS provisioning. Many of the operating systems on the

market today allow for software life cycle administration over the network through a web service. In terms of OpenSolaris,

this innovation is represented in the Image Packaging System (IPS). At the same time tasks or services the operating

system offers to its application stack and end users have become more and more complex and mobile across the network.

Again, OpenSolaris leads the way through it's creation of the Service Management Facility (SMF). Lastly, network based

identification assignment of machine assets has become much cleaner and efficient through the use of SLP, mDNS, and

DNS. OS installation services in OpenSolaris now fully take advantage of WANboot and PXE boot methods streamlining the

process users once had to go through while pre-configuring a compute asset's identify before installation. Automated

Installer borrows from all of these innovations and incorporates modern day xml data models throughout it's

configuration.

The combination of these innovations are especially useful in an OS provisioning application. The design of Automated

Installer allows for the boot strap miniroot to be extremely small. The two-part install of boot strap then IPS pull down

allows for the AI server to service more requests faster and allows you to disperse network load to multiple IPS mirrors

within your organization. This lowers overall installation time. Lastly, the booting/installing OS is a live object while it is

installing. While it is installing you can use it for other activities (such as installing more targets). Automated Installer is a

break through technology for operating system provisioning.

Environment
In this How To Guide, we will remotely install a VirtualBox guest that is sitting on a X4150 and the primary logical domain

on a T5240. In the diagram below, our targets are circled in red:

Automated Installer How To Guide

1
OpenSolaris Operating System opensolaris.com

As you can see in the diagram, I will be using my lab's local network behind a corporate infrastructure of network service

and firewalls. All three boxes (the AI server, the Intel target, and the SPARC target) will talk to each other over a local 1GB

switch in my lab, but all three will also be pulling software down from Sun Microsystems' IPS repositories over the world

wide web. In order to use less physical equipment, I've decided to run my AI server in a VirtualBox instance that is on the

same physical box as the target Intel based machine I will be PXE booting and remotely installing. For the sake of clarity,

from now on I will use the following terminology to describe these three boxes:

AI server = machine where the Automated Installer service is running

x86 target = Intel/AMD machine I will be remotely installing

SPARC target = SPARC machine I will be remotely installing

Design Concepts

2 Primary Actions

The Automated Installer will run as a SMF service on the AI server. You create named services that will be served out from

this box. These installation services can be a simple default OS installation, ruled by the auto-generated default service

manifests, or you may wish to name them after the business service the targets boxes will provide (i.e. MySQL-HR-server or

Oracle-CRM-node) then further edit the installation manifests to configure the application layer of the hosts. This is the

payload construction part of the action. You have freedom here to match the payload to the business need.

Now that we have services being served out, we need clients. Automated Installer allow you to create client

configurations to help you target specific boxes and their OS configuration needs. So instead of having a service target a

network location of many boxes, you have the granular control to have a service tailored to a compute asset.

The service and client actions seem abstract, but it's really just setting up a logical order you will use in the installadm

UNIX commandline. (installadm <action>-service <options> or installadm <action>-client <options>)

The Language

In order to describe your service, the client, or the relationship between the service and the client, you need to edit/create

manifests. There are 3 types of manifests:

ai_manifest = the what gets installed, where it get installed on the host, network/IPS information

sc_manifest = the historic sysidcfg type of information

criteria manifest = mapping between the clients and the correct ai/sc manifests.

Prerequisites, Assumptions, and Defaults
This How To Guide will be using the environment in the diagram above. It is important to check the following is true in

your personal environment to assure success:

• That the AI server and the machines it will be installing have DNS configured and can resolve opensolaris.org.

• AI server has the correct file configuration for a DNS enabled client:

> /etc/hosts

> /etc/nsswitch.conf

> svcs -a | grep dns

> /etc/resolv.conf

• That the SPARC box you selected supports WAN boot in the OBP.

OpenSolaris Operating System opensolaris.com

2

• That the x86/x64 box you selected supports PXE boot.

• That you have some familiarity with DHCP.

• That the AI server and the targets can pull software down from the opensolaris.org repositories and are not blocked

by firewall rules or web proxy enforcements. You can configure a IPS mirror repository on your private internal

network, but the AI server and clients still need to be able to reach the opensolaris.org repository to pull down

metadata and installation order lists. This requirement will be lifted as soon as a full mirror support is available in a

later release of OpenSolaris.

• You are using or have access to the OpenSolaris 2009.06 or higher AI miniroot ISO image. Only a hard requirement for

the SPARC box AI service. You may download the AI images from here: http://opensolaris.org/os/downloads/

Installing Automated Installer Software Packages
Make sure you have the software installed on the AI server:

This IPS package is available from the opensolaris.org/release IPS repository.

Notice the install server SMF service that now running and facilitates the Automated Installer tasks.

Using the Automated Installer
Now that you have the software installed on the AI server, let us now create a service for the SPARC box. Here I will, from

the installadm command, tell the AI framework that I would like to create a service called 0906-111b2-sparc that I will use

to install my SPARC boxes. I choose to call the -i and -c options to setup the DHCP configuration for me. It will serve out

ipaddress in the the range of 10 (-c 10) starting at 10.6.49.80 (-i 10.6.49.80). I'm using the ISO image below and the

manifests will end up in /aiserver/osol-0906-111b2-sparc. /aiserver is a ZFS file system with compression turned on and

atime modification turned off (these are optional setting, but will aid ZFS performance).

OpenSolaris Operating System opensolaris.com

3

svcs -a | grep install

online 12:26:09 svc:/system/install/server:default

pkg install SUNWinstalladm-tools

DOWNLOAD PKGS FILES XFER (MB)

Completed 9/9 1112/1112 6.22/6.22

PHASE ACTIONS

Install Phase 1474/1474

installadm create-service -n 0906-111b2-sparc -i 10.6.49.80 -c 10 -s /iso-

images/osol-0906-111b2-ai-sparc.iso /aiserver/osol-0906-111b-sparc

Setting up the target image at /aiserver/osol-0906-111b-sparc ...

Registering the service 0906-111b2-sparc._OSInstall._tcp.local

Creating DHCP Server

Created DHCP configuration file.

Created dhcptab.

Added "Locale" macro to dhcptab.

Added server macro to dhcptab - dcsw-aiserver.

DHCP server started.

Added network macro to dhcptab - 10.6.49.0.

Created network table.

Service discovery fallback mechanism set up

Creating SPARC configuration file

http://opensolaris.org/os/downloads/

That command above automatically sets up not only the DHCP but also the webserver and its configuration. It will serve

out the installation configuration, the /tftpboot, and all other OS services where users in the past had to manually

configure while setting up jumpstart. Installadm is a great task consolidator.

Now it could be as easy as that single command. I could now `boot net:dhcp` any WANboot enabled box on the 10.6.49.0

subnet and it would begin to pull down the OpenSolaris 2009.06 miniroot, install it, boot up, and then begin installing the

rest of the OpenSolaris 2009.06 from the opensolaris.org/release IPS repository.

On the SPARC Target:

OpenSolaris Operating System opensolaris.com

4

{0} ok boot net:dhcp

Boot device: /pci@500/pci@0/pci@8/network@0:dhcp File and args:

/pci@500/pci@0/pci@8/network@0: 1000 Mbps full duplex link up

Timed out waiting for BOOTP/DHCP reply

<time unavailable> wanboot info: WAN boot messages->console

<time unavailable> wanboot info: configuring /pci@500/pci@0/pci@8/network@0:dhcp

pci@500/pci@0/pci@8/network@0: 1000 Mbps full duplex link up

<time unavailable> wanboot info: Starting DHCP configuration

<time unavailable> wanboot info: DHCP configuration succeeded

<time unavailable> wanboot progress: wanbootfs: Read 366 of 366 kB (100%)

<time unavailable> wanboot info: wanbootfs: Download complete

Tue May 12 18:47:43 wanboot progress: miniroot: Read 157890 of 157890 kB (100%)

Tue May 12 18:47:43 wanboot info: miniroot: Download complete

WARNING: Unexpected token '.' on line 101 of /etc/system

SunOS Release 5.11 Version snv_111b 64-bit

Copyright 1983-2009 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

Hostname: opensolaris

Remounting root read/write

Probing for device nodes ...

Preparing automated install image for use

Downloading solaris.zlib archive

--11:37:12-- http://10.6.49.27:5555/export/aiserver/osol-0906-111b2-ai-

sparc/solaris.zlib

=> `/tmp/solaris.zlib'

Connecting to 10.6.49.27:5555... connected.

HTTP request sent, awaiting response... 200 OK

Length: 83,519,488 (80M) [text/plain]

100%[====================================>] 83,519,488 22.12M/s ETA 00:00

11:37:16 (20.83 MB/s) - `/tmp/solaris.zlib' saved [83519488/83519488]

Downloading solarismisc.zlib archive

--11:37:16-- http://10.6.49.27:5555/export/aiserver/osol-0906-111b2-ai-

sparc/solarismisc.zlib

=> `/tmp/solarismisc.zlib'

Connecting to 10.6.49.27:5555... connected.

HTTP request sent, awaiting response... 200 OK

Length: 3,147,776 (3.0M) [text/plain]

At this point I can login to the OS and follow along with the rest of the installation as it pulls the configuration down from

the AI server and packages from the IPS repositories. I'll be able to see the alternate root mount on /a and I'll be able to

see the packages installing. I'll be able to see the user getting created. I like to `tail -f /var/svc/log/*auto-install*` and

`tail -f /tmp/install_log' to follow along. But regardless of whether or not I'm watching these files, I will get a “Failed” or

“Success” message to the console upon competition.

Key files to watch on the target node:

Back On the AI Server:
On the AI server, you can observer the DHCP configuration through the dhcpmgr GUI and you can watch the webserver

access and error logs in this location /var/ai/image-server/logs.

OpenSolaris Operating System opensolaris.com

5

100%[====================================>] 3,147,776 19.63M/s

11:37:16 (19.61 MB/s) - `/tmp/solarismisc.zlib' saved [3147776/3147776]

--11:37:16-- http://10.6.49.27:5555/export/aiserver/osol-0906-111b2-ai-

sparc/install.conf

=> `/tmp/install.conf'

Connecting to 10.6.49.27:5555... connected.

HTTP request sent, awaiting response... 200 OK

Length: 65 [text/plain]

100%[====================================>] 65 --.--K/s

11:37:16 (1.64 MB/s) - `/tmp/install.conf' saved [65/65]

Done mounting automated install image

Configuring devices.

Reading ZFS config: done.

Service discovery phase initiated

Service name to look up: 0906-111b2-sparc

Service discovery over multicast DNS failed

Service located at 10.6.49.27:46501 will be used

Service discovery finished successfully

Process of obtaining configuration manifest initiated

Configuration manifest obtained

Automated Installation started

The progress of the Automated Installation can be followed by viewing the logfile

at /tmp/install_log

opensolaris console login:

tail -f /var/svc/log/*auto-install*

tail -f /tmp/install_log

access_log

error_log

Once I launch dhcpmgr, I can look to see how the ipaddress allocation was assigned. I can see which ones have been used

and which MAC address are assigned to which DHCP macros.

I can also click into the macros to discover the webserver file location and other useful details.

Now let's imagine I have a T5240 that I would like to install additional software, change the default user, etc. I can quickly

create a new service called 0906-111b2-sparc-t5240. This time I do not specify the DHCP triggering flags (ii and -c) because

DHCP is already setup.

OpenSolars Operating System opensolaris.com

6

/usr/sbin/dhcpmgr

installadm create-service -n 0906-111b2-sparc-t5240 -s /iso-images/osol-0906-

111b2-ai-sparc.iso /aiserver/osol-0906-111b-sparc-t5240

Setting up the target image at /aiserver/osol-0906-111b-sparc-t5240 ...

Registering the service 0906-111b2-sparc-t5240._OSInstall._tcp.local

Service discovery fallback mechanism set up

Creating SPARC configuration file

Now I can either create new manifests from a text editor and associate them to this service, or I can cd into

/var/ai/<port>/AI_data and edit the default.xml file. Maybe I would like to change the IPS repository for this host to /dev:

Or maybe I would like to change the default user from jack to mike:

Now I would like to tell Automated Installer to only serve that specific service out to one one of my hosts. Here I will use

the MAC address of the T5240 NIC port 0 as the identifier:

Notice above when it created the new DHCP macro for the client, it appended 01 in front of the MAC address.

AI Server Tasks for the x86 Target:
Next I would like to create a service for my x86 host. Here I will issue the same commands as before but with a new ISO

and service name. Still no need to call the DHCP flags (-i and -c).

7
OpenSolaris Operating System opensolaris.com

<ai_pkg_repo_default_authority>

<main url="http://pkg.opensolaris.org/dev" authname="opensolaris.org"/>

<property_group name="ai" type="application">

<propval name="username" type="astring" value="mike"/>

<propval name="userpass" type="astring" value="9Nd/cwBcNWFZg"/>

<propval name="description" type="astring" value="default_user"/>

<propval name="rootpass" type="astring"

value="5VgppCOxA$ycFmYW4ObRRHhtsGEygDdexk5bugqgSiaSR9niNCouC"

<propval name="timezone" type="astring" value="US/Eastern"/>

</property_group>

installadm create-client -e 0:14:4f:f3:8f:ce -n 0906-111b2-sparc-t5240 -t

/aiserver/osol-0906-111b-sparc-t5240

Setting up SPARC client...

Creating SPARC configuration file

Enabled network boot by adding a macro named 0100144FF38FCE

to DHCP server with:

Boot server IP (BootSrvA) : 10.6.49.28

Boot file (BootFile) : http://10.6.49.28:5555/cgi-bin/wanboot-cgi

Root path (Rootpath) : http://10.6.49.28:5555/aiserver/osol-0906-111b-

sparc-t5240

installadm create-service -n 0906-111b2-x86 -s /iso-images/osol-0906-111b2-ai-

x86.iso /aiserver/osol-0906-111b-x86

Setting up the target image at /aiserver/osol-0906-111b-x86 ...

Registering the service 0906-111b2-x86._OSInstall._tcp.local

adding tftp to /etc/inetd.conf

Converting /etc/inetd.conf

copying boot file to /tftpboot/pxegrub.I86PC.OpenSolaris-1

Service discovery fallback mechanism set up

Now we have two architectural images (SPARC and Intel/AMD) in the same DHCP configuration being served out to

anything that can WANboots or PXE boots on the 10.6.49.0 subnet. This configuration will not work. When the x86 target

boots, it will get served out to the SPARC image. I need to either connect the specific x86target to the service name like I

did above with the installadm create-client command, or I can leverage the DHCP configuration directly. In order to show

both ways, I will use the DHCP method this time. Here I will call the pntadm command and connect the MAC address of

my VirtualBox guest to the correct x86 macro name. This will also assure that the guest receives a static ipaddress:

Note I found the MAC address of the VirtualBox guest via this screen menu choice in VirtualBox:

Another way around this issue is to modify the DHCP macros the installadm command created for me and add an option

field declaring the architecture.

On the x86 Target:
Since I choose to use a VirtualBox guest as my x86target, I must tell VirtualBox that I would like the guest to boot from the

network via PXEboot. I can do that from this menu location:

OpenSolaris Operating System opensolaris.com

8

pntadm -A 10.6.49.64 -c dcsw-osol-vm -f PERMANENT -i 010800277B2782 -m osol-

0906-111b-x86 10.6.49.0

Once the guest boots, I will see it advertise for a DHCP service:

It will then find my AI server and be given the AI miniroot to boot from:

OpenSolaris Operating System opensolaris.com

9

Next it will download the miniroot and boot back up from it:

Finally, it will begin to download the rest of it's IPS packages from the assigned IPS repository.

After that, the key files to observe and overall characteristic of it's installation is as same as the SPARC target discussed

earlier in the guide.

OpenSolaris Operating System opensolaris.com

10

Command Summary

All I needed to do was the following:

AI Server Tasks for the x86 Target

On the SPARC Target

On the x86 Target:
I used a VirtualBox guest, but if you were on a physical server you could have also done the following to enable PXE boot

in the boot order.

OpenSolaris Operating System opensolaris.com

11

pkg install SUNWinstalladm-tools

installadm create-service -n 0906-111b2-sparc -i 10.6.49.80 -c 10 -s /iso-

images/osol-0906-111b2-ai-sparc.iso /aiserver/osol-0906-111b-sparc

installadm create-service -n 0906-111b2-sparc-t5240 -s /iso-images/osol-0906-

111b2-ai-sparc.iso /aiserver/osol-0906-111b-sparc-t5240

installadm create-client -e 0:14:4f:f3:8f:ce -n 0906-111b2-sparc-t5240 -t

/aiserver/osol-0906-111b-sparc-t5240

installadm create-service -n 0906-111b2-x86 -s /iso-images/osol-0906-111b2-ai-

x86.iso /aiserver/osol-0906-111b-x86

pntadm -A 10.6.49.64 -c dcsw-osol-vm -f PERMANENT -i 010800277B2782 -m osol-

0906-111b-x86 10.6.49.0

ssh <service-processor> -l root

Password:

--> cd /SP/console

--> start

ok boot net:dhcp

ipmitool -H service-processor -U username chassis bootdev pxe

Password:

Set boot Device to pxe

ipmitool -H service-processor -U username chassis power reset

Password:

Chassis Power Control: Reset

12
OpenSolaris Operating System opensolaris.com

For More Information
For more information about configuring the Automated Installer and OpenSolaris, see the following manuals and

community resources:

Description

OpenSolaris Automated Installer Guide

OpenSolaris Installation and Packaging community

OpenSolaris Automated Installion Project

OpenSolaris Home Page

http://dlc.sun.com/osol/docs/content/dev/AIinstall/

http://opensolaris.org/os/community/install/

http://opensolaris.org/os/project/caiman/auto_install/

http://www.opensolaris.com/

http://www.opensolaris.com/
http://opensolaris.org/os/project/caiman/auto_install/
http://opensolaris.org/os/community/install/
http://dlc.sun.com/osol/docs/content/dev/AIinstall/

opensolaris.com

©2009 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun logo, Solaris and OpenSolaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
SunWIN # 487538 Lit # SWWP11968-0 05/09

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN Web sun.com

http://www.sun.com/solaris/

