
Bit-Parallel Approximate String Matching

Algorithms with Transposition

Heikki Hyyrö ?

Department of Computer and Information Sciences
University of Tampere, Finland.

Heikki.Hyyro@cs.uta.fi

Abstract. Using bit-parallelism has resulted in fast and practical al-
gorithms for approximate string matching under the Levenshtein edit
distance, which permits a single edit operation to insert, delete or sub-
stitute a character. Depending on the parameters of the search, currently
the fastest non-filtering algorithms in practice are the O(kndm/we) al-
gorithm of Wu & Manber, the O(dkm/wen) algorithm of Baeza-Yates &
Navarro, and the O(dm/wen) algorithm of Myers, where m is the pat-
tern length, n is the text length, k is the error threshold and w is the
computer word size. In this paper we discuss a uniform way of modifying
each of these algorithms to permit also a fourth type of edit operation:
transposing two adjacent characters in the pattern. This type of edit
distance is also known as the Damerau edit distance. In the end we also
present an experimental comparison of the resulting algorithms.

1 Introduction

Approximate string matching is a classic problem in computer science, with ap-
plications for example in spelling correction, bioinformatics and signal process-
ing. It has been actively studied since the sixties [8]. Approximate string match-
ing refers in general to the task of searching for substrings of a text that are
within a predefined edit distance threshold from a given pattern. Let T1..n be a
text of length n and P1..m a pattern of length m. In addition let ed(A, B) denote
the edit distance between the strings A and B, and k be the maximum allowed
distance. Using this notation, the task of approximate string matching is to find
from the text all indices j for which ed(P, Th..j) ≤ k for some h ≤ j.

Perhaps the most common form of edit distance is the Levenshtein edit dis-
tance [6], which is defined as the minimum number of single-character insertions,
deletions and substitutions (Fig. 1a) needed in order to make A and B equal.
Another common form of edit distance is the Damerau edit distance [2], which
is in principle an extension of the Levenshtein distance by permitting also the
operation of transposing two adjacent characters (Fig. 1b). The Damerau edit

? Supported by the Academy of Finland and Tampere Graduate School in Information
Science and Engineering.

distance is important for example in spelling error applications [5]. In this pa-
per we use the notation edL(A, B) to denote the Levenshtein edit distance and
edD(A, B) to denote the Damerau edit distance between A and B.

During the last decade, algorithms based on bit-parallelism have emerged as
the fastest approximate string matching algorithms in practice for the Leven-
shtein edit distance [6]. The first of these was the O(kndm/we) algorithm of Wu
& Manber [15], where w is the computer word size. Later Wright [14] presented
an O(mn log(σ)/w) algorithm, where σ is the alphabet size. Then Baeza-Yates &
Navarro followed with their O(dkm/wen) algorithm. Finally Myers [7] achieved
an O(dm/wen) algorithm, which is an optimal speedup from the basic O(mn)
dynamic programming algorithm (e.g. [11]). With the exception of the algorithm
of Wright, the bit-parallel algorithms dominate the other verification capable1

algorithms with moderate pattern lengths [8].

a) insertion: cat → cast b) transposition: cat → act
deletion: cat → at

substitution: cat → car

Fig. 1. Figure a) shows the three edit operations permitted by the Levenshtein edit
distance. Figure b) shows the additional edit operation permitted by the Damerau edit
distance: transposing two adjacent characters. The transposed characters are required
to be/remain adjacent in the original and the modified pattern.

In this paper we show how each of the above-mentioned three best bit-parallel
algorithms can be modified to use the Damerau edit distance. Navarro [9] has
previously extended the algorithm of Wu & Manber [15] for the Damerau dis-
tance. But that method adds O(kdm/we) work to the original algorithm, whereas
the additional cost of our method is only O(dm/we). Our method is also more
general in that its principle works with also the other two algorithms [1, 7] with
very little changes.

We begin by discussing the basic dynamic programming solutions for the
Levenshtein and Damerau distances. In this part we also reformulate the dy-
namic programming solution for the Damerau edit distance into a form that is
easier to handle for the bit-parallel algorithms. Then we proceed to modify the
bit-parallel algorithms of Wu & Manber [15], Baeza-Yates & Navarro [1] and
Myers [7] to facilitate the Damerau edit distance. Finally we present an experi-
mental comparison of these modified algorithms.

1 Are based on actually computing the edit distance.

2 Dynamic Programming

In the following we assume that A1..0 = ε, where ε denotes the empty string.
In addition let |A| denote the length of the string A. We consider first the Lev-
enshtein edit distance. In this case the dynamic programming algorithm fills a
(|A|+ 1)× (|B|+ 1) dynamic programming table D, where in the end each cell
D[i, j] will hold the value edL(A1..i, B1..j). The algorithm begins from the triv-
ially known values D[i, 0] = edL(A1..i, ε) = i and D[0, j] = edL(ε, B1..j) = j, and
arrives at the value D[A, B] = edL(A1..|A|, B1..|B|) = edL(A, B) by recursively
computing the value D[i, j] from the previously computed values D[i− 1, j− 1],
D[i, j − 1] and D[i− 1, j]. This can be done using the following well-known Re-
currence 1.

Recurrence 1

D[i, 0] = i, D[0, j] = j.

D[i, j] =

{

D[i− 1, j − 1], if Ai = Bj .
1 + min(D[i− 1, j − 1], D[i− 1, j], D[i, j − 1]), otherwise.

The Damerau edit distance can be computed in basically the same way, but
Recurrence 1 needs a slight change. The following Recurrence 2 for the Damerau
edit distance is derived from the work of Du & Chang [3]. The superscript R
denotes the reverse of a string (that is, if A = “abc”, then AR = “cba”).

Recurrence 2

D[i,−1] = D[−1, j] = max(|A|, |B|).
D[i, 0] = i, D[0, j] = j.

D[i, j] =















D[i− 1, j − 1], if Ai = Bj .
1 + min(D[i− 2, j − 2], D[i− 1, j], D[i, j − 1]), ifAi−1..i =

(Bj−1..j)
R.

1 + min(D[i− 1, j − 1], D[i− 1, j], D[i, j − 1]), otherwise.

Instead of computing the edit distance between strings A and B, the dy-
namic programming algorithm can be changed to find approximate occurrences
of A somewhere inside B by changing the boundary condition D[0, j] = j into
D[0, j] = 0. In this case D[i, j] = min(edL(P0..i, Th..j), h ≤ j) with the Leven-
shtein edit distance and D[i, j] = min(edD(P0..i, Th..j), h ≤ j) with the Damerau
edit distance. Thus, if we set A = P and B = T , the situation corresponds to
the earlier definition of approximate string matching. From now on we assume
that the dynamic programming table D is filled in this manner.

Ukkonen ([12, 13]) has studied the properties of the dynamic programming
matrix. Among these there were the following two, which apply to both the edit
distance and the approximate string matching versions of D:

-The diagonal property: D[i, j]−D[i− 1, j − 1] = 0 or 1.
-The adjacency property: D[i, j]−D[i, j − 1] = −1, 0, or 1, and

D[i, j]−D[i− 1, j] = −1, 0, or 1.

Even though these rules were initially presented with the Levenshtein edit
distance, it is fairly straightforward to verify that they apply also to the Damerau
edit distance.

The values of the dynamic programming matrix D are usually computed
by filling it in a column-wise manner for increasing j, thus effectively scanning
the string B (or the text T) one character at a time from left to right. At each
character the corresponding column is completely filled in the order of increasing
i. This allows us to save space by storing only one or two columns at a time,
since the values in column j depend only on one (Levenshtein) or two (Damerau)
previous columns.

Now we reformulate Recurrence 2 into a form that is easier to use with the
three bit-parallel algorithms. Our trick is to investigate how a transposition re-
lates to a substitution. Consider comparing the strings A = “abc” and B =
“acb”. Then D[2, 2] = edD(A1..2, B1..2) = edD(“ab”,“ac”) = 1, where the one
operation corresponds to substituting the first character of the transposable suf-
fixes “bc” and“cb”. When filling in the value D[3, 3] = edD(“abc”,“acb”), the
effect of having done a single transposition can be achieved by allowing a free
substitution between the latter characters of the transposable suffixes. This is
the same as declaring a match between them. In this way the cost for doing the
transposition has already been paid for by the substitution of the preceding step.
It turns out that this idea can be developed to work correctly in all cases. We
find that the following Recurrence 3 for the Damerau edit distance is in effect
equivalent with Recurrence 2. It uses an auxiliary |A| × (|B|+ 1) boolean table
MT as it is convenient for bit-parallel algorithms. The value MT [i, j] records
whether there is the possibility to match or to make a free substitution when
computing the value D[i, j].

Recurrence 3

D[i, 0] = i, D[0, j] = j, MT [i, 0] = false.

MT [i, j] =







true, if Ai = Bj or (MT [i− 1, j − 1] = false and
Ai−1..i = (Bj−1..j)

R).
false, otherwise.

D[i, j] =

{

D[i− 1, j − 1], ifMT [i, j] = true.
1 + min(D[i− 1, j − 1], D[i− 1, j], D[i, j − 1]), otherwise.

We prove by induction that Recurrence 2 and Recurrence 3 give the same
values for D[i, j] when i ≥ 0 and j ≥ 0.

Clearly both formulas give the same value for D[i, j] when i = 0 or 1 or j
= 0 or 1. Consider now a cell D[i, j] for some j > 1 and i > 1 and assume that
all previous cells with nonnegative indices have been filled identically by both
recurrences2. Let x be the value given to D[i, j] by Recurrence 2 and y be the

2 We assume that a legal filling order has been used, which means that the cells
D[i − 1, j − 1], D[i − 1, j] and D[i, j − 1] are always filled before the cell D[i, j].

value given to it by Recurrence 3. The only situation in which the two formulas
could possibly behave differently is when Ai 6= Bj and Ai−1..i = (Bj−1..j)

R. In
the following two cases we assume that these two conditions hold.

If D[i − 1, j − 1] = D[i − 2, j − 2] + 1, then MT [i − 1, j − 1] = false and
MT [i, j] = true, and thus y = D[i − 1, j − 1]. Since the diagonal property
requires that x ≥ D[i − 1, j − 1] and now x ≤ D[i − 2, j − 2] + 1, we have
x = D[i− 2, j − 2] + 1 = D[i− 1, j − 1] = y.

Now consider the case D[i− 2, j− 2] = D[i− 1, j− 1]. Because Ai−1 = Bj 6=
Ai = Bj−1, this equality cannot result from a match. If it resulted from a free
substitution, then MT [i − 1, j − 1] = true in Recurrence 3. As Ai 6= Bj , the
preceding means that MT [i, j] = false. Therefore y = 1+min(D[i−1, j−1], D[i−
1, j], D[i, j − 1]) and x = 1 + min(D[i− 2, j − 2], D[i− 1, j], D[i, j− 1]). Because
D[i − 2, j − 2] = D[i − 1, j − 1], the former means that x = 1 + min(D[i −
1, j − 1], D[i − 1, j], D[i, j − 1]) = y. The last possibility is that the equality
D[i− 2, j − 2] = D[i− 1, j − 1] resulted from using the option D[i− 1, j − 1] =
1 + min(D[i − 2, j − 1], D[i − 1, j − 2]). As Ai−1 = Bj and Ai = Bj−1, both
recurrences must have set D[i−1, j] = D[i−2, j−1] and D[i, j−1] = D[i−1, j−2]
and therefore D[i − 1, j − 1] = 1 + min(D[i − 2, j − 1], D[i − 1, j − 2]) = 1 +
min(D[i−1, j], D[i, j−1]). Now both options in Recurrence 3 set the same value
y = D[i − 1, j − 1], and x = 1 + min(D[i − 2, j − 2], D[i − 1, j], D[i, j − 1]) =
1 + min(D[i− 1, j], D[i, j − 1]) = D[i− 1, j − 1] = y.

In each case Recurrence 2 and Recurrence 3 assigned the same value for the
cell D[i, j]. Therefore we can state by induction that the recurrences are in effect
equivalent. ut

The intuition behind the table MT in Recurrence 3 is that a free substitution
is allowed at D[i, j] if a transposition is possible at that location. But we cannot
allow more than one free substitution in a row along a diagonal, as each corre-
sponding transposition has to be paid for by a regular substitution. Therefore
when a transposition has been possible at D[i, j], another will not be allowed
at D[i + 1, j + 1]. And as shown above, this restriction on when to permit a
transposition does not affect the correctness of the scheme.

3 Modifying the Bit-parallel Algorithms

Bit-parallel algorithms are based on taking advantage of the fact that a single
computer instruction manipulates bit-vectors with w bits (typically w = 32
or 64 in the current computers). If many data-items of an algorithm can be
encoded into w bits, it may be possible to process many data-items within a
single instruction (thus the name bit-parallelism) and achieve gain in time and/or
space.

We use the following notation in describing bit-operations: ’&’ denotes bit-
wise “and”, ’|’ denotes bitwise “or”, ’∧’ denotes bitwise “xor”, ’∼’ denotes bit
complementation, and ’<<’ and ’>>’ denote shifting the bit-vector left and
right, respectively, using zero filling in both directions. The ith bit of the bit
vector V is referred to as V [i] and bit-positions are assumed to grow from

right to left. In addition we use superscript to denote bit-repetition. As an
example let V = 1001110 be a bit vector. Then V [1] = V [5] = V [6] = 0,
V [2] = V [3] = V [4] = V [7] = 1, and we could also write V = 102130.

3.1 The Bit-parallel NFA of Wu & Manber

The bit-parallel approximate string matching algorithm of Wu & Manber [15]
is based on representing a non-deterministic finite automaton (NFA) by using
bit-vectors. The automaton has (k + 1) rows, numbered from 0 to k, and each
row contains m states. Let us denote the automaton as R, its row d as Rd and
the state i on its row d as Rd,i. The state Rd,i is active after reading the text up
to the jth character if and only if ed(P1..i, Th..j) ≤ d for some h ≤ j. An occur-
rence of the pattern with at most k errors is found when the state Rk,m is active.
Assume for now that w ≤ m. Wu & Manber represent each row Rd as a length-
m bit-vector, where the ith bit tells whether the state Rd,i is active or not. In
addition they build a length-m match vector for each character in the alphabet.
We denote the match vector for the character λ as PMλ. The ith bit of PMλ is
set if and only if Pi = λ. Initially each vector Rd has the value 0m−d1d (this cor-
responds to the boundary conditions in Recurrence 1). The formula to compute
the updated values R′

d for the row-vectors Rd at text position j is the following:

R′
0 ← ((R0 << 1) | 0m−11) & PMTj

For d = 1 to k Do

R′
d ← ((Rd << 1) & PMTj

) | Rd−1 | (Rd−1 << 1) | (R′
d−1 << 1)

| 0m−11

The right side of the last row computes the disjunction of the different possibil-
ities given by Recurrence 1 for a prefix of the pattern to match with d errors.
The row R0 is different as it needs to consider only matching positions between
P and the character Tj , and it also has to have its first bit set after the left-shift
in order to let the first character match at the current position. When m ≤ w,
the run time of this algorithm is O(kn) as there are O(k) operations per text
character. The general run time is O(kndm/we) as a vector of length m may be
simulated in O(dm/we) time using O(dm/we) bit-vectors of length w. In this
paper we do not discuss the details of such a multi-word implementation for any
of the bit-parallel algorithms.

Navarro [9] has modified this algorithm to use the Damerau distance by
essentially following Recurrence 2. He did this by appending the automaton to
have a temporary state vector Td for each Rd to keep track of the positions where
transposition may occur. Initially each Td has the value 0m. Navarro’s formula
is:

R′
0 ← ((R0 << 1) | 0m−11) & PMTj

For d = 1 to k Do

R′
d ← ((Rd << 1) & PMTj

) | Rd−1 | (Rd−1 << 1) | (R′
d−1 << 1)

| (Td & (PMTj
<< 1)) | 0m−11

T ′
d ← (Rd−1 << 2) & PMTj

The formula adds 6k operations into the basic version for the Levenshtein edit
distance.

Recurrence 3 suggests a simpler way to facilitate transposition. The only
difference between it and Recurrence 1 is in the condition on when D[i, j] =
D[i − 1, j − 1]: Instead of the condition Pi = Tj , Recurrence 3 sets the equal
value if MT [i, j] = true (here we again replaced A with P and B with T in the
recurrence). We use a length-m bit-vector TC in storing the last column of the
auxiliary table MT . The ith bit of TC is set iff row i of the last column of MT
has the value true. When we arrive at text position j, TC is updated to hold the
values of column j. Initially TC = 0m. Based on Recurrence 3, the vector TC
may be updated with the formula TC ′ = PMTj

| (((∼ TC) << 1) & (PMTj
<<

1) & PMTj−1
). Here the right “and” sets the bits in the pattern positions where

Pi−1..i = (Tj−1..j)
R, the left “and” sets off the ith bit if row (i− 1) of MT had

the value true in the previous column, and the “or” sets the bits in the positions
where Pi = Tj . By combining the two left-shifts we get the following complete
formula for updating the Rd vectors:

TC ′ ← PMTj
| ((((∼ TC) & PMTj

) << 1) & PMTj−1
)

R′
0 ← ((R0 << 1) | 0m−11) & PMTj

For d = 1 to k Do

R′
d ← ((Rd << 1) & TC ′) | Rd−1 | (Rd−1 << 1) | (R′

d−1 << 1)
| 0m−11

Our formula adds a total of 6 operations into the basic version for the Levenshtein
edit distance. Therefore it makes the same number of operations as Navarro’s
version when k = 1, and wins when k > 1.

3.2 The Bit-parallel NFA of Baeza-Yates & Navarro

Also the bit-parallel algorithm of Baeza-Yates & Navarro [1] is based on simu-
lating the NFA R. The first d states on row Rd are trivial in that they are always
active. The last k−d states will be active only if the state Rk,m is active, and as
we are only interested in knowing whether there is a match with at most k errors,
having the state Rk,m is enough. These facts enable Baeza-Yates & Navarro to
include only the m− k states Rd,d+1..Rd,m−k+d on row Rd. A further difference
is in the way the states are encoded into bit-vectors. They divide R into m−k di-
agonals D1, .., Dm−k, where Di is a bit-sequence that describes the states Rd,d+i

for d = 0..k. If a state Rd,i is active, then all states on the same diagonal that
come after Rd,i are active, that is, the states Rd+h,i+h for h ≥ 1. To describe
the status of the ith diagonal it suffices to record the position of the first active
state in it. If the first active state on the ith diagonal is fi, then Baeza-Yates &
Navarro represent the diagonal as the bit-sequence Di = 0k+1−fi1fi . The value
fi = k +1 means that fi ≥ k +1, that is, that no states on the ith diagonal of R
is active. A match with at most k errors is found whenever fm−k < k+1. The di

bit-sequences are stored consecutively with a single separator zero-bit between
two consecutive states. Let RD denote the complete diagonal representation.

Then RD is the length-(k + 2)(m− k) bit-sequence 0 D1 0 D2 0...0 Dm−k. We
assume for now that (k + 2)(m− k) ≤ w so that RD fits into a single bit-vector.

Baeza-Yates & Navarro encode also the pattern match vectors differently.
Let PMDλ be their pattern match vector for the character λ. The role of the
bits is reversed: a 0-bit denotes a match and a 1-bit a mismatch. To align the
matches with the diagonals in RD, PMDλ has the form
0 ∼ (PMλ[1..k + 1]) 0 ∼ (PMλ[2..k + 2]) 0...0 ∼ (PMλ[m− k..m]).

Initially no diagonal has active states and so RD = (0 1k+1)m−k. The formula
for updating RD at text position j is:

x ← (RD >> (k + 2)) | PMDTj

RD′ ← ((RD << 1) | (0k+11)m−k

& (RD << (k + 3)) | (0k+11)m−k−101k+1

& (((x + (0k+11)m−k) ∧ x) >> 1)
& (0 1k+1)m−k

If (k + 2)(m − k) ≤ w, the run time of this algorithm is O(n) as there
is only a constant number of operations per text character. The general run
time is O(dkm/wen) as a vector of length (k + 2)(m − k) may be simulated in
O(dkm/we) time using O(dkm/we) bit-vectors of length w.

Because of the different way of representing R, our way of modifying the
algorithm of Wu & Manber to use the Damerau edit distance does not work
here without some changes. Now we use a bit-vector TCD instead of the vec-
tor TC of the previous section. TCD has the same function as TC, but its
form corresponds to the algorithm of Baeza-Yates & Navarro. First of all the
meaning of the bit-values is reversed: now a 0-bit corresponds to the value true

and a 1-bit to the value false in the table TR of Recurrence 3. The second
change is in the way we compute the positions where Pi−1..i = (Tj−1..j)

R. Be-
cause of the interleaving 0-bits in the pattern match vector PMDλ, the formula
(PMDTj

<< 1) | PMDTj−1
does not correctly set only those bits to zero that

correspond to a transposable position (note that also the roles of ’&’ and ’|’ are
reversed). But by inspecting the form of BPDλ we notice that the desired effect
is achieved by using the formula (PMDTj

>> (k + 2)) | PMDTj−1
. Shifting

(k + 2) bits to the right causes the (i− 1)th diagonal to align with the ith diag-
onal, and this previous diagonal handles the matches one step to the left in the
pattern. The only delicacy in doing this is the fact that now the first diagonal
will have no match-data. Because we need to have made a substitution before
making a free substitution that corresponds to a transposition, a transposition
will be possible only in diagonals 2..m−k. Thus the missing data can be replaced
with mismatches. Note that we do not need to consider the states not present
in the reduced automaton of Baeza-Yates & Navarro. By similar reasoning also
the previous values of TCD will be shifted (k + 2) bits to the right instead of 1
bit to the left, and its missing data can be replaced by ‘false’ values. Initially
TCD has only ‘false’ values and so TCD = (0 1k+1)m−k. The modified formula
for updating RD at text position j is:

TCD′ ←PMDTj
& (((((∼ TCD) | PMDTj

) >> (k + 2)) | PMDTj−1
)

| 01k+10(m−k−1)(k+2))
x ← (RD >> (k + 2)) | TCD′

RD′ ← ((RD << 1) | (0k+11)m−k

& (RD << (k + 3)) | (0k+11)m−k−101k+1

& (((x + (0k+11)m−k) ∧ x) >> 1)
& (0 1k+1)m−k

Now the number of added operations is 7, as one “extra” operation arises
from having to set the missing values (second row).

3.3 Myers’ Bit-parallel Computation of D

The bit-parallel algorithm of Myers [7] is quite different from the previous two
algorithms. We describe it here in a slightly simpler way than the original, even
though the logic is in principle the same. The algorithm is based on representing
the dynamic programming table D with vertical, horizontal and diagonal differ-
ences (see the adjacency and diagonal properties in Section 2). This is done by
using the following length-m bit-vectors:

-The vertical positive delta vector V P :
V P [i] = 1 at text position j iff D[i, j]−D[i− 1, j] = 1.

-The vertical negative delta vector V N :

V N [i] = 1 at text position j iff D[i, j]−D[i− 1, j] = −1.
-The horizontal positive delta vector HP :

HP [i] = 1 at text position j iff D[i, j]−D[i, j − 1] = 1.

-The horizontal negative delta vector HN :
HN [i] = 1 at text position j iff D[i, j]−D[i, j − 1] = −1.

-The diagonal zero delta vector D0:

D0[i] = 1 at text position j iff D[i, j] = D[i− 1, j − 1].

In the original work of Myers the information of the vector D0 was represented
by two separate vectors xv and xh.

Initially V P = 1m and V N = 0m. At text position j the algorithm first
computes the vector D0 by using the old values V P and V N and the pattern
match vector PMTj

(Section 3.1). Then the new HP and HN are computed
by using D0 and the old V P and V N . Then finally the vectors V P and V N
are updated by using the new D0, HN and HP . The complete formula for
computing the updated vectors D0′, HP ′, HN ′, V N ′ and V P ′ at text position
j is:

D0′ ← (((PMTj
& V P) + V P) ∧ V P) | PMTj

| V N
HP ′ ← V N | ∼ (D0′ | V P)
HN ′ ← V P & D0′

V P ′ ← (HN ′ << 1) | ∼ (D0′ | (HP ′ << 1))
V N ′ ← (HP ′ << 1) & D0′

The current value of the dynamic programming cell D[m, j] can be updated
at each text position j by using the horizontal delta vectors (the initial value is
D[m, 0] = m). A match of the pattern with at most k errors is found whenever
D[m, j] ≤ k.

If m ≤ w, the run time of this algorithm is O(n) as there is again only
a constant number of operations per text character. The general run time is
O(dm/wen) as a vector of length m may be simulated in O(dm/we) time using
O(dm/we) bit-vectors of length w.

Because the algorithm of Myers uses the same pattern match vectors as the
algorithm of Wu & Manber, it can be modified to use the Damerau distance by
using exactly the same method as we used in Section 3.1. Thus the formula to
update the vectors at text position j is simply:

TC ′ ← PMTj
| ((((∼ TC) & PMTj

) << 1) & PMTj−1
)

D0′ ← (((TC ′ & V P) + V P) ∧ V P) | TC ′ | V N
HP ′ ← V N | ∼ (D0′ | V P)
HN ′ ← V P & D0′

V P ′ ← (HN ′ << 1) | ∼ (D0′ | (HP ′ << 1))
V N ′ ← (HP ′ << 1) & D0′

There is again 6 added operations.

4 Test Results

We implemented and tested a Damerau edit distance -version of each of the three
discussed bit-parallel algorithms. The version of the algorithm of Wu & Manber
was implemented from scratch by us, and the other two were modified using the
original implementations from those authors. We compared also the versions for
the Levenshtein edit distance to see how our modification affects the respective
performance of the algorithms. The computer used in the tests was a 600 Mhz
Pentium 3 with 256 MB RAM and Linux OS. All code was compiled with GCC
3.2.1 and full optimization switched on.

The tests involved patterns of lengths 10, 20, and 30, and with each pattern
length m the tested k values were 1..bm/2c. There were 50 randomly picked
patterns for each (m, k)-combination. The searched text was a 10 MB sample
from Wall Street Journal articles taken from the TREC-collection [4].

The version of the algorithm of Baeza-Yates & Navarro was the one from [10],
which includes a smart mechanism to keep only a required part of the automaton
active when it needs several bit-vectors. As the patterns lengths were ≤ w = 32,
the other two algorithms did not need such a mechanism.

Fig. 2 shows the results. In general the algorithms compare quite similarly to
each other with and without our modification to use the Damerau edit distance.
It is seen that with the Levenshtein edit distance the algorithm of Wu & Manber
becomes slowest when k ≥ 4, whereas with the Damerau edit distance it becomes
slowest already at k = 3. The algorithm of Baeza-Yates & Navarro is typically the
fastest for low error levels irrespective of which of the two distances we use. But

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

k

Levenshtein
m = 10

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10

k

Levenshtein
m = 20

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15

k

Levenshtein
m = 30

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5

k

Damerau
m = 10

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

k

Damerau
m = 20

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15

k

Damerau
m = 30

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5

k

Dam./Lev.
ratio
m = 10

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

1 2 3 4 5 6 7 8 9 10

k

Dam./Lev.
ratio
m = 20

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

1 3 5 7 9 11 13 15

k

Dam./Lev.
ratio
m = 30

Wu & Manber
Baeza-Yates & Navarro

Myers

Fig. 2. The two first rows show the average time for searching a pattern from a 10
MB sample of Wall Street Journal articles taken from TREC-collection. The first row
shows the results for the Levenshtein edit distance and the second row for the Damerau
edit distance. The third row shows the ratio of the run times with and without the
modification.

its advantage over the algorithm of Myers becomes smaller under the Damerau
edit distance. The algorithm of Myers is affected very little by the modification,
and it is the fastest algorithm when the error level k/m is large and the algorithm
of Baeza-Yates & Navarro needs more bit-vectors in representing the automaton.

The algorithm of Baeza-Yates & Navarro behaved oddly with the Levenshtein
edit distance in the case m = 10 and k < 3. We found no other reason than some
intrinsic property of the compiler optimizer or the processor pipeline for the bad
performance with these two values (even worse than the version modified to use
the Damerau edit distance).

5 Conclusions

Bit-parallel algorithms are currently the fastest approximate string matching
algorithms when Levenshtein edit distance is used. In particular the algorithms
of Wu & Manber [15], Baeza-Yates & Navarro [1] and Myers [7] dominate the
field when the pattern length and the error level are moderate [8]. In this pa-
per we showed how these algorithms can be modified to use the Damerau edit
distance, which is an important distance especially in natural language [5]. Our
modification adds only a constant amount of work per bit-vector the algorithm
needs in encoding the pattern, and it is general in that essentially the same
modification works with all the above-mentioned three bit-parallel algorithms.
It also improves upon Navarro’s [9] previous modification of the algorithm of
Wu & Manber to use the Damerau edit distance. In the experiments we found
that the respective performance of the algorithms is not changed much by the
modification.

References

1. R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica,
23(2):127–158, 1999.

2. F. Damerau. A technique for computer detection and correction of spelling errors.
Comm. of the ACM, 7(3):171–176, 1964.

3. M. W. Du and S. C. Chang. A model and a fast algorithm for multiple errors
spelling correction. Acta Informatica, 29:281–302, 1992.

4. D. Harman. Overview of the Third Text REtrieval Conference. In Proc. Third
Text REtrieval Conference (TREC-3), pages 1–19, 1995. NIST Special Publication
500-207.

5. K. Kukich. Techniques for automatically correcting words in text. ACM Computing
Surveys, 24(4):377–439, 1992.

6. V. Levenshtein. Binary codes capable of correcting deletions, insertions and rever-
sals. Soviet Physics Doklady, 10(8):707–710, 1966. Original in Russian in Doklady
Akademii Nauk SSSR, 163(4):845–848, 1965.

7. G. Myers. A fast bit-vector algorithm for approximate string matching based on
dynamic progamming. Journal of the ACM, 46(3):395–415, 1999.

8. G. Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31–88, 2001.

9. G. Navarro. NR-grep: a fast and flexible pattern matching tool. Software Practice
and Experience (SPE), 31:1265–1312, 2001.

10. G. Navarro and R. Baeza-Yates. Improving an algorithm for approximate pattern
matching. Algorithmica, 30(4):473–502, 2001.

11. P. Sellers. The theory and computation of evolutionary distances: pattern recog-
nition. J. of Algorithms, 1:359–373, 1980.

12. Esko Ukkonen. Algorithms for approximate string matching. Information and
Control, 64:100–118, 1985.

13. Esko Ukkonen. Finding approximate patterns in strings. J. of Algorithms, 6:132–
137, 1985.

14. A. Wright. Approximate string matching using within-word parallelism. Software
Practice and Experience, 24(4):337–362, April 1994.

15. S. Wu and U. Manber. Fast text searching allowing errors. Comm. of the ACM,
35(10):83–91, October 1992.

