
Use of Grid Computing for Debian Quality Assurance ∗

Lucas Nussbaum

Laboratoire d’Informatique de Grenoble – LIG
lucas@debian.org – Lucas.Nussbaum@imag.fr

Abstract

Many quality assurance tasks require a lot of com-
puting power, especially when applied to large
GNU/Linux distributions such as Debian. We used the
french Grid’5000 experimental computer grid to work
on such tasks. After describing the QA tests we per-
formed and the framework we used to distribute them
over Grid’5000, we provide results showing that such
tasks can be of interest for both communities. Possible
improvements are also described.

1 Introduction

Automated Quality Assurance (QA) has proven very
useful inside Debian, allowing the whole distribution
to meet the high quality level that has made it so pop-
ular. Thanks to automated QA, one can ensure that
all packages in a release meet at least the same basic
criterias of quality. This is especially important in De-
bian, where there is a lot of niche packages that have
only a few users: such packages might not necessarily
get enough attention to make sure they work properly.

Many Quality Assurance (QA) tasks require a lot of
computing power, especially when applied to the thou-
sands of packages in Debian. For example, a rebuild
of all packages in Debian on a modern desktop com-
puter takes about 10 days. Such tasks are traditionally
performed by motivated individuals, which makes it
hard to ensure that Debian is throughoutly tested on a
regular basis.

The Grid’5000 [1, 2] project aims at building an
highly reconfigurable experimental Grid platform, to
serve as an experimental testbed for research in Grid

∗This work has been done within the LIG laboratory, jointly
supported by CNRS, INPG, INRIA, and UJF. Computer resources
are provided by the Grid’5000 platform (further information at
http://www.grid5000.fr/).

Computing. It currently includes 9 sites, hosting 15
clusters and a total of about 2500 CPUs. Since the grid
is not being used for production work, it is relatively
easy to find time slots where ressources are available,
especially during nights and week-ends.

Grid’5000 was used to perform several large scale
QA tasks during the months preceding the Debian
Etch release, with two goals in mind: one was to help
to improve the quality of Debian. The other one was
to provide a good case study, intensively using a wide
range of Grid’5000 resources, to help detect problems
in the platform, and to serve as a basis for future work
on grid experiments.

In this paper, we first introduce the two different
types of QA tasks that were done on Grid’5000. Then,
we shortly describe Grid’5000 from a user’s point of
view, and detail the framework that was used to per-
form those experiments. Finally, we present the re-
sults we obtained, and describe possible future im-
provements.

2 Quality Assurance tasks

While the Grid’5000 could be used to run many kinds
of QA tasks, we concentrated on two different tasks:
the regular rebuild of all packages, and the test of in-
stallation and removal of packages.

2.1 Rebuilding all packages

While packages are automatically built on all architec-
tures when they enter the archive, they are not rebuilt
regularly afterwards, even if their dependancies are
updated, or if their build environment changes (new
compiler, etc). This might result in packages that are
part of a release, but can no longer be rebuilt from
their sources, leading to problems with security sup-



port. Rebuilding packages also helps to find regres-
sions in compilers or libraries (missing symbols, etc).

2.2 Testing the installation and removal of
packages

Another test that can be performed automatically is
the installation and removal of packages using piu-
parts [3]. Piuparts is a script that installs packages
in a chroot, removes it with all the packages that were
installed with it, and then "purges" them (removes the
files that were left after removal). Piuparts allows to
find a lot of bugs, but also generates a large number of
false positives, for example caused by packages that
require user input, or that depend on another packages
being functional (e.g a MySQL server).

3 Distributing quality assurance
tasks over Grid’5000

From the user point of view, Grid’5000 nodes are sys-
tems connected to a private high-speed network pro-
vided by RENATER 1. Nodes are grouped in clus-
ters, but all nodes are reachable directly from any
Grid’5000 node. A typical Grid’5000 node is a bi-
Opteron system with 2 or 4 GB of RAM, connected
to a Gigabit Ethernet network, however some clusters
include other types of nodes (Xeons, Itaniums...). A
fast and scalable deployment system, Kadeploy [4],
enables users to install the operating system they want
on some or all nodes of a cluster. During our exper-
iments, we installed Debian Sid on all the nodes we
used.

Since our first goal was to reach a point where we
would be able to run QA tasks, we chose a simple mas-
ter/slave architecture, only targetting a "good enough"
framework and leaving improvements for later. This
infrastructure has obvious scalability problems, but
proved sufficient for the experiments described in this
paper. Our framework include three central points, as
shown in figure 1:

• A "master" node is used to schedule the tasks on
all the other participating nodes. It connects to
the other nodes using ssh and maintains the con-
nection until each job is over. This design hasn’t
proven to be a bottleneck.

1the French National Telecommunication Network for Tech-
nology, Education and Research.

Node 2 Node nNode 1

Master

Node

Directory

Shared NFS

Mirror

Debian

....

Figure 1: Infrastructure based on a master/slave
model.

• An NFS server is used to share information com-
mon to all nodes: configuration files, scripts, and
output logs. Despite the large amount of data
written to logs, it doesn’t seem to be the major
bottleneck.

• An internal Debian mirror is used over HTTP
to distribute source and binary packages to the
nodes. Since piuparts tests consist mostly in
package download, installation and removal, this
central HTTP server is clearly a bottleneck for
those tests. We plan to improve the situation by
adding HTTP proxies on each participating node.

Here is an example execution of piuparts over the
whole archive, on a cluster featuring 55 bi-dual-core
Opteron systems, with 4 GB of RAM each.

• The 55 nodes are reserved for the duration of the
experiment. The deployment of a Debian Sid en-
vironment on these nodes is started.

• After 12 minutes, the Debian Sid environment
is successfully deployed using Kadeploy on 43
nodes. 12 nodes failed for various reasons (Kade-
ploy is still under development, and such fail-
ures are not uncommon since it relies on proto-
cols which aren’t known for their robustness such
as PXE and TFTP). The first node is used as the
"master" node, and the script responsible for con-
trolling the other nodes is started on it. The mas-
ter node prepares the other nodes by mounting
the directory shared using NFS, by updating the
packages list (apt-get update) and by in-
stalling the required packages (sbuild, piuparts,
etc). It also, locally, updates the chroots stored in



the NFS directory, to make sure that we will run
our tests in an up-to-date environnement. Since
all tests happen inside those chroots, updating the
host environment is not necessary: only the ch-
root is important.

• After two minutes, all this preparation is finished,
and the master node starts to run tasks on the
slave nodes (4 tasks are started concurrently on
each node, to make as much use as possible of the
4 cores). Each task simply consists in a command
line starting a script from the NFS directory: this
is flexible enough to execute very different tasks
using the same system. The output of each task
is written to the NFS directory, so one can review
it later.

• After 3 hours and 46 minutes, the 18153 pack-
ages in Debian Etch were tested using piuparts.
The master node exits, and the nodes are made
available for future tasks.

4 Results

Performing those tasks allowed to find a number of
problems on the Grid’5000 clusters, including mis-
configurations, a kernel bug, and random failures that
were never noticed before. Such tasks, or very sim-
ilar tasks, might be included in a test suite aimed at
checking the platform.

From the Debian QA point of view, those tests re-
sulted in more than 150 release critical bugs [5] re-
ported and fixed in Etch (98 from rebuilds, and 65
from installation testing). This work has been gen-
erally welcomed by Debian developers, and some of
them provided feedback and ideas for other tests, as
seen in the bug reports [5].

While a full rebuild of all 10217 source packages in
Debian takes about 10 days on a modern computer (for
example, if using a single Grid’5000 node), we were
able to rebuild it in less than 7 hours and 30 minutes,
by distributing the package builds over the nodes (we
chose not to build more than one package per node at
a time). This is only caused by the fact that OpenOf-
fice takes this time to build on a Grid’5000 node: it is
therefore not possible to perform a shorter full rebuild
(as shown on figure 2). Some other packages that take
a long time to build are listed in table 1.

As shown in figure 3, most packages build in a very
short time, and only a few packages take a long time

. . .

node 40

node 39

node 37

node 38

node 1

openoffice.org

linux−2.6

~ 7.5 hours

Figure 2: Example scheduling of package rebuilds.
Longer builds are scheduled first, but with more than
37 nodes, the total time is limited by the time taken to
build openoffice.org.

Source package Time
openoffice.org 7 h 14 min

latex-cjk-chinese-arphic 6 h 18 min
linux-2.6 5 h 43 min
gcc-4.1 2 h 52 min
gcj-4.1 2 h 44 min

gnat-4.1 1 h 52 min
gcc-3.4 1 h 50 min

installation-guide 1 h 45 min
axiom 1 h 44 m
k3d 1 h 39 min

Table 1: Packages that take the longest time to build

to build. It should therefore be possible to achieve
much faster complete builds by working on making
those few packages faster to build. The most easy way
to improve that would be to use several CPUs when
building, but Debian doesn’t have a standardized way
to tell packages to use more than one CPU when build-
ing (see Debian bug #209008).

Installation testing made it possible to benefit from
a similar speed-up, going from about 5 days on a sin-
gle computer to about 4 hours. By removing some
bottlenecks in our infrastructure, it should be possible
to reduce this time even further, since this test can be
very easily distributed to a larger number of nodes.

5 Conclusion and future work

The use of Grid’5000 for Debian QA work has proven
to be able to help significantly the search for bugs, al-
lowing to find and report more a lot of release critical
bugs in the months preceding the release of Debian



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  10  100  1000  10000

F
(x

)

package build time (s), logarithmic scale

Figure 3: Cumulative distribution function of the
packages build times. Only a few packages take a long
time to build.

Etch. We plan to continue such work after the release
of Etch, targetting other kind of issues (not necessarily
serious issues).

Tasks such as rebuilding all packages in Debian or
package installation testing are particularly well suited
to this kind of resources, since it is possible to run
them in parallel on a very large number of nodes. This
allow a linear speed-up compared to running them on
one computer.

However, there are still several areas where the pro-
cess could be improved in the future:

• The infrastructure used to run such tasks inside
Grid’5000 could be improved by making it more
robust, more scalable and more manageable: the
current architecture is clearly not a good exam-
ple of what one should do. We are planning to
move this infrastructure to a remote execution
and control system developped in the LIG (Lab-
oratoire d’Informatique de Grenoble) laboratory.
This should benefit both parties by providing a
challenging testbed.

• Piuparts testing is very easy to distribute over
a large number of nodes. Package rebuilds are
harder, since some packages take a very long time
to build: the total build time is constrained by the
build time of the longest package. We should try
to optimize the build time of the packages that
take the longest time. Another problem we en-
countered with Debian packages was false pos-
itives: making packages more piuparts-friendly
would make testing much easier.

• Finally, the biggest problem we encountered was
the lack of manpower for reviewing the logs.
QA tasks are traditionally performed individu-
ally, which works very well when one rebuilds
the archive on his own system. However, with
Grid’5000, we are able to generate data much
faster than we will ever be able to analyze it. We
developped tools to do some parts of the analysis
automatically, but this only reduced slightly the
time taken by the reviewing of logs.

6 Acknowledgements

We would like to thank the French Ministry of Re-
search, the ACI Grid and ACI Data Mass incentives,
and the Grid’5000 staff.

References
[1] Franck Cappello, Eddy Caron, Michel Dayde, Frederic

Desprez, Emmanuel Jeannot, Yvon Jegou, Stephane
Lanteri, Julien Leduc, Nouredine Melab, Guillaume
Mornet, Raymond Namyst, Pascale Primet, and Olivier
Richard. Grid’5000: a large scale, reconfigurable, con-
trolable and monitorable Grid platform. In Grid’2005
Workshop, Seattle, USA, November 13-14 2005.
IEEE/ACM.

[2] Grid’5000 website. https://www.grid5000.fr/.

[3] Piuparts: .deb package installation, upgrading and
removal testing tool. http://packages.debian.org/
unstable/devel/piuparts.

[4] Yiannis Georgiou, Julien Leduc, Brice Videau, Johann
Peyrard, and Olivier Richard. A tool for environment
deployment in clusters and light grids. In Second Work-
shop on System Management Tools for Large-Scale
Parallel Systems (SMTPS’06), Rhodes Island, Greece,
April 2006.

[5] Debian bug report logs: bugs tagged grid5000.
http://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=
grid5000;users=lucas@lucas-nussbaum.net.


