1980s Video Icon Glows on Saturn Moon
1980s Video Icon Glows on Saturn Moon
Mar. 29, 2010
![]() |
1980s Video Icon Glows on Saturn Moon
![]() |
The upper left image shows the expected distribution of temperatures, the upper right image shows the completely different pattern that Cassini actually saw. The lower two panels compare the temperature map to Mimas' appearance in ordinary visible light at the time of the observations. |
"Other moons usually grab the spotlight, but it turns out Mimas is more bizarre than we thought it was," said Linda Spilker, Cassini project scientist at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "It has certainly given us some new puzzles."
Cassini collected the data on Feb. 13, during its closest flyby of the moon, which is marked by an enormous scar called Herschel Crater and resembles the Death Star from "Star Wars."
Scientists working with the composite infrared spectrometer, which mapped Mimas' temperatures, expected smoothly varying temperatures peaking in the early afternoon near the equator. Instead, the warmest region was in the morning, along one edge of the moon's disk, making a sharply defined Pac-Man shape, with temperatures around 92 Kelvin (minus 294 degrees Fahrenheit). The rest of the moon was much colder, around 77 Kelvin (minus 320 degrees Fahrenheit). A smaller warm spot – the dot in Pac-Man's mouth – showed up around Herschel, with a temperature around 84 Kelvin (minus 310 degrees Fahrenheit).
![]() |
The natural color of Mimas visible to the human eye may be a uniform gray or yellow color, but this mosaic has been contrast-enhanced and shows differences at other wavelengths of light. |
"We suspect the temperatures are revealing differences in texture on the surface," said John Spencer, a Cassini composite infrared spectrometer team member based at Southwest Research Institute in Boulder, Colo. "It's maybe something like the difference between old, dense snow and freshly fallen powder."
Denser ice quickly conducts the heat of the sun away from the surface, keeping it cold during the day. Powdery ice is more insulating and traps the sun's heat at the surface, so the surface warms up.
Even if surface texture variations are to blame, scientists are still trying to figure out why there are such sharp boundaries between the regions, Spencer said. It is possible that the impact that created Herschel Crater melted surface ice and spread water across the moon. That liquid may have flash-frozen into a hard surface. But it is hard to understand why this dense top layer would remain intact when meteorites and other space debris should have pulverized it by now, Spencer said.
Icy spray from the E ring, one of Saturn's outer rings, should also keep Mimas relatively light-colored, but the new visible-light images from the flyby paint a picture of surprising contrasts. Cassini imaging team scientists didn't expect to see dark streaks trailing down the bright crater walls or a continuous, narrow pile of concentrated dark debris tracing the foot of each wall.
The pattern may appear because of the way the surface of Mimas ages, said Paul Helfenstein, a Cassini imaging team associate based at Cornell University, Ithaca, N.Y. Over time, the moon's surface appears to accumulate a thin veil of silicate minerals or carbon-rich particles, possibly because of meteor dust falling onto the moon, or impurities already embedded in surface ice.
![]() |
This false-color view of Mimas accentuates terrain-dependent color differences and shows dark streaks running down the sides of some of the craters on the region of the moon that leads in its orbit around Saturn. |
"These processes are not unique to Mimas, but the new high-definition images are like Rosetta stones for interpreting them," Helfenstein said.
The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo. The composite infrared spectrometer team is based at NASA's Goddard Space Flight Center, Greenbelt, Md., where the instrument was built.
More information and images are available at http://saturn.jpl.nasa.gov and http://www.nasa.gov/cassini.
Jia-Rui C. Cook 818-354-0850
Jet Propulsion Laboratory, Pasadena, Calif.
jia-rui.c.cook@jpl.nasa.gov
2010-103
