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We are going to review the recent developments on the theory of
weighted Lorentz spaces and Hardy’s inequalities. We will see
how functional properties of the spaces (like normability) are related to
boundedness of the Hardy operator, and the study of these inequalities
give rise to several classes of weight functions.

The following is a general scheme of the main topics of this talk:

NORMABILITY BOUNDEDNESS

FUNCTION MAXIMAL

SPACES OPERATOR∥∥∥ ∥∥∥
INEQUALITIES BOUNDEDNESS

FOR HARDY

WEIGHTS OPERATOR
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Hardy’s Inequalities
POWER WEIGHTS( ∫ ∞

0

(
1
x

∫ x

0

f(y) dy

)p

xp−r−1 dx

)1/p

≤ C

( ∫ ∞

0

fp(x)xp−r−1 dx

)1/p

In terms of the derivative, this inequality has a dual version:

( ∫ ∞

0

|F (x)|px−r−1 dx

)1/p

≤ C

( ∫ ∞

0

|F ′(x)|pxp−r−1 dx

)1/p

which also admits an extension to several variables for suitable do-
mains and measures:

‖F‖p ≤ C‖∇F‖p

These kind of results are also related to Poincaré’s inequality and
Sobolev’s embeddings.
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Hardy’s Inequalities

POWER WEIGHTS

( ∫ ∞

0

(
1
x

∫ x

0

f(y) dy

)p

xp−r−1 dx

)1/p

≤ C

( ∫ ∞

0

fp(x)xp−r−1 dx

)1/p

GENERAL WEIGHTS: Muckenhoupt, Maz’ya, Talenti, etc.

( ∫ ∞

0

(
1
x

∫ x

0

f(y) dy

)p

w(x) dx

)1/p

≤ C

( ∫ ∞

0

fp(x)w(x) dx

)1/p

Hardy Operator: Sf(x) =
1
x

∫ x

0

f(y) dy

( ∫ ∞

0

(
Sf(x)

)p
w(x) dx

)1/p

≤ C

( ∫ ∞

0

fp(x)w(x) dx

)1/p

S : Lp(w) −→ Lp(w)

Motivated by the Real Interpolation Theory and the so called Rear-
rangement Invariant spaces, it turns out that one needs to consider
these inequalities only for decreasing functions.

S : Lp
dec(w) −→ Lp(w)

To understand this argument, we need to define the nonincreasing
rearrangement of a function:
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Nonincreasing Rearrangement
The nonincreasing rearrangement of a function f is:

f∗(t) = inf{s;
λf (s)︷ ︸︸ ︷

|{x; |f(x)| > s}| ≤ t}

Observe that, in fact, f∗ is a decreasing function. Another way to
define f∗ is by means of the Layer-Cake formula: given a set E we
consider E∗ = (0, |E|) ⊂ R+. Since

f(x) =
∫ ∞

0

χ{y:f(y)>s}(x) ds

then
f∗(t) =

∫ ∞

0

χ{y:f(y)>s}∗(t) ds.

Hence, we can recover a function by means of its level sets: {f > t}.
The spaces where the norm only depends on the measure of these sets
are, essentially, the Rearrangement Invariant spaces. For example
the Lebesgue Lp spaces:

‖f‖Lp =
( ∫ ∞

0

(f∗(t))p dt

)1/p

.

Other examples are the Lorentz spaces Lp,q and the Lorentz-Zygmund
spaces Lp(log L)α.
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For simple functions, it has a very geometric interpretation:
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Weighted Lorentz Spaces (G.G. Lorentz, 1951)

We define the weighted Lorentz space Λp(w) as

‖f‖Λp(w) =
( ∫ ∞

0

(f∗(x))pw(x) dx

)1/p

< +∞.

Similarly, we define the weak-type version:

‖f‖Λp,∞(w) = sup
t>0

f∗(t)W 1/p(t) < +∞,

with W (t) =
∫ t

0
w(x) dx.

We need to consider a variant of these spaces:

‖f‖Γp(w) =
( ∫ ∞

0

(f∗∗(x))pw(x) dx

)1/p

< +∞,

where f∗∗(t) = Sf∗(t) = 1
t

∫ t

0
f∗(s) ds (Maximal Function).

‖f‖Γp,∞(w) = sup
t>0

f∗∗(t)W 1/p(t) < +∞.

Observe that, for example, Γ1(1) = {0} and Γ1,∞(1) = L1.
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REMARKS

- If w = 1, Λp(w) = Lp and if w(t) = tp/q−1, Λp(w) = Lq,p.

- Λp(w) ⊂ Λp,∞(w) and Γp(w) ⊂ Γp,∞(w).

- Since f∗ ≤ f∗∗ , Γp(w) ⊂ Λp(w) and Γp,∞(w) ⊂ Λp,∞(w).

- ‖ · ‖Λp(w) is a norm ⇔ w is decreasing and p ≥ 1 (Lorentz).
One of the main questions on the theory of Lorentz spaces is to
characterize when the space itself is a Banach space (which may
happen even if w is not a decreasing function).

- ‖ · ‖Λp(w) is a quasi-norm ⇔ W (2t) ≤ CW (t), i.e. W ∈ ∆2.
(Carro-Soria).

- Since (f + g)∗∗ ≤ f∗∗ + g∗∗ , Γp(w) is a Banach space (p ≥ 1)
and similarly for Γp,∞(w) (p > 0):

This is proved by showing that

f∗∗(t) = sup
|E|=t

1
|E|

∫
E

f(x) dx.

In both cases ‖ · ‖Γp(w) and also ‖ · ‖Γp,∞(w) satisfy Minkowski’s
inequality and hence they are always a norm.
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Hardy’s Inequalities (continued)
We return to the study of Hardy’s inequality for nonincreasing func-
tions:

S : Lp
dec(w) −→ Lp(w)

It is known that if we consider the Hardy-Littlewood maximal
function

Mf(x) = sup
x∈Q

1
|Q|

∫
Q

|f(y)| dy

then (Mf)∗ ≈ f∗∗ (Riesz, Wiener, Herz, Bennett and Sharp-
ley), and hence:

M : Λp(w) → Λp(w) ⇔ S : Lp
dec(w) → Lp(w)

w ∈ Bp : rp

∫ ∞

r

w(t)
tp

dt ≤ C

∫ r

0

w(t)dt

Ariño-Muckenhoupt (1990)

M : Λp(w) → Λp(w) ⇔ S : Lp
dec(w) → Lp(w) ⇔ w ∈ Bp

Neugebauer (1991) If p > 1:

M : Λp(w) → Λp,∞(w) ⇔ S : Lp
dec(w) → Lp,∞(w) ⇔ w ∈ Bp
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w ∈ Rp :
W (t)

tp
≤ C

W (s)
sp

, s ≤ t

Carro-Garćıa del Amo-Soria (1993, 1996) If p ≤ 1:

M : Λp(w) → Λp,∞(w) ⇔ S : Lp
dec(w) → Lp,∞(w) ⇔ w ∈ Rp

Soria (1998)

M : Λp,∞(w) → Λp,∞(w) ⇔ S : Lp,∞
dec (w) → Lp,∞(w) ⇔ w ∈ Bp

BOUNDEDNESS

??? MAXIMAL

OPERATOR∥∥∥
INEQUALITIES BOUNDEDNESS

FOR HARDY

WEIGHTS OPERATOR
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Embeddings and Normability

Question: When is a Lorentz space a Banach space?

Equivalently: When can we find a norm which is comparable to the
functional defining the Lorentz space? As we shall see, this is most of
the times equivalent to saying that we can take the maximal function
f∗∗ in place of f∗; i.e., when Λ = Γ.

Ariño–Muckenhoupt, Sawyer (1990)

p > 1 : Λp(w) normable ⇔ Λp(w) = Γp(w) ⇔ w ∈ Bp

Carro-Garćıa del Amo-Soria (1996)

Λ1(w) normable ⇔ Λ1(w) ⊂ Γ1,∞(w) ⇔ w ∈ R1

Soria (1998)

Λp,∞(w) normable ⇔ Λp,∞(w) = Γp,∞(w) ⇔ w ∈ Bp

We observe that for the space Λ1(w) we do not have a description of
the equivalent norm in terms of f∗∗, contrary to the other cases (i.e.,
in case of normability, is Λ1(w) some kind of Γ space?).
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The case Λ1(w)

From now on we assume that Λ1(w) is normable (i.e., w ∈ R1), and
without loss of generality, we can also suppose that w is a decreasing
weight. We observe that we have the embeddings

Γ1(w) ⊂ Λ1(w) ⊂ Γ1,∞(w)

and that the endpoints are Γ-spaces. When is it the case that either
Λ1(w) = Γ1(w) or Λ1(w) = Γ1,∞(w)?

- Equality Λ1(w) = Γ1(w) is equivalent to w ∈ B1.

- On the other hand, Λ1(w) = Γ1,∞(w) if and only if one of the
following conditions holds:
(1) 0 = w(∞) < w(0) < ∞ and w ∈ L1,
(2) 0 < w(∞) ≤ w(0) < ∞ (i.e., w ≈ 1).
Carro-Pick-Soria-Stepanov (2001).

But, if we consider the weight w(t) = (1 − log t)χ(0,1)(t), then

{0} �= Γ1(w) � Λ1(w) � Γ1,∞(w).

Is there any Γ space between Γ1(w) and Γ1,∞(w) which is Λ1(w)?
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First Try
[J. Mart́ın, Soria (2002)]

There is a natural scale of Γ spaces between Γ1(w) and Γ1,∞(w):

Γ1,q(w) = {f : Rn −→ R+; ‖f‖Γ1,q(w) < ∞},

where

‖f‖Γ1,q(w) =
( ∫ ∞

0

(f∗∗(t))q(W (t))q−1w(t) dt

)1/q

.

It is easy to show that, if 1 ≤ p ≤ q ≤ ∞:

Γ1(w) ⊂ Γ1,p(w) ⊂ Γ1,q(w) ⊂ Γ1,∞(w)

We want to know if there is any hope to finding 1 < p < ∞ for which

Λ1(w) = Γ1,q(w). We can now prove the following:

Λ1(w) ⊂ Γ1,q(w), 1 ≤ q < ∞ if and only if Λ1(w) = Γ1(w)

Hence the answer to Λ1(w) = Γ1,q(w) is NO for a general weight.
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Second Try

We observe that Γ1,q(w) = Γq(Wq), where Wq(t) = W q−1(t)w(t), and

we have already shown that for this weight Wq things do not work.

We check now with general weights:

Λ1(w) = Γq(v)

This time the answer is ... NO again:

If 1 < q < ∞:

Λ1(w) = Γq(v) ⇔ Λ1(w) = Γ1,∞(w), w(∞) = 0 and w ∈ L1

But we have left open the case q = 1 ...
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Third Try

Finally we are able to solve the problem of identifying Λ1(w) as a Γ

space in all cases:

Theorem

If w is a decreasing weight, then:

(i) w(∞) = 0 if and only if there exists a weight v such that

Λ1(w) = Γ1(v)

(ii) w(∞) > 0 and w ∈ L∞ (i.e., w ≈ 1) if and only if

Λ1(w) = L1

(iii) w(∞) > 0 and w /∈ L∞ if and only if there exists a weight v such

that

Λ1(w) = Γ1(v) ∩ L1

L1 � Γ1(v), and Γ1(v) � L1.
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A good thing about the previous result is that v can be made explicit.

For example, if we recall the case w(t) = (1− log t)χ(0,1)(t), for which

{0} �= Γ1(w) � Λ1(w) � Γ1,∞(w).

then Λ1(w) = Γ1(v), where

v(t) =




9
4
, 0 < t ≤ 1

4
1 − 7t2 + 6 log 4t

4t2
,

1
4

< t ≤ 1
2

−1 + t2 − 6 log t

4t2
,

1
2

< t ≤ 1

0, 1 < t
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Idea of the Proof
We first show that Λ1(w) = Γ1(v) is equivalent to

1
r

∫ r

0

w(s) ds ≈ 1
r

∫ r

0

v(s) ds +
∫ ∞

r

v(s)
s

ds = S(S∗v)(r),

where S∗ is the adjoint of S:

S∗f(r) =
∫ ∞

r

f(s)
s

ds.

If we now assume that w(∞) = ρ > 0, since S(S∗v) is a decreasing

function, the following limit exists:

lim
r→∞

1
r

∫ r

0

v(s) ds = α ≥ 0.

Since S(S∗v) = S∗(Sv), then α = 0. But, on the other hand

ρ = lim
r→∞

1
r

∫ r

0

w(s) ds ≤ C lim
r→∞

1
r

∫ r

0

v(s) ds,

which gives a contradiction since α ≥ ρ/C > 0.

The converse is easy.

(ii) is trivial.
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To show (iii), we observe that Λ1(w) ⊂ L1 is equivalent to w(∞) > 0

and hence, if we define u(t) = w(t) − w(∞), by (i) we can find v such

that Λ1(u) = Γ1(v). Hence Λ1(w) = Γ1(v) ∩ L1. If L1 ⊂ Γ1(v) then

Λ1(w) = L1 which contradicts the fact that w /∈ L∞. Similarly, if

Γ1(v) ⊂ L1 then

t ≤ C

(
V (t) + t

∫ ∞

t

v(s)
s

ds

)
,

and hence v(∞) > 0 and Γ1(v) = {0}. The rest is easy. �
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