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As is well known, the density of pure electron plasmas that are confined by a
magnetic field is limited by the Brillouin density, 
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nB ≡ e0B
2 /2me . However, the electron

density can be limited to a much lower value when the electrons are confined on magnetic
surfaces, such as the surfaces produced by a stellarator. If the electron temperature is a
spatial constant, the electron force-balance equation,
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can be rewritten as
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The effective electric potential and the effective magnetic field are
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The electron density for magnetic confinement in a cylinder with   
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B = Bˆ z  is

bounded by the Brillouin limit. If one assumes the electrons are pressureless and have a
spatially constant density n0, then 
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F = (en0 /4e0)r2 .  Both   
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F*  vanish when n0 = nB,
and the equation   
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The confinement of electrons on magnetic surfaces is lost when the field lines of
the effective magnetic field   
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B * leave the confinement region and strike the chamber walls.

If the magnetic surfaces of the true field   
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B  are described by the toroidal flux, yt that they

enclose, so   
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terms that resonate with the rotational transform of   
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islands. The resonant Fourier terms are given by   
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resonant Fourier terms in the parallel flow of the electrons can cause a break up of the
surfaces of the   
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B * field. The parallel flow is determined by the condition that   
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perpendicular flow is given by   
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geometry, which cause the electron density n to vary on the magnetic surfaces, and
variations in the magnetic field strength on the magnetic surfaces can both drive resonant
Fourier terms in   
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r v  that are proportional to n/nB. These terms cause a loss of
confinement when they are sufficiently large to destroy the surfaces of the effective
magnetic field   
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