Using SBASCO to Solve Reaction-Diffusion
Equations in Two-Dimensional Irregular
Domains

Manuel Diaz, Sergio Romero, Bartolomé Rubio,
Enrique Soler, and José M. Troya

Department of Languages and Computer Science, University of Mélaga, 29071 SPAIN
{mdr, sromero, tolo, esc, troya}@lcc.uma.es

Abstract. The SBASCO programming environment provides the devel-
oper of parallel and distributed applications with high-level programming
capabilities. This is achieved as a result of the combination of two tech-
nologies: algorithmic skeletons and software components. This paper is a
case study on the use of SBASCO. Specifically, we present a scientific ap-
plication to study the propagation of reaction waves in two-dimensional
irregular domains which can be divided into overlapping rectangular re-
gions. Domain decomposition techniques are used to solve a system of
two non-linear reaction-diffusion equations. The structure of the applica-
tion is established by means of a high-level skeleton, which captures all
the communication and synchronization details that take place in paral-
lel component interaction, thereby releasing the programmer from coding
them. In addition, the use of software components facilitates the devel-
opment process and allows the creation of more flexible and adaptable
software.

1 Introduction

Domain decomposition techniques have received great attention especially for the
numerical solution of partial differential equations (PDEs) [8]. In our context,
the term “domain decomposition” means the separation of the physical domain
into different regions and so, many of these techniques accept a parallelization
that allows them to tackle large-scale and realistic engineering problems [7].
This paper presents a practical case study using SBASCO in the development
of a parallel scientific application in order to obtain the numerical solution of a
reaction-diffusion problem. The problem is modelled as a system of two time-
dependent, nonlinearly coupled PDEs, and is solved by means of domain decom-
position methods. Two-dimensional domains that exhibit an irregular geometry
with re-entrant corners are considered. Overlapping domain decomposition tech-
niques used in this paper are based on Schwarz’s methods which, at the differ-
ential level, use the solution in one subdomain to update the Dirichlet data of
the other, the convergence rate being influenced by the overlapping length [5].
The application combines two different parallelism levels. On the one hand,
the solution in the different subdomains is computed in parallel by assigning

one task per subdomain. On the other hand, the numerical method each task
implements, which is basically a procedure for solving a large linear system of al-
gebraic equations, may be parallel itself, e.g. data parallel red-black Gauss-Seidel
relaxation is used in this work. Moreover, the updating of the interior boundaries
of adjacent subdomains, which takes place in every iteration, involves the com-
munication and synchronization among either sequential or parallel tasks. These
communications depend on the data distribution belonging to the participant
tasks. The development of such applications can be tedious and error-prone when
based on traditional high-performance solutions such as HPF/MPI, C/PVM, etc.
and so, we encourage the use of languages and tools that offer a higher degree
of abstraction.

SBASCO (Skeleton-Based Scientific Components) [2] is a new programming
environment focused on the efficient development of parallel and distributed
numerical applications, also integrating two different technologies: algorithmic
skeletons [1] and software components [4]. This unified approach provides inter-
esting features in terms of interoperability, high-level programmability, compo-
sitionality, and code reusability.

The multiblock skeleton defined in SBASCO captures the pattern of parallel
computation and communication that takes place in the proposed application.
This skeleton allows the establishment of the application structure in an elegant
and declarative way, and also abstracts the programmer from most of the low-
level aspects of parallelism exploitation such as the creation, communication and
synchronization of tasks. They are addressed by the runtime support which im-
plements the skeleton so that the programmer can focus on writing the scientific
code, which is encapsulated into software components.

This paper is structured as follows. The next section outlines the main char-
acteristics of SBASCO. Section 3 introduces the physical problem taken into
consideration. The design of the application, including some implementation de-
tails are described in section 4. Experimental results are shown in section 5.
Finally, some conclusions are outlined.

2 SBASCO Overview

The skeleton-based composition language of SBASCO is used for both scientific
components and application construction. The internal structure of a component
can be established by means of the application of a fixed set of skeletons. So,
the interaction of the different tasks integrating the components is expressed in
a high-level and declarative way, according to static and predictable patterns.
The following is a brief description of the skeletons provided:

e The multiblock skeleton is focussed on the solution of multi-block and domain
decomposition-based problems, which form an important kind of problem in
the high-performance computing area.

e The farm skeleton improves a task throughput as different data sets can be
computed in parallel on different sets of processors.

e Problem solutions that have a communication pattern based on array inter-
change can be defined and solved easily by using the pipeline skeleton, which
pipelines sequences of tasks.

Scientific component interfaces are described by means of two different views.
The application view contains information related to data types of component
input/output. This view is used by the programmer in order to develop his/her
applications by means of the composition language. The configuration view ex-
tends the application view with information about input and output data dis-
tribution, processor layout and component internal structure (in terms of the
skeleton composition scheme).

The knowledge at the component interface level of data distribution and
processor layout allows the system to obtain an efficient implementation of the
communication scheme among components, which follows a “data flow” style by
means of a typical put_data/get_data scheme.

The implementation of SBASCO is based on the extension of the message
passing interface, namely MPI-2 [3]. The system exploits the functions for the
creation and management of processes, as well as the mechanisms for connecting
and communicating parallel MPI applications. The component model is sup-
ported by a compiler and libraries to facilitate the programming task.

This section has summarized the main features of SBASCO. A more detailed
explanation can be found in [2].

3 Problem Formulation and Discretization

Physical phenomena involving heat and mass transfer, combustion, etc. are char-
acterized by reaction-diffusion equations with non-linear source terms. Here, we
consider the following set of two time-dependent, nonlinearly coupled PDEs:
2 2
87U:87U+87U+S(U)7 (1)
ot ox2 Oy
where
U = (u,v)7, S = (—uv,uv — M), (2)
u and v represent the concentration of a reactant and the temperature, respec-
tively, v = 1 and v = 0 on the external boundaries, ¢ is time, x and y denote
Cartesian coordinates, A is a constant (in this paper, A = 0.5), and the super-
script T' denotes transpose. Eq. (1) has been previously studied in [6], where a
comparison of several numerical techniques for tackling domain decomposition
problems in irregular domains is presented.

Eq. (1) was discretized by means of an implicit, linearized, #-method in an
equally spaced grid where the non-linear term SZ”;“l was approximated by means
of its Taylor polynomial of first degree around (", z;, ;) to obtain the following
system of linear algebraic equations:

% - A%«z 052 AU, ; + 5§U5}j} + Ain [06§AUM + 5§Ugjj}

+Si; + 0] AU 4, (3)

Y A
Iryl | Solvel SolveR
1 Q, SolveC Q,
cyl T .
Qs
rz,l | rl,z r3 2: r2 3
1 2y >3
cy0 T
lry0L
L —+—— >
1x0 cx0 Ix1 rx0 cx1 rx1 X

Fig. 1. Original domain decomposed into overlapping regions

where

AUM = U;,l;rl - Ui,j? Si,j = S(Ui,j)v Ji,j = @(t aﬂ%l/j)

03U = Uipry = 2Uij + Uim1g, 03U = Usjir = 2Us5 + Usjo1, (4)

¢ and j denote x; and y;, respectively, t" denotes the nth time level, k is the
time step, Az and Ay represent the grid spacing in the x— and y—directions,
respectively, and 0 < € < 1 is the implicitness parameter. In this paper, § = 0.5,
i.e., second-order accurate finite difference methods are employed.

4 Application Design and Implementation

In order to apply domain decomposition, the geometry of the problem being
considered is divided, as shown in Fig. 1, into several overlapping regions, i.e.
{21, {25 and (23. The part of the boundary of (2; that is interior to {2; is denoted
by I5 ;. In the Dirichlet method considered here, the current solution in one sub-
domain is used to update the boundary data in the adjacent subdomains. Then,
the interior points are recalculated by solving the corresponding linear system of
algebraic equations. This iterative procedure is repeated until convergence. The
following algorithm gives an abstract description of the global application.

1. Set initial conditions (on each subdomain)
2. For time_step = 1..MAX_TIME_STEPS Do

3 Repeat

4. Update boundaries (on each subdomain)
5 Solve system of linear equations (on each subdomain)
6 Until convergence on ALL subdomains

This algorithm involves up to three major nested loops: the For loop in line
2, the Repeat loop in line 3 and the linear system solver in line 5 which, due

Sol velL
PL! P2 P3 Sol veC

PO

1]

Fig. 2. Boundaries updating involves parallel communications

to the large number of unknowns per domain, is usually based on an iterative
procedure, instead of a direct method. Regarding the convergence criterion in
line 6, this is satisfied when boundary values are not significantly modified in
two iterations (||I7F; — I'*;!|] < 10710 for every pair of adjacent subdomains).

A way to execute the above algorithm in parallel is to associate a task with
each one of the regions. In our approach, these tasks are encapsulated into soft-
ware components which comprise the application so that, we have instances of
components that run in parallel to solve the problem. Furthermore, the scien-
tific code implemented in components can be sequential or parallel as well. For
example, we use parallel red-black Gauss-Seidel relaxation as a linear equations
solver and so, data parallel components are considered.

The updating of the boundaries and the convergence criterion (lines 4 and
6 respectively) require the synchronization and communication of components.
Data distribution and processor layout are the key elements that influence the
implementation of an efficient communication scheme, as is shown in Fig. 2. The
component on the left, called SolveL, is executed on four processors its domain
being distributed by columns. The component on the right, called SolveC, runs
on two processors having data distributed by rows. When boundaries are being
updated, processor P3 of SolveL needs to communicate with processors PO and
P1 of SolveC. It is important to remark that the system manages these commu-
nications automatically, according to the high-level description of boundaries,
data distribution and processor layout that the programmer has provided.

The SBASCO solution uses a multiblock skeleton, which is oriented to these
types of domain-decomposition problems, in order to structure the application
and establish the interaction scheme among the components.

SolveL(left) ON PROCS(4),
SolveC(center) ON PROCS(2),
SolveR(right) ON PROCS(4)

1. PROGRAM ReactionDiffusion

2. complex, DOMAIN2D :: left/1x0,lry0,1x1,lryl/,
3. center/cx0,cy0,cxl,cyl/,
4. right/rx0,1lry0,rxl,1lryl/
5. STRUCTURE

6. MULTIBLOCK

7.

8.

9.

10. WITH BORDERS

11. left(1x1,cy0,1x1,cyl)<-center(_),
12. center (cx0,cy0,cx0,cyl)<-left(),
13. VA B

The program declares three domains based on the geometry shown in Fig. 1.
The complex datatype was chosen because every domain point needs to save
a pair of values, i.e. © and v. The MULTIBLOCK definition includes the selected
components, the number of processors assigned to each one, and the boundaries
definition. The expression left(1x1,cy0,1x1,cyl)<-center(_) indicates that
the zone of 1left delimited by points (1x1,cy0) and (1x1,cyl) will be updated
(in every iteration) by the values belonging to the zone of center delimited by
the same points. No data distribution is declared at the composition level, as
this information will be obtained from the configuration view of the different
components involved. Distribution types are similar to those used in HPF. The
following shows the configuration view of SolveC:

1. CONFIGURATION INTERFACE SolveC
2. complex, INOUT, DOMAIN2D :: my_domain,
3. DISTRIBUTE my_domain(BLOCK, *)

By using the high-level mutiblock skeleton, the programmer is abstracted
from details such as the synchronization and communication among parallel
components or the execution pattern implemented in the domain decomposition
method. So, he/she is only concerned with the programming of the initial condi-
tions, the desired convergence criterion and the linear system solver. As a result,
the complexity of the application development decreases significantly.

The programming of the components is carried out in an object-oriented style
using C++ with MPI, together with a class library provided by SBASCO. The
software architecture is comprised of a group of MPI applications that imple-
ments the parallel components being executed on disjoint sets of processors. The
creation and interconnection of scientific components are carried out by means of
the process management mechanisms defined in MPI-2. Prior to the application
execution, the components exchange information related to data distribution
of arguments and processor layout so that message passing can be performed
efficiently when communication takes place.

5 Experimental Results

The presented application has been used to solve Eq.(1) on a domain with re-
entrant corners, which is decomposed into three overlapping regions as described
in Fig. 1. The problem is subjected to the following initial conditions:

u(z,y,0) =1, wv(z,y,0) = e (7= Hv)), (5)

where (254, yig) is located at the center of {2, and denotes the ignition location.
These conditions establish a peak of temperature in the left subdomain needed
to start the reaction process.

v t=0 v =10

AR
(R
i

A
DR

MR

fll:%}}t‘?@ix‘“““‘\‘“

RS

v t=20 v =30

o o,

S
R
IR0
b

1:,"\\\\\\\\\\\\\
i i

I

Fig. 3. Spatial distribution of nondimensional temperature, v, at ¢ = 0, 10,20 and 30

The solution is characterized by a reaction front that propagates from the ig-
nition point to the rest of the domain. The concentration of reactant, u, decreases
as the reaction progresses, whereas the temperature, v, exhibits the behavior
shown in Fig. 3.

Table 1 summarizes the computational time, in seconds, for different combi-
nations of grid sizes and processors. Each problem instance is composed of three
same-sized subdomains which are overlapped. Column one denotes the size of the
problem as the area of the smallest rectangle that contains the complete domain.
The number of processors is equally distributed among the three subdomains.
In addition, we provide a sequential case in which all components are executed
on a single processor. Experiments were carried out in a cluster of Pentium 4,
2.66GHz, 1GB RAM Linux workstations interconnected with a 1Gb/s Myrinet
network and running LAM/MPI as message passing interface implementation.
As the results show, the high-level programming approach used does not result
in loss of performance when the number of processors is increased.

6 Conclusions

This paper has shown a practical utilization of modern high-level programming
techniques in scientific computing. The presented application solves a system of
two reaction-diffusion equations by means of domain decomposition methods on

Table 1. Execution time, in seconds, for the reaction-diffusion problem. Values in
brackets represent speed-up.

Problem Subdomain Sequential =~ Number of processors

size size 3 6 9 12
240x440 240x160 54.45 30.22 19.72 14.71 13.12
(1.80) (2.76) (3.70) (4.15)
480x880 480x320 189.62 109.54 65.80 48.67 42.78
(1.73) (2.88) (3.89) (4.43)
960x1760 960x640 805.23 548.18 329.16 195.09 173.44

(1.46) (2.44) (4.12) (4.64)

irregular domains that exhibit re-entrant corners. Based on the high-level paral-
lel programming environment SBASCO, the approach takes advantage of using
algorithmic skeletons and software components, two technologies that elevate
the abstraction degree of the programming model, as a consequence, making the
development of the parallel application easier, as well as improving the software
evolution and maintenance. Some experimental results have shown the suitabil-
ity and efficiency of the proposal.

References

1. Cole, M., Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, 1989.

2. Diaz, M., Rubio, B., Soler, E., Troya, J.M., SBASCO: Skeleton-Based Scientific
Components, in “Proceedings of the 12th Euromicro Conference on Parallel, Dis-
tributed and Network-based Processing (PDP 2004)”, pp. 318-324, IEEE Computer
Society, A Corufia, Spain, 2004.

3. Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W.,
Snir, M., MPI: The Complete Reference, volume 2-The MPI-2 Extensions. MIT
Press, 1998.

4. Heineman, G.T., Council, W.T., Component-Based Software Engineering: Putting
the Pieces Together. Addision Wesley, 2001.

5. Lions, P.L., On the Schwarz Alternating Method III, in “Proceedings of the 3rd
International Symposium on Domain Decomposition Methods for Partial Differential
Equations”, pp. 202—223, Chain et al. eds, Philadelphia, STAM, USA, 1989.

6. Ramos, J.I., Soler, E., Domain Decomposition Techniques for Reaction-Diffusion
Equations in Two-Dimensional Regions with Re-entrant Corners, Applied Mathe-
matics and Computation, 118, 2-3 (2001), pp. 189-221.

7. Smith, B., Bjgrstad, P., Gropp, W., Domain Decomposition. Parallel Multilevel
Methods for Elliptic P.D.E.’e. Cambridge University Press, 1996.

8. Quarteroni, A., Valli, A., Domain Decomposition for Partial Differential Equations.
Oxford Science Publications, 1999.

