
Cache-Efficient Numerical Algorithms using Graphics Hardware

Naga K. Govindaraju a Dinesh Manocha b

aMicrosoft Corporation

bUNC Chapel Hill

Abstract

We present cache-efficient algorithms for scientific computations using graphics processing units (GPUs). Our approach is
based on mapping the nested loops in the numerical algorithms to the texture mapping hardware and efficiently utilizing GPU
caches. This mapping exploits the inherent parallelism, pipelining and high memory bandwidth on GPUs. We further improve the
performance of numerical algorithms by accounting for the same relative memory address accesses performed at data elements
in nested loops. Based on the similarity of memory accesses performed at the data elements in the input array, we decompose the
input arrays into sub-arrays with similar memory access patterns and execute on the sub-arrays for faster execution. Our approach
achieves high memory performance on GPUs by tiling the computation and thereby improving the cache-efficiency. Overall,
our formulation for GPU-based algorithms extends the current graphics runtime APIs without exposing the underlying hardware
complexity to the programmer. This makes it possible to achieve portability and higher performance across different GPUs. We
use this approach to improve the performance of GPU-based sorting, fast Fourier transform and dense matrix multiplication
algorithms. We also compare our results with prior GPU-based and CPU-based implementations on high-end processors. In
practice, we observe 2–10× improvement in performance.

Key words: Memory model, graphics processors, scientific algorithms.

1. Introduction

The programmable graphics processing units (GPUs)
are primarily designed to achieve high rasterization per-
formance for interactive applications. Current GPUs
consist of a high number (e.g. 64− 128) of fragment
processors with high memory bandwidth. In many ways,
the architecture of a current GPU is similar to a many-
core processor [2], which achieves higher parallel code
performance for rasterization applications. This is in

Email addresses: nagag@microsoft.com (Naga K.
Govindaraju), dm@cs.unc.edu (Dinesh Manocha).

contrast with multi-core CPUs, which consist of best
single-thread performing cores.

Current GPUs can offer 10× higher main memory band-
width and use data parallelism to achieve up to 10×
more floating-point throughput than the CPUs. This
computational capability has been widely used to accel-
erate scientific, geometric, database and imaging appli-
cations, and a new area of GPGPU 1 has emerged over
the last decade [29]. Most of these non-graphics appli-
cations map the the underlying problem and data struc-
tures to the rasterization hardware and achieve higher
throughput.

1 http://gpgpu.org

Preprint submitted to Elsevier

In this paper we address the problem of efficient im-
plementation of scientific and numerical algorithms on
GPUs. The GPUs have been used to design faster solvers
for sparse and dense linear systems, matrix multipli-
cation, fluid flow simulation, FFT, sorting and finite-
element simulations [29,25]. The main goal in these al-
gorithms is to utilize multiple vertex and fragment pro-
cessors within a GPU, along with high memory band-
width. Specifically, current high-end GPUs consist of
up to 1GB of texture memory. The texture memory is
primarily designed to store and perform fast accesses to
2D arrays represented as textures on GPUs. Moreover,
GPU architectures are designed to perform vector com-
putations on these 2D arrays and achieve high memory
bandwidth using a high (e.g. 256-bit) memory interface
to the texture memory. At the same time, each fragment
processor has small L1 and L2 SRAM caches much
smaller as compared to L1 and L2 CPU caches, respec-
tively, (see Fig. 1). The GPUs perform block transfers
between the caches and DRAM-based video memory.
In order to achieve a higher performance, we need to de-
sign broad schemes to achieve higher cache efficiency.

Current GPUs support 32-bit floating point arithmetic,
and GPU-based implementations of some scientific al-
gorithms can outperform optimized CPU-based imple-
mentations available as part of ATLAS or the Intel Math
Kernel Library (MKL). However, most of these algo-
rithms were designed for specific applications, and it is
hard to generalize them to a broad class of problems.
Furthermore, their relative performance varies on dif-
ferent GPUs.

Main results: We present a general approach to design
cache-efficient algorithms for numerical and scientific
computations on GPUs. Our work builds on the memory
model presented by Govindaraju et al. [15], and we use
that model to improve the cache efficiency of numer-
ical algorithms. Specifically, we abstract the memory
addressing in nested loops in numerical algorithms to
texture mapping hardware on GPUs. The texture map-
ping hardware is used to perform bilinear interpolation
to compute the memory addresses for computation on
nested loops. This mapping results in efficient cache
utilization as it exploits spatial locality in memory ac-
cesses and better pipelining of memory accesses within
the computation.

We represent the input arrays as 2D textures. We de-
compose the input array into multiple sub-arrays with
similar memory access patterns to perform scientific
computations on the array. The memory accesses to the
input arrays are modeled based on a 2D block-array rep-

resentation [15]. Each block-array represents a cache
line transfer between the caches and the texture mem-
ory. Based on this hardware model, we apply the 3C’s
model [19] to analyze the cache misses and compute the
memory performance of scientific algorithms on GPUs.
In order to reduce the cache misses, we apply tiling al-
gorithms to improve the performance of three numeri-
cal algorithms: sorting, fast Fourier transform and dense
matrix multiplication. We compare their performance
with prior GPU- and CPU-based algorithms. Our al-
gorithms are able to achieve a performance of 65–100
GB/s effective memory performance on a NVIDIA 8800
GPU. Moreover, we have observed 2–10× performance
improvement over optimized CPU-based implementa-
tions running on high-end dual 3.6 GHz Xeon proces-
sors or dual Opteron 280 processors.

Organization: The rest of the paper is organized as
follows. We provide a brief overview of prior work on
cache efficient algorithms, scientific libraries and GPU-
based algorithms in Section 2. Section 3 presents the
background on the GPU memory model and presents a
technique for efficient implementation of nested loops
on GPUs. We present the implementation of cache-
efficient numerical algorithms using the GPU memory
model in Section 4 and use it to improve the perfor-
mance of sorting, matrix multiplication and FFT algo-
rithms. We compare their performance with prior algo-
rithms in Section 5.

2. Related Work

In this section we give a brief overview of prior work on
designing efficient numerical algorithms such as sorting,
FFT and matrix multiplication algorithms on CPUs and
GPUs.

2.1. Sorting Algorithms

Sorting is a well-studied problem in the literature of
computer-science. Many optimized sorting algorithms
such as quicksort and radixsort decompose the prob-
lem into sub-problems and recurse on the sub-problems.
The decomposition or partitioning of the input array
requires writes to random memory locations and is of-
ten memory-intensive [23]. Many parallel algorithms
including sorting networks [34,7,12] have also been de-
signed to accelerate sorting on mesh-connected pro-
cessor arrays. Among these, sorting networks such as
bitonic sorting network [32,20,14] and periodic bal-
anced sorting network [16] have deterministic memory

2

accesses and map well to GPUs. These algorithms im-
plement the sorting network on the GPU using a frag-
ment program and each stage of the sorting algorithm
is performed as one rendering pass. The efficiency of
these algorithms is governed by the number of instruc-
tions in the fragment program and the number of tex-
ture operations. We also note that the prior GPU-based
sorting network algorithms did not apply loop-blocking
optimizations to improve the memory performance.

2.2. FFT Algorithms

Fast Fourier Transform is one of the key routines used in
signal processing, multiplying large integers, etc. At a
high-level, the FFT algorithms use a divide-and-conquer
strategy to quickly evaluate the discrete Fourier trans-
form (DFT) and its inverse. The divide-and-conquer
strategy on FFTs defines a butterfly network. The but-
terfly network consists of multiple stages and within
each stage, the network defines a deterministic map-
ping between some elements in the input array elements
to output locations. Many FFT algorithms have also
been optimized for input data by exploiting symmetry
and for memory requirements using in-place algorithms
[35,36,39]. Researchers have also designed optimized
algorithms on supercomputers including external mem-
ory algorithms [3,5,4]. Recently, algorithms exploiting
the programmability and parallelism in GPUs have been
proposed [28,30]. These algorithms efficiently map the
butterfly network in Cooley-Tukey algorithm to the pro-
grammable pipeline in GPUs. These GPU-based imple-
mentations have not used loop-blocking optimizations
to improve their overall performance.

2.3. Dense Matrix Multiplication

Dense matrix multiplication is a classic routine used to
understand the efficiency of caches in CPUs [31]. Re-
cent work has focused on analyzing the performance
of GPU-based matrix-matrix multiplication algorithms
[24,18,13]. Hall et al. [18] propose a cache-aware block-
ing algorithm for matrix multiplication on the GPUs.
Their approach only requires a single rendering pass by
using the vector capabilities of the hardware. Fatahalian
et al. [13] have shown that matrix-matrix multiplica-
tion can be inefficient on prior GPUs due to low cache
bandwidth limitations.

2.4. Scientific Libraries and Compiler
Optimizations

Scientific and numerical libraries are typically designed
using a layered approach with good data reuse. The

main idea is to identify a set of core operations for
which algorithms with good data reuse are known, care-
fully implement these algorithms on the hardware and
use those operations to develop application programs.
Examples of such scientific libraries include LAPACK
[1] and ATLAS 2 for linear algebra software, FFTW 3

to compute the discrete Fourier transform, and Intel’s
Math Kernel Library (MKL), which is highly optimized
for Intel processors.

Many algorithms have been proposed in programming
languages and compiler literature to generate blocked
code to achieve higher performance based on the mem-
ory hierarchies in the machines. This includes work
on restructuring based on space tiling [37] and linear
loop transformations [6,26]. These approaches are typ-
ically restricted to perfectly nested loops, and can be
extended to imperfectly nested loops if these loops are
first transformed into perfectly nested loops through
the use of code sinking [38]. Carr and Kennedy [9]
propose a list of transformations, including strip-mine-
and-interchange, index-set-splitting, and loop distribu-
tion, which are based on the control flow of the pro-
gram. Other approaches directly reason about the flow
of data through the memory hierarchy [21]. Many mem-
ory models have also been proposed to estimate pro-
gram performance for nested loops [22,10].

3. Background

In this section we give a brief overview of GPU archi-
tectures. We present the GPU memory model presented
by Govindaraju et al. [15] to analyze the performance
of GPU-based algorithms using the graphics APIs such
as Microsoft DirectX and highlight some of the differ-
ences with CPU-based memory models and optimiza-
tion techniques.

3.1. Graphics and Scientific Programming

GPUs are mainly designed for rapidly transforming 3D
geometric primitives into pixels on the screen. GPUs
can also be regarded as massively parallel vector proces-
sors suitable for general data-parallel computations—
therefore, they can be used to significantly accelerate
many numerical algorithms. Apart from the massive
parallelism, GPUs also differ in their memory hierar-
chy from CPUs. Fig. 1 provides a conceptual abstrac-
tion of CPU and GPU memory hierarchies and high-

2 http://www.netlib.org/atlas
3 http://www.fftw.org

3

1

CPU

Core 1

Registers

L2 cache

L1 Dcache

Core 2

Registers

L1 Dcache

DDR2 RAM

FP

L2 cache

FP

GDDR4 RAM

FP

Registers

L1 cache

FP FP

Write

back

Write

through

Low

bandwidth

~8GB/s

Small,

4MB
Very

small

GPU

High

bandwidth

~86GB/s

Fig. 1. A high-level abstraction for CPU and GPU memory hi-
erarchies. On the right we show a conceptual abstraction for the
GPU memory hierarchy. GPUs write to a high-bandwidth, high-la-
tency video memory using small, write-through caches. Moreover,
large number of fragment processors (FPs) on the GPU share the
caches. These differences from CPU memory hierarchies indicate
different memory optimizations for achieving higher performance
on GPU-based scientific algorithms.

lights the main differences. At a high-level, GPUs con-
sist of small, write-through caches and use a dedicated,
high-bandwidth, high-latency memory subsystem. Due
to higher latencies, efficient cache-usage can signifi-
cantly improve the performance of GPU-based scientific
algorithms. In addition we extend the graphics-based
programming APIs to achieve scalable and portable per-
formance for the numerical routines among different ar-
chitectures, without exposing the underlying hardware
complexity.

In this section we briefly describe the graphics data rep-
resentations that can be used by scientific algorithms
and the underlying mechanisms used to access the data
and to perform the computations on GPUs using graph-
ics programming APIs:

– Memory Representation: The graphics processor is
designed to perform vector computations on input
data represented as 2D arrays or textures. Each el-
ement of a texture is composed of four color com-
ponents, and each component can store one floating
point value. Current GPUs only support 32-bit float-
ing point representations. The scientific algorithms
can represent the input data in 2D textures and per-
form streaming computations on the data elements in
the 2D textures.

– Inter-processor Communication: Current graphics
APIs allow interprocessor communication by allow-
ing the processors to write to textures in a global

memory. The written textures can then be streamed
into fragment processors for further processing. In
order to avoid cache coherence issues, the input tex-
tures need to be different from the output textures.
These restrictions result in simpler hardware designs
and avoid many of the unnecessary coherence over-
heads while rendering geometry onto the screen.

– Data processing: In order to perform computations
on a data element, a quadrilateral covering the ele-
ment location is rasterized on the screen. The raster-
ization process generates a fragment for each cov-
ered element on the screen, and a user-specified pro-
gram is run for each generated fragment. Since each
fragment is evaluated independently, the program is
run in parallel on several fragments using an array of
fragment processors. The output of the fragment pro-
cessor can be written to the corresponding element
location through a high bandwidth memory interface.
Some of the main benefits of the GPU arises from the
fact that current GPUs offer 10× higher main mem-
ory bandwidth and use data parallelism to achieve
up to 10× more operations per second than current
CPUs.

– Memory addressing: The fragment processors access
the input data representations (or textures) using the
texture mapping hardware. The texturing hardware
maps the elements in the input 2D arrays to the data
element locations on the screen. The mapping is spec-
ified by rasterizing a quadrilateral that covers the el-
ement locations on the screen, and each vertex of the
quadrilateral is associated with a texture or 2D array
coordinates. The texture mapping hardware performs
bilinear interpolation of the array coordinates to com-
pute the mapped coordinates for each pixel that is
covered or rasterized. A 2D lookup is then performed
on the 2D input array, and the data element at the
array location is assigned to the fragment.

3.2. Memory Model for Graphics-Based Scientific
Programming

Current GPUs achieve high memory bandwidth using
a 4-6x wider memory interface to the video memory
than the memory interface between CPUs and RAM.
The textures used in GPU rendering operations are
stored in a DRAM-based video memory. When a com-
putation is invoked, the fragment processors access the
data values from the DRAM using texturing hardware.
In order to mask high DRAM latencies, a block trans-
fer is performed to small and fast L1 and L2 SRAM
caches, which are local to the fragment processors.

4

Fig. 2. This figure shows a color-coding of the regions corresponding
to increment and decrement operations in Y while executing the
nested loops in routine 3.1. The orange colored regions indicate
increment operations, and green-colored regions represent decrement
operations.

These prefetch sequential block transfers utilize the
memory bus efficiently. Moreover, current GPUs also
use Graphics Double Data Rate (GDDR) versions for
the video memory to achieve high bandwidth per pin
4 . This is one of the major reasons that GPUs are able
to obtain 10x higher memory bandwidth as compared
to current CPUs.

Given this memory organization, the 2D texture array on
GPUs is represented using a 2D block-based represen-
tation for rasterization applications [17]. In our block-
based model, we assume that the 2D array is tightly par-
titioned into non-overlapping 2D blocks of size B×B.
Each 2D block represents a L2 cache block, and when
an array value corresponding to the 2D block region
is accessed, our model assumes that the entire block is
fetched into the L2 cache if it is not present. This 2D
block-based representation is designed to exploit the
spatial locality of texture memory accesses in graphics
applications. Moreover, memory addressing in GPUs
is performed using bilinear interpolation capabilities of
the texturing hardware. As a result the memory accesses
for a 2D region of pixels correspond to a 2D block of
texture addresses that have spatial coherence. In prac-
tice the block-based representation efficiently exploits
the spatial locality in memory accesses.

As compared to current CPUs, the GPUs can execute
higher number of threads in parallel using the pro-
grammable processors. Moreover, the clock speeds of
the programmable processors are also lower than the
CPU clock speeds. Therefore, the GPUs are able to bet-
ter hide the memory latency as compared to the CPUs.
This is the main reason that GPUs have smaller cache
sizes than CPUs (e.g. one order of magnitude smaller).
Due to the small cache sizes on GPUs, only a few
blocks can fit at any time in the cache. As a result the
GPU memory organization is quite different than that

4 http://en.wikipedia.org/wiki/GDDR4

of CPUs. In order to analyze the GPU cache behavior,
we incorporate the well known 3C’s model [19] into
our memory model. In the 3C’s model, cache misses
are classified as:

(i) Compulsory or cold misses which are caused due
to the first reference of a block that is not in cache.

(ii) Capacity misses which occur due to the limited
cache sizes.

(iii) Conflict misses that are due to multiple blocks
that map to the same set.

Unlike the CPU vendors, the GPU vendors currently
do not disclose the cache sizes, replacement policies or
bandwidth. As a result, the 3C’s model is well-suited
to analyze and improve the cache behavior of scientific
applications on GPUs, as it does not assume such cache
information. In particular we focus on minimizing the
capacity and conflict misses because compulsory misses
are unavoidable.

3.3. Nested Looping and Quadrilateral
Rasterization Cache Analysis

Nested loops are commonly used in many scientific al-
gorithms. In this subsection we show nested loops can
be implemented efficiently on GPUs. There is consid-
erable literature on cache analysis on CPUs to optimize
data locality in nested loops [38,9]. On GPUs imple-
menting nested loops is analogous to quadrilateral ras-
terization. However, GPUs use different memory repre-
sentations. Therefore, memory optimization techniques
designed for CPU-based algorithms may not directly
apply to GPUs. In this section, we use our memory
model and CPU-based strip-mining algorithms to an-
alyze the differences in optimized code generated for
nested loops on CPUs and GPUs.

We use a simple nested loop example in C programming
language (see Algorithm 3.1) to explain the difference.
In this example each data element in an input array X
is accessed once. We either increment or decrement the
elements in X and store the result in the output array
Y . Fig. 2 shows a color-coding of Y , where the orange
color represents regions in Y when the elements in X
are incremented and green color represents regions in
which the elements in X are decremented. Suppose the
width of the array is W and the height of the array is H.
Also, let W � B where B is the block size. Suppose the
height of the orange or green regions is h. As the data
accesses are sequential and CPU cache lines are 1-D,
the CPU looping code is efficient for data locality.

5

C-Based CPU Cache-Efficient Nested Loop Example
1 s = 0
2 for(i = 0; i < H

2h ; i = i+1)
3 for(j = 0; j < h; j = j +1) // loop to increment
4 for(k = 0;k < W ;k = k +1)
5 Y [s][k] = X [s][k]+1
6 s = s+1
7 for(j = 0; j < h; j = j +1) // loop to decrement
8 for(k = 0;k < W ;k = k +1)
9 Y [s][k] = X [s][k]−1
10 s = s+1
Analogous GPU Cache-Inefficient Nested Loops
1 s = 0
2 for(i = 0; i < H

2h ; i = i+1)
3 Set fragment program to increment
4 Draw a rectangular quad with co-ordinates (s,0), (s,W),
(s+h,W), (s+h,0)
5 s+ = h

6 Set fragment program to decrement
7 Draw a rectangular quad with co-ordinates (s,0), (s,W),
(s+h,W), (s+h,0)
8 s+ = h

ALGORITHM 3.1: Implementation of nested loops on CPUs and
GPUs. The different computations on the GPUs are performed using
fragment programs.

The GPU-based nested looping is analogous to the CPU
code, where a single loop traverses the array from the
top-to-bottom. Within each loop iteration, we rasterize
a quadrilateral either to increment the data values us-
ing a fragment program in orange-colored regions or to
decrement the data values using a second fragment pro-
gram in green-colored regions. Although the CPU-code
is efficient for memory accesses on CPUs, the corre-
sponding GPU code has significant memory overhead
when h < B due to conflict and capacity misses. Due to
the limited cache sizes, we observe that each quadrilat-
eral rasterization could result in many cache evictions.
In fact a majority of the blocks fetched earlier during
rasterization are evicted by the later blocks, irrespec-
tive of the cache replacement policy. Using our memory
model, we analytically determine the number of cache
misses to be W×H

B×h and the number of cold misses to
be W×H

B×B . In section 4 we present experimental and the-
oretical analysis on the GPU cache performance as a
function of the cache parameters for nested loops such
as Algorithm 3.1 in scientific computations.

Fig. 3. High-level architecture diagram illustrating the memory hi-
erarchy in the NVIDIA 8800 GTX GPU

4. Numerical Algorithms

In this section we present the design of efficient numeri-
cal algorithms using the graphics APIs. Specifically, we
present algorithms for three applications—sorting, real
and complex Fast Fourier transforms, and matrix multi-
plication. We also present the application of our mem-
ory model to identify the GPU block sizes and cache
sizes for measuring the memory efficiency of these sci-
entific algorithms in terms of the cache misses. In the
experiments presented in this section, we use our mem-
ory model and tile the computations within the loops in
our algorithms to minimize cache misses. We then pro-
file the performance of our algorithms by varying the
tile size in powers-of-two up to a user-defined maxi-
mum tile size and empirically compute the tile size that
results in the best execution time.

4.1. Sorting

Sorting is a fundamental data management operation
and has been studied for more than five decades. Sort-
ing is a compute-intensive and memory-intensive op-
eration; therefore, it can utilize the high computational
and memory throughput on GPUs. GPUs cannot write
to arbitrary memory locations using the current graph-
ics APIs—therefore, optimized sorting algorithms such
as quicksort do not map well to GPUs. Sorting networks
have deterministic access patterns and do not require
writes to random locations. In this section we analyze
the problem of bitonic sorting networks [14,32,20].

At a high level, GPU-based sorting algorithms read
values from an input array or texture, perform data-
independent comparisons using a fragment program,
and write the output to another array. The output array
is then swapped with the input array, and the compar-
isons are iteratively performed until the whole array is
sorted. Due to the deterministic accesses, sorting net-

6

Fig. 4. This figure illustrates a bitonic sorting network on 8 data
values. The sorting algorithm proceeds in 3 stages. The output of
each stage is the input to the next stage. In each stage the array is
conceptually divided into sorted data chunks or regions highlighted in
green and red. Elements of adjacent chunks are merged as indicated
by arrows. The minimum element is moved to the green region, and
the maximum is stored in the red colored regions, producing larger
sorted chunk.

work algorithms map well to GPUs. A few examples
of these sorting network algorithms include periodic
balanced sorting network [12], bitonic sorting network
[7], etc. Among these, the bitonic sorting network has
lower memory bandwidth requirements and maps well
to GPUs.

Bitonic sorting network performs data-independent
comparisons on bitonic sequences [7]. Given a se-
quence a = (a0,a1, . . . ,an), the bitonic sorting algo-
rithm proceeds bottom-up, merging bitonic sequences
of equal length at each stage. It first constructs bitonic
sequences of size 2 by merging pairs of adjacent data
elements (a2i,a2i+1) where i = 0,1, . . . , n

2 − 1. Then
bitonic sequences of size 4 are formed in stage 2 by
merging pairs of bitonic sequences (a2i,a2i+1) and
(a2i+2,a2i+3), i = 0,1, . . . , n

2 − 2. The output of each
stage is the input to the next stage. The size of the
bitonic sequence pairs doubles at every stage. The final
stage forms a sorted sequence by merging bitonic se-
quences (a0,a1, .,a n

2
),(a n

2 +1,a n
2 +2, . . . ,an) (see Figure

4).

Specifically, stage k is used to merge two bitonic se-
quences, each of size 2k−1, and it generates a new
bitonic sequence of length 2k. The overall algorithm re-
quires logn stages. In stage k we perform k steps in the
order k to 1. In each step, the input array is conceptu-
ally divided into chunks of equal sizes (size d = 2 j−1

for step j) and each elements in one chunk is com-

Fig. 5. The left figure shows the 1-D mapping of comparisons among
array elements in step 2 and stage 3 of Figure 4. The mapping is
implemented using GPU texturing hardware. For each data chunk,
we pass the element indices (or vertex locations of a 1-D line) of the
corresponding data chunk for comparisons. The texturing hardware
fetches the data values at the corresponding locations for each pixel,
and a single-instruction fragment program computes the minimum
or maximum in parallel on multiple pixels simultaneously using the
fragment processors. The right figure shows the 2D-representation
of the 1-D array of size 8 shown in Figure 4. In this example the
width of the 2D array is 2 and the height is 4. Observe that the
data chunks now correspond to row-aligned quads, and the sorting
network maps well to the GPU 2D texturing hardware.

pared against the corresponding element in its adjacent
chunks i.e., an element ai in a chunk is compared with
the element at distance d (ai+d or ai−d). The minimum
is stored in one data chunk, and the maximum is stored
in the other data chunk. Figure 4 shows a bitonic sorting
network on 8 data values. Each data chunk in a step is
color-coded, and elements in adjacent data chunks are
compared. The minimum is stored in the green colored
region, and the maximum is stored in the red colored
region. For further details on the bitonic sorting algo-
rithm, refer to [11].

In a GPU each bitonic sort step corresponds to mapping
values from one chunk in the input texture to another
chunk in the input texture using the GPU’s texture map-
ping hardware, as shown in Figure 5. The texture map-
ping hardware fetches data values at a fixed distance
from the current pixel and compares against the cur-
rent pixel value, and may replace the value based on the
comparison. The texturing hardware works as follows:
first, a 2D array is specified to fetch the data values.
Then a 2D quadrilateral is specified with lookup co-
ordinates for vertices. For every pixel in the 2D quadri-
lateral, the texturing hardware performs a bilinear in-
terpolation of the lookup co-ordinates of the vertices.

7

Fig. 6. Our memory model for a NVIDIA 7800 GTX GPU predicts
the block size for efficient sorting on GPUs. The analysis closely
matches the experimental results for a cache block size of 8×8.

The interpolated coordinate is used to perform a 2D ar-
ray lookup by the fragment processor. This results in
the larger and smaller values being written to the higher
and lower target pixels. The left Figure 5 illustrates the
use of texture mapping for sorting. In this example, 1-
D lines are specified for data chunks with appropriate
lookup co-ordinates. For example, the first line segment
(0,1) is specified with the vertex lookup co-ordinates
(2,3). Then the texture mapping hardware is used to di-
rectly fetch values a2,a3 and compare them against a0
and a1 respectively, within the fragment processor.

As GPUs are primarily optimized for 2D arrays, we map
the 1D array onto a 2D array as shown in Figure 5. The
resulting data chunks are 2D data chunks that are either
row-aligned (as shown in the right side of Figure 5) or
column-aligned. The resulting algorithm maps well to
GPUs.

The overall sorting algorithm requires a large number
of O(n log2 n) compute and memory references. There-
fore, cache-analysis can significantly improve the per-
formance of GPU-based sorting algorithms.

4.1.1. Cache Block Analysis

The 2D quadrilateral rasterization algorithm in each
step is a nested loop. Each step performs two sequen-
tial read operations and one sequential write operation
per data element. Using our memory model, we expect
ncompulsory = W×H

B2 compulsory misses. Without loss of
generality, let us assume we are rendering row-aligned
quads of height h and width W . We perform cache anal-
ysis in these two cases based on the height of the row-
aligned quad.

Fig. 7. The computational time of our cache-efficient bitonic sort
algorithm as a function of the number of data values on a 7800
GTX GPU. We observe that the experimental results closely match
the theoretical results for a 64×64 block size. The graph indicates
that our algorithm achieves 37 GB/s memory bandwidth, close to
the 40 GB/s maximum.

Case 1: h ≥ B. In this case all the cache misses in
rendering the quad are compulsory misses. Note that
the blocks corresponding to each row-aligned quad is
accessed exactly twice. Therefore, the total number of
cache misses for rendering row-aligned quads with h≥
B is 2ncompulsory.

Case 2: h < B. In this case conflict or capacity misses
can occur if nblocks do not fit in the cache. This is mainly
because the cache blocks fetched at the beginning of
the quad are mostly evicted by the end of the quad.
Within a region of W ×B, based on the rendering oper-
ations, each block is accessed count(h) = 2B

h times and
results in count(h) cache misses. As there are ncompulsory
blocks, the algorithm results in count(h) ∗ ncompulsory
cache misses. Note that as h becomes smaller, the num-
ber of cache misses increase. Therefore, later steps in
the stage have cache misses.

In the overall algorithm, step k is performed (logn−
(k− 1)) times and h = 2k−1 for k = 1, . . . , logn. The
total number of cache misses is close to 2n f (B), where
f (B) = (B−1)(logn−1)+0.5(logn− logB)2.

Figure 6 compares our cache model to the observed
times as a function of n and B on a 7800 GTX GPU. The
theoretical timings in Figure 6 are computed assuming
the algorithm achieves peak sequential memory band-
width of 40 GB/s on a NVIDIA 7800 GTX GPU. The
graph indicates that our cache analysis closely matches
the observed values using the block size 8×8.

8

4.1.2. Cache Sizes and Cache-Efficient Algorithm

We present an improved sorting algorithm that maxi-
mizes cache utilization for given block and cache sizes.
It minimizes the number of conflict or capacity misses
using a technique similar to blocking. We decompose
row-aligned quads with width W and height h into mul-
tiple quads of width B and height h, if h < B. Similarly,
we decompose column-aligned quads with width w and
height H into multiple quads of width w and height B if
w < B. We then perform computation on all the quads
lying within the B×B block. For the remaining quads,
we do not perform any row or column decomposition.

Our row and column decomposition algorithm reduces
the number of cache misses to 2ncompulsory misses per
step if the decomposition size matches the hardware
cache size. This decomposition has an additional advan-
tage of reducing the cache misses by fetching relevant
blocks into the caches. Figure 7 highlights the observed
and theoretical performance of our cache-efficient al-
gorithm as a function of n, memory and clock speeds
on the 7800 GTX GPU. The graph indicates that our
algorithm achieves nearly 37 GB/s memory bandwidth.
This is almost 97% of the peak memory bandwidth on
the 7800 GPU.

Figure 8 illustrates the algorithm’s performance as a
function of the decomposition block or tile size. In our
implementation, we vary the tile size and profile the
execution time. We achieved high performance for our
implementation at a tile size of 64× 64. This tile size
corresponds to 64KB of data since each element consists
of four components and each component is represented
using 4 bytes. These four components store two key-
pointer pairs per element. Based on our memory model
and the bitonic sort algorithm, for computation at each
key-pointer location, we effectively read a key-pointer
from and write an output key-pointer to the texture.
Based on these empirical results, we suggest that the
cache size on a 7800 GTX GPU can be close to 128 KB.

4.2. Fast Fourier Transforms

Fast Fourier transform is a basic building block to signal
processing and frequency analysis applications. In this
section we consider the problem of large 1-D power-of-
two complex FFTs on GPUs. We use the 1-D power-
of-two FFT algorithms to compute real and higher di-
mensional FFT algorithms.

FFT algorithms use a butterfly network to map input
elements in multiple stages, and perform complex mul-
tiplications and additions on the input elements. Since

0.9

1.1

1.3

1.5

1.7

1.9

2.1

0 200 400 600 800 1000 1200

N
o

rm
a

li
z
e

d
 T

im
e

Tile Size

7800GTX

8800GTX

64x64

Fig. 8. Normalized performance of our cache-efficient sorting algo-
rithm as a function of tile size sorting 8M floating point key-pointers
using a 7800 GTX GPU and 8800 GTX GPU. 64×64 tiles had the
best performance. As the tile size decreases, the vertex overhead
dominates the memory bandwidth savings. As the tile size increases
beyond 64×64, memory performance degrades due to cache misses.

the output array needs to be distinct from input array
for GPU computations, we use out-of-place radix-2 FFT
algorithms. Moreover, in order to avoid the expensive
bit-reversal operations in the standard Cooley-Tukey al-
gorithm [35], we use a standard Stockham formulation
of the FFT.

The Stockham FFT algorithm has been designed to
work well on SIMD architectures such as GPUs. At a
high level, the FFT algorithm reads the complex values
from an input array. We represent the real-components
and the imaginary components of the complex values
using two separate arrays. We store the output results
using two more arrays. The output results are swapped
with input arrays, and the FFT algorithm is performed
iteratively, until the FFT is performed on the entire data.

The Stockham FFT algorithm is very similar to the
bitonic sort algorithm. It builds the FFT bottom-up,
performing FFTs on sequences of equal length and
outputting FFTs of sequences twice the length at each
stage. Given a sequence with complex values a =
(a0,a1, . . . ,an), the algorithm proceeds in log(n) stages.
Within each stage an element in the input sequence is
mapped to another element at a fixed distance, and a
transformation is performed between the two elements
and stored in the element’s location. The transforma-
tion is independent of transformations on the remaining
elements in the input sequence and exploits the high
data parallelism in GPUs.

The pseudo-code for Stockham FFT is shown in Algo-
rithm 4.1. The algorithm proceeds in steps 1 to logn.
Specifically, in step t it performs transformations on two
input sub-arrays of size 2t−1 and generates a new output
sub-array of size 2t . The elements read from the input

9

a6

a5

a0

a2

a7

a4

a1

a3

Step 1

a6

a5

a0

a2

a7

a4

a1

a3

Step 2

a6

a5

a0

a2

a7

a4

a1

a3

a6

a5

a0

a2

a7

a4

a1

a3

No. of input

subarrays

Ii, i=0,…, 2m=8

No. of input

subarrays

Ii, i=0,…, 2m=4

No. of

output

subarrays

Oi, i=0,…, m=4

No. of

output

subarrays

Oi, i=0,…, m=2

Input-to-output

mapping:

Input subarrays Ii
and Ii+m map to

output subarray Oi

ai + ω ai+n/2

ai - ω ai+n/2

Fig. 9. This figure illustrates the first two stages of a Stockham
butterfly network to compute FFTs on 8 data values. The overall
FFT algorithm proceeds in 3 stages. The output of each stage
is the input to the next stage. In each stage the output array
is conceptually divided into data chunks or sub-arrays based on
similar computation. The input sub-arrays map onto the output
sub-arrays as shown. A green arrow indicates that the compu-
tation is a positive addition between the transformed inputs ob-
tained after multiplication with their corresponding twiddle fac-
tors. Similarly, a red arrow indicates a subtraction between the
transformed inputs.

Step 1

a6

a5

a0

a2

a7

a4

a1

a3

Step 2

a6

a5

a0

a2

a7

a4

a1

a3

a6

a5

a0

a2

a7

a4

a1

a3

Input-to-output mapping using Texture mapping:

Input subarrays Ii and Ii+m map to output subarray Oi

a6

a5

a0

a2

a7

a4

a1

a3

m=4
m=2

Each trapezoidal

quad indicates 1-D

texture mapping

between input and

output subarrays

Fig. 10. This figure shows the mapping between the input arrays
and output sub-arrays in Stockham FFT network on 8 input val-
ues shown in Fig. 9. The figure highlights two steps. Within each
step, the input arrays are texture mapped onto the output sub-
-arrays using trapezoidal quadrilaterals as shown. Each textured
quad bilinearly interpolates the addresses from the input, pro-
viding a 1-1 mapping between input and output locations. Since
each output is obtained by transforming two input values, two
textured quads are drawn from the input sub-arrays to the out-
put sub-arrays. The green regions indicate an addition between
the corresponding transformed input values and red regions indi-
cate a subtraction between the corresponding transformed input
values.

sub-arrays are separated by n
2 elements in the original

input array. This computation repeats for every 2t el-
ements in the output array. Based on this observation,
we can decompose the output array in each step t into
equi-sized sub-arrays of size 2t . The decomposition re-
sults in m = n

2t sub-arrays in the output. Similarly, based
on the computational mapping in step t, we also de-
compose the input array into sub-arrays of equal size
2t−1, and there are n

2t−1 = 2m sub-arrays in the input
sequence. We label the input sub-arrays and the output
sub-arrays sequentially in the ranges [0,2m) and [0,m),
respectively.

We will now describe the computational mapping of
FFTs on GPUs in more detail. From Algorithm 4.1 we
can observe that for each output sub-array j,0≤ j < m,
two input sub-arrays labeled j and j + m map onto it.
Each output sub-array can further be decomposed into
two sub-arrays of equal size. In the first half of the out-
put sub-array j, the transformation includes an addition
between the input sub-array j and the array obtained
by multiplying each element of input sub-array j + m
with a corresponding twiddle factor (see Fig. 9). In the
second half of the output sub-array j, the transforma-
tion includes a subtraction between the input sub-array
j and the array obtained by multiplying each element

of input sub-array j + m with the same twiddle factor.
This mapping is similar to the decomposition of input
array into regions corresponding to minimum and maxi-
mum operations in the bitonic sort algorithm. The trans-
formation in each sub-array includes multiply-and-add
(MAD) instructions. GPUs support fused MAD instruc-
tions and consist of multiple units to concurrently exe-
cute many MAD instructions. Moreover, the computa-
tional mapping between the input sub-arrays to the out-
put sub-array can be performed efficiently using the tex-
ture mapping hardware on GPUs (see Fig. 10). There-
fore, FFT algorithms map well to GPUs.

Since GPUs are optimized for 2D representations, we
map the 1D operations into 2D arrays on GPUs similar
to the bitonic-sorting network. The mapping however,
has more complex memory access patterns than in sort-
ing. Given a 1D power-of-two array, we compute a 2D
array representation with a power-of-two width W and
height H, respectively. The memory access pattern for
FFTs is dependent on the size of the sub-array in a step
t. It can be described as follows:

– 2t−1 < W : If the input sub-array size in a step t is
less than W , then the output array can be decomposed
into column-aligned quads of width 2t and height H
based on similar access patterns. The input array in

10

2.5E-07

2.5E-06 5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

R
e

la
ti

v
e
 R

M
S

 E
rr

o
r

G80

Size of Complex Data

G70

Fig. 11. This figure highlights the relative root mean square
(RMS) error obtained by performing FFT computations on com-
plex data sets. The graph indicates that our FFT algorithm is able
to obtain a RMS error less than 10−6 on 4M complex values and
is comparable to the accuracy of CPU-based FFT algorithms.

2.5E-07

2.5E-06 5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

R
e

la
ti

v
e
 R

M
S

 E
rr

o
r

G80

Size of Real Data

G70

Fig. 12. This figure highlights the relative root mean square error
obtained by performing FFT computations on real data sets. The
graph indicates that our FFT algorithm is able to obtain a RMS
error less than 10−6. The graph indicates that our real FFT
algorithm achieves higher precision on new GPU hardware such
as NVIDIA G80.

Nested Loop Stockham FFT
1 for(t = 1; t ≤ logn; t = t +1)
2 for(j = 0; j < n

2t ; j = j +1)
3 for(k = 0;k < 2t−1;k = k +1)
4 angle =− 2πk

2t

5 out[j2t +k] = in[j2t−1 +k]+ ei angle in[j2t−1 +k + n
2]

6 out[j2t +k+2t−1] = in[j2t−1 +k] - ei angle in[j2t−1 +
k + n

2]
7 swap(in,out)

ALGORITHM 4.1: This pseudo-code illustrates the nested loop
implementation of Stockham FFT algorithm. The FFT algorithm
proceeds in logn steps and during each step j, the output array
is conceptually divided into data chunks of size 2 j (lines 5 and
6). Similarly, the input chunks are conceptually divided into data
chunks of size 2 j−1 and two input data chunks are mapped onto
the appropriate output chunks. In terms of a GPU-based algorithm,
these data chunks correspond to texture mapping row-aligned or
column-aligned quadrilaterals onto row-aligned or column-aligned
regions. The overall FFT algorithm involves no data reordering,
requires significant computation at each data element and maps well
to the affine memory addressing and vector-processing capabilities
of GPUs.

is divided into column-aligned quads of width 2t−1

and height H
2 . Computation is performed by mapping

the input quads onto the output quads and executing
a fragment program on the quads. In this case each
column-aligned quad in out maps to four column-
aligned quads in the input array in. Although four
quads are mapped, only two input quads are selected
based on whether the row number of the output is
even or odd.

– 2t−1≥W : If the sub-array size of the in is greater than
or equal to W , the output array out is decomposed
into row-aligned quads of width W and height 2t

W . The
input array is decomposed into quads of half the width
and same height as the corresponding output quads.
In this case each row-aligned quad in the output maps
to two row-aligned quads in input array.

The overall FFT algorithm requires O(n logn) memory
and compute operations. Furthermore, the memory ac-
cess patterns are more complex than sorting; therefore,
we can expect a greater benefit by performing cache
analysis on FFTs.

Our algorithm has also been extended to perform two
key algorithms:

– Real FFT: A naive implementation of real FFTs can
be performed by treating the imaginary component
of the complex FFTs as zeros. We improve the per-
formance of real FFTs using the symmetry in com-
putation of FFTs for real values and eliminate redun-
dant computations. This improves the real FFT per-
formance by nearly a factor of two. Given an input
sequence, we compute a complex sequence of half-
the-length by packing the even and odd elements of
the input sequence. A complex FFT is then applied on
the complex sequence using Algorithm 4.1, and the
data is then readback to the CPU. We then perform
a linear-time post-processing operation to compute
the real FFT of the sequence. As the complex FFT
requires half the number of operations as the naive
implementation, the resulting algorithm is nearly 2x

11

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 200 400 600 800 1000 1200

N
o

rm
a

li
z
e

d
 T

im
e

Tile Size

7800GTX

8800GTX

64x64

Fig. 13. Normalized performance of our cache-efficient FFT algo-
rithm as a function of tile size on 4M complex floating point val-
ues using a 7800 GTX and 8800 GTX GPU. We obtained the best
performance using T ×T = 64×64 tiles.

faster than the naive implementation. Moreover, the
optimized implementation also reduces the memory
requirement of the naive algorithm by a factor of 2.

– Many FFTs: In order to compute many FFTs of the
same length L, we pack the input arrays into a single
2D texture and perform algorithm 4.1. However, we
only perform the first logL steps. The resulting output
array consists of the FFTs of the input arrays. The
output FFTs are stored into the output texture in the
same order as the corresponding input arrays in the
2D texture.

4.2.1. Accuracy and Memory Requirements

Our goal is to design fast FFT algorithms without trad-
ing off the precision. The twiddle factors used for mul-
tiplication in Algorithm 4.1 can be precomputed and
stored in a texture of the same size. This doubles the
memory requirements of the algorithm. In addition, it
also increases the memory bandwidth requirements of
the algorithm by 33%. We reduce the memory band-
width by computing the twiddle factors on GPUs and
avoid storing precomputed tables. Our choice of com-
puting the twiddle factors also follows the trend that
computational power is cheaper than memory band-
width. We further improve the precision in computation
by using interpolation capabilities of texturing hardware
to compute the angles used in twiddle factors across the
quad. The linear interpolation of angles across the out-
put quads eliminates unnecessary computations inside
the fragment program and pipelines the angle compu-
tations using the texturing units of GPUs. The interpo-
lation improves the precision by eliminating redundant
division operations. Figs. 11 and 12 highlight the ac-

Fig. 14. The performance of our cache-efficient matrix multiplication
algorithm as a function of tile size for multiplying two 2K × 2K
floating point matrices using a 7800 GTX GPU. We obtained the best
performance using T ×T = 64×64 tiles and a depth of 16. As the
block depth decreases, the vertex overhead dominates the memory
bandwidth savings. The performance at T = D = 32 degrades due
to increase in time due to more fragment operations.

curacy of our algorithm on random complex values in
the range [-0.5 0.5]. The graph indicates that the pre-
cision obtained by our algorithm is comparable to the
optimized CPU-based FFT algorithms 5 .

4.2.2. Cache-Efficient GPU-FFT

The FFT algorithm suffers from similar cache issues as
bitonic sort. However, our GPU-FFT algorithm is more
memory intensive for column-aligned steps than bitonic
sorting. Similar to the bitonic sorting network, we par-
tition out into tiles of size T ×T if the height or width
of the quadrilateral is less than T or T

2 respectively. We
perform computation within the tile before proceeding
to the next tile. Fig. 13 highlights the performance of
the FFT algorithm as a function of the tile size.

The FFT algorithm is also more compute-intensive than
our sorting algorithm. The overall FFT algorithm re-
quires∼ 24 operations per data element whereas sorting
requires ∼ 10 operations per data element.

4.3. Dense Matrix-Multiplication

The problem of dense matrix multiplication is inher-
ently parallel and highly memory intensive - therefore,
it can greatly benefit from the high computational
throughput and memory performance of GPUs.

Let Xi j denote the element at the ith row and jth column.
Then, matrix multiplication Z = XY computes elements
Zi j using the dot product between ith row in X and jth

5 CPU results available at http://www.fftw.org

12

column in Y . Suppose X and Y are n×n matrices. The
simplest algorithm to implement matrix-multiplication
uses three nested loops. The pseudo-code for the algo-
rithm is shown in Algorithm 4.2. Larsen and McAllister
[24] implemented the unblocked algorithm using simple
blending and texture mapping functionality on GPUs.
Their algorithm has O(n3) compute and memory refer-
ences and is memory-bound. Hall et al. [18] analyzed
the performance of block-based matrix-multiplication
algorithm for GPUs using an algorithm similar to the
CPU-based algorithms. However, blocking is done only
along one dimension and the resulting algorithm uses
cache efficiently if the underlying hardware performs
implicit blocking.

We perform explicit blocking to avoid hardware depen-
dencies. Moreover, our improved block-based matrix-
multiplication algorithm takes into account the graph-
ics pipeline architecture. Our algorithm decomposes the
matrix Z into blocks of size T × T . Computation on
the tiles of size T ×T is invoked by drawing quadri-
laterals of size T × T on the screen. Then a single
fragment program evaluates the dot product from vec-
tors of size D in X and Y . Therefore, the time spent
per element in Z depends on D and achieves maximal
performance when fragment processing time matches
the sequential write time to the video memory. In con-
trast, the CPU-based matrix-multiplication algorithm
performs uniform blocking along the three nested loops.

Fig. 14 highlights the performance of matrix-multiplication
on GPUs as a function of T and D using a matrix of
size 2K × 2K.

5. Analysis and Comparisons

In this section we analyze the performance of our algo-
rithm on different GPUs and compare its performance
to optimized scientific libraries on CPUs.

5.1. Performance

We implemented our algorithms using the OpenGL
graphics API on a Windows XP PC with a 3.4GHz
Pentium IV CPU and 2GB RAM. We have tested
the performance of our applications on four high-end
GPUs – NVIDIA 6800 Ultra, NVIDIA 7800 GTX,
NVIDIA 7900 GTX and NVIDIA 8800 GTX GPU
released in successive generations (see Fig. 15). Table
1 summarizes the memory architecture of the three
GPUs. Our algorithms achieved high performance for
a tile-size of 64× 64 on the GPUs irrespective of the

L-M GPU-based Unblocked Nested Loop Matrix Multiplication
1 for(i = 0; i < N; i = i+1)
2 for(j = 0; j < N; j = j +1)
3 Zi j = 0

//Each iteration in the following loop is a quadrilateral
rasterization of size N×N

4 for(k = 0;k < N;k = k +1)
5 Zi j = Zi j +Xik ∗Yk j

Hall et al.’s GPU-based Blocked Nested Loop Matrix Multiplication
1 for(kb = 0;kb < N;kb = kb+T)
//following two loops invoked using a quadrilateral of size N×N

2 for(i = 0; i < N; i = i+1)
3 for(j = 0; j < N; j = j +1)
4 for(k = 0;k < T ;k = k + 1) //loop performed inside a
fragment program
5 Zi j = Zi j +Xik ∗Yk j

Our GPU-based Blocked Nested Loop Matrix Multiplication
1 for(ib = 0; ib < N; ib = ib+T)
2 for(jb = 0; jb < N; jb = jb+T)
3 for(kb = 0;kb < N;k = kb+D)

//following two loops invoked using a quadrilateral of size
T ×T

4 for(i = ib; i < ib+T ; i = i+1)
5 for(j = jb; j < jb+T ; j = j +1)
6 for(k = kb;k < kb + D;k = k + 1)//loop performed
inside a fragment program
7 Zi j = Zi j +Xik ∗Yk j

ALGORITHM 4.2: This pseudo-code shows the differences between
our GPU-based explicit blocking algorithm and prior GPU-based
matrix multiplication algorithms. The Larsen-McAllister algorithm
is unblocked and performs O(n3) memory references. Hall et al.
proposed an improved algorithm that performs implicit blocking.
We perform explicit blocking and use a different blocking parameter
for each of the inner loops. The innermost loop (line 6) in our
algorithm is performed using a fragment program. The loop length
in line 6 determines the number of fragment operations performed
per data element per sequential write.

data size. In our experiments, we measured the time
taken by the GPU to perform the computation assum-
ing the data is present in the GPU memory. For sorting
8M key-pointer pairs, we obtain an average of 42.4
giga-operations per second on a NVIDIA 8800 GPU.
The observed bandwidth in the sorting benchmark is
nearly 100 GB/s on a 8800 GTX GPU, close to the
peak memory throughput of the 8800 GPU.

In the FFT benchmark, we have measured the GFLOPS
obtained using our algorithm using the standard FFTW
metric 6 . The benchmark indicates that the floating
point operations on a complex array with n values is

6 http://www.fftw.org/speed

13

0

0.2

0.4

0.6

0.8

1

1.2

FFT SGEMM Sort

N
o

rm
a

li
z
e

d
 T

im
e

6800 Ultra 7800 GTX 7900 GTX 8800 GTX

Fig. 15. Normalized Performance of our cache-efficient applica-
tions on four successive generation GPUs—NVIDIA 8800, NVIDIA
7900, 7800 and 6800 GPUs. Our sorting, FFT and matrix multipli-
cation algorithms are able to achieve 100, 65 and 80 GB/s memory
performance respectively on a single NVIDIA 8800 GTX GPU.

GPU Peak Memory Memory Interface Transistor

Bandwidth (GB/s) (bits) Count (Millions)

6800 Ultra 35.2 256 222

7800 GTX 38.4 256 302

7900 GTX 51.2 256 278

8800 GTX 86 384 681
Table 1

This table highlights the peak memory bandwidth, the memory
interface width and the transistor count for NVIDIA 6800, 7800,
7900, and 8800 GPUs

computed as 5n logn. On a 4 million single precision 1-
D power-of-two complex FFT benchmark, we are able
to obtain 16 GFLOPS of performance on a NVIDIA
8800 GPU. We are able to obtain an effective memory
bandwidth of 65 GB/s on a NVIDIA 8800 GTX GPU
for performing complex FFTs.

Our matrix multiplication algorithm achieves 35
GFLOPS on a NVIDIA 8800 GTX GPU. Our cache-
efficient matrix multiplication algorithm is able to
achieve nearly 80 GB/s memory performance on a
single NVIDIA 8800 GTX GPU.

Using NVPerfKit 7 , we are able to experimentally ver-
ify that the percentage of texture cache misses in our
applications is less than 6%—thus verifying that our
algorithm is able to utilize the cache performance effi-
ciently. The near-peak memory bandwidth obtained by
our algorithm indicates an efficient mapping between
our algorithms and GPUs. Fig. 15 indicates the scal-
able performance and portability of our algorithms on
different generation GPUs.

7 http://developer.nvidia.com/object/nvperfkit home.html

Fig. 16. Normalized elapsed time of our cache-efficient applications
against prior GPU-based algorithms on a NVIDIA 7900 GPU. Our
cache-efficient algorithms are able to achieve 2–3× performance
improvement over prior GPU-based scientific algorithms.

5.2. Comparison with Prior CPU-based and
GPU-based Algorithms

We have compared the performance of our algo-
rithm against prior GPU-based sorting and matrix-
multiplication algorithms. Fig. 16 highlights the per-
formance of our cache-optimized algorithms to sort
4M floating point key-pointer pairs or to multiply
2K × 2K floating point matrices. We observe that
our matrix multiplication algorithm performs around
23− 80% better than prior GPU SGEMM algorithms.
In the sorting application, our algorithm achieves 2–
3× performance improvement over prior GPU-based
sorting algorithms. We also compared the performance
of our algorithm against libgpufft[30]. Libgpufft is
implemented using the BrookGPU compiler and used
the Cooley-Tukey FFT radix-2 FFT algorithm. Our
algorithm does not require bit-reversal-based data rear-
rangements as explained in Section 4.2 and therefore,
it is able to achieve higher performance than libgpufft.

We have measured the performance of our algorithm
against optimized cfft1d and SGEMM implementations
in the Intel Math Kernel library. We used the optimized
Intel quicksort routine 8 using hyperthreading and func-
tion inlining. We measured the performance of our al-
gorithms on a SMP machine with dual 3.6 GHz Xeon
processors with hyperthreading, on another SMP ma-
chine with two dual-core Opteron 280 processors and on
a high-end 3.4 GHz Pentium IV PC with hyperthread-
ing. We have used four threads to perform the CPU-
based computations on dual Xeon and Opteron proces-
sors, and two threads on the Pentium IV processor. Our

8 http://www.intel.com/cd/ids/developer/asmo-
na/eng/dc/threading/hyperthreading/20372.htm

14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SGEMM FFT Sort

T
im

e
 (

S
e
c

o
n

d
s

)

8800GTX

P4 with HT: 2 Threads

Dual Opteron 280: 4 Threads

Dual Xeon with HT: 4 Threads

Fig. 17. Performance of our cache-efficient applications on a
NVIDIA 8800 GPU against optimized scientific algorithms on high-
-end SMP machines with dual Xeon or two dual-core Opteron pro-
cessors.

results highlighted in Fig. 17 indicate that our GPU
matrix multiplication algorithm on a single 8800 GTX
GPU performs 1.5x times better than the dual Xeon
and Opteron processors. Our sorting algorithm is able
to achieve 2–4× performance improvement over MKL
implementation on high-end Intel processors and AMD
Opteron 280 processor. Our FFT algorithm is able to
achieve 10× performance improvement over Xeon or
Opteron processors.

6. Conclusions and Future Work

We presented the design of fast cache-efficient scientific
algorithms on GPUs. Our algorithms map nested loops
in scientific algorithms to the texture mapping hard-
ware, and exploit the data parallelism and high memory
bandwidth in GPUs. We analyze the performance of our
algorithms using a memory model on GPUs and further
improve their performance using cache-efficient tiling
strategies. We present three scientific applications –
sorting, fast Fourier transforms and dense matrix multi-
plication, and compared their performance against prior
optimized CPU-based and GPU-based algorithms. Our
results indicate a significant performance improvement
using a single NVIDIA 8800 GPU.

There are several avenues for future work. We would
like to incorporate the caching strategies into new pro-
gramming APIs from graphics vendors such as AMD
CTM 9 and NVIDIA CUDA 10 . An interesting avenue
for research is incorporating caching strategies into run-
time systems in GPGPU compilers and libraries such

9 http://ati.amd.com/companyinfo/researcher/documents/ATI CTM Guide.pdf
10 http://developer.nvidia.com/cuda

as Microsoft accelerator [33], BrookGPU [8] and Sh
[27]. We are interested in applying the memory model
to other scientific applications and streaming architec-
tures such as the IBM Cell processor.

Acknowledgements

We dedicate our work to Jim Gray of Microsoft Cor-
poration. This work would not have been possible
without his support and guidance. This work is sup-
ported in part by ARO Contracts DAAD19-02-1-0390
and W911NF-04-1-0088, NSF awards 0400134 and
0118743, DARPA/RDECOM Contract N61339-04-C-
0043, ONR Contract N00014-01-1-0496 and Intel Cor-
poration. We would like to thank Craig Peeper, Peter-
Pike Sloan, David Tuft, Mike Marr, and David Blythe
of Microsoft Corporation, Mike Houston of Stanford
university, and Mark Segal and Alpana Kaulgud of
ATI Corporation for useful feedback. Many thanks to
John Owens and Daniel Horn for providing perfor-
mance numbers of libgpufft and for valuable feedback.
We would also like to thank Whitney Vaughan and
other members of UNC GAMMA group for useful
suggestions and support.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, and D. Sorensen.
LAPACK User’s Guide, Release 1.0. SIAM, Philadelphia, 1992.

[2] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro,
Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A.
Patterson, William Lester Plishker, John Shalf, Samuel Webb
Williams, and Katherine A. Yelick. The landscape of
parallel computing research: A view from berkeley. Technical
Report UCB/EECS-2006-183, EECS Department, University of
California, Berkeley, December 18 2006.

[3] D. H. Bailey. A high-performance fast Fourier transform
algorithm for the Cray-2. The Journal of Supercomputing,
1(1):43–60, 1987.

[4] D. H. Bailey. FFTs in external or hierarchical memory. In
Proceedings of the Supercomputing 89, pages 234–242, New
York, NY, 1989. ACM Press.

[5] David H. Bailey. A high-performance FFT algorithm for
vector supercomputers. International Journal of Supercomputer
Applications, 2(1):82–87, 1988.

[6] U. Banerjee. Unimodular transformations of double loops. Proc.
of the Workshop on Advances in Lanugages and Compilers for
Parallel Processing, pages 192–219, 1990.

[7] K.E. Batcher. Sorting networks and their applications. In AFIPS
Spring Joint Computer Conference, 1968.

[8] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon
Fatahalian, Mike Houston, and Pat Hanrahan. Brook for GPUs:

15

stream computing on graphics hardware. ACM Trans. Graph.,
23(3):777–786, 2004.

[9] S. Carr and K. Kennedy. Compiler blockability of
numerical algorithms. Proc. of ACM/IEEE Conference on
Supercomputing, pages 114–124, 1992.

[10] S. Coleman and K. McKinley. Tile size selection using
cache organization and data layout. SIGPLAN Conference
on Programming Language Design and Implementation, pages
279–290, 1995.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, Cambridge, MA, 2nd
edition, 2001.

[12] M. Dowd, Y. Perl, L. Rudolpg, and M. Saks. The periodic
balanced sorting network. Journal of the ACM, pages 738–757,
1989.

[13] Kayvon Fatahalian, Jeremy Sugerman, and Pat Hanrahan.
Understanding the efficiency of GPU algorithms for
matrix-matrix multiplication. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, pages 133–138. Eurographics Association, 2004.

[14] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha.
GPUTeraSort: High performance graphics coprocessor sorting
for large database management. Proc. of ACM SIGMOD, 2006.

[15] N. Govindaraju, S. Larsen, J. Gray, and D. Manocha. A memory
model for scientific algorithms on graphics processors. Proc.
of ACM SuperComputing, 2006.

[16] N. Govindaraju, N. Raghuvanshi, and D. Manocha. Fast and
approximate stream mining of quantiles and frequencies using
graphics processors. Proc. of ACM SIGMOD, 2005.

[17] Z. Hakura and A. Gupta. The design and analysis of a cache
architecture for texture mapping. Proc. of 24th International
Symposium on Computer Architecture, pages 108–120, 1997.

[18] J. D. Hall, N.A. Carr, and J.C. Hart. Cache and bandwidth aware
matrix multiplication on the GPU. Technical Report UIUCDCS-
R-2003-2328, University of Illinois at Urbana-Champaign,
2003.

[19] M. D. Hill and A. J. Smith. Evaluating associativity in CPU
caches. IEEE Transactions on Computers, 38(12):1612–1630,
1989.

[20] P. Kipfer, M. Segal, and R. Westermann. Uberflow: A gpu-
based particle engine. SIGGRAPH/Eurographics Workshop on
Graphics Hardware, 2004.

[21] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-
level blocking. Proc. of ACM SIGPLAN, pages 346–357, 1997.

[22] M. Lam, E. Rothberg, and M. Wolf. The performance and
optimization of blocked algorithms. Proc. of 4th International
conference on Architectural support for programming
languages and operating systems, pages 63–74, 1991.

[23] A. LaMarca and R. Ladner. The influence of caches on the
performance of sorting. Proc. of SODA, pages 370–379, 1997.

[24] E. Scott Larsen and David McAllister. Fast matrix multiplies
using graphics hardware. In Proceedings of the 2001 ACM/IEEE
conference on Supercomputing (CDROM), pages 55–55. ACM
Press, 2001.

[25] A. Lastra, M. Lin, and D. Manocha. ACM workshop on general
purpose computation on graphics processors. 2004.

[26] W. Li and K. Pingali. Access normalization: loop restructuring
for NUMA computers. ACM Transactions on Computer
Systems, 11(4):353–375, 1993.

[27] Michael McCool, Stefanus Du Toit, Tiberiu Popa, Bryan Chan,
and Kevin Moule. Shader algebra. ACM Trans. Graph.,
23(3):787–795, 2004.

[28] Kenneth Moreland and
Edward Angel. The fft on a gpu. In HWWS ’03: Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, pages 112–119, Aire-la-Ville, Switzerland,
Switzerland, 2003. Eurographics Association.

[29] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris,
Jens Krüger, Aaron E. Lefohn, and Tim Purcell. A survey
of general-purpose computation on graphics hardware. In
Eurographics 2005, State of the Art Reports, pages 21–51,
September 2005.

[30] John D. Owens, Shubhabrata Sengupta, and Daniel Horn.
Assessment of graphic processing units (gpus) for department
of defense (dod) digital signal processing (dsp) applications.
Technical Report ECE-CE-2005-3, Department of Electrical
and Computer Engineering, University of California, Davis,
October 2005.

[31] David A. Patterson and John L. Hennessy. Computer
Architecture: A Quantitative Approach. Morgan Kaufmann,
1990.

[32] T. Purcell, C. Donner, M. Cammarano, H. Jensen, and
P. Hanrahan. Photon mapping on programmable graphics
hardware. ACM SIGGRAPH/Eurographics Conference on
Graphics Hardware, pages 41–50, 2003.

[33] David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: using
data parallelism to program gpus for general-purpose uses. In
ASPLOS-XII: Proceedings of the 12th international conference
on Architectural support for programming languages and
operating systems, pages 325–335, New York, NY, USA, 2006.
ACM Press.

[34] C. D. Thompson and H. T. Kung. Sorting on a mesh-connected
parallel computer. Commun. ACM, 20(4):263–271, 1977.

[35] R. Tolimieri, M. An, and C. Lu. Algorithms for Discrete Fourier
Transforms and Convolution. Springer, 1997.

[36] Shmuel Winograd. On computing the discrete Fourier
transform. Mathematics of Computation, 32:175–199,
1978. URL: http://cr.yp.to/bib/entries.html#1978/
winograd.

[37] M. Wolfe. Iteration space tiling for memory hierarchies. Proc. of
the Third SIAM Conference on Parallel Processing for Scientific
Computing, pages 357–361, 1987.

[38] M. Wolfe, C. Shanklin, and L. Ortega. High performance
compilers for parallel computing. Addison-Wesley, 1995.

[39] R. Yavne. An economical method for calculating the discrete
Fourier transform. In Proc. AFIPS Fall Joint Computer
Conference, pages 115–125, 1968.

16

