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Abstract
Networked systems in automobiles and aircraft are 
designed by groups of people, departments and/or 
companies of  different  expertise.  Commonly used 
design  methodologies  in  complex  system  design 
partition the work at high level of uncertainty into 
teams  of  specialists.  These  teams  have  to  make 
assumptions  and  design  decisions  without  being 
able to evaluate the impact of their decisions on the 
overall  design.  Many design decisions have to be 
made during integration. This design methodology 
does  not  permit  optimization at  vehicle  level  and 
results  in  very  low  probabilities  of  not  having 
critical  design  errors  [1].  Hence  it  causes  high 
integration costs and redesigns. 

This  paper  shows  why  the  current  design 
methodologies  cause  unverified  designs  and 
critical  errors,  and  how  system  level  design 
automation  technologies  can  be  extended  to 
early vehicle level design stages for verifiable 
vehicle  level  executable  specifications  and 
architectural  optimization  at  vehicle  level. 
Using extensions of the integrated design tool 
MLDesigner© ,  the  developed  design 
methodology  is  demonstrated  for  examples 
executable  specifications  of  vehicle  power 
management and power train. In an example of 
vehicle  level  architecture  optimization  cable 
length  is  reduced  by  two  third  and  system 
availability  improved  by  several  orders  of 
magnitude.

Introduction
Complex  systems  like  networked  systems  in 

vehicles  (aircraft,  spacecraft,  automobiles,  ships, 
trains,  autonomous  systems),  networks  between 
vehicles,  IT  systems,  communication  or 
organizational  systems  can  only be  developed by 
groups  of  people,  departments  and/or  companies. 
To meet  time  to  market  requirements,  the system 
design is partitioned into subsystems and subsystem 
design  is  distributed  to  specialist  teams  before 

uncertainties  about  individual  subsystems  and 
interactions  between  subsystems  has  been 
resolved.  The  individual   engineers  make 
assumptions based on experience on what worked 
before.  It  is  not  possible  for  these  engineers  to 
understand  the  impact  of  their  decisions  on  the 
particular system being designed. Since the models 
passed on for system integration do not include the 
model  uncertainties,  the  uncertainty  of  the 
integrated  system  is  not  determined.  The 
integrated  system  model  or  design  specification 
can therefore not be validated. John Hynes: “We 
Don’t do design correctly!”[1] The likelihood that 
this  design  approach  will  work  without  critical 
problems  is  less  than  4%  [2].  Very  time 
consuming  and  expensive   integration  processes 
try  to  resolve  conflicts  and  critical  performance 
issues. 

In this paper a system design methodology is 
developed  based  on  executable  design  flows. 
Bounded  and  statistical  uncertainties  of  early 
design  stages  are  included   and  bounds  on 
integrated  designs  based  on  uncertainties  at 
different design stages are determined.  Examples 
will demonstrate the new design methodology.

      The new design methodology not only permits 
to  treat  uncertainties  in  early  design  stages,  but 
permit optimizing the design, as well as the design 
flow for different criteria like quality in design and 
design  cost.   Design  changes  can  easily  be 
implemented and design tracking automated.

In order to solve this complex system design 
problem,  we  determine  first  where  these  critical 
errors  occur,  secondly  why  they  do  occur  and 
thirdly develop methods to overcome the complex 
system design problem.

Where do critical design errors 
occur?   
      Figure 1 [3] depicts the probability of critical 
problems  as  a  function  of  phases  of  the  design 
process.  The  probability  of  critical  problems  is 
very high in early design stages and is low in late 
design stages.  More than 65% of critical design 



errors  are  caused  by  poor  design  specifications. 
About 25% of critical design errors are caused by 
mistakes  during  design,  and  15%  during  system 
implementation.  

Figure 1: Critical problems in design of 
complex systems [3]

Why doesn't the current design 
methodology work?

The  main  reason  for  the  high  probability  of 
critical  errors  during  system  specification  is  that 
only  written  specifications  are  developed.  These 
cannot  be  validated  at  system  level.  The  high 
uncertainty  about  a  system  at  this  stage  of 
development causes a high probability of errors. Let 
us  investigate  this  further  by  taking  a  look  at 
product uncertainty.

Information, knowledge and uncertainty about 
a product changes significantly during product life 
time.  This  knowledge  about  the  product  includes 
knowledge  about  the  product  itself,  knowledge 
about  the  intended use,  and knowledge about  the 
environment  in  which  the  product  is  to  be  used. 
This uncertainty is bounded and may sometimes be 
described  by  bounded  parameter  sets,  bounded 
statistical  distributions,  and/or  bounded functional 
behavior  described  by  e.g.  H ∞ norms  for 
continuous systems.

           Figure 2 shows a typical behavior of the 
mean  of  product  uncertainty  for  an  automotive 
subsystem development. Overlaid over the product 
uncertainty is the expenditure for the development. 
At the start of a development project we don't know 
anything  about  the  product.  The  initial  product 
uncertainty is  U 0=100% .  During  development 
the knowledge about the product increases with a 
given  learning  rate,  reducing  product  uncertainty. 

Each of the development phases,  i , has it's own 
learning  rate,  l i .  The  learning  curve  can  be 
described by an exponential function,

U D i
t =U 0i e

−li t−t0i  t 0ittDi , l 1l 2l 3

where t 0i
and tD i

are initial and final times of 
development phase i , respectively. 

At the end of the development phase, the 
product is delivered to customers, who will find 
additional insufficiencies that are reported to 
support and corrected by the development team. 
The learning effect due to customer testing and 
support can be described by, 

LS t  = { 0 ∀ t≤t D
LS01−e

−l  t−t D ∀ tt D}
However information about a product is also lost 
during lifetime of a product. The reasons are that 
people  leave development  teams,  are  reassigned, 
or  just  not  remembering  all  the  decisions  which 
went into the design of a product. Additionally, as 
time  progresses,  products  are  often  used  for 
applications  that  were  not  considered during the 
development  phase.  These  effects  impose 
additional  uncertainty on the product,  which can 
be approximated by,

          U L = U L0e
Lt 2

As development of products with long life times 
like the Space  Shuttle showed, people even have 
to be called back from retirement in order to 
overcome this loss of product information.

      The uncertainty about a product can  then be 
expressed by,

     U P t  = U Dt   U L t  − LS t 

Figure 2: Product uncertainty
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 Comparing  Figure  1  with  Figure  2,  we 
observe that observed occurrence of critical design 
errors and product uncertainty are highly correlated. 
We  may  conclude  that  critical  design  errors  are 
primarily  due  to  information  uncertainty  about  a 
product and design processes that do not consider 
this uncertainty in the right way and do not validate 
and verify the system considering this uncertainty.

In addition to product uncertainty we have to 
consider  the  risk  of  development.  This  is  the 
expenditure for development which is at risk. The 
capital at risk is,

 R=∫U C Monthdt=296.1∗maxC MonthOverrun

where U is the product uncertainty,  CMonth is 
the cost for development per month, maxC Month
is the scaling factor for the cost curve shown, and 

Overrun is  the  unplanned  development  cost 
when the project cannot be completed in time. 

For  the  shown  development  process  we  see  that 
many critical  problems  are  only solved when the 
development expenditure rate is at a maximum. The 
development  process  is  therefore  a  high  risk 
development process.

Complex System Design
Complex  systems  are  always  designed  and 

developed by groups of people, departments and/or 
companies.  The  system  is  partitioned  into 
subsystems  and  subsystems  are  assigned  to 
different  groups.  Each group typically has unique 
knowledge in a particular  field and will  use their 
own  methodology,  models  and  software  for  the 
design of their assigned component. Some will use 
different software systems.

For design, validation and verification design 
groups will consider a range of possible parameters 
and use approximate models for analysis. Different 
designers/developers  will  exchange  information 
about  their  components  to  other  designers 
according  to  design  or  process  graphs,  Figure  3. 
The  exchanged  information  typically  will  not 
include all assumptions and ranges of  uncertainty 
considered in the design of components. The reason 
is that some of the uncertainties are very specific to 
the field of knowledge used for a component  and 
other designers will not understand this information 
nor will they be able to properly evaluate potential 

interactions  between  components  in  different 
subsystems.  Other  reasons  include  that  the 
variability  of  a  design  may  be  too  large  to  be 
considered for manual system integration. 

Ten designers doing a conceptual design and 
each is passing on a minimum and a maximum of 
one  component  specific  parameter  to  the 
integration  team,  the  integration  team  would 
require  to  integrate 210 different   system  designs 
for  analysis  and  verification.  This  would  be  too 
time  consuming  when  done  manually.  It  is 
therefore  not  done.  For  system integration,  each 
team  will  pass  on  their  “best”  design  to  the 
integration team.

Figure 3: Design process graph

The integrated system is therefore not verified 
for variability due to uncertainties in subsystems 
and  interactions  between  components  located  in 
different  subsystems.  As a result,  the probability 
that this coupling is causing critical errors in the 
design is very high. Testing (expensive and time 
consuming) should eliminate most  critical errors, 
but customers increasingly find unresolved critical 
errors  after  delivery  of  products.  Additionally, 
different  designs  based  on  the  same  platform 
design  will  exhibit  very  different  probability  of 
failures.

What should be done?
To solve the complex system design problem, 

two technologies have to be developed. These are,

● Technologies  have  to  be  developed 
for automated design at  the system level 
that considers uncertainty

● Technologies  have  to  be  developed 
for  system  level  optimization  of 
architecture and function.

 For  an  automated  design,  a  simulation 
capabilities must meets the following requirement,



1) modules,  that  are  complete  independent 
simulations of design methodologies

2) the  simulations  may  be  executed  by  the 
same or different simulation tools

3) a design process graph connects the design 
methodologies

4) Monte  Carlo  simulation  capabilities,  in 
order to be able to analyze sets or ranges of 
parameters

5) simulation  model  generation,  in  order  to 
iterate over different architectures

6) requiring  standardized  modeling  of 
architectural components

7) optimization  methodologies  that  can 
optimize  a  design  with  respect  to  system 
level objectives

8) the simulation  must be connected to a data 
base,  in   order to  keep track of  the large 
volume of information

9) models  and  data  must  be  stored  in  a 
standardized  way,  in  order  to  ease 
comparison and analysis

Figure  4  depicts  such  an  automated   design 
process simulation. Each designer has to develop an 
executable  model  of  her/his  design  methodology. 
Process engineers design the process design graph 
that connect the executable design methodologies.

The  simulation  generates  a  set  of  feasible 
designs  and  maps  component  uncertainties  into 
system  uncertainties  of  coupled  designs  and  can 
determine which designs meet system requirements 
for  all  uncertainties  in  parameters,  architecture, 
missions/use cases, and environment. If the system 
performance  falls  within  the  permissible 
performances  of  the  design  specifications,  the 
design is verified.

System  uncertainty  determined  by  the  range  of 
design  variations  also  depicts  the  level  of 
uncertainty  at  a  given  stage  of  development.  As 
different  members  of  the  design  team get  up  the 
learning curve, Figure 2, this uncertainty is going to 
decrease. Unacceptable levels of system uncertainty 
can be analyzed, causes determined and eliminated. 
The  automated  design  process  can  track  design 
changes and their impact on overall system design 
criteria,  including  performance,  cost,  quality  of 

design. The benefits in cost and risk reduction of 
such an automation of design would be enormous. 
However, some critical technologies like modeling 
of design methodologies are still missing.

Figure 4: Executable design methodologies, 
connected by a design process graph

What can be done now?
         Many technologies  for  automation  and 
optimization of designs and design processes exist 
today. In [4] models the development process for a 
railway switching system and optimizes for team 
selection/load.  Critical  components  of  the 
development  process  were  identified  and 
eliminated that would have doubled development 
time.  [6]  optimizes  a  development  process  for 
automotive electronic control  units  using genetic 
algorithms,  finds  the  optimal  combination  of 
design  methodologies  (team  selection),  and 
performance  (timing,  BER,  cost  and  quality.) 
Areas  for  significant  improvements  were 
identified.  Simulation  set  capabilities  for 
integration of independent simulations are in [5].  

Most critical today are early model based design 
methodologies for the overall  system that reduce 
uncertainty  before  a  design  is  partitioned  to 
different design teams, Figure 5, plus technologies 
for optimization of architecture of overall design, 
e.g.  optimization  at  vehicle  level.  This  is  made 
possible  by  the  following  technology 
developments,

● standardized modeling of 
architectural components of networked 
systems [7]

● Automated mapping of function into 
architecture and mapping of combined 
architectural and functional models into 
implementations [8]

● Development of standardized XML 
based data formats formats [9] 



● Moving reliability analysis to early 
design stages [8]

Figure 5: What can be achieved now

Computing  the  risk  for  this  Mission  Level 
Design process for the same automotive subsystem 
development we get,

RMLD=∫U CMonth dt=61.0∗maxC MonthOverrun

The  ratio  of  risk  between  the  traditional  design 
process and the mission level design process is,

R
RMLD

=4.9

We  observe  a  significant  risk  reduction  for  the 
Mission Level Design process.

The benefits  of  executable specifications  and 
vehicle level optimization are now demonstrated for 
the case of  an executable specification of a power 
management system, a virtual prototype of a power 
train,  and  an  vehicle  level  architectural 
optimization.

Executable  specification  of  power 
management system

The problem: The power management system 
of  a  car  had  a  critical  error  that  lead  to  loss  of 
battery power in worst case winter conditions. Low 
level  analysis  of  the integrated system took more 
than  two  month  and  was  ill  suited  to  solve  this 
problem.

The  solution:  An  executable  specification  of 
the  power  power  management  system of  the  car, 
consisting  models  of  worst  case  rular  and  urban 
driving  scenarios,  performance  level  models  of 
engine and generator, battery model, FSM of power 
management logic and 27 models of systems using 

power  in  the  vehicle.  The  development  of  the 
prototype  model  took seven days.  It's  simulation 
time  was  less  than  1sec.  Because  of  the  short 
simulation  time,  the  desired  characteristics  and 
parameter  settings  for  the  power  management 
system could be determined within a day. In close 
to critical situations non-critical power users were 
turned  off  and  the  RPM  of  the  engine  was 
increased as necessary.

Figure6:  Executable  specification  of  power 
management system

Figure  7,  8,  and  9  show engine  RPM,  and 
battery  SOC  for  the  worst  case  scenario.  The 
minimum SOC could be  adjusted  to  the  desired 
value.

Figure 7: Load current for worst case scenario

Figure 8: Load current for worst case city 
scenario



Figure 9: Battery SOC in %

Virtual prototype for engine 
management system

The  problem:  To  cope  with  complexity  in 
automotive electronics,  interfaces like AUTOSAR 
are  investigated.  These  define  standardized 
functional  interfaces.  However,  they  impose  a 
computational  overhead  to  the  system. 
Development of a prototype and and hardware-in-
the-loop test is late in the development cycle  and 
very costly for design iterations. Hence it reduces 
the competitiveness of an automotive supplier.

The  solution:  A virtual  prototype  for  engine 
management  systems,  Figure  10,  has  been 
developed  that  includes  models  of  software  and 
hardware. With this model the functional behavior 
of  protocols  and  software  as  well  as  the 
performance behavior of busses and processors can 
be  investigated  at  mission  level.  Failures  of  the 
controller  because of  processing overhead,  Figure 
11, can be detected much before a prototype can be 
build.

Figure 10: Virtual prototype of engine 
management system [10]

Figure 11: Virtual engine prototype analysis 
results [10]

Vehicle level architecture 
optimization

Avionics systems in aircraft are today highly 
complex  with more  than 1000 electronic  control 
units, located centralized behind the cockpit. Long 
cables  pass  though  the  aircraft  to  actuators, 
sensors,  communication  and  display  units.  This 
architecture is very sensitive to design changes in 
the aircraft. 

Cabling cost optimization of an distributed 
architecture using simplified cable routing shows 
that the cost is minimized for a distributed 
architecture with 6 to 7 electronic racks, Figure 12. 
Six maintainable places were selected close to 
feasible locations that meet maintenance 
requirements [8].



   Figure 12: Cable cost optimization of distributed 
electronics

  Different electronic IMA boxes are mapped 
into  the  six  locations,  Figure  13,   optimizing 
different  design  criteria.  The  result  is  a  XML 
description of the architecture.

Figure 13: Architecture optimization

Behavioral  models  of  ATA  functions  are 
mapped into IMA resources Figure 14.

 

Figure 14: Models and design graph for 
architecture optimization, functional and 
performance verification

 The  diverse  tasks  of  the  design  flow  like 
topology  optimization,  model  generation  and 
functional and performance verification in the 
uncertainty  region  of  the  Behavior  Models 
( BM ) can only be automated with simulation 
set capabilities, described before.
BMs determine the functional performance of each 
aircraft  subsystem  included.  Models  at  different 

levels  of  abstraction  may  be  used  for  the 
subsystems. 

        The Resource Model ( RM ) implements 
aircraft design guidelines concerning power, space 
and  other  installation  aspects  as  well  as 
requirements of included aircraft  subsystems and 
implementation  of  their  behavioral  models. 
Several  optimization algorithms are implemented 
in the RM to find a Pareto-optimal solution for the 
networked  systems  compound  on  aircraft-level. 
The output of the RM is a XML-file describing the 
optimized  architecture  topology.  A  behavior  to 
architecture  mapper  automatically  generates  the 
Architectural Model ( AM ). The AM contains the 
functional  behavior  of   aircraft  subsystems  and 
performance  components  like  interfaces  and 
channels, Figure 15. The AM is used to evaluate 
different  design  criteria   for  the  overall  system 
behavior and interactions of its subsystems. 

        Figure 16 compares a reference architecture 
with  the  optimized  architecture.  Optimization 
reduced wiring by 68%, reduced cost by over 70% 
and increases availability by orders of magnitude.

Figure 15 Results of resource model

Figure 16: Comparison of old and new design 

Performance item Reference System Optimized System 

Cost of architecture [$] 100% 28.4%
Reduction of cables [%] 68
Weight of architecture [kg] 280.06 201.00
Weight of cables [kg] 108.21 29.15
Length of cables [feet] 1531.46 453.84
MTBF [h] 55632.88 57534.15
MTTR [h] 31.63 29.89
MTBUR [h] 49164.46 50874.30
Availability 0.99 0.999999999998



Conclusions
        Current design methodologies in complex 
system  design  can  neither  optimize  systems  at 
vehicle level nor can it treat uncertainty in design 
and  integration.  This  causes  designs  much  under 
todays technical capabilities,  a high probability of 
critical  problems  after  design  and  expensive 
corrective actions. 

A  new complex  system design  methodology  and 
enhancement to the development tool MLDesigner 
have  been  developed  hat  overcomes  these 
problems. The new technology is demonstrated for 
the  examples  of  a power  management  system,  an 
engine  management  system  and  a  vehicle  level 
network  optimization.  It  is  shown  that  this  new 
technology can find critical  problems early in the 
development  cycle,  significantly  improve 
networked  architectures  and  can  significantly 
reduce development time, cost and weight.
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