
MOVING DESIGN AUTOMATION OF NETWORKED SYSTEMS TO
EARLY VEHICLE LEVEL DESIGN STAGES

Horst Salzwedel, TU Ilmenau, Nils Fischer, Gunar Schorcht, Mission Level Design GmbH

Abstract
Networked systems in automobiles and aircraft are
designed by groups of people, departments and/or
companies of different expertise. Commonly used
design methodologies in complex system design
partition the work at high level of uncertainty into
teams of specialists. These teams have to make
assumptions and design decisions without being
able to evaluate the impact of their decisions on the
overall design. Many design decisions have to be
made during integration. This design methodology
does not permit optimization at vehicle level and
results in very low probabilities of not having
critical design errors [1]. Hence it causes high
integration costs and redesigns.

This paper shows why the current design
methodologies cause unverified designs and
critical errors, and how system level design
automation technologies can be extended to
early vehicle level design stages for verifiable
vehicle level executable specifications and
architectural optimization at vehicle level.
Using extensions of the integrated design tool
MLDesigner© , the developed design
methodology is demonstrated for examples
executable specifications of vehicle power
management and power train. In an example of
vehicle level architecture optimization cable
length is reduced by two third and system
availability improved by several orders of
magnitude.

Introduction
Complex systems like networked systems in

vehicles (aircraft, spacecraft, automobiles, ships,
trains, autonomous systems), networks between
vehicles, IT systems, communication or
organizational systems can only be developed by
groups of people, departments and/or companies.
To meet time to market requirements, the system
design is partitioned into subsystems and subsystem
design is distributed to specialist teams before

uncertainties about individual subsystems and
interactions between subsystems has been
resolved. The individual engineers make
assumptions based on experience on what worked
before. It is not possible for these engineers to
understand the impact of their decisions on the
particular system being designed. Since the models
passed on for system integration do not include the
model uncertainties, the uncertainty of the
integrated system is not determined. The
integrated system model or design specification
can therefore not be validated. John Hynes: “We
Don’t do design correctly!”[1] The likelihood that
this design approach will work without critical
problems is less than 4% [2]. Very time
consuming and expensive integration processes
try to resolve conflicts and critical performance
issues.

In this paper a system design methodology is
developed based on executable design flows.
Bounded and statistical uncertainties of early
design stages are included and bounds on
integrated designs based on uncertainties at
different design stages are determined. Examples
will demonstrate the new design methodology.

 The new design methodology not only permits
to treat uncertainties in early design stages, but
permit optimizing the design, as well as the design
flow for different criteria like quality in design and
design cost. Design changes can easily be
implemented and design tracking automated.

In order to solve this complex system design
problem, we determine first where these critical
errors occur, secondly why they do occur and
thirdly develop methods to overcome the complex
system design problem.

Where do critical design errors
occur?
 Figure 1 [3] depicts the probability of critical
problems as a function of phases of the design
process. The probability of critical problems is
very high in early design stages and is low in late
design stages. More than 65% of critical design

errors are caused by poor design specifications.
About 25% of critical design errors are caused by
mistakes during design, and 15% during system
implementation.

Figure 1: Critical problems in design of
complex systems [3]

Why doesn't the current design
methodology work?

The main reason for the high probability of
critical errors during system specification is that
only written specifications are developed. These
cannot be validated at system level. The high
uncertainty about a system at this stage of
development causes a high probability of errors. Let
us investigate this further by taking a look at
product uncertainty.

Information, knowledge and uncertainty about
a product changes significantly during product life
time. This knowledge about the product includes
knowledge about the product itself, knowledge
about the intended use, and knowledge about the
environment in which the product is to be used.
This uncertainty is bounded and may sometimes be
described by bounded parameter sets, bounded
statistical distributions, and/or bounded functional
behavior described by e.g. H ∞ norms for
continuous systems.

 Figure 2 shows a typical behavior of the
mean of product uncertainty for an automotive
subsystem development. Overlaid over the product
uncertainty is the expenditure for the development.
At the start of a development project we don't know
anything about the product. The initial product
uncertainty is U 0=100% . During development
the knowledge about the product increases with a
given learning rate, reducing product uncertainty.

Each of the development phases, i , has it's own
learning rate, l i . The learning curve can be
described by an exponential function,

U D i
t =U 0i e

−li t−t0i  t 0ittDi , l 1l 2l 3

where t 0i
and tD i

are initial and final times of
development phase i , respectively.

At the end of the development phase, the
product is delivered to customers, who will find
additional insufficiencies that are reported to
support and corrected by the development team.
The learning effect due to customer testing and
support can be described by,

LS t  = { 0 ∀ t≤t D
LS01−e

−l  t−t D ∀ tt D}
However information about a product is also lost
during lifetime of a product. The reasons are that
people leave development teams, are reassigned,
or just not remembering all the decisions which
went into the design of a product. Additionally, as
time progresses, products are often used for
applications that were not considered during the
development phase. These effects impose
additional uncertainty on the product, which can
be approximated by,

 U L = U L0e
Lt 2

As development of products with long life times
like the Space Shuttle showed, people even have
to be called back from retirement in order to
overcome this loss of product information.

 The uncertainty about a product can then be
expressed by,

 U P t  = U Dt   U L t  − LS t 

Figure 2: Product uncertainty

V-Model ESPITI-STUDY

0 %

Spec/
Arch. Dev.

Modeling

Implementation

60 %20 % 40 %

Critical problem

 Comparing Figure 1 with Figure 2, we
observe that observed occurrence of critical design
errors and product uncertainty are highly correlated.
We may conclude that critical design errors are
primarily due to information uncertainty about a
product and design processes that do not consider
this uncertainty in the right way and do not validate
and verify the system considering this uncertainty.

In addition to product uncertainty we have to
consider the risk of development. This is the
expenditure for development which is at risk. The
capital at risk is,

 R=∫U C Monthdt=296.1∗maxC MonthOverrun

where U is the product uncertainty, CMonth is
the cost for development per month, maxC Month
is the scaling factor for the cost curve shown, and

Overrun is the unplanned development cost
when the project cannot be completed in time.

For the shown development process we see that
many critical problems are only solved when the
development expenditure rate is at a maximum. The
development process is therefore a high risk
development process.

Complex System Design
Complex systems are always designed and

developed by groups of people, departments and/or
companies. The system is partitioned into
subsystems and subsystems are assigned to
different groups. Each group typically has unique
knowledge in a particular field and will use their
own methodology, models and software for the
design of their assigned component. Some will use
different software systems.

For design, validation and verification design
groups will consider a range of possible parameters
and use approximate models for analysis. Different
designers/developers will exchange information
about their components to other designers
according to design or process graphs, Figure 3.
The exchanged information typically will not
include all assumptions and ranges of uncertainty
considered in the design of components. The reason
is that some of the uncertainties are very specific to
the field of knowledge used for a component and
other designers will not understand this information
nor will they be able to properly evaluate potential

interactions between components in different
subsystems. Other reasons include that the
variability of a design may be too large to be
considered for manual system integration.

Ten designers doing a conceptual design and
each is passing on a minimum and a maximum of
one component specific parameter to the
integration team, the integration team would
require to integrate 210 different system designs
for analysis and verification. This would be too
time consuming when done manually. It is
therefore not done. For system integration, each
team will pass on their “best” design to the
integration team.

Figure 3: Design process graph

The integrated system is therefore not verified
for variability due to uncertainties in subsystems
and interactions between components located in
different subsystems. As a result, the probability
that this coupling is causing critical errors in the
design is very high. Testing (expensive and time
consuming) should eliminate most critical errors,
but customers increasingly find unresolved critical
errors after delivery of products. Additionally,
different designs based on the same platform
design will exhibit very different probability of
failures.

What should be done?
To solve the complex system design problem,

two technologies have to be developed. These are,

● Technologies have to be developed
for automated design at the system level
that considers uncertainty

● Technologies have to be developed
for system level optimization of
architecture and function.

 For an automated design, a simulation
capabilities must meets the following requirement,

1) modules, that are complete independent
simulations of design methodologies

2) the simulations may be executed by the
same or different simulation tools

3) a design process graph connects the design
methodologies

4) Monte Carlo simulation capabilities, in
order to be able to analyze sets or ranges of
parameters

5) simulation model generation, in order to
iterate over different architectures

6) requiring standardized modeling of
architectural components

7) optimization methodologies that can
optimize a design with respect to system
level objectives

8) the simulation must be connected to a data
base, in order to keep track of the large
volume of information

9) models and data must be stored in a
standardized way, in order to ease
comparison and analysis

Figure 4 depicts such an automated design
process simulation. Each designer has to develop an
executable model of her/his design methodology.
Process engineers design the process design graph
that connect the executable design methodologies.

The simulation generates a set of feasible
designs and maps component uncertainties into
system uncertainties of coupled designs and can
determine which designs meet system requirements
for all uncertainties in parameters, architecture,
missions/use cases, and environment. If the system
performance falls within the permissible
performances of the design specifications, the
design is verified.

System uncertainty determined by the range of
design variations also depicts the level of
uncertainty at a given stage of development. As
different members of the design team get up the
learning curve, Figure 2, this uncertainty is going to
decrease. Unacceptable levels of system uncertainty
can be analyzed, causes determined and eliminated.
The automated design process can track design
changes and their impact on overall system design
criteria, including performance, cost, quality of

design. The benefits in cost and risk reduction of
such an automation of design would be enormous.
However, some critical technologies like modeling
of design methodologies are still missing.

Figure 4: Executable design methodologies,
connected by a design process graph

What can be done now?
 Many technologies for automation and
optimization of designs and design processes exist
today. In [4] models the development process for a
railway switching system and optimizes for team
selection/load. Critical components of the
development process were identified and
eliminated that would have doubled development
time. [6] optimizes a development process for
automotive electronic control units using genetic
algorithms, finds the optimal combination of
design methodologies (team selection), and
performance (timing, BER, cost and quality.)
Areas for significant improvements were
identified. Simulation set capabilities for
integration of independent simulations are in [5].

Most critical today are early model based design
methodologies for the overall system that reduce
uncertainty before a design is partitioned to
different design teams, Figure 5, plus technologies
for optimization of architecture of overall design,
e.g. optimization at vehicle level. This is made
possible by the following technology
developments,

● standardized modeling of
architectural components of networked
systems [7]

● Automated mapping of function into
architecture and mapping of combined
architectural and functional models into
implementations [8]

● Development of standardized XML
based data formats formats [9]

● Moving reliability analysis to early
design stages [8]

Figure 5: What can be achieved now

Computing the risk for this Mission Level
Design process for the same automotive subsystem
development we get,

RMLD=∫U CMonth dt=61.0∗maxC MonthOverrun

The ratio of risk between the traditional design
process and the mission level design process is,

R
RMLD

=4.9

We observe a significant risk reduction for the
Mission Level Design process.

The benefits of executable specifications and
vehicle level optimization are now demonstrated for
the case of an executable specification of a power
management system, a virtual prototype of a power
train, and an vehicle level architectural
optimization.

Executable specification of power
management system

The problem: The power management system
of a car had a critical error that lead to loss of
battery power in worst case winter conditions. Low
level analysis of the integrated system took more
than two month and was ill suited to solve this
problem.

The solution: An executable specification of
the power power management system of the car,
consisting models of worst case rular and urban
driving scenarios, performance level models of
engine and generator, battery model, FSM of power
management logic and 27 models of systems using

power in the vehicle. The development of the
prototype model took seven days. It's simulation
time was less than 1sec. Because of the short
simulation time, the desired characteristics and
parameter settings for the power management
system could be determined within a day. In close
to critical situations non-critical power users were
turned off and the RPM of the engine was
increased as necessary.

Figure6: Executable specification of power
management system

Figure 7, 8, and 9 show engine RPM, and
battery SOC for the worst case scenario. The
minimum SOC could be adjusted to the desired
value.

Figure 7: Load current for worst case scenario

Figure 8: Load current for worst case city
scenario

Figure 9: Battery SOC in %

Virtual prototype for engine
management system

The problem: To cope with complexity in
automotive electronics, interfaces like AUTOSAR
are investigated. These define standardized
functional interfaces. However, they impose a
computational overhead to the system.
Development of a prototype and and hardware-in-
the-loop test is late in the development cycle and
very costly for design iterations. Hence it reduces
the competitiveness of an automotive supplier.

The solution: A virtual prototype for engine
management systems, Figure 10, has been
developed that includes models of software and
hardware. With this model the functional behavior
of protocols and software as well as the
performance behavior of busses and processors can
be investigated at mission level. Failures of the
controller because of processing overhead, Figure
11, can be detected much before a prototype can be
build.

Figure 10: Virtual prototype of engine
management system [10]

Figure 11: Virtual engine prototype analysis
results [10]

Vehicle level architecture
optimization

Avionics systems in aircraft are today highly
complex with more than 1000 electronic control
units, located centralized behind the cockpit. Long
cables pass though the aircraft to actuators,
sensors, communication and display units. This
architecture is very sensitive to design changes in
the aircraft.

Cabling cost optimization of an distributed
architecture using simplified cable routing shows
that the cost is minimized for a distributed
architecture with 6 to 7 electronic racks, Figure 12.
Six maintainable places were selected close to
feasible locations that meet maintenance
requirements [8].

 Figure 12: Cable cost optimization of distributed
electronics

 Different electronic IMA boxes are mapped
into the six locations, Figure 13, optimizing
different design criteria. The result is a XML
description of the architecture.

Figure 13: Architecture optimization

Behavioral models of ATA functions are
mapped into IMA resources Figure 14.

Figure 14: Models and design graph for
architecture optimization, functional and
performance verification

 The diverse tasks of the design flow like
topology optimization, model generation and
functional and performance verification in the
uncertainty region of the Behavior Models
(BM) can only be automated with simulation
set capabilities, described before.
BMs determine the functional performance of each
aircraft subsystem included. Models at different

levels of abstraction may be used for the
subsystems.

 The Resource Model (RM) implements
aircraft design guidelines concerning power, space
and other installation aspects as well as
requirements of included aircraft subsystems and
implementation of their behavioral models.
Several optimization algorithms are implemented
in the RM to find a Pareto-optimal solution for the
networked systems compound on aircraft-level.
The output of the RM is a XML-file describing the
optimized architecture topology. A behavior to
architecture mapper automatically generates the
Architectural Model (AM). The AM contains the
functional behavior of aircraft subsystems and
performance components like interfaces and
channels, Figure 15. The AM is used to evaluate
different design criteria for the overall system
behavior and interactions of its subsystems.

 Figure 16 compares a reference architecture
with the optimized architecture. Optimization
reduced wiring by 68%, reduced cost by over 70%
and increases availability by orders of magnitude.

Figure 15 Results of resource model

Figure 16: Comparison of old and new design

Performance item Reference System Optimized System

Cost of architecture [$] 100% 28.4%
Reduction of cables [%] 68
Weight of architecture [kg] 280.06 201.00
Weight of cables [kg] 108.21 29.15
Length of cables [feet] 1531.46 453.84
MTBF [h] 55632.88 57534.15
MTTR [h] 31.63 29.89
MTBUR [h] 49164.46 50874.30
Availability 0.99 0.999999999998

Conclusions
 Current design methodologies in complex
system design can neither optimize systems at
vehicle level nor can it treat uncertainty in design
and integration. This causes designs much under
todays technical capabilities, a high probability of
critical problems after design and expensive
corrective actions.

A new complex system design methodology and
enhancement to the development tool MLDesigner
have been developed hat overcomes these
problems. The new technology is demonstrated for
the examples of a power management system, an
engine management system and a vehicle level
network optimization. It is shown that this new
technology can find critical problems early in the
development cycle, significantly improve
networked architectures and can significantly
reduce development time, cost and weight.

REFERENCES

[1] John Hines, We Don't Do Design
Correctly!, Keynote speech at IEEE 9th

International Symposium on Modeling, Analysis
and Simulation of Computer and
Telecommunication Systems, MASCOTS 2001,
Cincinati, Ohio, Aug. 15-18, 2001.

[2] Bruno Schienmann, Kontinuierliches
Anforderungsmanagement, Addison-Wesley, 2002.
– ISBN 3-8273-17-87-8

[3] Horst Salzwedel, Mission Level Design of
Avionics, AIAA-IEEE DASC 04 - The 23rd Digital
Avionics Systems Conference 2004, Salt Lake City,
Utah, USA, October 24-28, 2004.

 [4] Manuela Tröbs, Analyse, Optimierung und
Simulation des Simis IS Entwicklungsprozesses,
Thesis, Siemens/Technical University Ilmenau,
June 2006.

 [5] MLDesigner® Manual v3.0,
http://www.mldesigner.com

[6] Tom Dengler, Host Salzwedel,
Optimierung von komplexen Enwicklungs-
prozessen mittels simulationsgestützter Prozess-
analyse, 52th International Scientific Colloquium,
Ilmenau, September 10-12, 2007.

[7] Tommy Baumann, Horst Salzwedel,
Mapping of Electronic System Level (ESL)
Models Into Implementation, DATE'07, Acropolis,
Nice, France, April 16-20, 2007.

[8] Nils Fischer, Design of a Plug-and-Play
Development Environment for Optimizing
Avionics Systems Architectures, Thesis, Technical
University Ilmenau, July 2007.

[9] Stefan Riehmer, Standardizing Data
Storage for MLDesigner and Octave using the
Open Office Document Standard, Thesis,
Technical University Ilmenau, August 2007.

[10] Till Resmer, Modellierung und
Simulation von Echtzeitsystemverhalten nach dem
Mission Level Design Ansatz, Thesis, Erfurt
University of Applied Sciences, January 2008.

http://www.mldesigner.com/

	Abstract
	Introduction
	Where do critical design errors occur?
	Why doesn't the current design methodology work?
	Complex System Design
	What should be done?
	What can be done now?
	Executable specification of power management system
	Virtual prototype for engine management system
	Vehicle level architecture optimization
	Conclusions

