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Spatio-Spectral Color Filter Array Design
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Abstract—In digital imaging applications, data are typically ob-
tained via a spatial subsampling procedure implemented as a color
filter array—a physical construction whereby only a single color
value is measured at each pixel location. Owing to the growing
ubiquity of color imaging and display devices, much recent work
has focused on the implications of such arrays for subsequent dig-
ital processing, including in particular the canonical demosaicking
task of reconstructing a full color image from spatially subsam-
pled and incomplete color data acquired under a particular choice
of array pattern. In contrast to the majority of the demosaicking
literature, we consider here the problem of color filter array design
and its implications for spatial reconstruction quality. We pose this
problem formally as one of simultaneously maximizing the spec-
tral radii of luminance and chrominance channels subject to per-
fect reconstruction, and—after proving sub-optimality of a wide
class of existing array patterns—provide a constructive method
for its solution that yields robust, new panchromatic designs im-
plementable as subtractive colors. Empirical evaluations on mul-
tiple color image test sets support our theoretical results, and in-
dicate the potential of these patterns to increase spatial resolution
for fixed sensor size, and to contribute to improved reconstruction
fidelity as well as significantly reduced hardware complexity.

Index Terms—Color filter array (CFA), color imaging, demo-
saicking, digital camera pipeline, spatio-spectral sampling.

1. INTRODUCTION

WING to the growing ubiquity of color imaging devices,

much recent work has focused on the interplay between
their acquisition stages and subsequent digital processing. In
most applications, data are obtained via a subsampling proce-
dure implemented as a color filter array (CFA), a physical con-
struction whereby each pixel location measures only a portion
of the visible spectrum, selected from amongst a chosen “color
partition” of that spectrum—typically corresponding to long,
medium, and short wavelengths—which in turn induces a spa-
tial sampling pattern for each such color representative. This
array represents one of the first steps in the acquisition pipeline,
and, hence, CFA design determines to a great extent the max-
imal resolution achievable by subsequent processing schemes.
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These schemes typically assume a full-color image (i.e., a full
set of color triples), and consequently, a key reconstruction task
termed demosaicking is first necessary. This refers to the inverse
problem of reconstructing a spatially undersampled set whose
components correspond to particular tristimulus values—typi-
cally red, green, and blue.

In this paper we address the problem of color filter array de-
sign and its implications for spatial reconstruction quality. Our
aim is to rigorously quantify the attainable limits of CFA perfor-
mance, while at the same time providing a framework that both
identifies the fundamental limitations of existing designs and ex-
plains the performance of well-known associated demosaicking
approaches appearing in the literature. As we detail in this paper,
the inherent shortcomings of contemporary CFA designs mean
that subsequent processing and reconstruction steps often yield
diminishing returns. Indeed, the loss of image quality resulting
from all but the most computationally expensive state-of-the-art
methods is unambiguously apparent to the practiced eye.

We pose the CFA design problem formally as one of simulta-
neously maximizing the spectral radii of luminance and chromi-
nance channels subject to perfect reconstruction. In doing so
we unify several recent approaches in the literature, including
most notably the use of Fourier analysis as a tool to view de-
mosaicking as “demultiplexing” [2], [3], and the notion of re-
construction based on chrominance/luminance decompositions
[4]-[6]. Under this formulation, we demonstrate the surprising
result of sub-optimality of designs based on “pure” tristimulus
values, a class that includes the well-known Bayer pattern cur-
rently most popular in industry. As an alternative, we provide a
constructive method to generate feasible CFA designs that have
been optimized for additional design metrics.

The additional criteria we consider are quality of reconstruc-
tion, complexity of implementation, quantum efficiency and
noise, and robustness to prior assumptions on color channel
bandlimitedness. As our emphasis is on improving the color
image acquisition pipeline rather than on developing optimal
demosaicking strategies per se, we omit a comparative anal-
ysis of reconstruction techniques; however, our results yield
a general class of linear demosaicking methods that provide
state-of-the-art performance and are demonstrably robust to
spatio-chromatic aliasing. In addition to reducing hardware
complexity relative to the nonlinear demosaicking techniques
that currently predominate, it can be expected that these linear
methods will also enable more tractable noise modeling [7].

The remainder of this paper is organized as follows. We begin
in Section II by analyzing the spatio-spectral properties of typ-
ical color images and the Fourier representations that lattice-
structured CFA samplings induce, in order to demonstrate sub-
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(a) Bayer [11] (b) Yamanaka [12] (c) Lukac [20]

(g) Cyan-Magenta-Yell. (h) Sony 4-Color [18]

(i) Kodak Ver. 1[22]

(d) Vertical (e) Diagonal (f) Modified Bayer [20]
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Fig. 1. Examples of existing color filter array patterns, with pure-color designs shown along the top row and panchromatic designs along the bottom.

(a) Bayer [11] (b) Yamanaka [12] (c) Lukac [20]

(d) Vertical (e) Diagonal (f) Modified Bayer [20]

(g) Cyan-Magenta-Yell. (h) Sony 4-Color [18]

(i) Kodak Ver. 1 [22]

(j) Kodak Ver. 2 [22] (k) Kodak Ver. 3 [22]

Fig. 2. Log-magnitude spectra of respective sensor data representing the “lighthouse” image [4]. Figures are color-coded: green = X, red = X, blue = Xz,
with intensity reflecting relative weights assigned to modulated spectral replicates according to the geometry of the color filter array in question.

optimality of existing CFA designs. (Though requisite tools and
vocabulary will be provided, this section may be safely skipped
by readers unfamiliar with lattice theory.) We propose in Sec-
tion III a constructive framework for designing and analyzing
alternative patterns that simultaneously minimize aliasing and
admit fast, optimal linear reconstruction schemes. In Section IV,
we provide several explicit examples of new patterns whose
closed-form expressions are directly realizable as so-called sub-
tractive colors, and provide evaluations on standard image test
sets. We summarize our results and conclude with a brief dis-
cussion in Section V.

II. ANALYSIS: EXISTING PATTERNS AND ALGORITHMS

We first proceed to analyze the spatio-spectral sampling in-
duced by a typical CFA pattern, which we model as a spatial
array of pixel sensors. As alluded to earlier, a physical device
termed a color filter rests over the photosensitive element at each
pixel location; it passes a certain portion of the visible spectrum
of light according to its chemical composition. The resultant
measurement may be considered as an inner product resulting

from a spatiotemporal integration of the incident light over each
pixel’s physical area and exposure time, taken with respect to
the color filter’s spectral response. While this spectral response
is an intrinsic property of the filter, its perceived color is in fact
a function of the environmental illuminant; however, here we
adopt the standard convention and identify the filters typically
used in practice by their “colors” as red, green, and blue. Our
later analysis will rely on convex combinations of these com-
ponents as “pure-color” building blocks, the precise spectral re-
sponse of which is left to the designer [8].! As the goal of this
paper is the identification and optimization of relevant objective
metrics, rather than subjective metrics related to perception, we
make no further attempt to treat issues of color science.

In a typical acquisition scenario, a regular, repeating CFA pat-
tern comprises a tiling of the image plane formed by the union of
interleaved sets of sampling, which in turn may be understood

ITdeally, one would design the spectral response of such pure-color filters
by experimentally optimizing over the range of illuminants typically seen in
practice [9]; however, such considerations are beyond the scope of our present
discussion. Moreover, other issues such as dye chemistry, quality control, prior
art, etc. arise in an industry setting, and may be equally important in practice.
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in terms of lattices [10]; the spectral periodicity of the resul-
tant sampled color image is determined by a so-called dual lat-
tice, thereby enabling us to characterize the effect on individual
color channels of the spatio-spectral sampling induced by var-
ious CFA patterns. By explicitly considering this spatio-spec-
tral representation, we are able both to quantify the fundamental
limitations of existing CFA designs as evidenced through their
associated demosaicking algorithms, and to explicitly demon-
strate the sub-optimality of a class of designs that includes most
CFA patterns currently in wide use.

A. Spatio-Spectral Analysis of Sensor Data

The well-known Bayer pattern CFA [11], illustrated in
Fig. 1(a), attempts to complement humans’ spatial color sen-
sitivity via a quincunx sampling of the green component that
is twice as dense as that of red and blue. Though the Bayer
pattern remains the industry standard, a variety of alternative
color schemes and geometries have been considered over
the years [8], [12]-[21], certain of which are also shown in
Fig. 1. In order to understand the shortcomings and limitations
associated with the state of the art in color filter array design
and demosaicking, it is necessary to consider the geometric
structure of color filter arrays as well as the algebraic structure
of the sampling patterns they induce—examples of which are
shown in Fig. 2. The requisite tools and vocabulary for this task
will be provided by the notion of point lattices, the basics of
which we discuss briefly below (using the notation of [10]).

1) Point Lattices as Sampling Sets: We will employ the no-
tion of lattices to describe the spatial subsampling induced by CFA
patterns. Indeed, lattices are central to the idea of ““structured sam-
pling” in Euclidean space, as they capture in greatest group-theo-
retic generality the notion of separated, yet regular, measurement
points. Formally, a uniform lattice A C R™ comprises a discrete
subgroup of n-dimensional Euclidean space whose quotient is
compact. We say anonsingular matrix M having real entries gen-
erates apointlattice A y 7 if A 5 = MZ",inwhich case columns
of M are said to form a basis for the lattice. In the engineering
literature M is often called a sampling matrix, as it generates a
periodic measurement patternindexed by n-tuples of integers pre-
cisely according to the lattice A py. We associate with each lattice
A pr aquantity vol(Apr) := | det(M)| that generalizes the no-
tion of a sampling period and is independent of the lattice basis.

As our main interest here lies in lattices as models for color
filter arrays, we focus on the unit-volume square lattice Z2 as
the setting for our image sensor—though our subsequent results
apply equally well to other settings such as octagonal [15] or
hexagonal [16] sensor geometries. The associated color sam-
pling patterns may then be represented by less dense lattices,
said to be sublattices? of Z? if each of their elements also be-
longs to Z?. The volume of a sublattice Apy C Z? is conse-
quently integer-valued, and no less than vol(Z?) = 1.

A key point is that Z? can be written as a disjoint union of
distinct translates of a given sublattice A jy—whereupon such
translates can be associated with a red, green, or blue pure-color

2Example sublattices of Z2 include the square sublattice generated by M =

{0 NE and the quincunx sublattice generated by M = 11l
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filter. The set of distinct translates of A j 5 by vectors in 72 is said
to form a set of cosets of A pg in 72, with the corresponding vec-
tors termed coset vectors. The number of distinct coset vectors
(including the zero vector)—and, hence, disjoint translates—of
such a sublattice is given by vol(Aps). Note that if we specify
a regular, repeating pure-color CFA pattern based on the sub-
lattice A py C 72, then the number of different colors it admits
cannot exceed the number of distinct cosets in vol(A pz). To this
end, we call a sampling matrix M admissible if it generates a
sublattice Ayy C Z? with vol(Aps) > 3, and henceforth con-
sider admissible generators.

2) A Lattice Model for Color Filter Arrays: Our goal is
first to analyze pure-color CFAs comprising disjoint sampling
patterns of red, green, and blue. To this end, recall that in a
single-sensor camera, a scalar measurement is made at each
spatial location n € 72, leading to an idealized, noise-free
model in which the sensor measurement y(n) can be ex-
pressed as the inner product of the true color image triple

z(n) = [2,(n),z4(n),z;(n)]" and the action of the CFA
¢(n) := [c,(n), cy(n), cp(n)]" as follows:
y(n) = e(n)Tz(n), nez’ )

Recall that by our description, a pure-color CFA {¢(n) : n €
72} comprises a regular, repeating pattern that measures only
a single component of the color triple at each spatial location,
and, hence, its elements are represented by the standard basis.

Our model for the geometry of a pure-color CFA will thus be
a vector-valued indicator function expressed in the language of
lattices. We wish to partition Z? into three structured sampling
sets, each of which will be written as a union of selected cosets
of a given sublattice Ajy C Z?%. Sampling structures of this
nature have been the subject of much previous study [10]; here
we employ this notion to account for the color triple associated
with each pixel, as described earlier. To this end, let M denote
an admissible generator for sublattice A M C Z? and let U,.,
W,, Uy, represent mutually exclusive subsets of coset vectors
associated respectively with the spatial sampling locations of
colors red, green, and blue.

If Z? can be written as the disjoint union of the three inter-
leaved sampling structures ¥, + Aps, ¥y + Aps, and ¥y +
Apy. each one comprising a union of selected cosets as {¥ +
Apr} = Upew{® + Aps}, then we call the result a 3-par-
tition of 72. Note that, since under this scenario every sensor
measures exactly one color, it suffices to specify (M, V,., U;),
from which we can obtain the coset vectors ¥, accordingly.
We subsequently adopt this description and exploit it in a lu-
minance/chrominance parameterization below.

We take a given 3-partition of Z? to be our model for pure-
color sampling, in contrast to the new panchromatic CFA de-
signs we introduce later, whose quantum efficiency functions
have broader sensitivities. The sampling structure of the pure-
color CFA associated with 3-partition (M, U,., ¥;) is then de-
fined pointwise as follows:

Znoe{\m+AM} 6(n — my)

cr(m)
o) = [ com) | = | Sngerwyiaggt im=m0) | @)
cp(m) Znoe{\P;,+AM} 5(n —ng)

Authorized licensed use limited to: IEEEXplore Subscriber. Downloaded on November 10, 2008 at 09:29 from IEEE Xplore. Restrictions apply.



HIRAKAWA AND WOLFE: SPATIO-SPECTRAL COLOR FILTER ARRAY DESIGN FOR OPTIMAL IMAGE RECOVERY

(a) Red spectrum X, (b) Green spectrum X (c) Blue spectrum X

(d) Difference X (e) Baseband X, (f) Difference Xg

Fig. 3. Log-magnitude spectra of color channels of the “lighthouse” image,
showing the contrast in bandwidth between the (z ., x,, @ ) representation of
interest and a chrominance/luminance representation in terms of (#a, ¢, 23).

where by slight abuse of notation we let 6(-) denote the Dirac
or Kronecker delta function, as indicated by sampling context.

Pure-color CFAs hence perform a spatio-chromatic sub-
sampling that effectively multiplexes red, blue, and green
components in the spatial frequency domain—Ileading to
the image recovery task known as demosaicking. However,
because the spatio-spectral content of these color channels
tends to be correlated at high spatial frequencies [4], [23],
representations that exploit this correlation are often employed
in contemporary demosaicking algorithms [20]. Here, we
exploit a luminance/chrominance representation common in
the literature to simplify our lattice model for pure-color CFAs.
Following the measurement model of (1), each pixel sensor
measurement may equivalently be represented in terms of a

green channel z, and difference channels z, := z, — x4, and
Tp 1= Tp — Ty
y(n) = c(n)" Iz(n)
1 1 0 1 -1 0
=e¢m)T|{0 1 0| |0 1 0z
0 1 1 0 -1 1
Ta(n)
=[er(n) 1 a(n)] | zg(n)|. (©)
zg(n)

The advantage of this representation, as noted by [2] and [3], is
that these difference channels enjoy rapid spectral decay—see
Fig. 3—and can serve as a proxy for chrominance, whereas the
green channel can be taken to represent luminance. As our even-
tual image recovery task will be to approximate the true color
image triple z(n) from acquired sensor data y(n), note that re-
covering either representation of z(n) is equivalent. Moreover,
the representation of (3) allows us to re-cast the pure-color sam-
pling structure of (2) in terms of sampling structures associated
with the difference channels z, and zg.

3) Fourier Analysis of Pure-Color CFAS: It is known how
to explicitly compute the Fourier representation induced by the
spatial subsampling of certain CFA patterns; for the case of the
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Bayer pattern, see [2], [3], and [6]. Here, however, we pro-
vide for a Fourier representation of all rectangular, periodic,
pure-color CFAs in terms of the sublattice A ps associated with
a given 3-partition (M, ¥,., U},) of Z2. Owing to their Abelian
structure, lattices admit the notion of a Fourier transform as
specified by a dual or reciprocal lattice. The spectral period-
icity properties of a color image sampled along a lattice A s
are determined by its dual lattice A M (the Poisson summation
formula being a simple univariate example), thereby enabling
us to characterize the effect on individual color channels of the
spatio-spectral sampling induced by various CFA patterns.

According to the discrete and periodic nature of repeating
pure-color CFA sampling patterns, the dual lattice Aps
defines a unit cell about the origin in R? with associated
volume vol(AM) = (2m)*/vol(Apy), copies of which in
turn form a tessellation of the spatial frequency plane.3 Under
our normalization of the Fourier transform, the dual lattice
A M = 2rM~ 772 associated with an admissible sampling
matrix M will in turn admit 27Z X 2wZ as a sublattice. As
our model for sensor geometry is the lattice Z2, it thus suffices
to restrict our attention to dual lattice points contained in the
unit cell [-m,7) X [—m,7) in the spatial frequency plane,
which comprise a set of coset representatives for the sublattice
2wl X 277 in AM (see, e.g., [10]).

We are now equipped to provide the main result of this sec-
tion: a characterization of the spatio-spectral properties of im-
ages acquired under pure-color CFAs. Let Fx denote the 2-D
Fourier transform operator applied to z(n), with X (w) := Fz
parameterized by angular frequency w € R?. Recalling our ear-
lier pixel-wise definition of a pure-color CFA associated with
3-partition (M, ¥,., U}, ) according to (2), we see that CFA com-
ponents ¢,(n) and c,(n) are obtained

er(n)=F ' {vol(Aps)~ Z Z il A8(w—A)
,\e{AMm[—w,ﬂ) }¥EY,

ap(n)=F {vol(Apg) ™ > d e IV A (w—))
,\e{AMm[—w,ﬂ) }¥EYS

It then follows from (3) that the Fourier transform of sensor data
y(n) over dual lattice points contained in the unit cell [—, 7) X
[—m, ) is given by

1
Y(w) = X _— 3
((d) g(w) + VOI(A ) N
AG{AMﬂ[—ﬂ',’ﬂ')Q}

S e X -+ e PAXw-N) | . @
Yev,. Pev,

Thus, we see that the lattice structure of the chosen 3-partition
induces spectral copies of the difference channels =, and z3
centered about the set of carrier frequencies {A MN[=m, )2}
As restrictions of lattices, these sets will always include the
origin—corresponding to “baseband” copies of the respective

3See [10] for a discussion of technical issues, such as defining the unit cell
and Fourier transform with respect to unions of cosets as we do here.
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difference channels. In this manner (4) may be interpreted as
specifying a baseband “luminance” signal

|V, |
vol(Agp) e W)+

| Wy

Xo() = X, (@) + vol(App)

Xp(w)
with the remainder of its terms comprising lower-bandwidth
“chrominance” information modulated away from the origin.
Recalling the interpretation of vol(Aps) as the maximum
number of distinct colors supported by a given CFA, we see
that the ratios of color components comprising luminance
information depend directly on |¥,.| and |¥|, the number of
coset vectors associated with difference channels z, and z .

An example of the baseband signal X, (w) corresponding to
a typical color image is shown in Fig. 3(e); the locations of
spectral replicates modulated away from the origin are shown in
Fig. 2 for several 3-partitions corresponding to pure-color CFA
patterns in wide use. From these examples, it may be seen that
aliasing occurs whenever there is pairwise overlap of the spec-
tral supports of X, (w), {Xa(w—2A) : A # 0}, and { Xg(w—A) :
A#£0}, forA e {KM N [—m,7)?}. In the absence of aliasing,
chrominance information can be successfully “demodulated”
and then used to recover X, (w) from the baseband luminance
channel X,(w) via standard filtering techniques; however, for
each instance depicted in Fig. 2, the placement of chrominance
information in the spatial frequency plane is seen to result in
aliasing.

Further inspection confirms that in fact each of these patterns
is sub-optimal from an aliasing perspective—a notion we for-
malize in Section II-B below. We begin by making precise the
minimal assumptions on color channel bandwidths necessary to
formulate this argument rigorously:

Assumption 1 (Bounded Bandwidth): We assume the sup-
ports of (X,, X, Xg) to be bounded, such that the associated
luminance and chrominance channels comprising (4) are con-
tained in balls of radii ¢ < 7 and r. < , respectively.

Assumption 2 (Total Bandwidth): We assume ry + r. > .
This implies that the physical resolution of our image sensor is
such that aliasing may in fact occur, depending on the placement
of chrominance information in the Fourier domain.

Assumption 3 (Relative Bandwidth): We assume ry > 7.
This is consistent with empirically reported results in the litera-
ture, following the documented correlation of color channels.

These assumptions imply that in order to maximize the allow-
able spectral radii 7, and r. subject to the zero-aliasing con-
straint required for perfect reconstruction, spectral replicates
representing chrominance information should be placed along
the perimeter of the unit cell [—7,7) X [—7, 7) in the spatial
frequency plane. The CFA patterns of Fig. 2(d)—(f) and (i)—(k)
may be seen by inspection to violate this condition. Moreover,
it follows from Assumption 3 that the least optimal placement
of spectral replicates along this perimeter is about the points
(—m,0) and (0, —m)—as these points minimize the maximum
allowable spectral radii. As may be seen in Fig. 2(a)—(c) and
(g), (h), (j), (k), the popular Bayer pattern and many others are
sub-optimal from this perspective. Moreover, by reducing al-
lowable channel bandwidth along the coordinate axes, these pat-
terns are sensitive to the very horizontal and vertical features
which frequently dominate typical images [24].
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B. Sub-Optimality of Pure-Color CFAs: Statement and Proof

From the arguments and assumptions above, we conclude that
neither pure-color nor panchromatic CFA designs currently in
use are optimal from the perspective of spatial aliasing. We will
later introduce new panchromatic CFA designs that are optimal
from this perspective, but first we show that no periodic, pure-
color CFA design can ever attain optimality—a fact reflected by
the failure in practice of simple linear reconstruction methods
when used with such patterns.

In essence, these patterns determine a lattice that packs lumi-
nance and chrominance information into the unit cell [—7, 7) X
[—m, ). Intuition suggests—and the above spatio-spectral anal-
ysis confirms—that a sphere-packing strategy is required, rather
than the sphere-filling approach of current patterns. Accord-
ingly, we first exhibit the spatio-spectral requirements neces-
sary to maximize the allowable spectral radii r, and r., subject
to the constraint of zero aliasing. To this end, suppose that As-
sumptions 1-3 hold, and consider a proper sublattice A 5 C 7>
along with a set ¥ of associated coset vectors. We then have the
following proposition:

Proposition 1 (Bandwidth Maximization): Amongst all sets
{T+A M}, those that maximize r,+7. subject to the constraint
of zero aliasing take the following form: for every A € { A M0
[-m,7)%} \ {(0,0)} such that D e exp(—jpTA) # 0, we
have that |A||cc = 7 and A ¢ {(—7,0), (0, —m)}.

Recall from (4) that dual lattice points A # (0, 0) associated
with nonzero weights 3, g exp(— j%T ) represent “carrier
frequencies” for chrominance information. The proposition thus
specifies that in order to simultaneously maximize the allow-
able bandwidth of luminance and chrominance, all such carrier
frequencies contained in the Fourier-domain unit cell [, 7)?2
must be placed maximally far from the origin.

Proof: Consider radii 7, and r. as rays in the Cartesian
plane which define balls representing the respective maximal
directional bandwidths of luminance and chrominance infor-
mation, as per Assumption 1. A sole ball representing lumi-
nance is centered about the origin, and each chrominance ball
is taken to be centered around a candidate lattice point A €
[-m,7)% \ {(0,0)} for which D wew exp(—jpTA) # 0. We
then seek the set of A yielding an arrangement that admits, with
no intersection of spheres, the maximal |rg| + |r.|.

Assumption 3 (|r¢] > |r.|) in turn implies that we need
only consider the case of chrominance-luminance aliasing,
rather than chrominance-chrominance aliasing. Noting that
|re + re| < |re| + |rel|, with equality if and only if 7, and 7.
are collinear, we may, therefore, take r, to be a ray emanating
from the origin, and 7. to be a collinear ray emanating from
any other candidate point A. For any angle taken by rays 7,
and 7., the maximum of |r; + .| = |r¢| + |r.| is attained by
{X € [-m,7)% : || Moo = 7}. Amongst all members of this
set, Assumption 2 (|r¢| + |r.| > ) excludes the set of points
{(-=m,0), (0,—m)}, and the proposition is thereby proved. ™

The following proposition in turn provides an upper bound on
the volume of any sublattice A 5 C 7? satisfying the condition
for bandwidth maximization specified by Proposition 1:

Proposition 2 (Volume Limitation): Let (M, ¥) determine a
sampling set { W+A p s} taking the bandwidth-maximizing form
of Proposition 1. Then vol(Aps) < 2|9/
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Fig.4. Idealized spectral support of the channels (4, 7, ¥ 5 ) of a color image
acquired under the Bayer pattern, showing alias-inducing replications.

The proof of this proposition is provided in Appendix L.
Together, Propositions 1 and 2 imply the sub-optimality of
periodic, pure-color CFA designs with respect to aliasing
considerations. Indeed, it follows from these propositions that
any such design that seeks to maximize the allowable spectral
radii of luminance and chrominance cannot simultaneously
admit three distinct colors. To see this, suppose that a 3-par-
tition (M, VU, U;) is designed such that mutually exclusive
sampling sets {¥,. + Aps} and {¥; + Apr} both satisfy the
conditions of Proposition 1. Then by Proposition 2 we have that
vol(Aps) < |, | + [Uy], but it follows from our earlier defini-
tion of a 3-partition that vol(A pr) = [W,| + |V | 4 [Up]. We,
therefore, conclude that the set of coset vectors ¥, indexing
the sampling of our third color component must be empty.

C. Aliased Sensor Data and Demosaicking

The preceding discussion confirms the sub-optimality of all
periodic, pure-color CFA patterns with respect to the metric
of spatial aliasing. However, owing to the prevalence of the
Bayer pattern in currently manufactured still and video dig-
ital cameras, much attention has been given to the problem of
demosaicking color images acquired in this manner [4], [23],
[25]-[34]. An ideal demosaicking solution would exhibit two
main traits: low computational complexity for efficient hard-
ware implementation, and amenability to analysis for accurate
color fidelity and noise suppression. For instance, in the absence
of further assumptions on the relationships amongst tristimulus
values, the optimal /inear reconstruction is indicated by an or-
thogonal projection onto the space of bandlimited functions, ap-
plied separately to each subsampled color channel. However, it
is well known that this solution produces unacceptable artifacts,
as aliasing prevents perfect reconstruction (see Fig. 4). Indeed,
recalling Figs. 1 and 2, this follows precisely from the sub-op-
timality of pure-color CFAs with respect to aliasing.

As such, most demosaicking algorithms described in the lit-
erature make use (either implicitly or explicitly) of correlation
structure in the spatial frequency domain, often in the form of
local sparsity or directional filtering [3], [25], [26], [32], [35].
As noted in our earlier discussion, the set of carrier frequen-
cies induced by the Bayer pattern includes (—, 0) and (0, —7),
locations that are particularly susceptible to aliasing by hori-
zontal and vertical edges. Fig. 4(b) and (c) indicates these sce-
narios, respectively; it may be seen that in contrast to the radially
symmetric baseband spectrum of Fig. 4(a), chrominance-lumi-
nance aliasing occurs along one of either the horizontal or ver-
tical axes. However, successful reconstruction can still occur
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if a noncorrupted copy of this chrominance information is re-
covered, thereby explaining the popularity of (nonlinear) direc-
tional filtering steps [3], [32], [35]. We can, therefore, view the
CFA design problem as one of spatial-frequency multiplexing,
and the CFA demosaicking problem as one of demultiplexing to
recover subcarriers, with spectral aliasing given the interpreta-
tion of “cross talk” [3].

On the basis of the above discussion, it is fair to conclude that
existing linear interpolation schemes often lead to undesirable
(and commercially unacceptable) distortion and visual artifacts.
However, more sophisticated schemes are typically highly non-
linear and can be costly to implement in typical ASIC and DSP
hardware environments. Moreover, nonlinear techniques, such
as those requiring local edge detection, further exacerbate the
problem of characterizing (and, hence, mitigating) the various
sources of noise associated with the image acquisition process.
Robustness of the detection variable, sensitivity to noise, and
overall model accuracy all affect the quality of reconstruction.
To this end, recent work has demonstrated the inadequacies of
treating the denoising and interpolation tasks separately—a fact
well known in industry—and has led to a number of methods
designed to treat these problems jointly [6], [33], [34], [36].

III. DESIGN: ALTERNATIVE PATTERNS AND ALGORITHMS

Owing to the sub-optimality of periodic, pure-color CFA
designs as proved in Section II-B above, the optimal periodic
designs of CFA patterns are necessarily panchromatic. In this
section, we pursue this design task by considering the spec-
tral wavelength sampling requirements as well as the spatial
sampling requirements associated with the image acquisition
process. Assuming a regular, repeating rectangular pattern, and
putting aside issues of white-balancing and sensor noise, the
analysis above motivates us to consider linear combinations of
prototype pure-color filters,# rather than restricting the values
cr(m),cq(n), cy(n) to the set {0,1} implied by pure-color
designs. Hence, we let 0 < ¢,.(n), ¢4(n), cp(n) < 1 indicate
the array, with each value now representing a mixture of colors.

Though panchromaticity implies that the notion of a 3-parti-
tion (M, U, U;) and its associated lattice structure no longer
applies, we will instead use the Fourier-domain principles
introduced in Section II to directly specify the chrominance
carrier frequencies A; of interest. In this manner we may fulfill
the optimality condition of Proposition 1, whereupon the risk of
aliasing is reduced and, hence, overall image integrity is better
preserved by the sensor data. As we show, image data acquired
in this manner are easily manipulated, enjoy simple recon-
struction schemes, and admit favorable computation-quality
trade-offs with respect to subsequent processing in the imaging
pipeline.

A. Optimal Panchromatic CFA Design Methodology

We now outline a method of spatio-spectral CFA design that
satisfies the bandwidth maximization property of Proposition 1.
First, define c,(n) := (¢.(n) — pa)/p, and cg(n) := (cp(n) —
1)/ p, where po and pg are the DC components of ¢, and ¢,

4Recent work has also focused on optimizing the spectral sensitivity functions
of these prototype filters directly [8].
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respectively, and p and - are constants whose role as design pa-
rameters will become clear shortly. If we impose the convexity
constraint ¢, + ¢4 + ¢ = 1, then (3) becomes

xa(")
y(n) = [c;(n) v an)] | z4(n)
z5(n)
em] T 1 0 o0 1 0 0
= v “Ha | ZHB JLZ I 7]
cp(n) 0 o 1 0 o 1
xa('"’) xa("")
X |zg(n) | = [pca(n) v pcs(n)] | ze(n)
z(n) z5(n)

where z,(n) = z4(n) + (ta/Y)za(m)+(1s/v)xs(n) is now
the baseband signal that can be taken to represent luminance.
Recalling the lowpass properties of z,(n) and zg(n), our
formulation of the CFA design problem enables us to modu-
late these terms via multiplication with ¢, (n) and cg(n) such
that the Fourier transforms of the frequency-modulated differ-
ence images are maximally separated from the baseband spec-
trum X, = Fzy. To accomplish this task, let us assume that the
Fourier transforms of ¢, and cg, respectively, take the form

Ca(w) =3, [si0(w+ Xi) + 5:6(w — Ai)]
®)
Co(w) =32, [tid(w + i) + ti6(w — Ai)]

where - denotes complex conjugation, A; € R? the carrier fre-
quencies, and s;,¢; € C the corresponding weights (with con-
jugate symmetry ensuring that the resultant ¢, and cg are real-
valued). It follows that the sensor observations ¥ are the sum of
X and the modulated versions of X, and X3

V(@) = vXew) + p Y [(5:Xa + tiXa) @+ A)
+(5:Xa + LiXg)w = M) ©)

This approach enables the specification of CFA design
parameters directly in the Fourier domain, by way of car-
rier frequencies {\;} and weights {s;,¢;}. In keeping with
Proposition 1, we enforce the restriction ||A;]|.c = 7 and
A ¢ {(—m,0),(0,—m)}. Determination of the resultant color
filters as a function of parameters (i, f43, p, 7y then follows from
inverse Fourier transforms ¢, = F~'C, and ¢y = F~'Cy

cr(n) = pea(n) + fia
co(n) = peg(n) + pgp
cg(n) =7 = cp(n) — cp(n).

Recall that in order to ensure physical realizability of the re-
sultant CFA, we must have 0 < ¢, (n),cy(n),cp(n) < 1.
To accomplish this, first define v, := mingpcy(n),
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vg = minn Cﬂ(ﬂ), and K = maXn(Ca(n) + Cﬂ(ﬂ)). If
we assign
p = m,%X(c“(n) — Vo, cg(n) — Vg, k — co(n) — cg(n))
Ha = — PVa, Hp = —prg, ’Y:p(’{’_yﬂ_yﬂ)

it follows that our resultant CFA design may be expressed as

cr(n) = p(ca(n) — va)
co(n) = p(cs(n) —vp)
cg(n) = p(k — ca(n) — cs(n)). (7

Here, the offsets p,, and g ensure nonnegativity of ¢, and ¢y,
because pc, > —p and pcg > —pg. The constant v guar-
antees nonnegativity of c,, because ¢, = v — ¢, — ¢, and
pk > p(cq + ¢g). Finally, the maximum value of ¢,.(n), c,(n),
¢p(m) is equal to 1, owing to the multiplier p.

B. Features of the Optimal Panchromatic Designs

An important feature of the framework outlined above is that
carrier frequencies {\;} and their weights {s;, ¢;} are specified
directly, with (5) and (7) ensuring that the resultant CFA is phys-
ically realizable. Patterns designed in this manner are panchro-
matic by definition, as they satisfy the conditions of Proposition
1 yet support three color components; however, recalling the dis-
cussion following Assumptions 1-3, they avoid the shortcom-
ings of previously proposed panchromatic CFA designs. The
convexity constraint v = ¢, + ¢4 + ¢, helps to ensure uniform
quantum efficiency of the pixel sensors across the image plane,
an important consideration to avoid under- and over-saturated
sensor measurements within a single image. Moreover, CFAs
are often implemented as a combination of so-called “subtrac-
tive” colors in practice—implemented as a stack of one or more
inorganic films configured to attenuate the transmittance via the
absorption of photons at specified wavelengths—in which case
the condition maxp(c,(n), c,(n), cy(n)) = 1 ensures that as
many photons as possible will penetrate the physical filters.

While our design method does not explicitly take into ac-
count the effects of different illuminants, we note that it is pred-
icated solely on Assumption 3, which states that the bandwidth
of luminance exceeds that of chrominance. Robustness of the
resultant patterns to changes in illuminant, therefore, hinges on
how well this relative bandwidth assumption holds under var-
ious lighting conditions. Noting that it is already incorporated
into state-of-the-art Bayer demosaicking methods, we expect
that designs generated by our approach will be no more sensitive
to varying illuminants than existing schemes. If Assumption 3 is
violated—causing an increase in aliasing due to the larger spec-
tral support of chrominance information—it is still the case that
spectral replicates induced by our panchromatic designs will be
farther from the baseband luminance channel, thereby reducing
the risk of chrominance-luminance aliasing effects for the sake
of chrominance-chrominance ones. To conclude this section, we
note that the specification of CFA patterns satisfying the require-
ments of Proposition 1 is not unique, as the problem of choosing
the parameters {\;, s;,t; } in (5) is under-constrained. Based on
(7), aparameter search may be conducted to determine panchro-
matic patterns that possess other desirable characteristics:
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1) Periodicity of the CFA Pattern: Constraining components
of A; to be rational multiples of 7 ensures periodicity of the
resultant CFA. For example, letting components of A; be equal
to multiples of 7/2 induces a 4 X 4 pattern.

2) Numerical Stability of CFA Design: Owing to the mod-
ulation weights {s;,¢;}, the observed sensor data at frequency
A; corresponds to a mixture of difference channels =, and = 8-
Large singular values for this linear combination ensure their
separability via a requisite matrix inversion, while “equal treat-
ment” of z, and z 5 is made explicit by setting |s;| = |¢;].

3) Resilience to Illuminant Spectrum: The mixture of color
components that appears in the baseband luminance signal x; is
fixed for any given CFA pattern. Implicitly, therefore, patterns
such as Bayer assume a change in illuminant to be a perturbation
from the 1 : 2 : 1 proportion of red, green, and blue. Following
this logic, this baseband luminance can be adjusted to yield a
mixture complementing the “average” illuminant color, in order
to minimize deviation from it.

4) Pixel Sensor Quantum Efficiency: As noted above, 7 is
a proxy for the quantum efficiency of the pixel sensors. As a
result, CFA designs with large v and p|s; + ¢;| values tolerate
more noise, and, hence, are favorable for low-light sensing.

5) Amenability to Linear Reconstruction: A linear recon-
struction method based on demodulation (see Section IV-C) is
sensitive to image features oriented orthogonally to carrier fre-
quency vectors A; (though this sensitivity is reduced relative to
pure-color CFA sampling, due to the increased separation of
luminance and chrominance information). Decreasing the total
number of carriers, and placing them as far from the origin as
possible, subject to the avoidance of chrominance-chrominance
aliasing, may serve to further mitigate aliasing.

6) Demosaicking Performance: Lastly, using a diverse set
of test images and demosaicking methods, color image acquisi-
tion and reconstruction can be simulated. A numerical evalua-
tion of the resultant error yields an empirical measure of recon-
structability that may be used to refine the CFA design.

C. Optimal Linear Reconstruction Methodology

‘We now describe a completely linear reconstruction method-
ology to accompany our new panchromatic CFA patterns, in
which the sensor data are subjected to bandpass filtering in order
to recover modulated chrominance information and effect a full-
color reconstruction. Before proceeding, we caution the reader
that the choice of reconstruction method greatly influences the
quality of the output image. We do not claim to present recovery
methods that are optimal overall; instead, we seek CFA designs
that maximize recoverability by mitigating aliasing effects. To
this end, we present the optimal /inear reconstruction method
as a reference, in order to compare sensitivity and robustness
of various existing and new CFA patterns. The design and opti-
mization of nonlinear demosaicking methods, which have the
potential to further improve output image quality, are left as
topics for future work.

Suppose that conjugate modulation sequences ¢, (m) :=
ca(n)™! and ¢5(n) := c(n)~" exist.> When these sequences

5SWe do not discuss cases in which there are zeros; however, our results are
easily generalizable to such cases via an appropriate multiplicative constant.
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are orthogonal, the chrominance information can be recovered
via a multiplication by the corresponding conjugate carrier
frequency followed by lowpass filtering. Assuming no overlap
amongst the supports of Xy(w), X (w), and Xg(w), we obtain
exact reconstruction of the full-color image &(n) as

1
Z,.(n) 1 1 0 P 0 0 he * Eoy
el R | E R e
Zp(m) 0 1 1 0 0 % hg * sy

(®)
where * denotes the discrete convolution operator, and the pass-
bands of the lowpass filters hq, h¢, hg are assumed to match the
respective bandwidths of the signals x, ¢, 2.

Given sufficient separation of the chrominance information in
the frequency domain, even simple lowpass filters designed for
efficiency will suffice for the reconstruction task. For example,
a separable 2-D odd-length triangle filter—a linear-phase filter
with modest frequency roll-off—can be easily implemented in
existing ASIC or DSP architectures [37].

IV. EVALUATION: IMPLEMENTATION AND EXPERIMENTS

We now provide instantiations of several new CFA patterns
constructed using the design strategy proposed in Section III-A
above, and demonstrate their superior performance in terms of
aliasing minimization and mean-square reconstruction error.

A. Examples of Optimal Panchromatic CFA Patterns

We first show example N x N CFA patterns generated by
conducting an exhaustive search for the optimal {A;, s;, ¢; } over
a parameter space restricted to satisfy the following rules.

* || Ailloo =7 and A; ¢ {(—m,0),(0,—m)} (Proposition 1).

» )i € 27Z%/N (induces N x N periodicity).

* Number of distinct carrier frequencies is limited to two.

* Red-green-blueratioinzyis1:1:1orl:2:1.

Amongst the set of parameters satisfying the above con-
straints, we then selected the combination yielding the largest
singular values for the choice of weights {s;,t;} (see Sec-
tion III-B).

We report the resultant optimal parameters in Table I for N =
4,6,8; the corresponding patterns are shown in Fig. 5. Each of
these new patterns is panchromatic, and may be asymmetric in
the horizontal and vertical directions; all use fewer than N x N
color filters in practice. Moreover, there are equal numbers of
“neighboring” colors for each color used in the CFA pattern—a
feature that simplifies the characterization of cross-falk noise
(photon and electron leakages) [20]. Note also that the optimal
4 x 4 and 8 x 8 CFA patterns are identical.

B. Reduction of Aliasing Effects Using New CFA Patterns

To investigate the potential of these example patterns to re-
duce aliasing effects, two sets of test images were used to pro-
vide full-color proxy data: a standard set of twenty Kodak im-
ages originally acquired on film [4], and a set of six images
measured at multiple wavelengths [38]. In keeping with stan-
dard practice, simulated data y(n) were obtained for each CFA
pattern by “sensing” these images according to (3).
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(c) Pattern C (d) Pattern D
- * * *
(e) Pattern A (f) Pattern B (g) Pattern C (h) Pattern D

Fig. 5. Example CFA patterns generated using the parameters in Table I (top row), and corresponding “lighthouse” log-magnitude spectra (bottom row).

TABLE I
EXAMPLES OF PANCHROMATIC CFA PATTERNS SPECIFIED
IN TERMS OF {X;, s;,%;}

Pattern | {;,ss,t:} i=0 i=1 | N R:G:B
i (m, % (m,m)
A red s; 1+16 1 g ’ g’
blue t; 1+1z -1
Ai (7'(', % (7!', 77)
B red s; 1+1i 0 g 9 g’
blue t; 0 1
bV (, ZT” 2%',.'”)
c red s; 14 14 6 X6
blue ¢; 17 —14
Ai (71', % (‘Il', 7‘-)
D red s; 3+ 44 1 6 X 6 1:2:1
blue t; 3 — 41 1

We pause here to describe in more detail our image test
sets, in particular the latter set of images measured at multiple
wavelengths [38]. While the standard test set of Kodak im-
ages provide a widely accepted means of comparing various
algorithms [4], we caution that numerical simulations using
this test set are subject to uncertainties about how the digital
image data were acquired (e.g., resolution, illumination) and
whether they have undergone any additional processing (e.g.,
white-balancing, gamma correction). As a means of reducing
these uncertainties to yield better-controlled experiments, we
adopted directly measured multiwavelength image data [38] as
an additional form of full-color proxy. In this case, we took
the quantum efficiencies of our pure-color CFA values directly
from the data sheet of a popular Sony sensor [39]; those of
our proposed panchromatic designs are assumed to be linear
combinations of these prototype pure-color responses.

To test the reduction in aliasing effects yielded by our new
CFA designs, first recall from (4) and (6) that sensor data Y (w)
can be interpreted as a superposition of baseband luminance
channel X, and chrominance information in the form of fre-
quency-shifted versions of X, and Xg. The mean-square error
of a linear filter h, acting on y to estimate x, has the form
> n llhe(n) * y(n) — z,(n)||>. Barring additional assumptions,
the optimal filter in this case is given by Wiener—Hopf, whose

expected squared error is shown in Appendix II for the case of
mutually independent {z, ¢, zg} to follow from (7) as

Ty, = / P55 ()00 2, @) ©)
[—m,m)? Sy(w)

where S denotes a (cross-) power spectral density. Here, the
quantity Sy, (w)S.., = (w) corresponds to the inner product be-
tween the expected squared magnitudes of X, and the modu-
lated versions of X, and X ; it evaluates to zero in the absence
of aliasing, but is large when aliasing is severe. Thus, the inte-
grand in (9) can be taken as a measure of aliasing relative to the
magnitude of the sensor data, and is useful for comparing the
performance of different CFA patterns.

In Table II, we report aliasing measurements .J,,, for both
sets of test images. In general, we see a significant decrease in
aliasing severity when using proposed CFA designs A and C
(patterns with a 1 : 1 : 1 ratio of red-green-blue) rather than
pure-color CFA patterns—a trend which is consistent across
both sets of test images. We can also visualize the degree of
aliasing associated with various CFAs by comparing the spec-
tral content of the sensor data, as shown in Fig. 2 and the bottom
row of Fig. 5. Owing to its higher modulation frequencies, the
chrominance information illustrated in Fig. 5 is disjoint from
the baseband luminance information. This reduces the overall
risk of aliasing, relative to existing patterns—though any partic-
ular aliasing effects will depend on image content. For example,
when presented with strong vertical image features, Pattern D is
at a lower risk of aliasing than the Bayer pattern, but at a higher
risk than Patterns A-C.

C. Improved Linear Reconstruction Using New CFA Patterns

To evaluate the potential of Patterns A—D for improved demo-
saicking performance, we employed three contemporary non-
linear demosaicking algorithms [4], [32], [40] to serve as a base-
line in conjunction with the Bayer CFA pattern. We then em-
ployed the simple linear demosaicking scheme described in Sec-
tion III-C for new panchromatic Patterns A-D, in which the
sensor data y(m) were subjected to bandpass filtering in order
to reconstruct the full-color image &(m) according to (8).
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Fig. 6. Top row: (a) Detail of original “structure 11” image. (b-f) Sensor images using Bayer pattern, pattern A, pattern B, pattern C, and pattern D, respectively.
Bottom row: (g) State-of-the-art nonlinear reconstruction of (b) according to [4]. (h-1) Optimal linear reconstruction of (b-f), respectively.
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Fig. 7. Top row: (a) Detail of original “house” image. (b-f) Sensor images using Bayer pattern, pattern A, pattern B, pattern C, and pattern D, respectively. Bottom
row: (g) State-of-the-art nonlinear reconstruction of (b) according to [4]. (h-1) Optimal linear reconstruction of (b-f), respectively.

To this end, Figs. 6-8(b)—(f) show simulated sensor data y(n),
acquired respectively via the Bayer pattern and proposed Pat-
terns A-D, and represented here using an orthogonal projection
of the full-color test images onto the subspace spanned by each
respective color filter. By visual inspection, the contiguity of
image features such as edges is better preserved in the proposed
sensor images relative to the Bayer sensor image. For example,
it is more difficult to discern object boundaries in Fig. 7(b) than
in Fig. 7(c)—(f).

Though we again caution the reader that any color image re-
construction depends on the choice of algorithm as well as the
choice of CFA pattern, demosaicking experiments provide some

sense of the performance gains and trends that we may expect
from the new class of spatio-spectral CFA designs introduced
in this paper. To this end, Figs. 6-8(g)—(1) show examples of re-
constructions corresponding to each sensor image. In compar-
ison to the iterative, nonlinear demosaicking method of [4], we
see that the reconstructions corresponding to our new panchro-
matic CFAs are significantly less prone to severe aliasing ef-
fects; they suffer much less from zippering artifacts yet preserve
the sharpness of image features. Other noticeable differences are
the less-jagged diagonal edges in Fig. 7(1)—(1), and the fact that
certain textured regions, such as the ones in Fig. 8(i)—(1), do not
suffer from artifacts.
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Fig. 8. Top row: (a) Detail of original “lighthouse” image. (b-f) Sensor images using Bayer pattern, pattern A, pattern B, pattern C, and pattern D, respectively.
Bottom row: (g) State-of-the-art nonlinear reconstruction of (b) according to [4]. (h-1) Optimal linear reconstruction of (b-f), respectively.

These observations are reflected in the measurements of
mean-square reconstruction error listed in Table III, whereupon
it may be seen that entirely linear reconstructions under Pat-
terns A and B consistently outperform even the state-of-the-art
demosaicking algorithms applied to test data acquired under
the Bayer pattern. Compared to a linear demosaicking of the
Bayer sensor image for the same computational complexity, the
proposed CFAs show significant and consistent improvements
in both visual quality and mean-square reconstruction error.
Overall, the differences for multiwavelength data are that the
demosaicking algorithm of [32] now outperforms the methods
in [4] and [40], and is comparable to the optimal linear recon-
struction based on the color filter array of Pattern A.

As a final point, we note that the enhanced quantum efficien-
cies of the panchromatic color filters afforded by these new pat-
terns appear to yield increased robustness to sensor noise—in
addition to more tractable noise statistics (owing to linear de-
mosaicking) that raise the possibility for postdemosaicking de-
noising. As an example, Fig. 9 shows reconstructions corre-
sponding to those of Figs. 6-8, but for simulated sensor data
subjected to Poisson noise, with no denoising applied. The cor-
responding noise contributions are seen by inspection to be less
severe in reconstructions obtained from Pattern A than from the
Bayer pattern, suggesting the potential for new reconstruction
methods to lead to more accurate means of joint denoising and
demosaicking [6].

V. DISCUSSION

In this paper, we have proposed new panchromatic alterna-
tives to existing CFA patterns, through a novel framework based
on spatio-spectral sampling for color imaging. We posed the
CFA design problem formally as one of simultaneously max-
imizing the spectral radii of luminance and chrominance chan-
nels subject to perfect reconstruction, and—after proving sub-

optimality of a wide class of existing array patterns—provided a
constructive method for its solution that yields robust new array
designs implementable as subtractive colors. By specifying the
desired spatio-spectral response directly in the Fourier domain
and providing a corresponding set of optimization criteria, we
were able to design patterns that increased the available spatial
resolution for fixed sensor size.

This design methodology not only sheds light on the failure
of simple, linear demosaicking methods in the case of existing
color filter arrays such as the well-known Bayer pattern, but
also provides for efficient linear demosaicking and a potential
for improvements in reconstruction quality for natural images.
Empirical evaluations on standard and multiwavelength color
image test sets support our theoretical results, and indicate the
potential of these patterns to increase spatial resolution for fixed
sensor size, and to contribute to improved reconstruction fidelity
as well as significantly reduced hardware complexity.

APPENDIX 1
PROOF OF PROPOSITION 2

Proof: Define c(n) = > p cqwin, 3 0(m—mo) € {0,1},
according to our definition of a pure-color CFA. The bandwidth
maximization requirement set forth in Proposition 1 implies a
unique Fourier reconstruction in w = (w1, ws) as

c(n)=F! {vol(A w' Y 3 e A (w - ,\)}

Ae{XMm[—ﬂ,wy} Ypev
:fl{vol(A Wty S e A (w — ,\)}
pev AG{XMO{90U91UQQUQ3}}

where Proposition 1 implies that the allowable domain of A in
the spatial frequency plane is described by the following four
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TABLE II
MEASURES OF CFA-DEPENDENT ALIASING IMPOSED ON X, BY X, AND Xj

Qo ={A: A€ [;W] + 2772, wy € (=7, 7),wy # 0}
2
Q3 = [:Z] + 212>

Because the set {€2; N [—7,7)?} consists of either a point or

two disjoint line segments for all ¢, the resultant inverse Fourier

transform simplifies as follows:
3

Yy
h parfrperd Ae{A pnen[-m,m)2} vol(Apy)
TEPY
—pJ0 e’
= Z Z VOI AM
YET A=

ed(ni—t1) A1 —jipom

VOI(AM)

oSy

Yev E€(—m,m), 1 #£0(\1 aﬂ)aexM

omy %

YEY ), G(—Waﬂ)JQ#U(ﬂJ\z),GXM

ej(nz—wz)AQ —Jjim

VOI(AM)

Image Pure-Color CFA Patterns Proposed CFA Patterns

[23]; [38] | [11] [12] [20] Vert. Diag. A B C D
1 2183 2220 2177 2145 2124 943 2179 943 2177
2 986 981 983 1083 1080 480 984 480 983
3 1416 1413 1415 1408 1404 623 1414 624 1414
4 2482 2475 2479 2372 2372 | 1053 2478 1053 2476
5 1975 1969 1972 1951 1938 861 1973 862 1972
6 2905 2897 2899 2879 2867 | 1274 2900 1275 2900
7 2993 2980 2984 2924 2923 | 1299 2985 1299 2983
8 2628 2620 2623 2564 2564 | 1139 2625 1139 2624
9 1429 1424 1426 1419 1413 627 1427 627 1427
10 4192 4183 4186 4030 4028 | 1790 4190 1790 4188
11 1877 1798 1808 1716 1715 761 1800 762 1800
12 1621 1614 1615 1615 1614 717 1626 717 1615
13 1946 1971 1942 1895 1893 841 1944 841 1943
14 2123 2116 2118 2088 2087 927 2121 927 2119
15 1065 1067 1062 1068 1063 471 1064 471 1062
16 3211 3204 3205 3162 3161 | 1404 3210 1404 3208
17 6459 6455 6456 6350 6349 | 2821 6459 2822 6457
18 3090 3084 3086 3038 3022 | 1342 3087 1343 3086
19 1796 1789 1792 1801 1795 797 1791 797 1791
20 1808 1803 1805 1797 1787 794 1805 794 1804
Mean 2409 2403 2402 2365 2360 | 1048 2403 1048 2401
Median 2049 2043 2045 2020 2013 894 2047 894 2045
Minimum 986 981 983 1068 1063 471 984 471 983
Maximum | 6459 6455 6456 6350 6349 | 2821 6459 2822 6457
Range 5474 5474 5473 5283 5287 | 2350 5476 2351 5475
Std. Dev. | 1242 1241 1243 1206 1207 536 1243 536 1243
colorchecker 910 911 910 1032 1032 459 910 459 910
fruitandflowers 329 329 329 403 408 179 328 179 328
simge_hand | 2342 2342 2342 2615 2613 | 1161 2342 1161 2342
woman_face 2703 2703 2707 2745 2747 | 1221 2704 1220 2705
woman_reading | 3093 3093 3093 3209 3209 | 1426 3093 1426 3094
young_girl 2344 2344 2359 2380 2394 | 1056 2344 1056 2344
Mean 1954 1954 1957 2064 2067 917 1953 917 1954
Median 2343 2343 2350 2498 2503 | 1108 2343 1108 2343
Minimum 329 329 329 403 408 179 328 179 328
Maximum | 3093 3093 3093 3209 3209 | 1426 3093 1426 3094
Range 2765 2765 2764 2806 2801 | 1247 2765 1247 2765
Std. Dev. | 1086 1086 1087 1096 1095 487 1086 487 1086

T
mutually exclusive sets L+ gim4na) Z Z e—IYT A
2
Qo =277 YEV A=(m,7) 01 AM
=(ide | U] sattoe (cnmea 20 = ok (FI A+ (D )+ (1

where f; denotes Z¢ in each respective term.

We now enumerate all scenarios concerning {f;}3_,, and
show that vol(A ps) < 2|¥| in every possible case. First, sup-
pose f1 and f> to be nonzero functions. Then it is easy to verify,
using (0, 0), (w,7) ¢ Q1 U Qy, that there exist indices n’, n” €
Z? such that fi(2n}) # f1(2n7) and fo(2ny) # fa2(2n3). If

we let ¢(n') = 1 without loss of generality, then
fot fa+ f1(2n7)+ f2(2nh) # fo+ fs+ f1(2n]) + f2(2n5) =0
fo+fa+ f1(2n7)+ f2(2n5) # fo+ fa+ f1(2n7) + f2(2n5) =0
Jot fa+f1(2n7)+ f2(2n5) # fo+ fa+ f1(2n7) + f2(2n5) =1.
Otherwise put, we have that

(10 1 07 rfi(20)] 1

100 1| |AaED] o
fotfst1o 1 1 0 f:(Zni) =lo (10)

L0 1 0 14 Lfa(2n5)] L1

10 1 07 1A [Ll-fo—1fs

N L0 0 1| |A@Y)| _| —fo—fs
0 1 1 0 | fa(2nh) ~fo—f3
LO 1 0 14 Lfa(2n%)] L1—fo—f3
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TABLE 1II
MEAN-SQUARE RECONSTRUCTION ERROR FOR VARIOUS CFA PATTERNS
Image Bayer Pattern Proposed Patterns

[23]; [38] | Linear [4] [32] [40] A B C D
1 1841 11.22 20.11 9.41 8.19 924 15.66 17.51
2 8.58 7.63 8.14 6.92 6.02 6.73 1557 16.76
3 1583 11.67 18.64 14.81 | 13.73 16.06 18.44 2691
4 12.82 924 1136 7.98 5.99 698 1128 12.25
5 6.33 4.67 5.82 4.60 423 4.52 6.87 7.46
6 39.81 1934 2730 16.87 | 1332 1537 2021 42.08
7 6.61 4.49 5.24 4.20 4.00 435 5.77 7.78
8 5.20 437 5.70 432 3.77 4.16 5.53 6.82
9 10.42 794 1148 8.04 6.72 740 11.10 14.39
10 5.40 3.82 4.42 3.61 2.92 3.20 5.13 6.81
11 2401 23.84 4749 2133 | 22.83 2505 4536 39.23
12 8.80 8.15 10.79 8.58 6.85 7.60 11.08 13.78
13 6.55 4.52 4.63 421 2.52 2.73 4.96 4.34
14 5.26 491 7.72 5.17 5.07 5.65 7.17 9.28
15 13.43 1266 2335 13.88 | 12.83 13.97 21.77 20.83
16 13.31 6.96 9.48 6.60 5.43 6.18 8.34 1490
17 6.76 5.90 8.14 6.14 5.43 6.12 795 11.54
18 11.17 8.56 14.30 8.16 6.73 738 12.18 11.76
19 12.57 10.88 15.01 11.45 8.60 920 1248 14.69
20 2132 22.66 32.87 2460 | 16.14 17.58 2397 2542
Mean 12.63 9.67 14.60 9.55 8.07 897 1354 16.23
Median 10.79 8.04 11.08 8.01 6.37 7.18 11.19 14.08
Minimum 5.20 3.82 4.42 3.61 2.52 2.73 4.96 4.34
Maximum 39.81 2384 4749 2460 | 22.83 25.05 4536 42.08
Range 34.61 20.03 43.07 2099 | 2031 2232 4040 37.74
Std. Dev. 8.38 596 11.09 5.93 5.18 5.75 9.45 10.27
colorchecker 26.12 2263 1172 26.07 | 16.82 1770 20.95 25.80
fruitandflowers 23.15 18.62 1649 20.78 | 1433 1558 1755 19.38
simage_hand 4.09 2.83 1.68 2.56 2.54 256 10.15  10.92
woman_face 21.60 18.54 15.16 1891 | 13.72 1528 19.31 20.19
woman_reading 1575 1344 12.05 12.84 | 10.57 11.12 1652 1591
young_girl 3253 2932 2528 34.09 | 21.94 23.68 2692 3220
Mean 20.54  17.56 13.73 19.21 | 13.32 1432 1857 20.73
Median 2238 1858 13.61 19.85 | 14.03 1543 1843 19.78
Minimum 4.09 2.83 1.68 2.56 2.54 256  10.15 10.92
Maximum 3253 2932 2528 34.09 | 21.94 23.68 2692 32.20
Range 28.44 2649 23.60 31.53 | 1940 21.12 16.77 21.28
Std. Dev. 9.76 8.94 7.68 10.85 6.50 7.07 5.52 7.47

The 4 x 4 matrix in (10) is rank 3 and its column space is
orthogonal to (—1,1,1,—1). However, the inner product of
(=1,1,1,-1) and (1,0,0,1) — fo — f3 is nonzero regardless
of the values of fy and f3

(_17 17 17 _1)((170707 1) - fO - fS)T
==21—fo—fs)+2(=fo— f3)=—-2#0.

We conclude that the equality in (10) cannot hold, and thus ob-
tain a direct contradiction to the hypothesis that f; and fo are
both nonzero functions.

We next consider all remaining scenarios. Suppose first that
f1 is a nonzero function and fo is zero (or equivalently f,
nonzero and f; zero). Then

c(n) = fo+ (=1)" fi(n1) + (=1)" " f3
=fo+ (=1)"(f1(n1) + (=1)"" f3).
Because fo+(fi(n1)+(=1)"" f3) # fo—(fi(n1)+(=1)" f3),
we conclude that ¢(n) = 1 — ¢(n1,n2 + 1), or equivalently,
vol(Apr) = 2|V|. If instead, we have that f;, f> are zero and
f3 nonzero, (M, ¥) determines quincunx sampling, whereupon
vol(Aps) = 2|V|. Lastly, if f1, f2, f3 are zero, then A pz is an
integer lattice, and we have that vol(Aps) = |¥|. Hence, we
see that in all possible cases, vol(Aps) < 2|¥|. ]

APPENDIX II
ALIASING MEASURES DERIVED FROM WIENER-HOPF

The Wiener—Hopf filter in the case at hand may be defined
in the Fourier domain as Hy(w) = S,, ,(w)/Sy(w), where S,
is the power spectral density of y and S, , is the cross-spectral
density of z, and y. If {x, z¢, 2 3} are in turn assumed mutually
independent, it follows from (7) that

SI&,y(“") = ’YSM (OJ),
Sy(W) =784, (W) + p*Si s (W)

Sﬂfmmg (w) = Z

K2

[{|si|2smﬂ 1250, }w + M)

+ {lsil*Sen + [t:]* S0, Hw = X)) |-

We may then compute the expected squared error as

I, = /
[—m,m)?
./[—7{',71’)2

S, (@) Sy (W) =[Sz, (jw)|?
Sy(w)

p*Sy, (w)Sse, 3 (w)
Sy(w)

dw

dw
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(@

Fig. 9. Reconstruction in noise (no denoising methods applied). Top row:
State-of-the-art reconstruction of Bayer sensor data in Figs. 6-8(b) under the
influence of noise according to [4]. Bottom row: Optimal linear reconstruction
of Pattern A sensor data in Figs. 6-8(c) under the influence of noise.

The distortion in y with respect to z, and z 3 is likewise

J _ ’725162 (w)Sza,ﬁﬁ(w) dw = ’YZJM
s = )T S,W) 2
[—m,m) Y p

Differences in the number of carrier frequencies {\;} and the
relative sizes of the weights {s;,%;} render .J; ., less useful
for comparing the performance of two distinct CFA patterns di-
rectly. However, the central role of S,.,(w)S (w) in both

To,Tg
Je x5 and (9) implies that both are useful analytical tools to
understand aliasing effects associated with a particular CFA.
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