

Software Transactional Memory
Should Not Be Obstruction-Free

Robert Ennals

IRC-TR-06-052
1

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL®
PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in
medical, life saving, life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice.

Copyright © Intel Corporation 2006
* Other names and brands may be claimed as the property of others.

Software Transactional Memory Should Not Be
Obstruction-Free

Robert Ennals

Intel Research Cambridge
15 JJ Thomson Avenue, Cambridge, CB3 0FD, UK

robert.ennals@intel.com

Abstract. Much previous work on Software Transactional Memory has gone to great lengths
to be “obstruction-free” — meaning that a transaction is guaranteed to make progress when
all other transactions are suspended.

In this paper we argue that obstruction-freedom is not an important property for soft-
ware transactional memory, and demonstrate that, if we are prepared to drop the goal of
obstruction-freedom, software transactional memory can be made significantly faster.

1 Introduction

The benefits of transactions have been known in the database community for a long
time [2]. Transactions offer a simple programming model that takes much of the pain out
of concurrent programming. Programmers do not have to worry about deadlock, livelock,
data consistency, atomicity, priority-inversion, or lock placement – in fact they barely have
to think about concurrency at all [14].

The idea of using transactions for general purpose programming is almost as old as
transactions themselves [6, 7]; however it has recently gained renewed popularity, and the
name “Software Transactional Memory”(STM) [13, 9] has been widely adopted to refer to
such lightweight transactions. This renewed interest has arisen partly because, with the
introduction of multi-core processors, parallelism is moving into the mainstream, creating
a demand for techniques that might make such devices easier to program; and partly
because, as the gap between processor speed and memory speed has grown larger, the
performance overhead of STM has become less significant.

Recent work on Software Transactional Memory has gone to great lengths to be
“obstruction-free” [4] — meaning that a thread is guaranteed to make progress when
all other threads are suspended. While this property is essential in distributed systems
(which is the background of many STM researchers), we argue that it is not appropriate
for non-distributed STM. Our argument for this proceeds as follows:

– We expect that the majority of people who use STM will use it to improve the perfor-
mance of programs that would otherwise execute largely sequentially.

– In the programming paradigms to which programmers are accustomed, it is allowable
for one atomic operation to block other atomic operations of the same or lower priority.
We believe that programmers consider this to be acceptable behaviour.

– It is easy to adaptively vary the number of tasks in an application to match the
number of cores available — making it unlikely that a transaction will be blocked by
a transaction that has been switched out.

– If we abandon the principle of obstruction-freedom, we can produce an STM imple-
mentation that is considerably faster.

The remainder of this paper proceeds as follows. Section 2 examines the way in which
programmers currently use concurrency. Section 3 argues that obstruction-freedom is not
an important property for real programs. Section 4 explains why the requirement for
obstruction-freedom reduces STM performance. Section 5 presents a design for a non-
obstruction-free STM. Finally, Section 6 shows that our STM outperforms the best previ-
ous STM designs: by a factor of 5 under high contention and by a factor of 2 when memory
bandwidth limited.

Threads and Tasks

It is important that we distinguish between threads and tasks. Throughout the rest of this
paper we will use the following definitions:

– A thread, is a programmer-level construct used to specify that several blocks of code
can be executed in parallel.

– A task, is a OS-level construct that runs on a core and executes code from threads.
The runtime can dynamically adjust the number of tasks to match the number of cores
available to the application, thus minimising the number of OS-level context switches.
The runtime multiplexes several threads onto each task.

2 What do People Use Threads For?

Programmers use threads for two reasons: for convenience, and for performance. It is
important to distinguish between the two.

Threading for Convenience

Before the advent of multi-core processors, the vast majority of computers had only a
single processing core. Since there is no performance advantage to using multiple threads
on such a machine (only one can execute at a time) programs designed to run on single-
core machines do so purely for programming convenience — to allow one computation to
proceed without blocking others. For example, a program might have separate compute
and GUI threads.

Such programs tend to use very simple synchronisation mechanisms. Many programs
ensure mutual exclusion using a single shared lock, which is held whenever a thread wishes
to do something atomically. The single shared lock provides a simple programming inter-
face that makes it easy to avoid deadlock and easy to avoid corrupting data. If there is
only one processing core then there is no performance cost to using only a single lock
rather than a more complex locking strategy, since threads can only execute one at a time.

Some programs may additionally need to ensure that high-priority threads are not
blocked by long running low-priority operations. This is often done by having several locks,
some of which should only be held for brief periods of time, and having the high-priority
threads only use high-priority locks.

2

We expect that programs that use threading for convenience will be ported to STM by
simply converting all lock-protected atomic blocks into transactions. Note that, when such
an STM program is run, it is entirely acceptable for a transaction to block a transaction
of the same or lower priority – since this is the behaviour that would be experienced in
the original program.

Threading for Performance

More recently, as multi-core processors have moved parallel processing into the main-
stream, more attention has been paid to the use of threads for performance. In such cases,
a program that would most naturally be written using only a small number of threads is
instead broken down into a greater number of threads, so that the program can take ad-
vantage of multiple processing cores, or hide external latencies (e.g. disk or slow memory).

Such programs will often be written by starting with sequential code, and modifying
it so that operations that would have been done sequentially are instead performed in
parallel. As with “threading for convenience” we expect that such programs will be ported
to STM by converting all lock-protected atomic sections into transactions.

Note that, as before, it is entirely acceptable for a transaction to block the execution
of transactions of the same or lower priority, since this is the behaviour that would be
experienced in the original, non-parallelised, program, in which the parallel computations
were performed sequentially. Blocking may well lead to reduced performance, but the
program will still be correct.

3 Why Obstruction-Freedom is Unnecessary

There are three arguments used in favour of obstruction-freedom that we need to rebut:

– Obstruction-freedom prevents a long-running transaction blocking others
– Obstruction-freedom prevents the system locking up if a thread is switched part-way

through a transaction
– Obstruction-freedom prevents the system locking up if a thread fails

Long-running transactions block others

Some have argued that, if an STM is not obstruction-free, a long-running or non-terminating
transaction can cause other transactions to block.

We observe that obstruction-freedom does not make such problems go away. Consider a
transaction that reads an object, computes for a year, and then writes to the same object.
The only way in which any STM can allow such a transaction to complete is if it blocks
all other transactions that manipulate that object for a year. Either the long-running
transaction must be able to block other transactions, or the long-running transaction
must be prevented from completing.

Neither obstruction-freedom, nor the stronger property of lock-freedom guarantee that
a given transaction will make progress in a situation in which other transactions are
executing. Obstruction-freedom only guarantees progress if there are no other conflicting
transactions, while lock-freedom only guarantees that the system as a whole will make
progress.

3

Moreover, as we argued in Section 2, while it can be useful to prevent low-priority
transactions blocking high-priority transactions, we believe that it is perfectly acceptable
for the execution of a transaction to block the execution of other transactions of the same
or lower priority, within the same application.

Context Switching

Some have argued that, if an STM is not obstruction-free, the system could grind to a
halt if the OS switches out a task that is holding onto a vital resource.

We observe that, if the OS switches a task out, it will always switch it back in again
eventually; thus such interruptions are always temporary.

Moreover, if the runtime system behaves appropriately, such interruptions should be
so rare as to be unimportant. It is easy for the runtime system to adaptively vary the
number of active tasks to match the number of processor cores that the operating system
is making available to it. If the runtime system finds that its tasks are being regularly
switched out, then it reduces the number of tasks that it is running until context switches
are sufficiently rare that the cost of switch related-blocking matches the cost of allowing
unused processor cores to go idle.

Similarly, it is easy for the runtime system to arrange that when its tasks perform
user-level context switches between threads they do so between, rather than during, trans-
actions. On operating systems with suitable support one can also encourage the OS to
perform context switches between, rather than during, transactions.

We thus argue that it is entirely acceptable for a switched out transaction to block the
rest of the system, since it causes only a temporary interruption when it happens, and it
can be easily made sufficiently rare to have a negligible impact on performance.

Independent Failure

Some argue that it is important that the system cope with transactions failing silently and
independently, due to software or hardware failure.

In the case of a software failure, we note that software failure would break the original,
non-STM program, so it is acceptable for it to break the STM program also.

In the case of a hardware failure, we respond two-fold: Firstly, while independent failure
is a really important issue in distributed systems, on a multi-core or SMP system it is so
rare that it is not worth worrying about. Secondly, as before, hardware failure would have
broken the original non-STM program, so it is acceptable for it to break the STM program.

4 Why Obstruction-Freedom makes Efficient Implementation Difficult

If obstruction-freedom were merely unnecessary, then we would have no objection to it;
however, as we argue in this section, making an STM obstruction-free prevents it from
applying several important optimisations that would boost performance. In particular,
obstruction-freedom prevents an object-based STM from applying the following important
optimisations:

– Object metadata should be stored either adjacent to object data, or in a region that is
private to the current processor, thus making it unlikely that extra cache misses will
be incurred when loading it.

4

Handle

Object Data

Header

Inplace
(our STM)

One Indirection
(Fraser)

Object Data

Header

Two Indirections
(DSTM)

Object Data

Locator

Fig. 1. How many indirections are needed to find object data?

– The number of active transactions should not exceed the number of available cores,
thus avoiding unnecessary transaction conflicts.

In the following sections we explain these issues in more detail. We address these issues
in the context of an object-based STM [4, 1, 10]; however we believe that similar issues
apply to word-based STMs [3, 13].

Cache-Locality

All obstruction-free object-based STM designs presented so far [4, 1, 10] require a program
to follow an indirection from the object metadata in order to find the current version of
the object data (Figure 1). This is undesirable since it requires a program to load multiple
cache lines for every read and write. In cases where the program is memory-bandwidth
limited, this can halve performance relative to a design in which object data is stored
in-place, adjacent to the object metadata (See Section 5 for results).

To understand why an obstruction-free STM cannot store object data in-place, consider
the case in which a transaction has started writing to an object and then gets switched
out. If another transaction needs to access that object, what should it do?

– It could wait for the first transaction to finish with the object, but that would not be
obstruction-free, since the first transaction would be blocking the second transaction.

– It could start working on the object, but that would not be safe, as the first transaction
might wake up and write over the version of the object that the second transaction is
working with.

– It could forcibly abort the first transaction, but there is no safe, portable, way to do
this without blocking until the first transaction acknowledges that it has been aborted
– which obstruction-freedom does not allow. Moreover, if any transaction can abort
any other transaction then livelock is likely to arise – since the first transaction might
restart and abort the second transaction.

Excessive Active Transactions

Suppose we have N transactions running on N cores, one transaction per core. What
should we do if we wish to start another transaction?

The most efficient approach is for a new transaction to wait for a core to become free
before it starts executing. In this way we minimise the number of transactions executing,
while making full use of all available cores.

If the STM is obstruction-free then it cannot wait for existing transactions to finish,
and thus it must use context switching to share N cores between N + 1 transactions.
Unfortunately, as the number of concurrently executing transactions increases, so does
the frequency of conflicts between them, thus reducing overall performance.

5

5 Our Implementation

To demonstrate that obstruction-freedom restricts the performance on an STM imple-
mentation, we have implemented a new object-based STM implementation that is not
obstruction-free and which uses the techniques, described in Section 4, that obstruction-
freedom prevents. We show in Section 6 that this STM significantly outperforms the
previous best performing STM implementations.

The Basic Idea

The fundamental concurrency control technique used by our implementation is similar to
that used by DSTM [4]. We use revocable two-phase locking [2] to manage writes, and
optimistic concurrency control [5, 2] to manage reads.

– Revocable Two Phase Locking for Writes: A transaction locks all objects that
it writes and does not release these locks until the transaction terminates. If deadlock
occurs then one transaction aborts, releasing its locks and reverting its writes.

– Optimistic Concurrency Control for Reads: Whenever a transaction reads from
an object, it logs the version it read. When the transaction commits, it verifies that
these are still the current versions of the objects.

Memory Layout

Figure 2 illustrates the memory layout used by our algorithm. Unlike previous STMs, we
divide memory into public and non-public regions:

– Public Memory: can be accessed by any transaction. This region contains only ob-
jects.

– Private Memory: Each transaction has its own region of private memory that only
that transaction can access. This region is used for storing book-keeping information,
in the form of read and write descriptors.

Descriptors in private memory are not freed until a transaction commits, and cannot
be seen by any other transaction. We can thus allocate them sequentially in a continuous
block of memory, and immediately re-use this memory when another transaction starts on
the same core.

Cachegrind [11] simulation reveals that the vast majority (typically ∼99.5%) of cache
misses are in public memory. Private memory is relatively small and rapidly recycled, and
so we expect it to stay in the local processor cache.

Relative to the original non-STM program, the only data we add to public memory is
an additional handle field on each object. This field is adjacent to the object data, and so
is likely to be in the same cache line. The meaning of the handle depends on its lowest
order bit. If the lowest order bit is 1 then the handle is a version number, otherwise it is
a pointer to a write descriptor:

– Version number v: no transaction currently has a lock on the object. The object
data is version v of the object1.

1 Version number roll-over is fine, provided our scheduler ensures that no more than two billion transactions
commit while another transaction is active.

6

Object

Handle

Object Data

References

Last Version

Object Pointer

Working Copy
of Data

Write Descriptor Transaction Descriptor

Writes

Reads

Public memory Private Memory

Object

Handle

Object Data

References

Version Seen

Object Pointer

Read Descriptor

*

*

Fig. 2. Memory Layout

– Pointer to a write descriptor w: the object is locked by a transaction t and w is a
pointer to a write descriptor in t’s private memory. (Figure 2)

Reading and Writing Objects

To write to an object o, a transaction t must obtain an exclusive lock on o, and create a
working copy of o’s data that it can write to. If o’s handle is a version number v, then t
uses an atomic compare-and-swap operation to replace v with a pointer to a new write
descriptor. This write descriptor has its last-version field set to v and its working copy
initialised to the current version of the object data.

If o’s handle is a pointer to a write descriptor, w, then t waits until the owning trans-
action, s, sets the handle to be a version number — indicating that it has finished with the
object. If t has waited for more than a given number of cycles and s is of lower priority,
then t requests that s abort itself. t can find a descriptor for s by zeroing the low-order
bits of w. If deadlock is detected, then the system aborts one of the transactions in the
cycle.

To read from an object, a transaction waits for the object handle to be a version (as
for writing) and then logs the version number in a read descriptor.

Committing

Our commit algorithm is similar to that of DSTM [4]. To commit, a transaction checks
that it is valid, and then makes its writes visible to other transactions.

A transaction is considered to be valid if none of the objects that it read from have
subsequently been written to by other transactions. For each written object, the transac-
tion makes its writes visible by copying across its working copy of the data and setting
the handle to a new version number.

Like other STMs that use optimistic concurrency control for reads [4, 1], it is necessary
for the runtime to periodically abort any transactions that are found to be invalid. If
this was not done then a transaction might go into an infinite loop as a result of having
seen inconsistent data. Similarly, a transaction that segfaults can retry if it is found to be
invalid [1].

7

Red-Black Trees Skip Lists

 0

 5

 10

 15

 20

 10 20 30 40 50 60 70 80 90

C
P

U
 ti

m
e

pe
r o

pe
ra

tio
n

/ µ
s

Processors

New
Fraser
DSTM

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90

C
P

U
 ti

m
e

pe
r o

pe
ra

tio
n

/ µ
s

Processors

New
Fraser
DSTM

Fig. 3. Scalability under low contention (key space of 219)

Red-Black Trees Red-Black Trees (zoomed)

 0

 100

 200

 300

 400

 500

 600

24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219

C
P

U
 ti

m
e

pe
r o

pe
ra

tio
n

/ µ
s

Mean set size

New
Fraser
DSTM

 0

 10

 20

 30

 40

 50

 60

24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219

C
P

U
 ti

m
e

pe
r o

pe
ra

tio
n

/ µ
s

Mean set size

New
Fraser
DSTM

Fig. 4. Performance under varying contention (90 processors)

6 Performance Evaluation

To ensure the fairest comparison with other STMs, we asked Keir Fraser to benchmark
our algorithm for us on the exact same setup as he used to benchmark his STM [1] . These
tests were performed using the same machine, the same benchmarks, the same workload,
and the same DSTM implementation as he used in his thesis [1].

The machine on which tests were run is a SunFire 15K server populated with 106
UltraSparc III processors, each running at 1.2Ghz. The benchmarks are Fraser’s red-black
tree and skip-list programs, both of which read and write random elements in a set. The
benchmarks are run with a mix of 75% reads and 25% writes (which Fraser argues is
representative of real programs). Performance is compared against Fraser’s STM [1] and
Fraser’s C re-implementation2 of DSTM [4]3 — which are currently established as the two
best performing STM implementations [8, 1].

Figure 3 shows the performance under low contention, with the red-black tree bench-
mark on the left and the skip-lists benchmark on the right. Here, the benchmarks are run
with a large data set (219 objects) ensuring that the transactions rarely attempt to read
or write the same object [1]. Our algorithm consistently takes around 50%-60% of the
time taken by Fraser’s STM and around 35% of the time taken by DSTM. In this case we
believe that our algorithm wins by requiring a processor to load fewer cache lines than the

2 The original implementation is in Java, and so could not have been fairly compared.
3 Using the POLITE contention manager, which is considered to be one of the best [12].

8

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80

O
ve

ra
ll

tim
e

pe
r o

pe
ra

tio
n

/ µ
s

Active Tasks

New
Fraser

Fig. 5. Performance as task count increases (4 cores, key space of 219, red-black trees)

other algorithms. Indeed, the processor performance counters tell us that, per transaction,
our STM incurs only 41% of the L2 misses, 58% of the L1 misses, and 22% of the TLB
misses incurred by Fraser’s STM.

Figure 4 shows performance under varying contention. Here, the number of processors
is kept static at 90 and the data set size is varied from 16 to 219 elements. Smaller data
sets cause greater contention as transactions are more likely to attempt to manipulate the
same element. Under high contention DSTM’s contention manager copes poorly and comes
close to livelock, while Fraser’s STM is almost five times slower than ours. We believe that
the poor performance of Fraser’s STM is due to its use of helping4; if a transaction is
blocked by another, then it will “help” the other transaction to complete. In practise it is
better to simply wait for the other transaction to finish of its own accord. If transactions
help each other then one can end up with 90 processors all trying to perform the same
commit operation and all fighting over the same cache lines.

Figure 5 shows performance under varying numbers of tasks. These tests were done on
a 4-way SPARC machine, rather than the 106-way machine used for the previous tests –
in order to provoke the operating system into context switching between our tasks. As the
number of tasks increases, context-switches during transactions become more common,
transaction conflicts increase, and performance generally decreases. Our STM is affected
more than Fraser’s, since it allows a switched out transaction to block others; however our
STM remains the fastest. Note that, when used normally, our STM does not allow there
to be more tasks than available cores.

7 Conclusions

We have argued that obstruction-freedom is not an important property for STMs and
have demonstrated that a non-obstruction-free STM can achieve significantly better per-
formance than an obstruction-free one. We thus believe that future STM designs should
not attempt to be obstruction-free.

4 At one point we experimented with a version of our algorithm that had helping, and preliminary results
suggested that its high-contention performance was similar to Fraser’s STM.

9

Availability

Our implementation is available on SourceForge at http://sourceforge.net/projects/
libltx. The source files used in our benchmarks can also be found at that URL.

Acknowledgements

We would like to thank Keir Fraser for providing us with his STM implementation and
for benchmarking our algorithm on his testbed. We would also like to thank Michael
Fetterman, Keir Fraser, Tim Harris, Maurice Herlihy, Gianlucca Iannaccone, Anil Mad-
havapeddy, Alan Mycroft, Matthew Parkinson, Rirchard Sharp, and Eben Upton for mak-
ing useful suggestions.

References

1. Fraser, K. Practical Lock Freedom. PhD thesis, University of Cambridge, 2003.
2. Gray, J., and Reuter, A. Transaction Processing: Concepts and Techniques. Morgan Kaufmann,

1993.
3. Harris, T., and Fraser, K. Language support for lightweight transactions. In Proceedings of the

18th Annual ACM-SIGPLAN Conference on Object-Oriented Programming, Systems, Languages &
Applications (OOPSLA ’03) (Oct. 2003).

4. Herlihy, M., Luchangco, V., Moir, M., and Scherer, W. Software transactional memory for
dynamic-sized data structures. In Proceedings of the 22nd Annual ACM Symposium on Principles of
Distributed Computing (PODC ’03) (July 2003), pp. 92–101.

5. Kung, H. T., and Robinson, J. T. On optimistic methods for concurrency control. ACM Transac-
tions on Database Systems 6, 2 (June 1981), 213–226.

6. Liskov, B., and Scheifler, R. Guardians and actions: linguistic support for robust, distributed
programs. ACM Transactions on Programming Languages and Systems 5, 3 (July 1983), 381–404.

7. Lomet, D. B. Process structuring, synchronization and recovery using atomic actions. In Proceedings
of an ACM Conference on Language Design for Reliable Software (Mar. 1977), D. B. Wortman, Ed.,
ACM, ACM, pp. 128–137.

8. Marathe, V. J., Scherer, W. N., and Scott, M. L. Design tradeoffs in modern software transac-
tional memory systems. In Proceedings of the Seventh ACM Workshop on Languages, Compilers and
Run-time Support for Scalable Systems (Oct. 2004).

9. Marathe, V. J., and Scott, M. L. A qualitative survey of modern software transactional memory
systems. Tech. Rep. TR839, University of Rochester, June 2004.

10. Moir, M. Transparent support for wait-free transactions. In Distributed Algorithms, 11th International
Workshop (Sept. 1997), vol. 1320 of Lecture Notes in Computer Science, Springer-Verlag, pp. 305–319.

11. Nethercote, N. Dynamic Binary Analysis and Instrumentation. PhD thesis, University of Cam-
bridge, Nov. 2004.

12. Scherer, W. N., and Scott, M. L. Contention management in dynamic software transactional
memory. In Proceedings of the Workshop on Concurrency and Synchronisation in Java Programs
(July 2004).

13. Shavit, N., and Touitou, D. Software transactional memory. In Proceedings of the 14th Annual
ACM Symposium on Principles of Distributed Computing (PODC ’95) (Aug. 1995), pp. 204–213.

14. Weikum, G., and Vossen, G. Transactional Information Systems: Theory, Algorithms, and the
Practice of Concurrency Control. Morgan Kaufmann, 2001.

10

