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Abstract. In this paper the performance of the CMA evolution strategy
with rank-µ-update and weighted recombination is empirically investi-
gated on eight multimodal test functions. In particular the effect of the
population size λ on the performance is investigated. Increasing the pop-
ulation size remarkably improves the performance on six of the eight test
functions. The optimal population size takes a wide range of values, but,
with one exception, scales sub-linearly with the problem dimension. The
global optimum can be located in all but one function. The performance
for locating the global optimum scales between linear and cubic with
the problem dimension. In a comparison to state-of-the-art global search
strategies the CMA evolution strategy achieves superior performance
on multimodal, non-separable test functions without intricate parameter
tuning.

1 Introduction

The derandomized Evolution Strategy (ES) with Covariance Matrix Adapta-
tion (CMA) [1] adapts the complete covariance matrix of the normal mutation
(search) distribution. The CMA-ES exhibits several invariances. Hereunder are
(a) invariance against order preserving (i.e. strictly monotonic) transformations
of the objective function value; (b) invariance against angle preserving transfor-
mations of the search space (rotation, reflection, and translation) if the initial
search point is transformed accordingly; (c) scale invariance if the initial scaling
is chosen accordingly. Invariances are highly desirable: they imply uniform be-
havior on classes of functions and therefore generalizability of empirical results.

Originally designed for small population sizes, the CMA-ES was interpreted
as a robust local search strategy [2]. It efficiently minimizes unimodal test func-
tions [1] and in particular is superior on ill-conditioned and non-separable prob-
lems. It was successfully applied to a considerable number of real world prob-
lems.1 In [3, 4] the CMA-ES was expanded by the so-called rank-µ-update. The

1 See www.icos.ethz.ch/software/evolutionary computation/cmaapplications.pdf for a
list of references.
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rank-µ-update exploits the information contained in large populations more ef-
fectively without affecting the performance2 for small population sizes. It can
reduce the time complexity of the strategy (i.e. the number of generations to
reach a certain function value) from quadratic to linear [4]. A recent study [5]
showed a surprisingly good performance of this CMA-ES on the multimodal
Rastrigin function. Large populations and rank-µ-update were the prerequisites
for this observation. Therefore, we empirically investigate the effect of the pop-
ulation size λ on the global search performance of the CMA-ES.

The remainder is organized as follows: In Sect. 2 we describe the CMA-ES
using weighted recombination and rank-µ-update. In Sect. 3 test functions and
methodology for the performance study are outlined. Section 4 examines the
performance depending on the population size and compares the CMA-ES with
other global search strategies. Sect. 5 gives a summary and conclusion.

2 The CMA-ES with Rank-µ-Update and Weighted
Recombination

We thoroughly define the CMA-ES combining weighted recombination [1] and
rank-µ-update of the covariance matrix [3, 4]. In this (µW, λ)-CMA-ES the λ
individuals (candidate solutions) of generation g + 1 are generated according to

x
(g+1)
k ∼ N

(
〈x〉(g)w , σ(g)2

C(g)
)
, k = 1, . . . , λ, (1)

where N (m,C) denotes a normally distributed random vector with mean m
and covariance matrix C.3

The recombination point 〈x〉(g)w =
∑µ
i=1 wix

(g)
i:λ is the weighted mean of the

selected individuals, wi > 0 for all i = 1 . . . µ and
∑µ
i=1 wi = 1. The index i : λ

denotes the i-th best individual. Setting all wi to 1/µ is equivalent to intermedi-
ate (multi-)recombination.The adaptation of the mutation parameters consists
of two parts: (i) adaptation of the covariance matrix C(g), and (ii) adaptation of
the global step size σ(g). The covariance matrix C(g) is adapted by the evolution
path p(g+1)

c and by the µ weighted difference vectors between the recent parents
and 〈x〉(g)w :

p(g+1)
c = (1− cc) · p(g)

c +H(g+1)
σ

√
cc(2− cc) ·

√
µeff

σ(g)

(
〈x〉(g+1)

w − 〈x〉(g)w

)
(2)

C(g+1) = (1− ccov) ·C(g) + ccov
1

µcov
p(g+1)
c

(
p(g+1)
c

)T

(3)

+ ccov ·
(

1− 1
µcov

) µ∑
i=1

wi

σ(g)2

(
x

(g+1)
i:λ − 〈x〉(g)w

)(
x

(g+1)
i:λ − 〈x〉(g)w

)T

,

2 We define performance as the number of function evaluations needed to reach a
certain function value.

3 Note that N
“
〈x〉(g)

w , σ(g)2
C(g)

”
∼ 〈x〉(g)

w + σ(g)B(g)D(g)N
“
0, I

”
, see below.
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where H(g+1)
σ = 1 if ‖p(g+1)

σ ‖√
1−(1−cσ)2(g+1)

< (1.5 + 1
n−0.5 )E

(
‖N (0, I)‖

)
, and 0 oth-

erwise. µeff = 1/
∑µ
i=1 w

2
i denotes the “variance effective selection mass” and

µeff = µ if wi = 1/µ. The weights wi are used for the summation term in (3), a
matrix with rank min(µ, n). Parameter ccov ≈ min(1, 2µeff/n

2) determines the
learning rate for the covariance matrix C. The adaptation of the global step size
σ(g+1) is based on a “conjugate” evolution path p(g+1)

σ :

p(g+1)
σ = (1− cσ) · p(g)

σ (4)

+
√
cσ(2− cσ) ·B(g)D(g)−1

B(g)T
·
√
µeff

σ(g)

(
〈x〉(g+1)

w − 〈x〉(g)w

)
.

The orthogonal matrix B(g) and the diagonal matrix D(g) are obtained through
a principal component analysis of C(g); C(g) = B(g)D(g)2

B(g)T
(cf. [1]). The

global step size σ(g+1) obeys

σ(g+1) = σ(g) · exp

(
cσ
dσ

(
‖p(g+1)

σ ‖
E
(
‖N (0, I)‖

) − 1
))

, (5)

where E (‖N (0, I)‖) =
√

2 Γ(n+1
2 )/Γ(n2 ) ≈

√
n (1 − 1

4n + 1
21n2 ) is the expected

length of pσ under random selection.
Initial values are p(0)

σ = p
(0)
c = 0 and C(0) = I, while x(0) and σ(0) are

problem dependent. Default strategy parameter values are

λ = 4 + b3 · ln(n)c, µ = bλ/2c, wi=1...µ =
ln(µ+ 1)− ln(i)∑µ
j=1 ln(µ+ 1)− ln(j)

, (6)

cσ =
µeff + 2

n+ µeff + 3
, dσ = 1 + 2 max

(
0,

√
µeff − 1
n+ 1

− 1

)
+ cσ, cc =

4
n+ 4

, (7)

µcov = µeff, ccov =
1

µcov

2
(n+

√
2)2

+
(

1− 1
µcov

)
min

(
1,

2µeff − 1
(n+ 2)2 + µeff

)
. (8)

While 1/cσ, and 1/cc can be interpreted as memory time constants, dσ is a
damping parameter. Parameters from (7) and (8) are not meant to be in the
users choice. A profound discussion of the strategy parameters is given in [1].

We consider weighted recombination to be more natural than intermediate
recombination, because the ranking of all λ/2 best individuals is fully regarded.4

Nevertheless, to our experience weighted recombination, where µ ≈ λ/2, only
slightly outperforms intermediate recombination, where µ ≈ λ/4.

3 Test Functions and Experimental Procedure

3.1 Test Functions

The unconstrained multimodal test problems are summarized in Table 1. All con-
4 Even the mating success in nature is not well described by two possible outcomes.
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Table 1. Test functions to be minimized and initialization regions

Name Function Init

Ackley fAckley(x) = 20− 20 · exp
“
−0.2

q
1
n

Pn
i=1 x

2
i

”
[1, 30]n

+ e− exp
`

1
n

Pn
i=1 cos(2πxi)

´
Bohachevsky fBohachevsky(x) =

Pn−1
i=1

`
x2

i + 2x2
i+1 [1, 15]n

−0.3 cos(3πxi)− 0.4 cos(4πxi+1) + 0.7
´

Griewank fGriewank(x) = 1
4000

Pn
i=1 x

2
i −

Qn
i=1 cos

“
xi√

i

”
+ 1 [10, 600]n

Rastrigin fRastrigin(x) = 10n+
Pn

i=1

`
x2

i − 10 cos(2πxi)
´

[1, 5]n

Scaled Rastrigin fRastScaled(x) = 10n+
Pn

i=1

`
(10

i−1
n−1 xi)

2 [1, 5]n

−10 cos(2π10
i−1
n−1 xi)

´
Skew Rastrigin fRastSkew(x) = 10n+

Pn
i=1

`
y2

i − 10 cos(2πyi)
´
, [1, 5]n

with yi =


10 · xi ifxi > 0,
xi otherwise

Schaffer fSchaffer(x) =
Pn−1

i=1 (x2
i + x2

i+1)0.25 [10, 100]n

·
ˆ
sin2

`
50 · (x2

i + x2
i+1)0.1

´
+ 1.0

˜
Schwefel fSchwefel(x) = 418.9828872724339 · n [−500, 300]n

−
Pn

i=1 xi · sin(
p
|xi|)

sidered functions have a high number of local optima, are scalable in the problem
dimension, and have a minimal function value of 0. The known global minimum
is located at x = 0, except for the Schwefel function, where the global minimum
within [−500, 500]n equals 420.96874636 in each coordinate. Additional bounds
are implemented for fSchwefel (in [−500, 500]n) and fAckley (in [−30, 30]n) by
adding a quadratic penalty term. E.g., fSchwefel(x) + 104 ·

∑n
i=1 θ(|xi| − 500)x2

i

is minimized, where θ(.) is the Heaviside function. The skew Rastrigin function
was proposed by [6] to be deceptive for the CMA-ES.

Besides fRastSkew and fSchwefel, the functions are point symmetrical around
the global optimum. To avoid an easy exploitation of the symmetry, we suggest
non-symmetrical initialization intervals, see Table 1. The Rastrigin functions and
fSchwefel are additively separable, while fAckley and fBohachevsky are separable,
in that the global optimum can be located by optimizing each variable indepen-
dently. Recall, that both is not exploited by the CMA-ES, because all results of
the CMA-ES are invariant under orthogonal transformations (rotations) of the
coordinate system, given accordingly transformed initial intervals.

3.2 Experimental procedure

The performance of the CMA-ES is tested for dimensions n = [2, 5, 10, 20, 40, 80].5

All runs are performed with the default strategy parameter setting given in
Sect. 2, except for the population size λ.6 Starting from λ = 5, the population
5 For simulations we used the matlab code cmaes.m, Version 2.24, available from

http://www.icos.ethz.ch/software/evolutionary computation/cma.
6 Note that µ is chosen dependently on λ and further parameters depend on µ.
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Fig. 1. Success rate to reach fstop = 10−10 versus population size for (a) Rastrigin
function (b) Griewank function for dimensions n = 2 (’−−©−−’), n = 5 (’−·−×−·−’),
n = 10 (’—�—’), n = 20 (’−−+−−’), n = 40 (’− ·−♦− ·−’), and n = 80 (’—5—’).

size is increased repeatedly in the sequence 5, 7, 10, 14, 20, 32, 50, b50
√

2c, 100,
b100
√

2c, 200, . . . , and for each setting 100 runs are conducted. The starting
point x(0) is sampled uniformly within the initialization intervals given in Ta-
ble 1. The initial step size σ(0) is set to half of the initialization interval. Too
small initial step sizes have a considerable impact on the performance on mul-
timodal functions. Each run is stopped and regarded as successful, when the
function value is smaller than fstop = 10−10. Additionally, the run is stopped
after 107 function evaluations, or when the condition number of the covariance
matrix C exceeds 1014, or by the option TolX, set to 10−15 (for fSchaffer 10−30).

4 Simulation Results

The success rate to reach fstop depends strongly on the population size, see
Fig. 1, where exemplary results are shown for (a) fRastrigin and (b) fGriewank.
The Rastrigin function (Fig. 1a) represents the typical picture. The graphs have
a sigmoidal shape and larger dimensions require larger population sizes to ap-
proach 100% success rate. We observe two exceptions from this behavior. First,
on fRastSkew the success rates are low with any population size, and, except
for very low dimensions, fRastSkew is not solvable for the CMA-ES. The second
exception is shown in Fig. 1b: on fGriewank smaller dimensions require larger
population sizes, but success rates of 100% can be achieved in all dimensions.

Figures 2a and 3a show the scaling of the (minimal) population size w.r.t.
the problem dimension to achieve success rates of (at least) 5, 25, 50, 75, 95%.
Graphs for fRastScaled are almost identical with fRastrigin and therefore omitted.
Except for fRastSkew (not shown), larger success rates require larger population
sizes. The figures are sorted from (i.a) to (vi.a) by increasing slopes that indicate
the scaling. The steepest slope (fSchwefel) is slightly above linear. For all other
functions the slope is sub-linear.

Figures 2b and 3b show performance versus population size. Performance is
measured as mean number of function evaluations for successful runs, divided by
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Fig. 2. (i) Griewank function, (ii) Ackley function, (iii) Rastrigin function. (a) pop-
ulation size to reach success rates of 0.05, 0.25, 0.5, 0.75, and 0.95 versus problem
dimension n. The sloping grid indicates linear and quadratic dependency. (b) average
number of function evaluations to reach fstop = 10−10 divided by the success rate,
versus population size for problem dimensions n = 2, 5, 10, 20, 40, 80. The symbols ©
and � indicate success rates of 50% and 95%, respectively. Missing points on the left
side of a graph indicate that no run (out of 100 runs) was successful.
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Fig. 3. (iv) Bohachevsky function, (v) Schaffer function, (vi) Schwefel function.
(a) population size to reach success rates of 0.05, 0.25, 0.5, 0.75, and 0.95 versus problem
dimension n. The sloping grid indicates linear and quadratic dependency. (b) average
number of function evaluations to reach fstop = 10−10 divided by the success rate,
versus population size for problem dimensions n = 2, 5, 10, 20, 40, 80. The symbols ©
and � indicate success rates of 50% and 95%, respectively. Missing points on the left
side of a graph indicate that no run (out of 100 runs) was successful.
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Fig. 4. Mean number of function evaluations to reach fstop versus problem dimension n
for CMA-ES on Ackley (’—©—’), Bohachevsky (′−·−×−·−′), Griewank (’−−�−−’),
Rastrigin (’—+—’), Scaled Rastrigin (′ − · − ♦ − ·−′), Schaffer (’− − 5 − −’), and
Schwefel (’—4—’) function.

the success rate. This performance measure assumes the same expected number
of function evaluations for successful and for unsuccessful runs. The best perfor-
mance is usually achieved for success rates between 50% and 95%. The impact of
a smaller than optimal population size can be high. With increasing population
size the performance decreases at most linearly.

Figure 4 shows the scaleup of the performance with optimal population size.
The scaleup with n, put in order, appears to be at most linear for fAckley and
fGriewank, between linear and quadratic for fBohachevsky, fSchaffer, fRastrigin, and
fRastScaled, and slightly below cubic for fSchwefel.

Table 2 compares the performance of the CMA-ES with optimal population
size to the performance of Differential Evolution (DE) [7], the Robust Evolution
Strategy (RES) [8], and a Local Optima Smoothing (LOS) [9] restart BFGS
algorithm. For each function the results with the best parameter tuning were
taken from the respective publication and additional experiments were performed
with DE and BFGS.7 Only on the additively separable functions fRastrigin and
fSchwefel, DE outperforms the CMA-ES by a factor of five to 50. Otherwise, the
CMA-ES outperforms DE by a factor of at least three, while DE even fails to
find the global optimum on the non-separable fRastrigin(Ax), where an orthogo-
nal transformation A of the search space is applied, and performes much worse

7 In [9] the results for LOS are stated as numbers of necessary local searches to hit
the global optimum. The average number of function evaluations for a local search
using BFGS is simulated with matlab’s fminunc with MaxFunEvals = 500n and
TolX = TolFun = 10−3(0.9 for fRastrigin). A random restart strategy performs much
worse than LOS.
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Table 2. Average number of function evaluations to reach fstop of CMA-ES versus DE,
RES, and LOS on Griewank, Ackley, Rastrigin, and Schwefel function. If fstop is not
reached the best function value/number of function evaluations are stated. The initial-
ization regions do not apply to CMA-ES for which the more difficult intervals from Ta-
ble 1 are used. Results are taken from [7–9], except for the cases marked with ∗ obtained
using the DE code available from http://www.icsi.berkeley.edu/∼storn/code.html. The
matrix A = [o1, . . . ,on]T implements an angle-preserving (i.e. orthogonal) linear trans-
formation of x (cf. [1]), chosen anew for each run.

Function fstop init n CMA-ES DE RES LOS

fAckley(x) 1e-3 [−30, 30]n 20 2667 . . 6.0e4
30 3701 12481 1.1e5 9.3e4

100 11900 36801 . .
fGriewank(x) 1e-3 [−600, 600]n 20 3111 8691 . .

30 4455 11410 ∗ 8.5e-3/2e5 .
100 12796 31796 . .

fRastrigin(x) 0.9 [−5.12, 5.12]n 20 68586 12971 . 9.2e4
DE: [−600, 600]n 30 147416 20150 ∗ 1.0e5 2.3e5

100 1010989 73620 . .
fRastrigin(Ax) 0.9 [−5.12, 5.12]n 30 152000 171/1.25e6 ∗ . .

100 1011556 944/1.25e6 ∗ . .
fSchwefel(x) 1e-3 [−500, 500]n 5 43810 2567 ∗ . 7.4e4

10 240899 5522 ∗ . 5.6e5

on fSchwefel(Ax) (not shown).8 This supports our hypothesis that DE strongly
exploits the separability of the function. The RES too exploits separability by
sampling Cauchy distributions which strongly favor steps in coordinate direc-
tions. Even so, on the separable fRastrigin RES outperforms CMA-ES only by a
factor of 1.5 , while on fAckley and fGriewank it performs worse by a factor of 30
or more. The LOS performs between a factor 1.5 (on fRastrigin) and a factor of
25 (on fAckley) worse than the CMA-ES.9

5 Summary and Conclusion

The CMA-ES with rank-µ-update is investigated on a suit of eight highly mul-
timodal test functions for problem dimensions between 2 and 80. Tuning (that
is increasing) the population size considerably improves the performance on six
of the functions, compared to the performance with default population size.
8 On fRastrigin, the parent number equals 20 in DE. Increasing the parent number

improves the performance on fRastrigin(Ax). However, even with 500 parents for
n = 10, the minimum function value reached does not drop below 2 after 107 function
evaluations. Choosing the recombination parameter CR = 1, DE becomes invariant
against orthogonal transformations, but performs even worse on fRastrigin.

9 Two parameters of LOS, r and K, see [9], are chosen to be optimal for each entry.
In particular r has a considerable impact on the performance.
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On seven of the eight functions, the CMA-ES can precisely locate the global
optimum. If the local optima can be interpreted as pertubations of an underly-
ing unimodal function, the CMA-ES with a large population size can “detect”
the global topology. Then, the global optimum is located within 300n and 500n2

function evaluations. A strong asymmetry of the underlying function jeopardizes
a successful detection and can lead to a failure (as on fRastSkew). The optimal
population size usually scales sub-linearly with the problem dimension n, but
significantly depends on the test function considered.

The results were compared with other global search strategies, stated to
achieve superior results in earlier investigations. Surprisingly, the CMA-ES out-
performs these global searchers, typically by a factor of three, with the following
exception. Only if the function is additively separable, Differential Evolution
strongly outperforms the CMA-ES. If the search space is rotated, the perfor-
mance of the CMA-ES is unchanged, however Differential Evolution massively
degrades in performance or even fails to locate the global optimum with a rea-
sonable probablity. For the CMA-ES the population size was tuned, while for
the compared algorithms up to three parameters had to be tuned to the given
objective function. In our opinion, tuning the population size in the CMA-ES is
comparatively unproblematic. The results suggest that a CMA-ES restart strat-
egy with a successively increased population size (by a factor of three, initialized
with the default population size) constitutes a highly competitive, quasi param-
eter free global optimization algorithm for non-separable objective functions.
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