Chapter 8

Regular Local Rings

In algebraic geometry, the local ring of an affine algebraic variety V at a point P is the set $\mathcal{O}(P, V)$ of rational functions on V that are defined at P. Then P will be a nonsingular point of V if and only if $\mathcal{O}(P, V)$ is a regular local ring.

8.1 Basic Definitions and Examples

8.1.1 Definitions and Comments

Let (R, \mathcal{M}, k) be a Noetherian local ring. (The notation means that the maximal ideal is \mathcal{M} and the residue field is $k=R / \mathcal{M}$.) If d is the dimension of R, then by the dimension theorem [see (5.4.1)], every generating set of \mathcal{M} has at least d elements. If \mathcal{M} does in fact have a generating set S of d elements, we say that R is regular and that S is a regular system of parameters. (Check the definition (6.1.1) to verify that S is indeed a system of parameters.)

8.1.2 Examples

1. If R has dimension 0 , then R is regular iff $\{0\}$ is a maximal ideal, in other words, iff R is a field.
2. If R has dimension 1 , then by (3.3.11), condition (3), R is regular iff R is a discrete valuation ring. Note that (3.3.11) assumes that R is an integral domain, but this is not a problem because we will prove shortly that every regular local ring is a domain.
3. Let $R=K\left[\left[X_{1}, \ldots, X_{d}\right]\right]$, where K is a field. By (5.4.9), $\operatorname{dim} R=d$, hence R is regular and $\left\{X_{1}, \ldots, X_{d}\right\}$ is a regular system of parameters.
4. Let K be a field whose characteristic is not 2 or 3 , and let $R=K[X, Y] /\left(X^{3}-Y^{2}\right)$, localized at the maximal ideal $\mathcal{M}=\{\bar{X}-1, \bar{Y}-1\}$. (The overbars indicate calculations $\bmod \left(X^{3}-Y^{2}\right)$.) It appears that $\{\bar{X}-1, \bar{Y}-1\}$ is a minimal generating set for \mathcal{M}, but this is not the case (see Problem 1). In fact \mathcal{M} is principal, hence $\operatorname{dim} R=1$ and R is regular. (See Example 2 above, and note that R is a domain because $X^{3}-Y^{2}$ is irreducible, so $\left(X^{3}-Y^{2}\right)$ is a prime ideal.)
5. Let R be as in Example 4, except that we localize at $\mathcal{M}=(\bar{X}, \bar{Y})$ and drop the restriction on the characteristic of K. Now it takes two elements to generate \mathcal{M}, but $\operatorname{dim} R=1$ (Problem 2). Thus R is not regular.

Here is a convenient way to express regularity.

8.1.3 Proposition

Let (R, \mathcal{M}, k) be a Noetherian local ring. Then R is regular if and only if the dimension of R coincides with $\operatorname{dim}_{k} \mathcal{M} / \mathcal{M}^{2}$, the dimension of $\mathcal{M} / \mathcal{M}^{2}$ as a vector space over k. (See (3.3.11), condition (6), for a prior appearance of this vector space.)

Proof. Let d be the dimension of R. If R is regular and a_{1}, \ldots, a_{d} generate \mathcal{M}, then the $a_{i}+\mathcal{M}^{2} \operatorname{span} \mathcal{M} / \mathcal{M}^{2}$, so $\operatorname{dim}_{k} \mathcal{M} / \mathcal{M}^{2} \leq d$. But the opposite inequality always holds (even if R is not regular), by (5.4.2). Conversely, if $\left\{a_{1}+\mathcal{M}^{2}, \ldots, a_{d}+\mathcal{M}^{2}\right\}$ is a basis for $\mathcal{M} / \mathcal{M}^{2}$, then the a_{i} generate \mathcal{M}. (Apply (0.3.4) with $J=M=\mathcal{M}$.) Thus R is regular.

8.1.4 Theorem

A regular local ring is an integral domain.
Proof. The proof of (8.1.3) shows that the associated graded ring of R, with the \mathcal{M}-adic filtration [see (4.1.2)], is isomorphic to the polynomial ring $k\left[X_{1}, \ldots, X_{d}\right]$, and is therefore a domain (Problem 6). The isomorphism identifies a_{i} with $X_{i}, i=1, \ldots, d$. By the Krull intersection theorem, $\cap_{n=0}^{\infty} \mathcal{M}^{n}=0$. (Apply (4.3.4) with $M=R$ and $I=\mathcal{M}$.) Now let a and b be nonzero elements of R, and choose m and n such that $a \in \mathcal{M}^{m} \backslash \mathcal{M}^{m+1}$ and $b \in \mathcal{M}^{n} \backslash \mathcal{M}^{n+1}$. Let \bar{a} be the image of a in $\mathcal{M}^{m} / \mathcal{M}^{m+1}$ and let \bar{b} be the image of b in $\mathcal{M}^{n} / \mathcal{M}^{n+1}$. Then \bar{a} and \bar{b} are nonzero, hence $\bar{a} \bar{b} \neq 0$ (because the associated graded ring is a domain). But $\bar{a} \bar{b}=\overline{a b}$, the image of $a b$ in \mathcal{M}^{m+n+1}, and it follows that $a b$ cannot be 0 .

We now examine when a sequence can be extended to a regular system of parameters.

8.1.5 Proposition

Let (R, \mathcal{M}, k) be a regular local ring of dimension d, and let $a_{1}, \ldots, a_{t} \in \mathcal{M}$, where $1 \leq t \leq d$. The following conditions are equivalent.
(1) a_{1}, \ldots, a_{t} can be extended to a regular system of parameters for R.
(2) $\bar{a}_{1}, \ldots, \bar{a}_{t}$ are linearly independent over k, where $\bar{a}_{i}=a_{i} \bmod \mathcal{M}^{2}$.
(3) $R /\left(a_{1}, \ldots, a_{t}\right)$ is a regular local ring of dimension $d-t$.

Proof. The proof of (8.1.3) shows that (1) and (2) are equivalent. Specifically, the a_{i} extend to a regular system of parameters iff the \bar{a}_{i} extend to a k-basis of $\mathcal{M} / \mathcal{M}^{2}$. To prove that (1) implies (3), assume that $a_{1}, \ldots, a_{t}, a_{t+1}, \ldots, a_{d}$ is a regular system of parameters for R. By (6.1.3), the dimension of $\bar{R}=R /\left(a_{1}, \ldots, a_{t}\right)$ is $d-t$. But the $d-t$ elements $\bar{a}_{i}, i=t+1, \ldots, d$, generate $\overline{\mathcal{M}}=\mathcal{M} /\left(a_{1}, \ldots, a_{t}\right)$, hence \bar{R} is regular.

Now assume (3), and let a_{t+1}, \ldots, a_{d} be elements of \mathcal{M} whose images in $\overline{\mathcal{M}}$ form a regular system of parameters for \bar{R}. If $x \in \mathcal{M}$, then modulo $I=\left(a_{1}, \ldots, a_{t}\right)$, we have
$x-\sum_{t+1}^{d} c_{i} a_{i}=0$ for some $c_{i} \in R$. In other words, $x-\sum_{t+1}^{d} c_{i} a_{i} \in I$. It follows that $a_{1}, \ldots, a_{t}, a_{t+1}, \ldots, a_{d}$ generate \mathcal{M}. Thus R is regular (which we already know by hypothesis) and a_{1}, \ldots, a_{t} extend to a regular system of parameters for R.

8.1.6 Theorem

Let (R, \mathcal{M}, k) be a Noetherian local ring. Then R is regular if and only if \mathcal{M} can be generated by an R-sequence. The length of any such R-sequence is the dimension of R.
Proof. Assume that R is regular, with a regular system of parameters a_{1}, \ldots, a_{d}. If $1 \leq t \leq d$, then by (8.1.5), $\bar{R}=R /\left(a_{1}, \ldots, a_{t}\right)$ is regular and has dimension $d-t$. The maximal ideal $\overline{\mathcal{M}}$ of \bar{R} can be generated by $\bar{a}_{t+1}, \ldots, \bar{a}_{d}$, so these elements form a regular system of parameters for \bar{R}. By (8.1.4), \bar{a}_{t+1} is not a zero-divisor of \bar{R}, in other words, a_{t+1} is not a zero-divisor of $R /\left(a_{1}, \ldots, a_{t}\right)$. By induction, a_{1}, \ldots, a_{d} is an R-sequence. (To start the induction, set $t=0$ and take $\left(a_{1}, \ldots, a_{t}\right)$ to be the zero ideal.)

Now assume that \mathcal{M} is generated by the R-sequence a_{1}, \ldots, a_{d}. By repeated applicaion of (5.4.7), we have $\operatorname{dim} R / \mathcal{M}=\operatorname{dim} R-d$. But R / \mathcal{M} is the residue field k, which has dimension 0 . It follows that $\operatorname{dim} R=d$, so R is regular.

8.1.7 Corollary

A regular local ring is Cohen-Macaulay.
Proof. By (8.1.6), the maximal ideal \mathcal{M} of the regular local ring R can be generated by an R-sequence a_{1}, \ldots, a_{d}, with (necessarily) $d=\operatorname{dim} R$. By definition of depth [see(6.2.5)], $d \leq \operatorname{depth} R$. But by (6.2.6), depth $R \leq \operatorname{dim} R$. Since $\operatorname{dim} R=d$, it follows that $\operatorname{depth} R=\operatorname{dim} R$.

