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In this paper we present sixteen series and show how they arise out of Ramanujan’s 1ψ1

function. First, we consider four special cases of Ramanujan’s 1ψ1 summation formula, which
we shall call f0, f1, f2, and f3. Then we obtain another twelve functions by applying three
different cases to f0, f1, f2, and f3. From these sixteen functions we obtain sixteen Eisenstein
series and their corresponding q-series expansions. Several of the q-series expansions can be
found in (1), (3), (7)-(12). Glaisher (5) and Zucker (13),(14) presented the complete set of
sixteen series. The significant point is that four functions and sixteen Eisentein series all
originate from one source, namely Ramanujan’s 1ψ1 function.

1 Introduction

Ramanujan gave the famous formula (1.1) , now called the Ramanujan 1ψ1 summation formula
((11), Chapter 16, Entry 17). G. H. Hardy ((6), p. 222) described it as “a remarkable formula
with many parameters”. There are a number of proofs for the equation ( 1.1), for example (2),
(3), and (15). Ramanujan’s 1ψ1 summation formula is
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where |βq| < |z| < 1/|αq| and q = eiπτ , Im(τ) > 0, and so |q| < 1. The Jordan-Kronecker function
is a special case of the series on the right hand side of (1.1) and is defined as follows.

((15), p. 37) Let

F (a, b) =
∞∑

n=−∞

bn

1− aq2n
, (1.2)
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where |q2| < |b| < 1 and a 6= q2k, k = 0,±1,±2, .... Taking α = 1/a, β = a, z = −ab/q, and divide
by 1− a in (1.1) gives
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∞∏
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2 Sixteen series
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2
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∞∑
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Here F
(
ev, eiθ

) [
v0
]

means let a = ev in (1.2) , then expand in powers of v and extract the
constant term. Equations (2.5)− (2.7) are doubly periodic and are called elliptic functions; equa-
tion (2.4) is not doubly periodic and is called the zeta function. These series all converge for
−Im (2πτ) < Imθ < Im (2πτ) . Replacing θ with θ + π, θ + πτ, and θ + π + πτ in (2.4) − (2.7) ,
respectively, and simplifying, gives
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3 Sixteen Eisenstein series

The method used in this section is similar to the one used by Glaisher (5) with the exception
that our notation is simpler. We can rewrite the results of (2.4) − (2.7) in terms of trigonometic
functions, namely the cotangent and the cosecant as follows
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(3.9)

The Eisenstein series are defined by ((4), p.376),

E2k (τ) =
∑

(m,n) 6=(0,0)

1

(m+ nτ)2k
,

where k = 2, 3, ... Expanding the left hand side into partial fractions, then expanding both sides of
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the expression (3.9) in ascending powers of θ, and equating the coefficients of θ2t−1, we find
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Similarly, we can get another set of twelve results by applying the same technique to (2.8) :
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It is easy to see the sixteen series form one system. The numerator is either 1, (−1)n
, (−1)m

,
or (−1)m+n ; and the denominator contains either both even numbers, one odd and one even
number, or both odd numbers. Zucker (13) mentioned without proof that the sixteen series can
only be found in closed form for either even or odd, but never for both. We now have a better
understanding of this from the way we derived the sixteen series.
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