

Comparison of Fuel Cell Technologies

Fuel Cell Type	Common Electrolyte	Operating Temperature	System Output	Electrical Efficiency	Combined Heat and Power (CHP) Efficiency	Applications	Advantages
Polymer Electrolyte Membrane (PEM)*	Solid organic polymer poly- perfluorosulfonic acid	50 - 100°C 122 - 212°F	<1kW - 250kW	53-58% (transportation) 25-35% (stationary)	70-90% (low- grade waste heat)	 Backup power Portable power Small distributed generation Transportation Specialty vehicles 	 Solid electrolyte reduces corrosion & electrolyte management problems Low temperature Quick start-up
Alkaline (AFC)	Aqueous solution of potassium hydroxide soaked in a matrix	90 - 100°C 194 - 212°F	10kW - 100kW	60%	>80% (low- grade waste heat)	• Military • Space	 Cathode reaction faster in alkaline electrolyte, leads to higher performance Can use a variety of catalysts
Phosphoric Acid (PAFC)	Liquid phosphoric acid soaked in a matrix	150 - 200°C 302 - 392°F	50kW – 1MW (250kW module typical)	>40%	>85%	Distributed generation	 Higher overall efficiency with CHP Increased tolerance to impurities in hydrogen
Molten Carbonate (MCFC)	Liquid solution of lithium, sodium, and/or potassium carbonates, soaked in a matrix	600 - 700°C 1112 - 1292°F	<1kW - 1MW (250kW module typical)	45-47%	>80%	Electric utility Large distributed generation	High efficiencyFuel flexibilityCan use a variety of catalystsSuitable for CHP
Solid Oxide (SOFC)	Yttria stabilized zirconia	600 - 1000°C 1202 - 1832°F	<1kW - 3MW	35-43%	<90%	Auxiliary power Electric utility Large distributed generation	 High efficiency Fuel flexibility Can use a variety of catalysts Solid electrolyte reduces electrolyte management problems Suitable for CHP Hybrid/GT cycle

^{*}Direct Methanol Fuel Cells (DMFC) are a subset of PEM typically used for small portable power applications with a size range of about a subwatt to 100W and operating at 60 - 90°C.

For print copies of this fact sheet, please call the DOE Energy Efficiency and Renewable Energy Information Center at 877-EERE-INF(O)/877-337-3463.

December 2008

