
Video File Format Specification
Version 9

Copyright © 2008 Adobe Systems Incorporated. All rights reserved. This manual may not be copied, photocopied, reproduced,
translated, or converted to any electronic or machine-readable form in whole or in part without written approval from Adobe
Systems Incorporated. Notwithstanding the foregoing, a person obtaining an electronic version of this manual from Adobe may
print out one copy of this manual provided that no part of this manual may be printed out, reproduced, distributed, resold, or
transmitted for any other purposes, including, without limitation, commercial purposes, such as selling copies of this
documentation or providing paid-for support services.

Trademarks

Adobe, ActionScript, Flash, Flash Media Server, and Flash Player are either registered trademarks or trademarks of Adobe Systems
Incorporated and may be registered in the United States or in other jurisdictions including internationally. Other product names,
logos, designs, titles, words, or phrases mentioned within this publication may be trademarks, service marks, or trade names of
Adobe Systems Incorporated or other entities and may be registered in certain jurisdictions including internationally. No right or
license is granted to any Adobe trademark.

Third-Party Information

This guide contains links to third-party websites that are not under the control of Adobe Systems Incorporated, and Adobe
Systems Incorporated is not responsible for the content on any linked site. If you access a third-party website mentioned in this
guide, then you do so at your own risk. Adobe Systems Incorporated provides these links only as a convenience, and the inclusion
of the link does not imply that Adobe Systems Incorporated endorses or accepts any responsibility for the content on those third-
party sites. No right, license or interest is granted in any third party technology referenced in this guide.

NOTICE: THIS PUBLICATION AND THE INFORMATION HEREIN IS FURNISHED “AS IS”, IS SUBJECT TO
CHANGE WITHOUT NOTICE, AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY ADOBE
SYSTEMS INCORPORATED. ADOBE SYSTEMS INCORPORATED ASSUMES NO RESPONSIBILITY OR
LIABILITY FOR ANY ERRORS OR INACCURACIES, MAKES NO WARRANTY OF ANY KIND (EXPRESS,
IMPLIED, OR STATUTORY) WITH RESPECT TO THIS PUBLICATION, AND EXPRESSLY DISCLAIMS ANY AND
ALL WARRANTIES OF MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSES, AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS.

Adobe Systems Incorporated

Published April 2008

Contents
Introduction . 1

The FLV file format . 1
The F4V file format . 1

Chapter 1: The FLV File Format . 3

The FLV header .4
The FLV file body .4
FLV tags. 5
Audio tags . 6

AACAUDIODATA . 7
Video tags . 8

AVCVIDEOPACKET. .9
Data tags .9
onMetaData. 13

Chapter 2: The F4V File Format . 15

The F4V box . 15
ftyp box . 16
moov box . 17
mvhd box . 17
trak box . 19
udta box . 19
meta box. 19
mdia box . 20
minf box . 20
stbl box . 20
tkhd box . 21
mdhd box . 22
stsd box . 23
stsc box. 24
stts box . 25
ctts box . 26
stco and co64 boxes . 26
stss box. .27
i

stsz box . 28
chpl box . 28
pdin box . 29
mdat box . 30
Required structure. 30
Supported media types . 31
Unsupported boxes. 32

Chapter 3: F4V Metadata .33

Tag box . 34
ilst box . 34
Image metadata . 35
Text metadata . 36

styl box . 36
hlit box . 37
hclr box . 37
krok box. 38
dlay box . 38
drpo box . 39
drpt box . 39
href box . 39
tbox box. 40
blnk box. 41
twrp box . 41
ii Contents

Introduction
This document provides technical format information for the video file formats supported by
Adobe® Flash® Player software—FLV and F4V.

Adobe seriously considers all feedback to the video file format specification. E-mail any
unclear or potentially erroneous information within the specification to Adobe at
flashformat@adobe.com. All such email submissions shall be subject to the Submitted
Materials guidelines in the Terms of Use at www.adobe.com/misc/copyright.html.

The FLV file format
Starting with SWF files published for Flash Player 6, Flash Player can exchange audio, video,
and data over RTMP connections with the Adobe Flash Media Server™. One way to feed data
to Flash Media Server (and thus on to Flash Player clients) is from files in the FLV file format.
Starting with SWF files published for Flash Player 7, Flash Player can also play FLV files
directly with MIME type video/x-flv.

An FLV file encodes synchronized audio and video streams. The audio and video data within
FLV files are encoded in the same way as audio and video within SWF files.

This document describes FLV version 1. For more information on the FLV format, see
Chapter 1, “The FLV File Format,” on page 3.

The F4V file format
Starting with SWF files published for Flash Player 9 Update 3 (9,0,115,0), Flash Player can
play F4V files. The F4V format is based on the format specified by ISO/IEC 14496-12: ISO
base media file format. For more information on the F4V format, see Chapter 2, “The F4V
File Format,” on page 15.

A large part of the F4V format involves metadata. For more information on F4V metadata,
see Chapter 3, “F4V Metadata,” on page 33.
1

mailto:flashformat@adobe.com
http://www.adobe.com/misc/copyright.html

2 Introduction

1

CHAPTER 1

The FLV File Format
Each tag type in an FLV file constitutes a single stream. There can be no more than one audio
and one video stream, synchronized together, in an FLV file. You cannot define multiple
independent streams of a single type.

Unlike SWF files, FLV files store multibyte integers in big-endian byte order. For example, as
a UI16 in SWF file format, the byte sequence that represents the number 300 (0x12C) is
0x2C 0x01; as a UI16 in FLV file format, the byte sequence that represents the number 300 is
0x01 0x2C. Also, FLV files use a 3-byte integer type, UI24, that is not used in SWF files.
3

The FLV header
All FLV files begin with the following header:

The DataOffset field usually has a value of 9 for FLV version 1. This field is present to
accommodate larger headers in future versions.

The FLV file body
After the FLV header, the remainder of an FLV file consists of alternating back-pointers and
tags. They interleave as shown in the following table:

FLV header

Field Type Comment

Signature UI8 Signature byte always 'F' (0x46)

Signature UI8 Signature byte always 'L' (0x4C)

Signature UI8 Signature byte always 'V' (0x56)

Version UI8 File version (for example, 0x01 for FLV
version 1)

TypeFlagsReserved UB[5] Must be 0

TypeFlagsAudio UB[1] Audio tags are present

TypeFlagsReserved UB[1] Must be 0

TypeFlagsVideo UB[1] Video tags are present

DataOffset UI32 Offset in bytes from start of file to start
of body (that is, size of header)

FLV file body

Field Type Comment

PreviousTagSize0 UI32 Always 0

Tag1 FLVTAG First tag

PreviousTagSize1 UI32 Size of previous tag, including its
header. For FLV version 1, this value
is 11 plus the DataSize of the previous
tag.

Tag2 FLVTAG Second tag

...
4 The FLV File Format

FLV tags
FLV tags have the following format:

In playback, the time sequencing of FLV tags depends on the FLV timestamps only. Any
timing mechanisms built into the payload data format are ignored.

PreviousTagSizeN-1 UI32 Size of second-to-last tag

TagN FLVTAG Last tag

PreviousTagSizeN UI32 Size of last tag

FLVTAG

Field Type Comment

TagType UI8 Type of this tag. Values are:
8: audio
9: video
18: script data
all others: reserved

DataSize UI24 Length of the data in the Data field

Timestamp UI24 Time in milliseconds at which the
data in this tag applies. This value is
relative to the first tag in the FLV
file, which always has a timestamp
of 0.

TimestampExtended UI8 Extension of the Timestamp field to
form a UI32 value. This field
represents the upper 8 bits, while
the previous Timestamp field
represents the lower 24 bits of the
time in milliseconds.

StreamID UI24 Always 0

Data If TagType = 8
AUDIODATA
If TagType = 9
VIDEODATA
If TagType = 18
SCRIPTDATAOBJECT

Body of the tag

FLV file body

Field Type Comment
FLV tags 5

Audio tags
Audio tags are similar to the DefineSound tag in the SWF file format. Their payload data is
identical except for the additional Nellymoser 8-kHz format, which is not permitted in SWF.
(For information on the SWF file format, see the SWF File Format Specification at
www.adobe.com/go/swf_file_format.)

Format 3, linear PCM, stores raw PCM samples. If the data is 8-bit, the samples are unsigned
bytes. If the data is 16-bit, the samples are stored as little endian, signed numbers. If the data
is stereo, left and right samples are stored interleaved: left - right - left - right - and so on.

AUDIODATA

Field Type Comment

SoundFormat

(see notes following
table)

UB[4]
0 = Linear PCM, platform endian
1 = ADPCM
2 = MP3
3 = Linear PCM, little endian
4 = Nellymoser 16-kHz mono
5 = Nellymoser 8-kHz mono
6 = Nellymoser
7 = G.711 A-law logarithmic PCM
8 = G.711 mu-law logarithmic PCM
9 = reserved
10 = AAC
14 = MP3 8-Khz
15 = Device-specific sound

Format of SoundData

Formats 7, 8, 14, and 15 are
reserved for internal use

Format 10 (AAC) is supported
in Flash Player 9,0,115,0 and
higher.

SoundRate UB[2]
0 = 5.5-kHz
1 = 11-kHz
2 = 22-kHz
3 = 44-kHz

Sampling rate
For AAC: always 3

SoundSize UB[1]
0 = snd8Bit
1 = snd16Bit

Size of each sample
For AAC: always 1

SoundType UB[1]
0 = sndMono
1 = sndStereo

Mono or stereo sound
For Nellymoser: always 0
For AAC: always 1

SoundData UI8[size of sound data] if SoundFormat == 10
AACAUDIODATA
else
Sound data—varies by format
6 The FLV File Format

www.adobe.com/go/swf_file_format

Format 0 PCM is the same as format 3 PCM, except that format 0 stores 16-bit PCM
samples in the endian order of the platform on which the file was created. For this reason,
format 0 is not recommended for use.

Nellymoser 8-kHz is a special case—the 8-kHz sampling rate is not supported in other
formats, and the SoundRate bits can’t represent this value. When Nellymoser 8-kHz mono is
specified in SoundFormat, the SoundRate and SoundType fields are ignored. For other
Nellymoser sampling rates, specify the normal Nellymoser SoundFormat and use the
SoundRate and SoundType fields as usual.

AACAUDIODATA
The AAC format is supported in Flash Player 9,0,115,0 and higher.

The AudioSpecificConfig is explained in ISO 14496-3. Note that it is not the same as the
contents of the esds box from an MP4/F4V file. This structure is more deeply embedded.

AACAUDIODATA

Field Type Comment

AACPacketType UI8 0: AAC sequence header
1: AAC raw

Data UI8[n] if AACPacketType == 0
AudioSpecificConfig
else if AACPacketType == 1
Raw AAC frame data
Audio tags 7

Video tags
Video tags are similar to the VideoFrame tag in the SWF file format, and their payload data is
identical. (For information on the SWF file format, see the SWF File Format Specification at
www.adobe.com/go/swf_file_format.)

If FrameType = 5, instead of a video payload, the message stream contains a UI8 with the
following meaning:

■ 0 = Start of client-side seeking video frame sequence
■ 1 = End of client-side seeking video frame sequence

VIDEODATA

Field Type Comment

FrameType UB[4] 1: keyframe (for AVC, a seekable
frame)
2: inter frame (for AVC, a non-
seekable frame)
3: disposable inter frame (H.263
only)
4: generated keyframe (reserved
for server use only)
5: video info/command frame

CodecID UB[4] 1: JPEG (currently unused)
2: Sorenson H.263
3: Screen video
4: On2 VP6
5: On2 VP6 with alpha channel
6: Screen video version 2
7: AVC

VideoData If CodecID = 2
H263VIDEOPACKET
If CodecID = 3
SCREENVIDEOPACKET
If CodecID = 4
VP6FLVVIDEOPACKET
If CodecID = 5
VP6FLVALPHAVIDEOPACKET
If CodecID = 6
SCREENV2VIDEOPACKET
if CodecID = 7
AVCVIDEOPACKET

Video frame payload

(see note following table)
8 The FLV File Format

www.adobe.com/go/swf_file_format

AVCVIDEOPACKET
An AVCVIDEOPACKET carries a payload of AVC video data.

See ISO 14496-12, 8.15.3 for an explanation of composition times. The offset in an FLV file
is always in milliseconds.

See ISO 14496-15, 5.2.4.1 for the description of AVCDecoderConfigurationRecord. This
contains the same information that would be stored in an avcC box in an MP4/FLV file.

Data tags
Data tags encapsulate single-method invocation, which is usually called on a NetStream
object in Flash Player. Data tags are formed from a method name and a set of arguments.

AVCVIDEOPACKET

Field Type Comment

AVCPacketType UI8 0: AVC sequence header
1: AVC NALU
2: AVC end of sequence (lower level NALU
sequence ender is not required or supported)

CompositionTime UI24 if AVCPacketType == 1
Composition time offset
else
0

Data UI8[n] if AVCPacketType == 0
AVCDecoderConfigurationRecord
else if AVCPacketType == 1
One or more NALUs (can be individual slices
per FLV packets; that is, full frames are not
strictly required)
else if AVCPacketType == 2
Empty

SCRIPTDATA

Field Type Comment

Objects SCRIPTDATAOBJECT[] Arbitrary number of
SCRIPTDATAOBJECT structures

End UI24 Always 9, also known as a
SCRIPTDATAOBJECTEND
Data tags 9

SCRIPTDATAOBJECT and SCRIPTDATAOBJECTEND
A SCRIPTDATAOBJECT record defines object data in ActionScript™. Lists of
SCRIPTDATAOBJECT records are terminated by using the SCRIPTDATAOBJECTEND
tag.

SCRIPTDATAOBJECT

Field Type Comment

ObjectName SCRIPTDATASTRING Name of the object

ObjectData SCRIPTDATAVALUE Data of the object

SCRIPTDATAOBJECTEND

Field Type Comment

ObjectEndMarker2 UI24 Always 9
10 The FLV File Format

SCRIPTDATASTRING and SCRIPTDATALONGSTRING
The SCRIPTDATASTRING and SCRIPTDATALONGSTRING records are used to define
strings for data tags.

The SCRIPTDATALONGSTRING record can be used to specify strings larger than 65535
characters.

SCRIPTDATAVALUE
A SCRIPTDATAVALUE record represents an abstract definition of an ActionScript value or
object. It can contain a list of values, objects, variables, or arrays.

SCRIPTDATASTRING

Field Type Comment

StringLength UI16 String length in bytes

StringData STRING String data

SCRIPTDATALONGSTRING

Field Type Comment

StringLength UI32 String length in bytes

StringData STRING String data

SCRIPTDATAVALUE

Field Type Comment

Type

(see notes following table)

UI8 Type of the variable:
0 = Number type
1 = Boolean type
2 = String type
3 = Object type
4 = MovieClip type
5 = Null type
6 = Undefined type
7 = Reference type
8 = ECMA array type
10 = Strict array type
11 = Date type
12 = Long string type

ECMAArrayLength If Type = 8, UI32 Approximate number of
fields of ECMA array
Data tags 11

If Type = 8 (ECMA array type), the ECMAArrayLength provides a hint to the software about
how many items might be in the array. The array continues until
SCRIPTDATAVARIABLEEND appears.

If Type = 10 (strict array type), the array begins with a UI32 type and contains that exact
number of items. The array does not terminate with a SCRIPTDATAVARIABLEEND tag.

SCRIPTDATAVARIABLE and
SCRIPTDATAVARIABLEEND
A SCRIPTDATAVARIABLE record defines variable data in ActionScript. Lists of
SCRIPTDATAVARIABLE records are terminated by using the
SCRIPTDATAVARIABLEEND tag.

ScriptDataValue If Type = 0, DOUBLE
If Type = 1, UI8
If Type = 2, SCRIPTDATASTRING
If Type = 3,
SCRIPTDATAOBJECT[n]
If Type = 4, SCRIPTDATASTRING
defining the MovieClip path
If Type = 7, UI16
If Type = 8,
SCRIPTDATAVARIABLE[ECMAArr
ayLength]
If Type = 10,
SCRIPTDATAVARIABLE[n]
If Type = 11, SCRIPTDATADATE
If Type = 12,
SCRIPTDATALONGSTRING

Script data values

ScriptDataValueTerminator If Type = 3,
SCRIPTDATAOBJECTEND
If Type = 8,
SCRIPTDATAVARIABLEEND

Terminators for Object
and Strict array lists

SCRIPTDATAVARIABLE

Field Type Comment

VariableName SCRIPTDATASTRING Name of the variable

VariableData SCRIPTDATAVALUE Data of the variable

SCRIPTDATAVALUE

Field Type Comment
12 The FLV File Format

SCRIPTDATADATE
A SCRIPTDATADATE record defines a particular date and time.

onMetaData
An FLV file can contain metadata with an “onMetaData” marker. Various stream properties
are available to a running ActionScript program via the NetStream.onMetaData property.
The available properties differ depending on the software used. Common properties include:

■ duration: a DOUBLE indicating the total duration of the file in seconds
■ width: a DOUBLE indicating the width of the video in pixels
■ height: a DOUBLE indicating the height of the video in pixels
■ videodatarate: a DOUBLE indicating the video bit rate in kilobits per second
■ framerate: a DOUBLE indicating the number of frames per second
■ videocodecid: a DOUBLE indicating the video codec ID used in the file (see “Video

tags” on page 8 for available CodecID values)
■ audiosamplerate: a DOUBLE indicating the frequency at which the audio stream is

replayed
■ audiosamplesize: a DOUBLE indicating the resolution of a single audio sample
■ stereo: a BOOL indicating whether the data is stereo
■ audiocodecid: a DOUBLE indicating the audio codec ID used in the file (see “Audio

tags” on page 6 for available SoundFormat values)
■ filesize: a DOUBLE indicating the total size of the file in bytes

SCRIPTDATAVARIABLEEND

Field Type Comment

VariableEndMarker1 UI24 Always 9

SCRIPTDATADATE

Field Type Comment

DateTime DOUBLE Number of milliseconds since Jan 1, 1970
UTC.

LocalDateTimeOffset SI16 Local time offset in minutes from UTC. For
time zones located west of Greenwich, UK,
this value is a negative number. Time zones
east of Greenwich, UK, are positive.
onMetaData 13

14 The FLV File Format

2

CHAPTER 2

The F4V File Format
Flash Player Update 3 (9,0,115,0) and higher can play F4V files. The F4V format is based on
the format specified by ISO/IEC 14496-12: ISO base media file format.

Unlike SWF files, F4V files store multibyte integers in big-endian byte order. For example, as
a UI16 in SWF file format, the byte sequence that represents the number 300 (0x12C) is
0x2C 0x01; as a UI16 in F4V file format, the byte sequence that represents the number 300 is
0x01 0x2C.

This chapter discusses all aspects of the F4V format except metadata. For information on
metadata, see Chapter 3, “F4V Metadata,” on page 33.

The F4V box
The fundamental building block of an F4V file is a box which has the following BOX format:

Each box structure begins with a BOXHEADER structure:

F4V box

Field Type Comment

Header BOXHEADER A consistent header that all boxes have

Payload UI8[] A number of bytes, the length of which is
defined by the BOXHEADER

BOXHEADER

Field Type Comment

TotalSize UI32 The total size of the box in bytes, including
this header

BoxType UI32 The type of atom

ExtendedSize If TotalSize equals 1
UI64

The total 64-bit length of the box in bytes,
including this header
15

Many boxes are well under 4 gigabytes in length and can store their size in the TotalSize field.
The format also supports very large boxes by setting the 32-bit TotalSize field to 1 and storing
a 64-bit size in ExtendedSize.

Each box is identified with a 32-bit type. For most boxes, this 32-bit type doubles as a
human-readable four-character ASCII code or FourCC, such as 'moov' (0x6D6F6F76) and
'mdat' (0x6D646174).

The box payload immediately follows the box header. The size of the payload in bytes is equal
to the total size of the box minus either 8 bytes or 16 bytes, depending on the size of the
header.

For more information, see section 4.2 of ISO/IEC 14496-12.

ftyp box
The F4V format is based on the ISO MP4 format, which in turn is based on the Apple
QuickTime container format. The subsets of the format support different features. The ftyp
box helps identify the features that a program must support to play a particular file.

Flash Player does not enforce any restrictions with respect to ftyp boxes. The program tries to
play any file it is given, within the restrictions of the codec types it supports.

For more information, see section 4.3 of ISO/IEC 14496-12.

ftyp box

Field Type Comments

Header BOXHEADER BoxType = 'ftyp' (0x66747970)

MajorBrand UI32 The primary brand identifier

MinorVersion UI32 The secondary brand identifier

CompatibleBrands UI32[] Arbitrary number of compatible
brands, until the end of the box
16 The F4V File Format

moov box
An F4V file must contain one and only one moov box. The moov box is effectively the
“header” of an F4V file. The moov box itself contains one or more other boxes, which in turn
contain other boxes which define the structure of the F4V data.

For more information, see section 8.1 of ISO/IEC 14496-12.

mvhd box
An F4V file must contain one and only one mvhd box. The mvhd box is contained within a
moov box and defines playback information that applies to the entire F4V file.

moov box

Field Type Comment

Header BOXHEADER BoxType = 'moov' (0x6D6F6F76)

Boxes BOX[] Many other boxes which define the
structure

mvhd box

Field Type Comment

Header BOXHEADER BoxType = 'mvhd' (0x6D766864)

Version UI8 Either 0 or 1

Flags UI24 Reserved, set to 0

CreationTime if Version == 0
SI32
if Version == 1
SI64

The creation time of the F4V file,
expressed as seconds elapsed since
midnight, January 1, 1904 (UTC)

ModificationTime if Version == 0
SI32
if Version == 1
SI64

The last modification time of the F4V
file, expressed as seconds elapsed
since midnight, January 1, 1904 (UTC)

TimeScale SI32 Specifies the time coordinate system
for the entire F4V file; for example,
100 indicates the time units are 1/100
second each
mvhd box 17

For more information, see section 8.3 of ISO/IEC 14496-12.

Duration if Version == 0
SI32
if Version == 1
SI64

The total length of the F4V file
presentation with respect to the
TimeScale; this value is also the
duration of the longest track in the file

Rate SI32 The preferred rate of playback,
expressed as a fixed point 16.16
number (commonly 0x00010000 =
1.0, or normal playback rate)

Volume SI16 The master volume of the file,
expressed as a fixed point 8.8 number
(commonly 0x0100 = 1.0, or full
volume)

Reserved UI16 Reserved, set to 0

Reserved UI32[2] Reserved, set to 0

Matrix UI32[9] Transformation matrix for the F4V file;
F4V restricts these values to
{0x00010000, 0, 0, 0,
0x00010000, 0, 0, 0,
0x40000000}

Reserved UI32[6] Reserved, set to 0

NextTrackID UI32 The ID of the next track to be added to
the presentation; this value may not
be 0 but might be all 1’s to indicate an
undefined state

mvhd box

Field Type Comment
18 The F4V File Format

trak box
An F4V file must contain one or more trak boxes. Each trak box is contained within a moov
box. Each trak box corresponds to an individual media track within the F4V file and contains
other boxes which further define the properties of the media track.

For more information, see section 8.4 of ISO/IEC 14496-12.

udta box
The optional udta box defines free-form user data. Flash Player does not care what is
contained in this box. An F4V file can contain at most one udta box.

For more information, see section 8.27 of ISO/IEC 14496-12.

meta box
The optional meta box can contain a variety of other boxes that carry metadata. An F4V file
can contain at most one meta box.

For more information, see section 8.44.1 of ISO/IEC 14496-12.

trak box

Field Type Comment

Header BOXHEADER BoxType = 'trak' (0x7472616B)

Boxes BOX[] Arbitrary number of boxes that define
the media track

udta box

Field Type Comment

Header BOXHEADER BoxType = 'udta' (0x75647461)

UserData UI8[] Free-form user data

meta box

Field Type Comment

Header BOXHEADER BoxType = 'meta' (0x6D657461)

Boxes BOX[] Arbitrary number of boxes that define
the file’s metadata
meta box 19

mdia box
Each trak box must contain one and only one mdia box. The mdia box contains boxes that
define media track properties.

For more information, see section 8.7 of ISO/IEC 14496-12.

minf box
Each mdia box must contain one and only one minf box. The minf box contains boxes that
define the track’s media information.

For more information, see section 8.10 of ISO/IEC 14496-12.

stbl box
Each minf box must contain one and only one stbl box. The stbl box contains boxes that
define properties about the samples that make up a track.

mdia box

Field Type Comment

Header BOXHEADER BoxType = 'mdia' (0x6D646961)

Boxes BOX[] Arbitrary number of boxes that define
media track properties

minf box

Field Type Comment

Header BOXHEADER BoxType = 'minf' (0x6D696E66)

Boxes BOX[] Arbitrary number of boxes that define
the track’s media information

stbl box

Field Type Comment

Header BOXHEADER BoxType = 'stbl' (0x7374626C)

Boxes BOX[] Arbitrary number of boxes that define
properties about the track’s
constituent samples
20 The F4V File Format

For more information, see section 8.14 of ISO/IEC 14496-12.

tkhd box
Each trak box must contain one and only one tkhd box. The tkhd box describes the main
properties of a track.

tkhd box

Field Type Comment

Header BOXHEADER BoxType = 'tkhd' (0x746B6864)

Version UI8 Versions 0 and 1 are defined

Flags UI24 Bit 0: this bit is set if the track is
enabled
Bit 1 = this bit is set if the track is part of
the presentation
Bit 2 = this bit is set if the track should
be considered when previewing the
F4V file

CreationTime if version == 0
UI32
if version == 1
UI64

The creation time of the track,
expressed as seconds elapsed since
midnight, January 1, 1904 (UTC)

ModificationTime if version == 0
UI32
if version == 1
UI64

The last modification time of the track,
expressed as seconds elapsed since
midnight, January 1, 1904 (UTC)

TrackID UI32 The track’s unique identifier

Reserved UI32 Reserved, set to 0

Duration if version == 0
UI32
if version == 1
UI64

The duration of the track, expressed in
the TimeScale defined in the mvhd
box for this track

Reserved UI32[2] Reserved, set to 0

Layer SI16 The position if the front to back
ordering of tracks; this value is
expected to be 0 for F4V files

AlternateGroup SI16 0
tkhd box 21

For more information, see section 8.5 of ISO/IEC 14496-12.

mdhd box
A mdia box must contain one and only one mdhd box. The mdhd box describes properties
about a media track.

Volume SI16 If the track is audio, this value is set to
0x0100 (fixed point 8.8 number
representing 1.0), otherwise, it is 0

Reserved SI16 Reserved, set to 0

TransformMatrix SI32[9] A matrix of fixed point 16x16 values
defining a perspective transform; this
matrix is restricted to the following
values: {0x00010000, 0, 0, 0,
0x00010000, 0, 0, 0,
0x40000000}

Width SI32 Applicable to a video track

Height SI32 Applicable to a video track

mdhd box

Field Type Comment

Header BOXHEADER BoxType = 'mdhd' (0x6D646864)

Version UI8 Version 0 and 1 are supported

Flags UI24 Reserved, set to 0

CreationTime if version == 0
UI32
if version == 1
UI64

The creation time of the box,
expressed as seconds elapsed since
midnight, January 1, 1904 (UTC)

ModificationTime if version == 0
UI32
if version == 1
UI64

The last modification time of the box,
expressed as seconds elapsed since
midnight, January 1, 1904 (UTC)

TimeScale UI32 The base clock tick frequency that this
track uses for timing its media

tkhd box

Field Type Comment
22 The F4V File Format

For more information, see section 8.8 of ISO/IEC 14496-12.

stsd box
The stsd box defines the sample description for a sample table. Each stbl box must contain
one and only one stsd box.

An stsd box can contain multiple descriptions for a track, one for each media type contained
in the track.

Duration if version == 0
UI32
if version == 1
UI64

The total duration of this track,
measured in reference to the
TimeScale

Pad UB[1] Padding, set to 0

Language UB[5][3] 3-character code specifying language
(see ISO 639-2/T); each character is
interpreted as 0x60 + (5 bit) code to
yield an ASCII character

Reserved SI16 Reserved, set to 0

stsd box

Field Type Comment

Header BOXHEADER BoxType = 'stsd' (0x73747364)

Version UI8 Expected to be 0

Flags UI24 None defined, set to 0

Count UI32 The number of entries

Descriptions DESCRIPTIONRECORD[
Count]

An array of records whose types vary
depending on whether the track
contains audio or video data

mdhd box

Field Type Comment
stsd box 23

A SAMPLEDESCRIPTION record has the following layout:

For more information, see section 8.16 of ISO/IEC 14496-12.

stsc box
The stsc box defines the sample-to-chunk mapping in the sample table of a media track. An
stbl box must contain one and only one stsc box.

SAMPLEDESCRIPTION

Field Type Comment

DescriptionLength UI32 The length of the description
record

Type UI32 The type of the description; this
value is often 4 human-readable
ASCII characters that also double
as the track’s codec identifier

Description UI8[DescriptionLength-8] Per-codec configuration data

stsc box

Field Type Comment

Header BOXHEADER BoxType = 'stsc' (0x73747363)

Version UI8 Expected to be 0

Flags UI24 Reserved, set to 0

Count UI32 The number of STSCRECORD
entries

Entries STSCRECORD[Count] An array of STSCRECORD structures
24 The F4V File Format

Each STSCRECORD has the following format:

For more information, see section 8.18 of ISO/IEC 14496-12.

stts box
The stts box defines the time-to-sample mapping for a sample table. Each stbl box must
contain one and only one stts box.

Each STTSRECORD has the following format:

For more information, see section 8.15.2 of ISO/IEC 14496-12.

STSCRECORD

Field Type Comment

FirstChunk UI32 The first chunk that this record applies
to

SamplesPerChunk UI32 The number of consecutive samples
that this record applies to

SampleDescIndex UI32 The sample description that describes
this sequence of chunks

stts box

Field Type Comment

Header BOXHEADER BoxType = 'stts' (0x73747473)

Version UI8 Expected to be 0

Flags UI24 None defined, set to 0

Count UI32 The number of STTSRECORD entries

Entries STTSRECORD[Count] An array of STTSRECORD structures

STTSRECORD

Field Type Comment

SampleCount UI32 The number of consecutive samples
that this STTSRECORD applies to

SampleDelta UI32 Sample duration
stts box 25

ctts box
The optional ctts box defines the composition time to sample mapping for a sample table. An
stbl box can contain at most one ctts box.

Each CTTSRECORD has the following structure:

Samples are not always composed (presented to the user) at the time of decoding. The ctts box
contains offsets from the decoding time when samples are meant to be presented to the user.

For more information, see section 8.15.3 of ISO/IEC 14496-12.

stco and co64 boxes
The stco and co64 boxes define chunk offsets for each chunk in a sample table. Each sample
table must contain one and only one box of either the stco or co64 type.

ctts box

Field Type Comment

Header BOXHEADER BoxType = 'ctts' (0x63747473)

Count UI32 The number of CTTSRECORD entries

Entries CTTSRECORD[Count] An array of CTTSRECORD structures

CTTSRECORD

Field Type Comment

SampleCount UI32 The number of consecutive samples
that this CTTSRECORD applies to

SampleOffset UI32 For each sample specified by the
SampleCount field, this field contains
a positive integer that specifies the
composition offset from the decoding
time

stco and co64 boxes

Field Type Comment

Header BOXHEADER BoxType = 'stco' (0x7374636F) or
'co64' (0x636F3634)

Version UI8 Expected to be 0

Flags UI24 No flags defined, set to 0
26 The F4V File Format

For more information, see section 8.19 of ISO/IEC 14496-12.

stss box
The optional stss box specifies which samples within a sample table are sync samples. Sync
samples are defined as samples that are safe to seek to. If the track is a video track, sync
samples are the keyframes/intraframes that do not rely on any data from any other frames.

An stbl box can contain at most one stss box. If the stbl box doesn’t contain an stss box, all
samples in the track are treated as sync samples.

For more information, see section 8.20 of ISO/IEC 14496-12.

OffsetCount UI32 The number of offsets in the Offsets
table

Offsets if BoxType == 'stco’
UI32[OffsetCount]
else if BoxType == 'co64’
UI64[OffsetCount]

A table of absolute chunk offsets
within the file

stss box

Field Type Comment

Header BOXHEADER BoxType = 'stss' (0x73747373)

Version UI8 Expected to be 0

Flags UI24 No flags defined, set to 0

SyncCount UI32 The number of entries in SyncTable

SyncTable UI32[SyncCount] A table of sample numbers that are
also sync samples; the table is sorted
in ascending order of sample numbers

stco and co64 boxes

Field Type Comment
stss box 27

stsz box
The stsz box specifies the size of each sample in a sample table. An stsz atom must contain one
and only one stsz box.

For more information, see section 8.17.2 of ISO/IEC 14496-12.

chpl box
The optional chpl box allows an F4V file to specify individual chapters along the main
timeline of an F4V file. The information in this box is provided to ActionScript. The chpl box
occurs within a moov box.

stsz box

Field Type Comment

Header BOXHEADER BoxType = 'stsz' (0x7374737A)

Version UI8 Expected to be 0

Flags UI24 No flags defined, set to 0

ConstantSize UI32 If all samples have the same size, this
field is set with that constant size;
otherwise it is 0

SizeCount UI32 The number of entries in SizeTable

SizeTable if ConstantSize == 0
UI32[SizeCount]

A table of sample sizes; if
ConstantSize is 0, this table is empty

chpl box

Field Type Comment

Header BOXHEADER BoxType = 'chpl' (0x6368706C)

Version UI8 Expected to be 0

Flags UI24 Reserved, set to 0

Count UI8 The number of entries in the Chapters
array

Chapters CHAPTERRECORD[Count] An array of timestamps along the
timeline; each indicates the beginning
of a new chapter
28 The F4V File Format

Each CHAPTERRECORD has the following layout:

pdin box
The optional pdin box defines information about progressive download. A file can contain
one pdin box at the top level of the box hierarchy. The information in this box is provided to
ActionScript.

The payload of a pdin box provides hints to software about how much data to download
before the software can safely begin playback.

Each RATEDELAYRECORD has the following layout:

For more information, see section 8.43 of ISO/IEC 14496-12.

CHAPTERRECORD

Field Type Comment

Timestamp UI64 The absolute timestamp of the
chapter, in reference to the master
timescale and timeline of the F4V file

TitleSize UI8 The length of the Title string

Title UI8[TitleSize] The chapter title

pdin box

Field Type Comment

Header BOXHEADER BoxType = 'pdin' (0x7064696E)

Version UI8 Expected to be 0

Flags UI24 Reserved, set to 0

RateDelay RATEDELAYRECORD[] Populated until the end of the box

RATEDELAYRECORD

Field Type Comment

BitRate UI32 The bit rate (in bytes/second) to be
considered for this record

InitialDelay UI32 The number of milliseconds to delay
before beginning playback at this bit
rate
pdin box 29

mdat box
An mdat box contains the media data payload for the F4V file. An F4V file must contain one
and only one mdat box. The mdat box occurs at the top level of an F4V file, along with the
moov box.

The mdat box cannot be understood on its own, which is why a moov box must be present in
the file as well.

For more information, see section 8.2 of ISO/IEC 14496-12

Required structure
Flash Player expects a valid F4V file to begin with the one of the following top-level boxes:

■ ftyp (see “ftyp box” on page 16)
■ moov (see “moov box” on page 17)
■ mdat (see “mdat box” on page 30)

Many tools that create these files place an mdat box at the front of the file. Before Flash Player
can use the file, it is necessary to change the order of boxes in the file. Some tools store an ftyp
box followed immediately by an mdat box. In these situations, it is still recommended to use a
post-processing step to move the moov box to the front of the file (just after the ftyp box).

mdat box

Field Type Comment

Header BOXHEADER BoxHeader = 'mdat' (0x6D646174)

Payload UI8[n] n bytes of media data, the structure of
which is defined in the file’s moov box
30 The F4V File Format

Supported media types
The following table describes the media types that Flash Player plays back when the media is
encapsulated inside an F4V file.

Media type Comments

GIF A media type of gif (0x67696620) denotes a still frame of video data
compressed using the CompuServe GIF format. The space character,
hex 0x20, is included to make a complete four-character code.

PNG A media type of png (0x706E6720) denotes a still frame of video data
compressed using the standard PNG format. The space character,
hex 0x20, is included to make a complete four-character code.

JPEG A media type of jpeg (0x6A706567) denotes a still frame of video data
compressed using the standard JPEG format.

Text A media type of either text (0x74657874) or tx3g (0x74783367)
indicates that the track contains textual data that is made available via
ActionScript.

AMF0 A media type of amf0 (0x616D6630) indicates that the track contains
data corresponding to the original version of the ActionScript Message
Format (AMF).

AMF3 A media type of amf3 (0x616D6633) indicates that the track contains
data corresponding to the ActionScript Message Format (AMF)
version 3.

H.264 A media type of H264 (0x48323634), h264 (0x68323634), or avc1
(0x61766331) indicates that the track is encoded with H.264 video.
Flash Player supports the following H.264 video profiles:
• 0: supported for older media that neglects to set profile
• 66: baseline
• 77: extended
• 88: main
• 100: YUV 4:2:0, 8 bits/sample; a.k.a. “High”
• 110: YUV 4:2:0, 10 bits/sample; a.k.a. “High 10”
• 122: YUV 4:2:2, 10 bits/sample; a.k.a. “High 4:2:2”
• 144: YUV 4:4:4, 12 bits/sample; a.k.a. “High 4:4:4”
Supported media types 31

An avcC box occurs inside the stsd box of a sample table when the video codec is H.264, and
contains initialization data that an H.264 decoder requires to decode the stream. Bytes 1
and 3 after the BOXHEADER contain the profile and level, respectively, for the AVC data.
For more information about the remainder of the avcC box, see section 5.3.4.1 of ISO/IEC
14496-15.

An esds box occurs inside the stsd box of a sample table when the action codec is AAC, and
contains initialization data that an AAC decoder requires to decode the stream. See ISO/IEC
14496-3 for more information about the structure of this box.

Unsupported boxes
Many box types are described in the formal ISO specification, as well as in the original Apple
QuickTime specification, that Flash Player does not acknowledge. Flash Player might still
play files with these box types, but gracefully disregards these boxes and their contents.

MP3 A media type of .mp3 (0x2E6D7033) indicates that the track contains
MP3 audio data. The dot character, hex 0x2E, is included to make a
complete four-character code.

AAC
(Flash Player
9,0,115,0 and
higher)

A media type of mp4a (0x6D703461) indicates that the track is
encoded with AAC audio. Flash Player supports the following AAC
profiles, denoted by their object types:
• 1: main profile
• 2: low complexity, a.k.a. LC
• 5: high efficiency/scale band replication, a.k.a. HE/SBR

Media type Comments
32 The F4V File Format

3

CHAPTER 3

F4V Metadata
When Flash Player loads an F4V file, various stream properties are made available to a
running ActionScript program via the NetStream.onMetaData property. The available
properties differ depending on the software used. These properties are:

■ duration: a DOUBLE indicating the total length of the movie in seconds
■ moovposition: a DOUBLE indicating the absolute offset of the moov box within the

F4V file; this property is useful for determining if the file will load progressively
■ videocodecid: a STRING with four characters that define the video codec used, if video

is present and is encoded with a codec that Flash Player can decode
■ width: a DOUBLE indicating the width of the video, if video is present and is encoded

with a codec that Flash Player can decode
■ height: a DOUBLE indicating the height of the video, if video is present and is encoded

with a codec that Flash Player can decode
■ avcprofile: a DOUBLE indicating the AVC profile that the video conforms to, if video

is present and is encoded with AVC/H.264
■ avclevel: a DOUBLE indicating the AVC level that the video conforms to, if video is

present and is encoded with AVC/H.264
■ videoframerate: a DOUBLE indicating the average video frame rate of the video, if

video is present and is encoded with a codec that Flash Player can decode
■ audiocodecid: a STRING with four characters that define the audio codec used, if audio

is present and is encoded with a codec that Flash Player can decode
33

Tag box
The F4V file format supports an assortment of optional tag boxes that can occur within a
moov box. An FLV file can contain up to 256 tags (including the tags in these boxes and the
tags defined in an ilst box).
.

These tags can occur one level beneath a moov box. Recognized tag types include 'auth'
(0x61757468), 'titl' (0x7469746C), 'dscp' (0x64736370), and 'cprt' (0x63707274).

ilst box
An ilst box occurs inside a meta box and contains an arbitrary number of metadata tags that
are available to ActionScript. An FLV file can contain up to 256 tags (including the tags in
this box and in the auth, dscp, and cprt tag box types).
.

Tag box

Field Type Comment

Header BOXHEADER BoxType = one of several

Version UI8 Must be 0

Flags UI24 Reserved, set to 0

LanguageCode UI16 ISO-639-2/T two-letter codes

TagString UI8[n] n = remaining size of the box when the
tag is reached; the maximum size that
the Player honors for a TagString is
65535 bytes

ilst box

Field Type Comment

Header BOXHEADER BoxHeader = 'ilst' (0x696C7374)

TagCount UI32 The number of tags enumerated in the
ilst box

Tags TAGRECORD[TagCount] A number of TAGRECORD entries
34 F4V Metadata

Each TAGRECORD has the following layout:

The supported values for the DataType are:

■ 0: custom data; in the case of 'trkn' and 'disk' tag types, the data payload is interpreted as
a single UI32

■ 1: text data
■ 13, 14: binary data
■ 21: generic data

Image metadata
If an F4V sample is an image type (GIF, PNG, or JPEG), the data is made available to a
running ActionScript program through the onImageData property. The following properties
are present:

■ trackid: a DOUBLE indicating the track that this sample belongs to
■ data: a BYTEARRAY containing the compressed image data (that is, the original JPEG,

PNG or GIF file data)

TAGRECORD

Field Type Comment

TagLength UI32 The total length of the TAGRECORD,
including this length field

TagName UI8[4] 4 bytes indicating the name of the tag;
these bytes usually come from the
human-readable ASCII set, but not
always

DataLength UI32 The total length of the data portion of
the TAGRECORD

DataTag UI8[4] The 4 bytes 'd', 'a', 't', and 'a' to
indicate the data portion of the
TAGRECORD

DataType UI32 Specifies the type of data in the data
payload of the TAGRECORD

Reserved UI32 Reserved, set to 0

Payload UI8[] An arbitrary number of bytes
occupying the remainder of the
TAGRECORD; the precise payload
format is dependent on the DataType
Image metadata 35

Text metadata
Text samples ('text' or 'tx3g') can contain a wide range of metadata boxes whose contents are
exposed to a running ActionScript program through the onTextData property.

styl box
A styl box carries text style specifications. This information is exposed to ActionScript via the
style property.

An individual STYLERECORD has the following layout:

styl box

Field Type Comment

Header BOXHEADER BoxHeader = 'styl' (0x7374796C)

Count UI16 The number of entries in the Styles
array

Styles STYLERECORD[Count] An array of STYLERECORD
structures; each is exposed as an
ActionScript object

STYLERECORD

Field Type Comment

StartChar UI16 The first character to which this
STYLERECORD applies; exposed to
ActionScript via a DOUBLE property
named startchar

EndChar UI16 The last character to which this
STYLERECORD applies; exposed to
ActionScript via a DOUBLE property
named endchar

FontID UI16 The font ID to use for this style;
exposed to ActionScript via a
DOUBLE property named fontid

FaceStyleFlags UI8 Exposed to ActionScript via a
DOUBLE property named
facestyleflags
36 F4V Metadata

hlit box
An hlit box specifies a range of text to be highlighting. This information is exposed to
ActionScript via the highlight property.

hclr box
An hclr box specifies the highlight color for text. This information is exposed to ActionScript
via the highlightcolor property.

FontSize UI8 The size to use for the font; exposed to
ActionScript via the property
fontsize

TextColor UI32 The RGBA color for the text; exposed
to ActionScript via the property
textcolor

hlit box

Field Type Comment

Header BOXHEADER BoxHeader = 'hlit' (0x686C6974)

StartChar UI16 The first character to highlight;
exposed to ActionScript via a
DOUBLE property named startchar

EndChar UI16 The final character to highlight;
exposed to ActionScript via a
DOUBLE property named endchar

hclr box

Field Type Comment

Header BOXHEADER BoxHeader = 'hclr' (0x68636C72)

HighlightColor UI16[3] A three-element array that holds
values for red, green, and blue
components in that order; exposed to
ActionScript via a DOUBLE property
named highlightcolor

STYLERECORD

Field Type Comment
Text metadata 37

krok box
A krok box specifies karaoke metadata. This information is exposed to ActionScript via the
karaoke property. Times are expressed in timescale units in relation to the track.

An individual KARAOKEREC has the following structure:

dlay box
A dlay box specifies a scroll delay. This information is exposed to ActionScript via the
scrolldelay property, expressed in timescale units in relation to the track.

krok box

Field Type Comment

Header BOXHEADER BoxHeader = 'krok' (0x6B726F6B)

StartTime UI32 Exposed to ActionScript via a
DOUBLE property named starttime

Count UI16 The number of entries in the
KaraokeRecords array

KaraokeRecords KARAOKEREC[Count] An array of KARAOKEREC
structures; each is exposed to
ActionScript as an object

KARAOKEREC

Field Type Comment

EndTime UI32 Exposed to ActionScript via a
DOUBLE property named endtime

StartChar UI16 Exposed to ActionScript via a
DOUBLE property named startchar

EndChar UI16 Exposed to ActionScript via a
DOUBLE property named endchar

dlay box

Field Type Comment

Header BOXHEADER BoxHeader = 'dlay' (0x646C6179)

ScrollDelay UI32 Exposed to ActionScript via a
DOUBLE property named
scrolldelay
38 F4V Metadata

drpo box
A drpo box specifies drop shadow offset coordinates for text.

drpt box
A drpt box specifies drop shadow alpha value.

href box
An href box specifies a hypertext link with ALT text over a text range. This information is
exposed to ActionScript via the hypertext property.

drpo box

Field Type Comment

Header BOXHEADER BoxHeader = 'drpo' (0x6472706F)

DropShadowOffsetX UI16 Exposed to ActionScript via a
DOUBLE property named
dropshadowoffsetx

DropShadowOffsetY UI16 Exposed to ActionScript via a
DOUBLE property named
dropshadowoffsety

drpt box

Field Type Comment

Header BOXHEADER BoxHeader = 'drpt' (0x64727074)

DropShadowAlpha UI16 A 16-bit alpha value; exposed to
ActionScript via a DOUBLE property
named dropshadowalpha

href box

Field Type Comment

Header BOXHEADER BoxHeader = 'href' (0x68726566)

StartChar UI16 The beginning character of the text
range; exposed to ActionScript via a
DOUBLE property named startchar

EndChar UI16 The last character of the text range;
exposed to ActionScript via a
DOUBLE property named endchar
Text metadata 39

tbox box
A tbox box defines the coordinates for a text box. This information is exposed to ActionScript
via the textbox property.

URLSize UI8 The length of the URL string

URL UI8[URLSize] The URL string; exposed to
ActionScript via a STRING property
named url

ALTSize UI8 The length of the ALT string

ALT UI8[ALTSize] The ALT string which is displayed
when the user’s mouse hovers over
the link; exposed to ActionScript via a
STRING property named alt

tbox box

Field Type Comment

Header BOXHEADER BoxHeader = 'tbox' (0x74626F78)

Top UI16 The top pixel coordinate; exposed to
ActionScript via a DOUBLE property
named top

Left UI16 The left pixel coordinate; exposed to
ActionScript via a DOUBLE property
named left

Bottom UI16 The bottom pixel coordinate; exposed
to ActionScript via a DOUBLE
property named bottom

Right UI16 The right pixel coordinate; exposed to
ActionScript via a DOUBLE property
named right

href box

Field Type Comment
40 F4V Metadata

blnk box
A blnk box specifies a range of text to set blinking. This information is exposed to
ActionScript via the blink property.

twrp box
A twrp box sets the wrap flag for text.

blnk box

Field Type Comment

Header BOXHEADER BoxHeader = 'blnk' (0x626C6E6B)

StartChar UI16 The first character in the blinking
range; exposed to ActionScript via a
DOUBLE property named startchar

EndChar UI16 The ending character in the blinking
range; exposed to ActionScript via a
DOUBLE property named endchar

twrp box

Field Type Comment

Header BOXHEADER BoxHeader = 'twrp' (0x74777270)

WrapFlag UI8 A boolean that is nonzero if the text
should wrap; exposed to ActionScript
via a DOUBLE property named
wrapflag
Text metadata 41

42 F4V Metadata

	Introduction
	The FLV file format
	The F4V file format

	The FLV File Format
	The FLV header
	The FLV file body
	FLV tags
	Audio tags
	AACAUDIODATA

	Video tags
	AVCVIDEOPACKET

	Data tags
	onMetaData

	The F4V File Format
	The F4V box
	ftyp box
	moov box
	mvhd box
	trak box
	udta box
	meta box
	mdia box
	minf box
	stbl box
	tkhd box
	mdhd box
	stsd box
	stsc box
	stts box
	ctts box
	stco and co64 boxes
	stss box
	stsz box
	chpl box
	pdin box
	mdat box
	Required structure
	Supported media types
	Unsupported boxes

	F4V Metadata
	Tag box
	ilst box
	Image metadata
	Text metadata
	styl box
	hlit box
	hclr box
	krok box
	dlay box
	drpo box
	drpt box
	href box
	tbox box
	blnk box
	twrp box

