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Assume we are given a nxn binary image containing horizontally convex features; i.e., for each 
feature, each of its row’s pixels form an interval on that row. In this paper we consider the 
problem of assigning topological numbers to such features: i.e., assign a number to every featuref 
so that all features to the left offub the image have a smaller number assigned to them. This 
problem arises in solutions to the stereo matching problem. We present a parallel algorithm to 
solve the topological numbering problem in Ofn) time on an nxn mesh of processors. The key 
idea of our solution is to create a tree from which the topological numbers can be obtained even 
though the tree does not uniqiely represent the “to the left of” relationship of the features. 
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I I. Introduction 

Assume we are given an nm binary image in which we refer to the image positions con- 

taining a '1' (resp. '0') as containing a I-pixel (resp. O-pixel). The connected components, 

which we callfeatures, formed by the 1-pixels are horizontally convex Le., for each feature, 

each of its row's l-pixels are contiguous on that row or, equivalently, form an interval on that 

row. An example of an image containing a horizontally convex feature is shown in Hgun 1. 

I 

~ 

I A horizontally convex featun 

Figure 1 

Observe that the features do not need to be vertically convex. For horizontally convex features 

the nlationship "to the left of" defines a partial order as follows. A feature f is to the lcfr of a 

featun g, denoted f { g, if and only if a 1-pixel off is to the left of a 1-pixel of g on some row 

of the image. If no such row exists then f and g are incomparable. The topological nunhering 

problem is to assign to every feature in the image a unique number so that for any feature5 a l l  

features to the left o f f  have a smaller number assigned to them. The need for topological 

I 

I numbering of features arises in solutions to the stereo matching problem [OK]. In this paper we 

pnsent a parallel algorithm that determines the topological numbers in O(n) time when the 

image is stored in an nxn mesh of processors, one pixel per processor. 

We next explain briefly how the topological numbering problem arises in the context of 

the stereo matching problem. In the stereo matching problem we are given two images, L and R, 

of a 3D scene and the objective is to determine the coordinates (x,y,r) of a point in the 3D 

scene from its image points (q,yJ in L and (xr,yr) in R. The heart of the stereo matching prob- 

lem is finding corresponding points in the two images of the same scene [BE BT, GK, Mpl. An 

I 



elegant dynamic programming solution is given by Ohta and Kanadc [OK]. Onc of fhc subprob- 

lems that needs to be solved in their algorithm is that of establishing precedence betwecn hor- 

izontally convex features of an image by zssigning topological numbers to them. The scqucntial 

algorithm given in [OK] for numbering features is based on performing a topological search on 

a dinctcd acyclic graph. The directed acyclic graph is obtained by making every feature a vertex 

and introducing a directed edge from f to g iff { g and there exists at least one horizontal line 

in which no other feature is met when going from f to g on that line. The so obtained directed 

acyclic digraph has at most O(n2)  vertices and O(n2)  edges and a topological search on it 

comctly numbers the features. If topological numbers are obtained for both images L and R, 

then they are used to enforce consistency in the matching process as follows. If the algorithm 

decides to match f e a m  fr of L with feature fi of R, then all featuns in L with a smaller 

number than fr can only be matched with features in R that have a smaller number than fi. 
In the next section we describe our algorithm that determines the topological numbers in 

0 (n)  h e  when the nxn image is s t o d  in an nxn mesh of pmctssars wirh on: pixel pzr pro- 

ctss3r. We assume the mtsh to be an SIMD (Single Instiuction, Muleple Data) machine in 

which every processor has a fixed (Le. O(1)) amount of of local storage PJ. Our algorithm 

determines the topological numbers by solving a graph problem. Its basic idea is quite different 

from the one used by Ohta and Kanade [OK]. We cannot atrord to parallelize the topological 

sort on that directed acyclic gram since topological soning on such a graph does not seem to 

lend itself to an efficient parallel solution. Instead, in our solution we construct from the image a 

rooted, directed in-trcc and we obtain the topological numbers by performing computations on 

that tnt. 

II. The Algorithm 

Throughout we will index the processing elements PES) of the mesh by either their row- 

major index or by their mw/column position. Figure 2 illustrates the row-major indexing 

scheme. The PE at row i and column j is denoted by F%(l,j). We let position (0,O) of the mesh 

(and thus the image) be the top left PE of the mesh The input to our algorithm is an nxn binary 

image I, where I ( &  j) is stored at PE(i, j) .  Our algorithm assumes that every PE containing a 1- 



pixel also contain th 
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A 4x4 mesh with row-major indexing 

Figure 2 

connected component number of the corresponding feature. We further- 

more assume that the component numbers arc assigned so that the number of a feature is the 

largest row-major index of any PE containing a 1-pixel from that featun. That is, the number 

of a f e a m  is the row-major index of the lowest rightmost 1-pixel in i t  Numerous parallel 

mesh algoritfuns to label the connected components in O(n> time are known [CSS, H, HT, MS, 

NS] and tley can ezsily be modified to label the f t m s  2s nttdd by our a lgo r i tk  We nh: 

to the component number stored at PE(i,j) as C(i,j). The output of our algorithm is array TN, 

where T N ( i , j )  contains the topological number of the feature containing the l-pixel at position 

(W* 

One seemingly obvious algorithm for determining the topological numbers is based on the 

"swqline" method. A horizontal line is used to sweep the image, for example, from right to 

l e k  The first time a 1-pixel of a feature g is encountered, it is given a topological number such 

that feature g is given a larger number than feature f if and only if feature g is encountered 

before feature f in the right-to-left sweep. An image on which the method fails is shown in Fig- 

ure 3. 

Our algorithm consists of three steps which are described next. In the first step it creates 

from the input image Z a rooted, directed in-tm T in which the features correspond to the ver- 

tices. We create a root vertex which corresponds to an artificially created feature running along 

the length of the left border of the input image (introducing this "dummy" feature simplifies the 

exposition). The edges of the tree are created as follows. If PE( i , j )  contains a component 

number equal to its row-major index, then PE( i , j )  initiates a horizontal scan leftward on row i .  



line swetps - j i 

righ t-to-Ieft 

I 
I 

I 

Illustrating why a "sweepline" method does not work 

Figure 3 

The component number is taken along on this scan. In Figure 4(a), the processors initiating such 

a scan are circled. Thus a processor initiates a scan if and only if it contains the lowest right- 

most 1-pixel of a f e r n .  
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(a) Features indicated by component numbers: 
arrows show scans done in step 1 
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(b) Rooted directed me created from (a) 
with preorder and component numbers 

Figure 4 

From now on we will refer to the largest row number (Le. geometrically lowest row) containing 

1-pixels belonging to feature f as lowm. For example, in Figure 4(a), low(12)=2, and 
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low(47)=5. If feature f contains more than one I-pixel in lowcf), then the scan may travel 

through other I-pixels belonging to f. The scan initiated at PE(i,J stops when it reaches thc 

first I-pixel belonging to a different feature 8. For example, in Figure 4(a), the scan initiated at 

the circled '85' stops at the tip of the arrow starting from it (i.e., at a '90'). If the scan stops 3t 

PE(i.17, f C j ,  the directed edge (C(i,j), C(i,f)) is created in the PE(i , f ) .  The graph created in 

this step is an acyclic digraph in which every node has outdegree exactly one, except one node 

which has out-degree zero (the "dummy" feature, labeled '90' in Figure 4(a)). It is easy to see 

that this graph is actually a directed i n - a t  rooted at the node of out-degree zero. Figure 4(b) 

shows the m created from 4(a). In figure 4@), notice that the children of any node are drawn 

from left to right by increasing component numbers. Thus T is, in some sense, an ordered tree, 

The rooted, directed in-me created by our algorithm does not contain all the information 

about the partial order. W g u n  5 illustrates thrcc distinct partial orderings that give rise to the 

same me. 

(a) @I (c) 

Illustrating distinct partial orderings that give rise to the same tree 

Figure 5 

Contrast this with the directed acyclic graph of Ohta and Kanade [OK], whose transitive closure 

is exactly the " { "  relationship. However, the me created in our algorithm contains all of the 

crucial information needed to compute the topological numbers, and the simple smcture of a 

tree allows us to generate these numbers in 0 (n)  time. 

The second step of the algorithm takes the rooted, directed in-tree! T and computcs the 

preorder numbers of the vertices of T using the Atallah-Hambrusch algorithm given in [AH]. 

When computing the preorder numbers it is crucial that the children of every node are visited in 

the order of increasing component numbers. As we will show in the next section, for any two 
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features f and h with with f { h, the preorder number off is smaller than the preorder number of 

h. Hence, the preorder numbers are comct topological numbers. The preorder numbers for the 

tree shown in Flgurc 4@) are given inside the circles indicating the vertices. After the preorder 

numbers have been assigned, the iinal step of the algorithm broadcasts them from the vertices of 

T to all 1-pixels of the corresponding features in I ,  thus creating the array TN. This "broadcast- 

ing" is done in 0 ( n )  time using methods described in [H, MS, NS]. 

IIL Correctness 

In this section we prove the correctness of the algorithm outlined in the previous section. 

We denote the preorder number assigned to feature f as prea ,  Recall that in the algorithm 

preorder numbers are assigned to the vertices such that if a vertex has two children u and v and 

u CY, then pre(u) < pre(v) (Le., vertex u is visited before vertex Y in the traversal). Before show- 

ing that the pnorder numbers are topological numbers, we introduce the notion of an image 

path, and the3 $ve a l e m a  

Let W O ,  w1, , Wk-1, wk be the vertices on the path from femre w o  to wk in T. The 

image path P(w0,wk) consists of all the 1-pixels in feature W O ,  all the 1-pixels in feature wi that 

are on a KIW gnatcr or equal to lOW(Wi-l), lSiSk, and of all the 0-pixels traversed during the 

horizontal scan from feature Wi to Wi+i ,  OSiSk-1. See Figure 6 for an example of an image 

, 

path P(wo,w~) .  Observe that the set of pixels included in an image path is connected and hor- 

izontally convex. 

Lemma. Let P ( ~ 0 . w ~ )  and P(uo,u~) be two image paths with WO+UO and Wk-1. There can- 

not exist a 1-pixel that is in both P(w0,wk) and P(u0,ul). 

Proof. Assume there exists such a l-pixel. If there exists more than one, choose the highest, 

righunost one. Let x be this l-pixel. An image path consists of portions of features and hor- 

izontal lines, and since x is in both image paths, x must come from a feature. W.1.o.g. let wi be 

this feature. Both image paths contain all the 1-pixels of feature wi within and below the row 

containing pixel x. Hence, both image paths contain the same set of 1-pixels from this point on 

and wk*ul is not possible. 0 
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I 1 

Example of an image path P ( ~ 0 . ~ 3 ) ;  image path includes 
shaded portions of the features and the horizontal lines. 

Figure 6 

Theorem. For any two featuns f and h with f { h, we have p n o  e pre(h). 

Proof. Ler f a d  h be my nvo feamcs with f { h. If h is a desct&nt off in T, then, Out to 

the definition of preorde: numbering, f e a m  f is assigned a smaller preorder number than 

feature h and the theorem follows. 
I 

Assume now that h is not a descendkt o k  f in T. Let d be the common ancestor off and h 

that is lowest in T (i.e., farthest from the root in T). Let u and v be the two children of d such 

that f is a descendent of u and h is a descendent of v. To show that precf) e pre(h), it suffices to 

show that low(u) < low(v), since this would imply that I( occurs before Y in the ordered list of 

d's children (Le., it would imply u e v). This in turn would imply that the preorder traversal 

visits u and its subcret before v and its subcret, and hence that prem e pre(h). We now show 

that low@) e low(v). 

Assume by contradiction that low(u) 2 low(v). If low(u) = low(v), then u and v cannot 

both be children of d in T, and therefore low@) > low(v). Since f { h, there exists a row i such 

that a 1-pixel x off is to the left of a 1-pixel y of h. Let q, (resp. qv) be the rightmost 1-pixel 

of u (resp. v) in row low@) (resp. row low(v)). Figure 7 shows x, y, q,, q,, and the relative 

positions of the image paths P ( feu)  and P(h,v). In particular, Pcf*u) contains the pixels x and 

vu, P(h,v) contains the pixels y and qvs and qv is to the right of P(f,u). (If qv was to the left 
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of P v, u), then P v,u) and P (h, v) would intersect, violating the previous lemma). 

I I 

Example of two image paths, P (f,u) and P (h,v); pixels 
x, y, qvI qv, t, and I are c i l e d  and labeled. 

Figure 7 

Since d i; the parent of v in T, then is a 1-pixel of d in bemeen P cf,u) and qy on row 

low(v). Let t be such a 1-pixel. Since d is also the parent of u, there is a 1-pixel of d to the left 

of P (f, u) on row low(u). Let t' be such a pixel. Figure 7 shows both t and t'. Since d is hor- 

izontally convex, the only way for t and I to be in the same feature d is for d to cross P (f,u). 

This is not possible and thus we have low(u) low(v). 0 

N. Implementation 

row i 

row low (v) 

row low(u) 

We now show that each step of the algorithm can be implemented in 0 (n) time on a mesh 

of size nxn. All of the leftward scans are obviously completed within n time steps. It is also 

easy to see that at most one edge (C(i,j), C(iJ9) is created in PE(i,j*). This holds since, for a 

1-pixel located at position PE(i,f) belonging to a featun f, there is at most one PE(i,J contain- 

ing a 1-pixel belonging to a different feature g immediately to the right of PE(i,f) on row i. 

Once the rooted, directed in-uee T has been created, we use the algorithm described in [AH] to 

assign the pnorder numbers to the vertices of the tree in O(n) time. The algorithm in [AH] 

assi,m prcorder numbers to the vertices of T in the manner required by our algorithm; i.e., for 
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any venex in T with children u and Y, u is visited before v if and only if low@) c low(v). The 

input to the preorder algorithm consists of the edges of T as stored in thc PES after the leftward 

scans have been completed. If edge (C(i , j ) ,  C(i,f)) is stored in PE(Lf) before the preorder 

numbering occurs, then we can assume that the preorder algorithm returns (C(i,j), C(i,f)) to 

PE(i,f), In addition, we can assume that the prcorder algorithm return to PE(Lf) the topologi- 

cal number for the feature that contains the 1-pixel at PE(i, j3. 

The final step is to broadcast the prcorder number stored in PE(i,J") to all 1-pixels of thc 

comspondmg featun. The broadcasting can be done in 0 (n)  time in a number of ways. One 

way is to first sort by component number all 1-pixels belonging to each feature f along with 

C(i, j )  and the pnorder number stored in PE(Lj9. The cornct topological number is then 

assigned to all the 1-pixels off and the 1-pixels arc then sorted back to their original position in 

image I. Another way of implementing the finat step without an explicit sort first sends the 

pnorder number from PE(f,n rightward to Fk(f,j>. The array l7V is then mated by perfomhg 

a connected component computation which kcompishes the broadcast. This canchats t!x 
description of our 0 (n)  time algorithm for detenitining the topolopical nuben of fearurn. 

V. Conclusion 

In this paper we gave an O(n) time algorithm for topologically numbering horizontally 

convex features of an nxn binary image on an nxn mesh of processors. The topological number- 

ing problem is to assign to every feature in the image a unique number so that all features to the 

left of a feature f have a smaller number assigned to them. Our algorithm solves this problem 

by constructing a rooted, directed in-tree from the image and by determining the preorder 

numbers of the constructed tree. 
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