
GNU/Linux Semantic Storage System

Ahmed Salama, Ahmed Samih
Amr Ramadan, Karim M. Yousef

Contents

Preface ix

I Introduction 1

1 Introduction 3

1.1 Previous Work . 4

1.2 What is the GNU/Linux Semantic Storage System? 6

1.2.1 Rich Information . 7

1.2.2 Organization . 9

1.2.3 Searching . 10

1.2.4 Developer Support . 10

1.3 Roadmap . 11

2 Architecture 13

2.1 Client-Server Model . 13

2.1.1 Daemon . 13

2.1.2 Web Interface . 14

2.1.3 API . 14

2.1.4 Pseudo File System . 16

2.2 Event Monitoring . 17

2.3 Request Handling . 18

2.4 Type System . 18

2.5 Browser . 20

2.6 Unicode Support . 20

i

ii

2.7 Implementation Details . 21

II Design 23

3 Data Model 25

3.1 Type System . 26

3.1.1 Types . 26

3.1.2 Stores . 28

3.1.3 Documents . 28

3.1.4 Importers . 31

3.2 Persistent Storage . 33

3.3 Concurrency . 34

4 Event Monitoring 37

4.1 Kernel Notifications . 38

4.2 Methodology of Monitoring . 39

4.2.1 Watches . 39

4.2.2 Devices . 40

4.2.3 File System Events . 41

4.3 Design . 41

4.3.1 Event Watcher Thread(s) 41

4.3.2 Action Executor Thread . 45

4.3.3 Data Structures . 46

5 Indexing and Searching 49

5.1 Information Retrieval . 50

5.1.1 Lucene . 51

5.2 Choosing an Information Retrieval Library 52

5.2.1 How Lucene Works . 52

5.2.2 Data organization in Lucene 53

5.3 Design Constraints . 54

5.4 Design . 55

5.4.1 Indexing . 58

iii

5.4.2 Searching . 61

III Experimental Studies 65

6 Performance Analysis 67

6.1 Testing Process . 68

6.2 Indexing Experiment . 68

6.3 Searching Experiment . 70

Appendix 72

A GNU Free Documentation License 73

B Unicode 85

iv

List of Figures

2.1 Architecture of GLScube . 15

2.2 Path of a System Call on the FUSE glscubeFS 17

2.3 Propagation of a DataAccessRequest 19

3.1 Inheritance in the Type System . 27

3.2 Specializations of Documents . 28

3.3 Design diagram of the Importers submodule 31

4.1 Design of the Event Monitoring module 42

5.1 Indexing submodule . 58

5.2 Flowchart of Adding a Document to the index 59

5.3 Flowchart of Deleting a Document from the index 64

6.1 Comparison of the Average User CPU usage, both with and without

Indexing . 69

v

vi

List of Tables

3.1 An example Empty Document for an “AddressBook” Empty Type . 30

3.2 Information Extracted by an Importer 32

4.1 A Typical Sequence of inotify Events 40

4.2 Significance Levels for inotify events 43

4.3 File system events and the corresponding actions executed by the

Action Executor Thread . 46

5.1 Comparison of Information Retrieval libraries 51

5.2 Lucenes valid simultaneous action combinations 56

5.3 Search Syntax . 62

6.1 Statistics of the sample data used to test full indexing performance 67

6.2 Indexing Statistics: Storage Overhead for sample data of size 678 MB 68

6.3 Indexing Statistics: Performance Overhead 70

6.4 Searching Statistics: Response time to executing 100 Queries 70

6.5 Searching Statistics: Comparison of response time to executing 100

queries . 71

vii

viii

Preface

As the amount of information stored on and accessed through computers has in-

creased over the past twenty years, the tools available for organizing and retrieving

such information have become outdated. The GNU/Linux Semantic Storage Sys-

tem is an information store that represents data based on their attributes, contents,

and relationships. The system provides access to the data through advanced orga-

nization mechanisms and fast data searching, and it also maintains compatibility

with existing applications.

Objective

With the disk drive capacity growing at a rate faster than Moore’s law - a doubling

of capacity every year, the increase in the amount of data that can be stored on

the computer has led to a similar growth in the complexity in its retrieval.

However, the current tools and solutions have not kept pace with this informa-

tion explosion, and the absence of such vision when they were designed does not

make them easily extensible. The conventional file systems, for instance, impose

a hierarchical structure on the user and force him to create strict organization

schemes, and provide a monotonic constraint for document retrieval; a combina-

tion of its location and name.

GNU/Linux Semantic Storage System addresses these issues. It presents the

user with a “semantic” interface to his data, and is designed to pull the user

away from thinking of where the data is, and encourage him to think of what the

data contains. The semantic attributes of a file are automatically extracted using

developer-programmable importers and are indexed for efficient retrieval against

a user’s search queries.

ix

x

Our goal is to make the transition to the new system almost transparent to the

less experienced computer user, and to offer the more experienced ones a rich sys-

tem that would greatly enhance how they organize and retrieve data. Also, we aim

to provide application developers with enough tools to provide similar organization

and searching functionality in their applications at minimum overhead.

Licensing

The license used for this Document grants free access to its content. The license

permits the content to be copied, modified, and redistributed so long as the new

version grants the same freedoms to others and acknowledges the original authors

of the GNU/Linux Semantic Storage System. This principle is known as copyleft.

To fulfill the above goals, the text contained in this Document is licensed to

the public under the GNU Free Documentation License (GFDL). The full text of

this license is included in the Appendix.

Permission is granted to copy, distribute and/or modify this docu-

ment under the terms of the GNU Free Documentation License, Version

1.2 or any later version published by the Free Software Foundation. A

copy of the license is included in the Appendix.

Who Should Read this Documentation?

This Documentation is an overview of the design of the GNU/Linux Semantic

Storage System. It is not meant to be a complete reference, but rather, a start-

ing point for those interested in understanding how the GNU/Linux Semantic

Storage System works. This Documentation is targeted to experienced Develop-

ers. An introductory-level understanding of the Linux kernel and object-oriented

programming is required.

For additional information, refer to the Code Documentation, a documentation

automatically generated from latest stable source code checkpoint. End-Users may

refer to the User Guide for a non-technical introduction to GNU/Linux Semantic

Storage System, and how to use it.

Part I

Introduction

1

Chapter 1

Introduction

With the disk drive capacity growing at a rate faster than Moore’s law - a doubling

of capacity every year [13, 23], the increase in the amount of data that can be stored

on the computer has led to a similar growth in the complexity in its retrieval.

Moreover, a user’s personal computer is no longer his personal data store; as

his data can be physically spread over the entire globe, from one server storing

his e-mail messages to a corporate file server from which he retrieves daily work

snapshots. Even though the files are physically disturbed, their close relationship

to the user makes him regard them as “his” files.

However, the current tools and solutions have not kept pace with this informa-

tion explosion, and the absence of such vision when they were designed does not

make them easily extensible. These currently available file systems, for instance,

impose a hierarchical structure on the user and force him to create strict orga-

nization schemes [6], and provide a monotonic constraint for document retrieval,

which is a combination of its location and name.

The GNU/Linux Semantic Storage System, hereafter refered to as GLScube,

is a Semantic File System that addresses these issues. It presents the user with

a rich interface to his data, and is designed to pull the user away from thinking

of Where the data is, and encourage him to think of What the data contains.

GLScube has been designed from the ground up with the users in mind, so that

the less-experienced computer users would be able to transition to the new system

as easy as possible, and in the mean time, offer the more experienced users a rich

3

4

system that would greatly enhance how they organize and retrieve data. Further-

more, GLScube provides application developers with capabilities that would allow

them to provide rich organization and retrieval functionality in their programs at

minimum overhead.

The problem with the currently available file systems 1, the so-called hierarchi-

cal file systems, is that they offer no scalable mechanisms for data organization.

Their key entity for organization is the directories, or folders, which were designed

in analogy to the filing cabinets used for centuries, and consequently, inherited

many of it problems among which is the inability to file documents in more than

one category [20]. And even though some remedies have been later added, like

shortcuts or links, their adoption did not take off. Thus, it was the case that a

user could only put his file in a specific place; this place is represented as a node

in a (huge) tree; there was only one way to reach this place, one constraint, the

path name; the file system offered no restriction on the placement or meaning of

the organization, a video file can be put under a directory called “my text files”;

even more, these file systems did not offer any inherent mechanism for searching,

in order to search for the text file containing the word “beatles”, a program must

itterate over all files, linearly scanning each one’s contents.

1.1 Previous Work

As the amount of information and data stored in the computer increased, re-

searchers approached various techniques and solutions for organization and re-

trieval of documents. We build upon the finding and results of some of these

systems, which you can refer to in the Reference, and we follow this with an

introduction to the features of some of them:

• One of the earliest storage systems that approached file system access and

organization from a content-based view, rather than a hierarchical one, was

the Semantic File System [8]. The Semantic File System was an extension to

the tree-structured file system that allowed associative access to the system’s

1From here on, “currently available file systems,” “traditional file systems” and “hierarchical
file systems” are synonymous, with which we refer to the most popular file systems currently in
use such as FAT32, NTFS and Extended 3 (ext3).

5

content. Virtual directories, whose names were interpreted as queries, were

introduced as a compatibility layer for legacy applications. Extensibility

was maintained by allowing for user programmable transducers that could

extract key properties from files.

• Dourish et al backed up the concept of the failure of the hierarchical file

system to meet the users’ demands, and presented the Placeless Documents

[6]. Similar to the Semantic File System, document properties were the

primary tool for document management and interaction. However, the doc-

ument properties were expressed relative to the consumer of the document,

not its producer. In other words, document properties are user-defined, and

the system is not supposed to extract them from the files. Additionally,

their implementation supported Active Properties; properties carrying code

that can be invoked to control or augment document functionality. Placeless

distinguished between each user’s properties on the same system.

• The Be File System [7] integrated meta-data support in the file system.

Attribute values are stored along with their files, and each attribute is asso-

ciated with its own index which was stored as a regular file in a hidden index

directory. The file system supported only three indices: name, size and last

modification date. When an index is created for some new attribute, the

BFS leaves the responsibility to iterate over all the files on the system to

the application developer. Possibly one of the advantages of such integrated

design approach is inherent transactions support, where both the creation

and the deletion of files were atomic.

• One of the key points of the design of the Inversion File System was to lever-

age the power of database management systems by building the file system

on top of a low-level DBMS service [19]. This approach took advantage of

the transaction protection, fine-grained time travel, and fast crash recovery

for user files and file system Metadata in the underlying DBMS. However,

Olson’s goals were primarily focused on simplifying the file system design

and not improving the usability of data access and organization.

• The Database File System [17] was a user-level file system built on top of

6

the Berkley DB, an embedded database management system, which is built

on top of the Berkley Fast File System. One of their goals of such design was

to serve the needs of an evolving world wide web, which quickly started to

embrace dynamic content derived from database servers, and they suggested

that such unification could widen the spread of dynamic websites due to

easier deployment.

• Desktop search tools emphasized on data mining all the information that is

available on the user’s PC, and storing the extracted meta-data and text in

an index to be used later for efficient retrieval. These tools were designed to

allow the user to retrieve search results quickly, and in general, were not con-

cerned with the document organization. Examples of desktop search tools

are Google Desktop Search, Microsoft MSN Search and Beagle. A more ad-

vanced search tool was Apple’s Spotlight [5], which allowed the creation of

Smart Folders - the technical equivalence of Gifford’s Virtual directories -

and provided an API that allowed developers to add Spotlight search ca-

pabilities to their own programs in their own proprietary data file formats.

Among the functionalities presented by Spotlight are substring search, key-

word substitution and support for separate user accounts.

1.2 What is the GNU/Linux Semantic Storage

System?

As the amount of information stored on a user’s hard drive increases, organization

and fast access to documents becomes an even more important necessity. After

all, the purpose of filing a document is to make it easier to retrieve later. One

of the major difficulties introduced by current systems is their single classification

approach, where a file is allowed to reside in only one folder. And although modern

operating systems provided mechanisms for placing documents in more than one

folder (like “Symbolic Links” in GNU/Linux), people made very little use of such

features [6]. Our design permits the user to overcome the static organization issues

posed by the hierarchical file systems, by introducing methods to retrieve infor-

mation in a way not dependant from how they were initially organized. This lifts

7

from the user the load of having to remember or guess were the desired documents

could be.

Although in the past, an application could have had similar features built-in,

developers had to implement them in their own ways, which could be too complex

for many small, or even large projects. Thus, besides enhancing the user’s expe-

rience in information access, GLScube provides application developers with the

required tools to extend their applications with the same advanced functionality

we provide to end-users.

Next, we describe the key elements that allow GLScube to solve the previously

described problems in the traditional file systems.

1.2.1 Rich Information

One of the key issues with the traditional file systems is their lake of type support.

The unit of data storage in these file systems is a File, which is merely a collection

of bytes. These file system make no distinction between an audio file or a video

file, for to them, they are all a collection of bytes. They are responsible for storing

them the first time they are created, modifying them when necessary and replacing

or deleting them when they are no longer needed. It is up to the operating system,

application developer or end-user to interpret their meaning to them.

GLScube introduces a rich description of the user’s data. It ”understands” the

Type of a file, and thus distinguishes between an MP3 file and a JPEG file. It

extracts relevant information from each file, depending on its Type, and allows

users and developers to access this information. For example, it would extract

that some MP3 file is 3 minutes, 22 seconds long, its birate is 128Kbps, the name

of the singers, the name of the band and more information stored in the file (in

this case, in the ID3 tag). For some JPEG image, it would extract the width and

height in pixels, the number of colors, and more. But of course, it is not just about

extracting information, but rather, how to make this information available to the

users. After all, the singer of some song has always been stored in most MP3 files,

but it was not possible to do a search for the songs of a specific singer.

GLScube extracts the attributes (for example, the Creation Date or the File

Size), the Metadata (for example, the duration and bitrate of an MP3 file), and

8

the textual content (in case of text files), and uses these information as identifiers

for the user’s data. A user no longer has merely a file’s name to look for, but

rather, can use any of the information associated with the file to reach it. He can

look for the MP3 files longer than 3 minutes or the JPEG images less than 600

pixels wide.

Furthermore, GLScube allows users to Tag their Documents. A Tag is a key-

word which acts like a subject or category for some Document. Although Tags

do not necessarily define the semantics of the data, they are interpreted by the

end-user as being related to a subset of his data, a subset that he logically creates.

For example, a college student may Tag a set of Documents as “sheets”, which

he, in the scope of his usage, would interpret as solutions to the assignments re-

quired from him in college, while another user, a musician, may use the same tag,

“sheets”, to refer to the set of musical sheets he wrote. With Tags, the naming

of a Tag is not necessarily semanticlly correct in resepct to the underlying data,

and it is all up to the user to select the appropriate Tags. This may sound like

reverting back to the hierarchical structure we previously criticized, which did not

impose any restriction on the relation between how the user names his data, and

what his data really is.

However, Tagging, as will soon unfold, is not the only method for organization.

And contrary to the traditional directories, they are not monotonous. This means

that an end-user could stick a “sheets” tag on one file, and then stick to it more

tags, say “economy” and “export.” This way, a user can have a multitude of options

to reach his data. He can at any time, look for the Sheets of the Economy subject

that discuss Export, or just look for all the Economy Documents, which could as

well cover e-Books he tagged as related to Economy.

Moreover, GLScube provides the ability to assign relations between Documents.

When working on a project, the end-user may assign a relation to two Documents

he has been working on, so that later, he could retrieve all Documents related to

a specific one.

9

1.2.2 Organization

As described, the traditional directories impose too many hurdles in organization

due to their monotonous constrain, which is the combination of the path and the

file name. In GLScube, we introduce Virtual Collections, which are analogous

to the traditional directories with the exception that their contents are retrieved

dynamically, when the user access them, and represent the state of the system at

the time of access. To the user, one Virtual Collection is different from another

not merely by its name, as what it is the case with directories, but rather, with

a Query associated with it. A Query of one Virtual Collection may be set by the

user to list all images larger than 600 pixels, all files that contain the word sheets,

or all the audio files shorter than 30 seconds and are tagged as “samples”. The

user does not have to specifically add any file to one, or more, Virtual Collections

as it is the case with directories. When the user access a Virtual Collection, let

us say that associated with the search query for the previously described subset of

audio files, then at this specific moment, GLScube looks all those files he stored

that match these criteria, all the audio files that are in fact shorter than 30 seconds

in duration and have a tag ”samples” assigned to them.

Virtual Collections are nested into a hierarchy. This gives the users greater

power and flexibility in organizing their data. For example, a Virtual Collection

could be made to list all text Documents, and inside it, two Virtual Collections

would be made, one to list Documents tagged as ”sheets” and the other to list

Documents with 500 words or more. When any of those last two Virtual Collections

are opened, the combined query of the child Virtual Collection and its parent is

executed. Thus, the parent Virtual Collection will show all text files, and its two

child Virtual Collections. The first child would list all text Documents that are

tagged as “sheets,” and the second child Virtual Collection would list all text

Documents with 500 words or more.

This kind of dynamic organization lifts the user from having to think of where

he should store his data, and instead, focus on what his data means to him. If he

works as a sound editor for example, he might be more interested in the duration

of sample sounds and their category than their creator, and thus create virtual

collections that describe this semantic view of data, for example, an example or-

10

ganization for this scenario would be:

VC [Audio Samples] : Documents tagged as ‘‘samples" of Type ‘‘Audio’’

VC [Animals] : Documents tagged as ‘‘animals’’

VC [Industrial] : Documents tagged as ‘‘industrial’’

VC [Cars] : Documents tagged as "cars" or ‘‘transportation’’

...

1.2.3 Searching

It should be now clear that GLScube relies on searching as the underlying mech-

anism for organization; this type of Dynamicity in organization is pulled of by

performing search queries against the user’s data at run-time; at the time the user

demands to retrieve information.

GLScube generalizes searching to not just searching for a file name, but rather,

by search almost every relevant bit of information associated with each file. Doing

an unconstrained search with the keyword “hello” will search for every Document

whose file name, Metadata, tags, or contents contain the word “hello”.

1.2.4 Developer Support

GLScube presents Developers with a Plugin-based Type System they can extend

to support additional file formats they create. A Developer may easily create an

XML file that describes the metadata and attributes of his file format, create an

Importer that extracts the relevant information from his file format, and distribute

the XML and Importer to be used by end-users.

Besides Type extensibility, Developers are provided by an API they can use to

add GLScube-like functionality in their applications. Developers can use Shared

Stores to organize the user’s data so that they would be read in a uniform manner

by other GLScube-aware applications, or use the searching functionalities in their

applications. Developers can also use the Web Interface to retrieve information

in XML, or use the Pseudo File System to interact with the Stores through the

traditional hierarchical APIs.

11

1.3 Roadmap

The following is a list of the features that are yet to be implemented, or complete,

in GLScube:

• Transaction Processing: Encapsulating requests in transactions and rolling

back the failed ones.

• Considering migrating to a lighter Database Management System. This issue

is described in Section 2.7.

• Additional Importers: Currently, the latest build of GLScube contains Im-

porters for the following file formats: OpenOffice Calc, OpenOffice Impress,

OpenOffice Writer, PDF, JPEG, WAV, MP3 and AVI. The next collection

of Importers we plan to develop are for the following file formats: Microsoft

Word, Microsoft Powerpoint, Microsoft Excel, BMP, PNG, QuickTime, Re-

alAudio, RealVideo and OGG.

• Composite Documents: Composite Documents are Documents that preserve

the hierarchical organization of a group of tightly-related Documents, for

example, the source code of some application.

• Keyword Substitution: Maintaince of a user-editable dictionary of keywords

and their possible subistitutions. For example, a search for “UN” would

yield results containing “United Nations”, and a search for “cv” would yield

results containing “resume”.

• Active Queries: A client application using the GLScube API or Web Inter-

face can register a Live Query, and when any changes occur to the stored

information that match this query, the client is notified. For example, if a

client application is showing search results, and a Document in these results

is deleted, the application would be notified about this change so that it

would remove this specific entry from the displayed result.

• Metadata Boosting: Allow Developers to specify boosting values to specific

metadata.

12

Chapter 2

Architecture

GLScube is implemented as a userspace file system, that augments the features

of the underlying file system. This means that GLScube is not concerned with

the actual storage of the bits of data on the physical disk drive, of error recovery

of sectors, or the various other details of implementing file systems. GLScube is

concerned however with enhancing the usability of file systems, by providing a

semantic representation of the data, while not putting much concern on how the

data would be stored on the disk drives.

2.1 Client-Server Model

GLScube is designed as a Client-Server model. The server is a userspace dae-

mon that is always running, responding to requests from client applications and

performing actions due to events occurring on the underlying file system.

2.1.1 Daemon

The GLScube daemon process runs when the operating system starts up and is

responsible for performing all the augmented features of GLScube. It is a userspace

process responsible for monitoring the changes in the files, acting according to

the changes, and serving requests. All the GLScube requests are handled and

controlled by the daemon. When you need to search for all the documents that

13

14

start with “a”, for example, the daemon would perform all the steps to handle this

request and then it sends the result to the calling process.

The GLScube daemon has two main tasks, Monitoring the underlying file sys-

tem and interacting with the client processes. Monitoring the underlying file sys-

tem is done with the aid of the inotify kernel module (see Chapter 4). The next

sections describe the different means to communicate with the daemon. The de-

tails of the operation of the daemon and the services it provide will be clear in the

next chapters. Figure 2.1 shows a general overview of the architecture of GLScube.

2.1.2 Web Interface

The Web Interface is an XML-based interface to the Documents stored in the

user’s Stores. It allows for local clients to communicate with the daemon through

Internet Sockets. A request is passed to the GLScube daemon in the form of XML,

and after the daemon retrieves the result, it returns the response in the form of

XML.

The daemon listens on a predefines port number, and accepts only local requests

coming to that port. This interface is used to power the semantic view of the

browser (see Section 2.5). Requests are served through a compact implementation

of the HTTP protocol.

2.1.3 API

The Application Programmer Interface (API), named libglscube can be used by

Developers to bring the functionality of GLScube to their applications. The API

communicates with the GLScube daemon through UNIX domain sockets, serializ-

ing objects to and from XML.

We have to address why we implemented the Web Interface using UNIX In-

ternet Sockets, and implemented the API using UNIX Domain Sockets. First of

all, it is not possible to implement the Web Interface with UNIX Domain Sock-

ets, because these require using a file descriptor. It would have been possible to

implement the API using Internet Sockets, however, the performance of Internet

Sockets is slower compared to Domain Sockets. Because Domain Sockets are only

available on the same machine and not between networked computers, they do not

15

Figure 2.1: Architecture of GLScube

16

require checksums, addition of headers or routing calculations, which is required

in case of Internet Sockets.

2.1.4 Pseudo File System

The Pesudo File System is a compatibility layer to allow applications to make use

of the features of GLScube without requiring any changes to their code or even a

recompilation.

Initially, the first solution approached to provide applications with the ability

to browse through the semantic representation was to change the behaviour and

features of the Open and Save File Dialogues in desktop environments like KDE

and Gnome. However, when evaluating this approach for KDE, we found it would

require patching and recompiling the kdelibs package, and then recompiling each

and every KDE application so that it would link against the newly built bina-

ries. Inconvenience does not stop here however, because unfortunately, not all

applications use KDE’s Open and Save dialogues.

The other solution we undertook is to create a pseudo file system that interacts

with the GLScube API to represent a semantic representation of the data. In order

to communicate with the userspace daemon through the API, the file system was

implemented in userspace with FUSE.

FUSE consists of a kernel module and a library that communicates with the

it via a special file descriptor. Using this API, file system code can be run in

userspace. FUSE was officially merged into the mainstream Linux kernel tree

since version 2.6.14.

Queries to the userspace file system are in the form

/StoreName[:search]/path or query or

/:search/query.

The initial “/” is the root of the mount point of the GLScubeFS. The former

query is used to browse or search through a specific Store (see Section 3.1.2),

while the later query is used to search through all Stores. Browsing a Store is

like browsing through traditional file system directories, and the same tools and

applications can be used against a pseudo path.

Figure 2.2 shows the path of the ls filesystem call on the FUSE GLScubeFS.

17

Figure 2.2: Path of a System Call on the FUSE glscubeFS

2.2 Event Monitoring

The Event Monitoring module (see Chapter 4) is the module responsible for moni-

toring changes occurring in the user’s files and folders due to modification, creation

and deletion. It is also responsible for specifying the proper action to be taken

in order to maintain consistency between the actual file data and stored informa-

tion about these files. For example, when a user copies a new file to his hard

drive, the Event Monitoring module detects that a new file has been created, and

then invokes the appropriate actions in other modules that would then extract

information from the new file, and make it available to other modules.

The Event Monitoring module encapsulates the inotify kernel module, a module

that can be used to notify applications with changes to watched files and directories

18

in the mounted file systems. The inotify kernel modules allows developers to

register watches for specific directories. Once registered, we refer to this directory

as a watched directory, as inotify would send notifications about changes to this

directory. For example, when a file is deleted from a watched directory, inotify

sends a notification about this change.

It comprises of two submodules. The first submodule, Event Watcher, is re-

sponsible for reading and storing the events occurring on the underlying file sys-

tem. The second submodule, Action Executor is responsible for performing the

appropriate actions on the captured events.

2.3 Request Handling

The GLScube daemon is responsible for handling request arriving from applica-

tions using either either the API or Web Interface. Eitherway, requests are even-

tually represented as a DataAccessRequest object, which is then queued up, and

later a thread is allocated to serve it.

Figure 2.3 shows how a DataAccessRequest object propagates through the

system.

2.4 Type System

Each file format represents its data in its own way, and it is up to the application

developer to provide an Importer to any file format he defines. Otherwise, The file

is assumed to be of a Generic Type, and only basic information is extracted from

the file like the Creation Date. Thus, it is up to the developer to enhance the user

experience by extracting interesting data embedded within file formats he creates.

A Type is not a meaningful object on its own. It is only an abstract repre-

sentation of what a Type is. The Type class is derived to a Content Type and

Empty Type classes. A Content Type is the definition which describes a Content

Document of some Type. It adds to the base Type class the path to the Importer

library object, the extensions that this Type uses, and the Category of the Type.

An Empty Type on the other hand defines a group of Empty Documents that may

19

Figure 2.3: Propagation of a DataAccessRequest

be used by a Developer to store his applications’ data.

The most basic unit of information in GLScube is a Document. A Document

is a generalization of some type of information, it is a representation of informa-

tion that has permissions for those that can access it, what other Documents it

are related to it and what are its defining metadata and attributes. Documents

can be either Content Documents, which are always associated with a stream of

data, and are analogous to the traditional file systems’ files; Documents can be

Empty Documents, where each is a record of information in some domain, and are

analogous to a tuple in a database table; and finally, Documents can be Virtual

20

Collections, which are Collections of Content Documents and Empty Documents,

they are analogous to the traditional directories, but contrary to them, their con-

tents are retrieved at the time they are opened, based on a Search Query associated

with it.

Documents are stored in Stores. A Store is the logical representation of files

stored in a disk’s mount point. GLScube is transparent to the mount point of

some partition, because all information concerning the physical storage of some

file is stored relative to the root of the partition, and not the full path in some

system. This comes to an advantage so that when a disk drive is unmounted from

one computer and mounted in another, the stored information for the contents of

this partition can be automatically integrated without needing to recreate it.

2.5 Browser

The GLScube browser is an application provided for end users to browse their

Documents. It is designed with a stress on usability and how it would be easier

for users to find their data. Using the browser, users can either search for their

Documents and get instant results, or, they can browse through Virtual Collections

to get a live view of their Documents based on their semantics.

The browser is written in HTML, CSS and Javascript. It heavily uses XML-

HttpRequests (commonly known as AJAX, or Asynchronous Javascript and XML),

to update the viewport without needing to refresh the entire page. A wrapper KDE

application was created for the browser, which uses KHTML to render it.

For more information on the features of the browser, and how to use it, refer

to the User Guide.

2.6 Unicode Support

On Unix, Linux and POSIX-type platforms, the locale environment is the set

of parameters that describe the user’s language, how the time is displayed, and

other language and cultural rules. A specific locale specifies preferences like how

a character is converted to uppercase (using the toupper function), how mblen

21

should count a multi-byte string, whether to use a point or a decimal point or

decimal comma in numbers and various other conventions.

Each of the possible preferences is mapped to an environment variable; for ex-

ample, the character encoding is defined by the LC CTYPE environment variable

and the format of time and date is defined by LC TIME. The environment variable

LC ALL, if set, acts as a subistitution for all the other variables, and only if it is

not set that the other variables are looked up.

When a C/C++ program starts up, it initially uses the “C” locale by default.

As of today, many GNU/Linux distributions have switched their default locales

to UTF-8, including, but not limited to, Red Hat Linux 8.0 (and higher), SUSE

Linux 9.1 (and higher) and Ubuntu Linux.

GLScube uses multi-byte strings for storage of text in all of its submodules

except the Indexing and Searching module, which uses wide characters due to the

nature of the CLucene implementation.

Additional information on Unicode support in GNU/Linux is provided in Ap-

pendix B.

2.7 Implementation Details

GLScube is implemented in Standard C++, with much reliance on the Standard

Template Library (STL). It has been compiled with the GNU Compiler Collection

(GCC), and built with Automake, Autoconf and Libtools [26].

C++ does not have any prebuild support for threading. Although we could

have used pthreads, we decided on using Zthread, a mult-threading C++ library

that provides abstraction for the native POSIX threads implementation used in

GNU/Linux.

Apache’s Lucene (see Chapter 5) was used for Information Retrieval (IR).

Lucene is a widely recognized IR library used in the implementation of internet

search engines and local, single-site searching. After evaluating several IR libraries,

we selected Lucene for its leading performance results, the detailed documentation

available and its wide adoption, and thus, active development.

We used PostgreSQL as the Database Management System (DBMS) for storage

of Metadata about Documents and Types. In our design phase, the Type System

22

(see Section 3.1) was modeled as a hierarchy of inheritance. In this design, a

Document type would be inherited by an Audio type, which would define such

metadata as Duration and Sample Rate, and that Audio type would be inherited

by an MP3 type, which would add Metadata like Album Name. The initial plan

was to make use of PostgreSQL’s Object Relational capabilities to model this

design, however, later on this approach was dropped out. PostgreSQL was then

selected for its Object Relational capabilities, which we ended up not making

use of. Consequently, we are currently considering and evaluating migrating to a

lighter DBMS, specifically, SQLite.

As described above, the core of GLScube is an always-running daemon process,

that communicates with other client processes through either an API or an Internet

Socket Interface. Information is sent to the Socket Interface as XML, and requests

are received through it also through XML, hence comes the need to parse XML

documents in the GLScube daemon. Additionally, To pass objects between the

GLScube daemon and the API, objects are serialized to XML. Thus, the need

arises again for parsing XML both at the daemon side and the client side. libxml2

was used for parsing XML documents.

Additional dependencies may be brought up by Importers. For example, in

the Importers currently implemented in GLScube the PDF Importer depends on

xpdf.

GLScube does not depend on any libraries specific to a desktop environment.

Nearly most of the code base is independant from any desktop environment, with

the only exception being the Browser. Even for that, the prototype browser was

implemented in HTML, CSS and JavaScript, along with a small KDE container

application that uses KHTML to render the browser files.

Part II

Design

23

Chapter 3

Data Model

The Data Model is the representation of the data structures and their relationships

to each other. It defines what a unit of a storage is, how this unit is organized

into the system and how it is related to other units in the system. The Data

Model distinguishes between possible types of information, and allows for type

extensibility by using a Plugin-based Type System architecture.

The Data Model supports type extensibility by the use of schema files. A

new File Type is represented by two XML files: schema.xml defines the meta-

data attributes and the associated Importer, and, text.xml defines the textual

description of each metadata attribute.

The Document is the most basic unit in GLScube. A Document is an ab-

stract representation; it is the definition of what an entity in the system is. In

an GLScube Store, each Document has a unique identifier, that together with the

Store identifier, uniquely identifies the Document in the entire system.

GLScube specializes the Document structure into a Content Document, a Com-

posite Document, an Empty Document and a Virtual Collection. These documents

serve as the foundation of organizing the data in the system. Content Documents

are documents that are associated with a data stream–they are the semantic rep-

resentation of a file in the hierarichal file system. An Empty Document is a

document that has no data source, and is only associated with a set of metadata

attributes. Virtual Collections are collections of Documents whose actual contents

are retrieved at run time–they are the semantic representation of the hierarchal

25

26

file system’s directory.

3.1 Type System

Each file format represents its data in its own way, and it is up to the application

developer to provide an Importer to any file format he defines. Otherwise, The file

is assumed to be of a Generic Type, and only basic information is extracted from

the file like the Creation Date. Thus, it is up to the developer to enhance the user

experience by extracting interesting data embedded within file formats he creates.

Each importer can be used for one more file formats, and each is associated

with a schema file, named schema.xml. This file describes the attributes that

the Importer fills and their types. A schema file can use from any system wide

attribute, or define its own.

Custom attributes can be of a String, Integer, Float, Boolean or Date. It can

be multivalued, which means that the Importer will not return one object, but an

array of objects from its type. Finally, each custom attribute can be prevented

from being searched for in wildcard searches, and only be searched for if it was

specifically declared as a target metadata attribute in the search string, by setting

the ”nosearch” property to true. If omitted in the type definition, it is assumed

false.

When parsing a schema’s declared attributes, GLScube first checks to see if it is

a predefined attribute. If not, its definition is looked for in the schema file. Thus,

the precedence is for predefined types. The ordering of the declared attributes

in the schema file is relevant. Applications that display file metadata will not

necessarily show all the attributes, and a convention to regard the priority of

attributes to decrease from top to bottom of their definition is in effect. Duplicate

attribute names are not allowed.

3.1.1 Types

A Type has a name, which uniquely identifies it in the GLScube Type System,

it has a Display Name, which could used by client applications to show a more

readable name for the Type. It has a Description, which could be filled with

27

Figure 3.1: Inheritance in the Type System

information about this Type and it has icons.

A Type is not a meaningful object on its own. It is only an abstract represen-

tation of what a Type is. The Type class is derived to a Content Type and Empty

Type classes, as shown in Figure 3.1, details of which will be provided next.

Content Types

A Content Type is the definition which describes a Content Document of some

Type. It adds to the base Type class the path to the Importer library object, the

extensions that this Type uses, and the Category of the Type.

The Category is a logical grouping of Content Types. Categories are prede-

fined by GLScube and cannot be changed by users or developers. The provided

Categories are “Audio”, “Text”, “Video”, “Images” and “Others”. A Content

Type should specifify its category, and if none of the predefined categories fits its

description, it should use the “Others” Category.

Empty Types

An Empty Type defines a group of Empty Documents that may be used by a

Developer to store his applications’ data. Empty Types share most of the same

attributes with Content Types, with the exception of not being associated with an

Importer or Category.

An example Empty Type would be one that represents an Address Book. In

this type, possible metadata could be “Name”, “Phone” and “E-Mail”. An Empty

28

Type could be regarded by Developers exactly as a database table, a table that

contains records that can, or cannot be shared between applications and UNIX

users on the same system, based on the permissions associated with each record,

or more accurately, each Empty Document added to that Type.

3.1.2 Stores

A Store is the logical representation of files stored in a disk’s mount point. GLScube

is transparent to the mount point of some partition, because all information con-

cerning the physical storage of some file is stored relative to the root of the par-

tition, and not the full path in some system. This comes to an advantage so that

when a disk drive is unmounted from one computer and mounted in another, the

stored information for the contents of this partition can be automatically inte-

grated without needing to recreate it.

3.1.3 Documents

Figure 3.2: Specializations of Documents

The most basic unit of information in GLScube is a Document. A Document

is a generalization of some type of information (see Figure 3.2), it is a representa-

tion of information that has permissions for those that can access it, what other

Documents it are related to it and what are its defining metadata and attributes.

Documents can be either Content Documents, which are always associated with a

stream of data, and are analogous to the traditional file systems’ files; Documents

29

can be Empty Documents, where each is a record of information in some domain,

and are analogous to a tuple in a database table; and finally, Documents can be

Virtual Collections, which are Collections of Content Documents and Empty Doc-

uments, they are analogous to the traditional directories, but contrary to them,

their contents are retrieved at the time they are opened, based on a Search Query

associated with it.

Content Documents

Each Content Document has a Type. This type is internally used to decide which

Importer to use when the Content Document has been created or updated. In

either case, the appropriate Importer, if any, is selected for the given Content

Document and is run to extract from it all the relevant MetaData; Tags, if any;

and Content, if any. This extracted information is then stored, and indexed in

the persistant storage, for later retrieval. Besides the Importers bundled with

GLScube, an application developer can created custom Importers for their file

formats and distribute it with their application, then they can be seamlessly reg-

istered with GLScube. For more information on Importers, how they work, and

how they can be written, refer to Section 3.1.4.

Content Documents can be created, modified, and deleted either by the direct

request of a client application using the API, as described in Section 2.1.3, or the

Web Interface, as described in Section 2.1.2; or, through the Event Monitoring

module.

Empty Documents

An Empty Document is a document that has no data source, and is only associated

with a set of metadata attributes. Unlike Content Documents, Empty Documents

are empty from a content stream. An Empty Document is the equivalent of a

tuple in a database table.

By defining an Empty Type and registering it in GLScube, Developers can use

a unified storage and interface for the users’ data, and make use of GLScube’s

searching and organization capabilities without having to implement complicated

functionality in their applications.

30

Table 3.1: An example Empty Document for an “AddressBook” Empty Type

Field Value
Attributes User 5000

Document ID 125987
Store ID 2
Group 10
Permissions rwx-r–r–
Creation Date June 12, 2006, 11:22:33

Metadata Name Santa Clause
Phone 200-555-1000
E-Mail santa@northpole.com

An example Empty Document for a fictitious “AddressBook” Empty Type is

shown in Table 3.1.

Virtual Collections

A Virtual Collection is analogous to the traditional directories, but rather than

users having to explicitly organize their files into specific directories, the contents

of a Virtual Collection are automatically retrieved when they are opened according

to user-defined query associated with them.

Virtual Collections can be nested into a hierarchy, just like traditional di-

rectories. However, their hierarchical organization forms a semantic dependence

between them. Consider a Virtual Collection made to list all text files, if a Virtual

Collection was added as a child to the former one, and associated with a query

to list Documents tagged as “vacation”, then this later Virtual Collection would

actually list all text files marked as “vacation”.

In other words, the query of some Virtual Collection as formed as the combi-

nation of all queries of its parent Virtual Collections up to the root of the Store.

Each Virtual Collection has associated with it a set of Tags, and a search

query, and at least one of the two must be set. A Virtual Collection with some

Tags restricts its content to the Documents that these specific Tags are applied to.

A Virtual Collection with a query will only list the Documents that match this

31

Figure 3.3: Design diagram of the Importers submodule

query.

Composite Documents

One problem not yet approached in the previous discussion of the Type System

is how to collect together a group of Documents tightly related, like the source

code of some application. In this case, it is necessary to maintain the hierarchical

organization, because the location of each Document in this hierarchy is part of

its semantics. Composite Documents preserve the hierarchical organization of a

group of Documents.

Composite Documents have not yet been fully implemented in the first proto-

type.

3.1.4 Importers

To GLScube, a Content Document is of a specific Type, namely a Content Type.

A Content Type defines such properties as what its unique name is, what its

32

Table 3.2: Information Extracted by an Importer

Information Description
Metadata An Importer should extract from a file any relevant meta-

data that could be latter used to identify it. As an ex-
ample, an Importer for MP3 audio files should extract,
among other metadata entries, the duration of the audio
file in seconds.

Tags Although users are encouraged to Tag their Documents,
it is also possible that Importers would tag extract Tags
from a file. This kind of flexibility is allowed because
some file formats can store Tags inside their headers.

Content If the file format contains textual data, for example, as
is the case with plain text or PDF files, the Importer
should extract such text. However, as with Tags, this
optional and can always be left as an empty string by
the Importer.

metadata is, its tags, and other attributes. Each Content Type also has a m-1

mapping to a file format Importer, which is provided with the Type when it is

registered with the runtime system. An Importer is a plugin provided by the file

format developer to extract from any file its defining attributes and metadata. This

information is then sent back to the GLScube runtime for storage and indexing.

By separating file format support from the core of GLScube, the system becomes

more easily extensible to additional file formats. Table 3.2 shows the types of data

extracted by an Importer from a file.

An Importer is a compiled C++ shared object, with a predefined Interface as

outlined in Importer.hpp. A developer that desires adding support for a new file

format is required to create a new Importer object and an XML file describing

it. The GLScube daemon loads all the registered Importers at initialization, and

can further load any new Importer dynamically while it is running. This adds the

convenience of extensibility while not requiring a restart. Similarly, Importers can

be unregistered from the system while running, with no side effects on the running

processes or queued and unhandled requests.

GLScube does not treat any file in any way different from the other, and does

33

not inherently understand or interpret any file format, but rather employs the

described plugin architecture which allows the Type System to be expanded to

understand any file format.

When a Type is registered with the GLScube runtime, a copy of the object file

and the XML file of that Importer are copied to the GLScube installation directory,

and additional copies are made, one for each mounted Store. This redundancy is

necessary, so that when later, a disk drive with a GLScube Store is unmounted

and added to another system with GLScube installed, all the foreign types to that

system could be imported to it, if desired.

An important issue related to Importing is how a file’s format is identified.

The approach taken by GLScube is to select the appropriate Importer based on

the file’s extension. However, this is not perfectly reliable, and a mechanism to

select the Importer after interpreting the header would be more accurate, however,

this would incur a huge performance cost.

To create an Importer, a developer has to derive the Importer class, defined

in Importer.hpp, and provide a getInstance C function that returns a new object

of his derived class. getInstance is the first function looked for by the GLScube

runtime in the object file when an Importer is loaded.

For additional information on how to create an Importer for a file type that is

not already supported by GLScube, refer to Importer.hpp and the source code of

the accompanying Importers.

3.2 Persistent Storage

GLScube is designed to allow seamless addition and removal of Stores. All the

persistant data saved by GLScube are stored on a Store-by-Store basis. There are

no shared data and all the data saved on a Store are not dependant on where the

disk partition is mounted. This is advantegous for two reasons: first, it provides

a degree of fault tolerance because an errornous Store will not render the other

Stores inaccessible, and second, it allows for removal of a disk drive from one

computer and using it to in any other computer with GLScube installed, where it

will be instantly identified.

To achieve this seamlessness, all data associated with one Store is saved on

34

the Store’s physical mount point. This data includes all the configuration files;

information about the Types, Attributes, and Watched directories; object files of

Importers; a database and a search index.

It would have been quite simpler if we assumed that all Stores shared on one

computer can only be accessible to that computer. But then this would have been

utterly inconvenient. To avoid this, we have to maintain consistency between the

redundant files in one system. That is, maintain that not any of the redundant

files may at any time be different, so that they are always identical. Furthermore,

when a disk drive with a GLScube Store on it is unplugged from one computer

and connected to another, it must operate correctly. This requires that all the

Types and Attributes defined on the foreign installation be imported to the new

installation; all the Importers be installed; and that all references to file paths be

relative to the root of the disk drive, not where it is mounted.

The last point requires some elaboration. Consider for example an ext2 parti-

tion of a disk drive that is mounted on /home/user1/, and then a Content Doc-

ument has been created with today’s ToDo list. For this Content Document, a

file is automatically created by GLScube and stored in /home/user1/120000.txt.

If the reference to this file was saved as /home/user1/120000.txt in the database,

this means that if this partition was later mounted under /home/user2/ it would

not be accessible. For this reason, only the relative path to a file is saved, in this

case /120000.txt, so that the full path can always be reconstructed wherever the

parent partition is mounted.

3.3 Concurrency

A queuing model which allows for one request to be fulfilled at any time is eas-

ier to design, however, with some operations prone to long execution times (for

example, Importing large text file from a very slow disk drive), the system would

have starved completing one task while much more requests get queued. Thus,

GLScube is designed to allow concurrent execution of operations. Using the C++

Multithreading library Zthreads, several of the GLScube modules use multiple

threads to service many requests simultaneously.

Yet, concurrency imposes many problems, mainly due to the shared data struc-

35

tures. Consider two threads that acquire connections from the Connection Pool,

and that the Pool currently has only one connection. Assume one thread starts

the acquiring process before the other, and that the later thread enters execution

exactly after the former thread has verified there are still enough connections in

the pool. Now, the later thread may find there are still enough connections in

the Pool, because the early thread has not yet updated it, and thus, we have two

threads aware that they can acquire connections, even though there is only one

connection available.

To solve this problem, we can either stuff the code with error checking that may

still be suspect to failure, or we could use a Mutual Exclusion locking mechanism.

With locking, we allow a shared resource to be accessed only once at the same

time. This works fine in the Pool example, but other resources are more complex

to manage.

Another example is the types data structure, which holds the Types registered

with the system. Assume there is a thread handling a request to add a new Con-

tent Document, and after this thread verifies that the Type of the new Content

Document exists, another thread instantanously removes this Type, then, the be-

haviour of the procedure adding the Content Document is undefined, since it is

assuming that a removed Type still exists.

36

Chapter 4

Event Monitoring

GLScube is implemented as an augmented file system that stores and indexes

information about the users files - information like the attributes, metadata or

contents of text files1. This stored information must be kept consistent with the

actual contents of the files on the hard disk; for example, when the user modifies

a file, this change should trigger an equivalent change in the stored information

about this specific file.

Various approaches for detecting changes in the user’s files and folders were

discussed during the design stage. The first approach was to build a custom file

polling scheme that regularly iterates over all files and folders the user has and

compare the current contents and metadata of each file or folder with the last

stored contents and metadata for this file or folder, and then update the stored

information if a change was detected. This approach will maintain consistency

between the actual data, and the stored information about the files. However, its

efficiency is the worst possible, especially with the increase in the number of files.

The second approach is a simple modification for the first approach by restrict-

ing the test during the iteration over all files to only for files whose size changed,

based on the fact that changes in the contents of the file will probably cause an

increase or decrease in the file size. Although this solution decreases the overhead

presented in the first approach, it doesn’t guarantee the required consistency. For

1From here on, we would refer to information that represents the semantics of a file as Stored
Information. It is irrelevant to the Event Monitoring module how this information is represented,
the specifics of this are discussed in other parts of this Documentation)

37

38

example, consider that a user replaces the word ”meat” by the word ”beat” in one

of his files. Even though this is a change in the contents of the file, it doesn’t cause

any change in the file size since no more characters were added or removed, and

thus, this approach will not detect such change.

Another approach is to work with an operating system whose kernel can gen-

erate notifications due to changes in files and folder. New versions of the Linux

kernel support this feature. This approach is the most applicable among the three

discussed approaches since it eliminates the overhead of iterating over all files,

and in the same time it guarantees that a notification will be generated for every

change. We chose this approach for its high reliability and applicability.

The Event Monitoring module is the module responsible for monitoring changes

occurring in the user’s files and folders due to modification, creation and deletion.

It is also responsible for specifying the proper action to be taken in order to

maintain consistency between the actual file data and stored information about

these files. For example, when a user copies a new file to his hard drive, the Event

Monitoring module detects that a new file has been created, and then invokes the

appropriate actions in other modules that would then extract information from

the new file, and make it available to other modules.

4.1 Kernel Notifications

A solution for monitoring ordinary file system events called dnotify was introduced

in 2002 by Oskar Liljeblad, a simple program that makes it possible to execute

a command every time the contents of a specific directory changes. dnotify was

written entirely in C, and uses the Linux kernel directory notification feature to

monitor directories. Because of this, dnotify does not need to poll files every few

seconds; all time is spent sleeping until an event occurs. However, dnotify suffers

from several shortcomings such as the requirement for opening a file descriptor

for each watched directory, which may possibly exceed the maximum allowed file

descriptors per process; and that it is directory-based, which means that one only

learns about changes to directories. Although a change to a file in a directory

triggers a notification on its parent directory, if watched, this means one is forced

to keep a cache of directory contents in order to distinguish which file exactly

39

changed. Additionally, dnotify file descriptors pin the directories, thus disallowing

the backing device to be unmounted, which causes problems in scenarios involving

removable media.

A newer solution to monitoring file system events is inotify, an inode-based

solution for monitoring ordinary file system events which does not require opening

millions of file descriptors. With inotify, file descriptors are opened for device

nodes, where each device could be used to watch up to 8000 directories or files.

inotify solves the previously mentioned issues of dnotify. inotify has an event that

is triggered if one is watching a file or directory on a file system that is unmounted,

and, when watching a directory, inotify sends events to its child directories and

files without having to register watches for them individually.

4.2 Methodology of Monitoring

The Event Monitoring module encapsulates inotify. It represents an inotify device

as a DeviceDescriptor object, which describes an internal index number, the device

file descriptor used by inotify and the number of watches assigned to this device.

The Event Monitoring module keeps track of the initialized devices in the system

under a restriction that the maximum number of devices is 256, which comes from

a restriction in inotify on the maximum number of device nodes.

4.2.1 Watches

The inotify kernel modules allows developers to register watches for specific direc-

tories. Once registered, we refer to this directory as a watched directory, as inotify

would send notifications about changes to this directory. For example, when a file

is deleted from a watched directory, inotify sends a notification about this change.

It should be noted however that inotify watches have a depth of one level in a

directory hierarchy, which means that it detects events on a watched directory,

and events on the children of this directory, but not on deeper children.

As an example, consider we have a watched directory called ”parent”. This

directory contains a subdirectory called ”child” which contains a file called ”leaf”.

Any event on the file ”leaf” will not be detected by the watch on the directory

40

Table 4.1: A Typical Sequence of inotify Events

OPEN (file) FILENAME = test
ACCESS (file) FILENAME = test
CLOSE (file) FILENAME = test
DELETE (file) FILENAME = test
OPEN (file) FILENAME = test
CREATE (file) FILENAME = est
OPEN (file) FILENAME = test
ACCESS (file) FILENAME = test
MODIFY (file) FILENAME = test
CLOSE (dir) 0x40000010
MODIFY (file) FILENAME = test
OPEN (file) FILENAME = test
MODIFY (file) FILENAME = test
CLOSE (file) FILENAME = test
OPEN (file) FILENAME = test
ACCESS (file) FILENAME = test
CLOSE (file) FILENAME = test
OPEN (dir) 0x40000020
OPEN (dir) 0x40000020
CLOSE (dir) 0x40000010

”parent”. To solve this problem, we need to add a watch on the subfolder ”child”,

or more generally, we need to add a watch for all directories and subdirectories.

To eliminate the overhead of reading the hierarchy of all directories in the disk at

initialization, we store absolute paths of all directories to be watched in an XML

file that will be loaded at initialization.

4.2.2 Devices

When a new request arrives to create a watch, whether that request is at initial-

ization or when a new directory is created, the Event Monitoring module selects

the latest used Device, and adds the new watch to this device unless the maximum

number of watches assigned to this device has been reached, and in such a case,

a non-full device is searched. If no devices were found with empty slots for new

41

watches, a new Device is created. Note that a device may not be full due to the

release of a previously created watch descriptor, as in when a directory is deleted.

By this methodology we guarantee that the minimum number of devices is in use.

4.2.3 File System Events

The Event Monitoring module can detect, by encapsulating the inotify kernel

module, various file system events like creation, modification, deletion, and opening

of files, creation and deletion of directories, and several other file system events. A

typical sequence of events due to editing the contents of a file is shown in Listing

4.1.

From the listing in Table 4.1 we can notice that a simple action like writing a

few words to a file and saving it can result in the generation of many events by

i-notify. As we described above, inotify can only queue up to 256 events per device.

Unless these events are read from the FIFO fast enough, events may be lost due

to newer ones replacing older ones, and thus, inconsistency will be inevitable.

A solution to this problem will be discussed later.

4.3 Design

The Event Monitoring module comprises of two submodules. The first submod-

ule, Event Watcher, is responsible for reading and storing the events reported by

inotify. The second submodule, Action Executor is responsible for performing the

appropriate actions on the captured events. Figure 4.1 shows an overview of the

design of the Event Monitoring module.

4.3.1 Event Watcher Thread(s)

As shown in Figure 4.1, Event Watcher is a thread that is responsible for continuous

reading and flushing of the FIFOs used in the communication between inotify and

the kernel, and store the read events in an Action Container (see Section 4.3.3).

Events from inotify arrive containing the filename, ID of the inotify device node

and the ID of the inotify watch.

42

Figure 4.1: Design of the Event Monitoring module

However, and as shown is Listing 4.1, numerous events may need to be pro-

cessed for a single file, and information about earlier events must be stored. In

other words, the behavior that should be performed based on the arrival of some

event cannot be totally decided without knowledge of previous events.

In order to decrease storage requirements, any new event arriving for some file

or directory is merged with a previous event recorded for that same file or directory,

if any. Such merger is based on Significance Levels assigned for file system events.

The level of significance to each event was assigned based on the fact that actions

due to an event may be overridden by an action due to another event. As an

example, suppose we have a modification event on a file leaf shortly followed by a

delete event on the same file. This means that, optimally, we do not have to take

any action to the modification event, because whether or not we do, the file would

be deleted anyway and this later event is all that matters. Significance Levels of

various events were assigned according to Table 4.2.

Each event is associated with a predefined delay value that indicates the amount

of time that must be waited before the corresponding action for this event would

be invoked. Less significant events were assigned larger delay values, during there

43

Table 4.2: Significance Levels for inotify events

File System Event Level
Create Directory 7
Delete Directory 6
Delete File or Move From 5
Create File or Move To 4
Close a File After Writing 3
Modify File Attributes 2
Modify a File 1

is a high probability that a higher significant event will occur and replace the less

significant one.

The Action Container is a container used for storage of information describing

events on files and directories, and when a new event is added, updates the cur-

rent ones, replaces them or removes them. The specific action taken by Action

Container depends on the Significance Levels scheme, which will be discussed in

Section 4.3.1.

As we described above, an inotify event contains information about the name

of the file or directory, the ID of the watch, and the ID of the device holding that

watch. It is important to note that inotify passes the name of the file or directory,

and not the full path. To augment this lack of information, the Watch Container

is used to store the full paths to directories, indexed by their device descriptors

and watch descriptors. Watch Container will be later described in Section 4.3.3.

Multithreaded Design

As we shortly described above, and which will be detailed in Section 4.3.1, pro-

cessing inotify events as soon as they are queued would cause a huge performance

overhead, because simply, many of them could be cancelled out or ignored. Thus,

we need to implement a queuing model where inotify are continuously read and

queued, and regularly, these stored events are analyzed and filtered. Hence comes

the need for Action Executor to be a standalone thread separate from Event Watch-

ers.

44

In the Event Monitoring module, each inotify device node is read by a separate

thread. A straightforward approach would be to allocate one Event Watcher thread

that would sequentially iterate over all used device nodes, and read their buffers.

To keep the number of devices, and hence threads, to a minimum, each time

we create a new watch we try to find a device among the created devices that the

maximum number of assignable watches have not been met for it. Otherwise, if

we already assigned the maximum number of watches for all devices, we create a

new device and assign the new watch to it.

Levels of Significance

Creation of a new Directory must be immediately handled, without any imposed

delays, in order to achieve maximum possible consistency, and thus is given the

highest Significance Level. However, there is time duration between the actual

creation of a directory and the Event Monitoring modules creation of an inotify

watch for this directory. This means that during this duration, one or more files

may be created, and when the watch is created, there would no way to tell that

these files exist. Thus, once the watch for the directory is created, its contents are

retrieved to make sure that any events that might have occurred in the mentioned

time span were missed.

Similarly, deletion of a directory is more significant than any other file system

events, since if we delete a directory, there is no need to keep any information

about the previous events occurring on its contents. In other words, the directory

was deleted, so there is no need to perform queued actions on files subdirectories

residing in it.

Deleting a file is the most significant file related event since deleting a mod-

ified file or a newly created file should not require adding or updating the store

information about this file. This case is common with temporary files.

A file Creation event cannot be replaced by any event other than Delete, be-

cause it is irrelevant what other operation arrived if the file has not yet been

processed and added to a GLScube Store. If however a Create event arrived for

a file that had a Delete event queued, what might happen in case of temporary

files created by applications, then this Creation event is replaced with an Update

45

event.

A Close on Write events signals the end of modification to a file, and hence it

is required to update the stored information for this file. A Close on Write also

overrides an Attrib event, which signals a change in the attributes of a file like its

access permissions.

The Modify event is sent by inotify each time a block of data is written to the

disk drive, whose frequency of occurrence is very high. Consequently, it would be

better not to monitor the Modify events, resorting only to Close on Write events

to detect a change in a file’s contents. However, when a file is replaced, inotify

sends a sequence by Modify events followed by not a Close on Write event, but

rather, Close on No Write event, which is used elsewhere to signal closing a file

without making changes to its contents. Hence, monitoring the Modify event is

required, so that if it was followed by a Close on No Write event, the corresponding

GLScube Content Document would be updated.

4.3.2 Action Executor Thread

As mentioned above, every event has a time delay after which it must be executed.

The value of this time delay varies according to the Significance Level of the event

based on the significance scheme mentioned above. The Action Executor Thread

is the second standalone thread in the submodule in the Event Monitoring module,

and is responsible for filtering the actions stored in the Action Container to keep

only the relevant events. For example, if a file is opened and no modification

occurred to the contents or the attributes of the file, there is no need to care about

the resulting sequence of events, because it does not affect the system consistency.

In other words, no change has been made to the data in a way that should cause

an equivalent change in the stored information.

Besides filtering events and keeping and keeping only the relevant ones, the

Action Executor dispatches requests to the Data Model (see Chapter 3) for the

events whose timeout value has passed and there are no pending events to cancel

them out.

Table 4.3 shows file system events and the corresponding actions executed by

the Action Executor Thread. There are two events that are handled internally

46

Table 4.3: File system events and the corresponding actions executed by the Action
Executor Thread

File System Event Level
Delete file or Move From Delete the corresponding file attributes

stored in the database and modify the in-
dex files

Create file or Move To Indexing the contents of the file and add
its attributes in the database

Close a file after writing Re-indexing the contents of the file
Changing a file Attribute Update the file attributes in the database
Modifying a file Wait till a close on write event occurred

without dispatching any requests to the Data Model. These are the creation of

directories, in which case a watch is created for the new directory; and deletion

of a directory, in which case its associated watch is deleted. In both cases, corre-

sponding XML files that store information about the currently watched directories

are updated.

4.3.3 Data Structures

The two main data containers used in the Event Monitoring module are the Watch

Container and the Action container. We described the role of each one of them

briefly without any indication to the internal structure of each container. In this

section we are going to describe the internal structure of each container.

Watch Container

As described above, the role of the Watch Container is to keep track of the absolute

paths of the watched directories in order to solve the problem of file identification.

For example, suppose we have two watches on directories X and Y. Under each of

these two directories there is a file called Z. Now, suppose inotify reported that a

delete event occurred on the Z file in the X directory, the received information can

be represented as:

47

<Device Descriptor, Watch Descriptor 1, “/Z”, Delete>

Where the watch descriptor is an integer used by inotify to distinguish between

various watches. The issue here is how one could identify whether the event oc-

curred on the file represented by the absolute path “/X/Z” or by the absolute

path “/Y/Z”. In order to solve this problem, Watch Container stores the absolute

path of each watched directory, indexed by the device descriptor and the watch

descriptor.

Action Container

The Action Container is used to store a single event for each file, for which some

event has been invoked by the user. The event stored by the Action Container

is the most significant event (see Section 4.3.1) that occurred on this file during

the current window, which started right after the last most significant event was

executed for this file, if any.

When any of the Event Watcher threads reads an event from inotify, it inserts it

in the singleton Action Container, and the Action Container’s insertion procedure

determines which event will be store, according to the one already stored, if any.

48

Chapter 5

Indexing and Searching

In this chapter, we will present the available approaches to implementing searching,

what are the design constraints and an overview of our design. Next, we will outline

the possible approaches for searching the metadata and full-text of files:

The first, most straightforward approach to implementing searching would be

in a way like how it has long been implemented for traditional file systems, in most

operating system linearly iterating over all files and searching each of them at the

time of request, with no notion of memory between different searches; each search

is completely independent on the previous and future searches. This approach is

quite slow, specifically in case of full-text search.

The second approach would be to pre-collect the semantics of all files, Store

them in a database, and searching against this information. The problem with

this approach is that Database Management Systems (DBMS) are not designed

for searching, are not designed for answering a question like “where is Alexandria,”

but rather, “what are the cities of Egypt.” Hence, using a database would require

writing a layer on top of the DBMS to provide the required searching interface.

The third approach would be using an Information Retrieval Library for in-

dexing, and searching the data.

Our approach of choice was using both a DBMS and an Information Retrieval

Library. We use a database for storage of the semantics about Documents, Types

and Stores, and only use an Information Retrieval Library for indexing and search-

ing a subset of these semantics.

49

50

In our search for an Information Retrieval library, we selected the following as

our required minimum of features:

• Support for full-text search,

• boolean queries,

• addition, deletion and update capabilities,

• high performance and scalability for large data,

• small storage space compared to actual, non-indexed data,

• Keyword Substitution, for example, UN is expanded to United Nations,

• and Unicode support.

Also, as additional overhead would be added to the system, the following con-

straints must not be broken:

• Search is consistent with real system data,

• and any processing overhead must not be significant.

5.1 Information Retrieval

Information Retrieval (IR) is the art and science of searching for information in

documents, searching for documents themselves, searching for metadata which

describe documents, or searching within databases, whether relational stand-alone

databases or hypertext networked databases such as the Internet or intranets, for

text, sound, images or data.

In the context of GLScube, we use the term Information Retrieval to describe

searching information, namely metadata and text content, that has previously been

indexed by the IR library, and also for retrieving information from the database.

In our search for an IR library, the following were our candidates:

• Lucene, from the Apache Jakarta project,

51

Table 5.1: Comparison of Information Retrieval libraries

Feature Lucene Xapian Zebra
Wildcards (e.g. fishe*, m?re) Yes No Yes
Range operators Yes No Yes
Fuzzy searching Yes No Yes
Term boosting Yes No No
Arbitrary fields Yes No Yes
Stemming Search Yes Yes No
Thesaurus expansion No No No

• Xapian, based on Muscat,

• Zebra, GPL structured text/XML/MARC Boolean search IR engine.

Table 5.1 shows a comparison between the previous IR libraries. More detailed

comparison is in Martin Haye’s comparison [11].

Lucene was initially implemented in Java, but since then, ports for different

languages have been created. CLucene is the name of the C++ port.

Performance benchmarks show that Lucene is considerably faster than Xapian

and Zebra in searching. As for indexing, there is a slight difference between Lucene

and Zebra.

After evaluating the performance results, the detailed documentation available

for Lucene, its wide adoption, we selected CLucene as the IR library to use.

5.1.1 Lucene

Lucene is a free open source, information retrieval API originally implemented in

Java by Doug Cutting. It is supported by the Apache Software Foundation and

is released under the Apache Software License. Lucene has been ported to other

programming languages including Perl, C#, C++, and PHP.

While suitable for any application which requires full text indexing and search-

ing capability, Lucene has been widely recognized for its utility in the implemen-

tation of internet search engines and local, single-site searching. This has occa-

sionally led to the misperception that Lucene is itself a search engine with built-in

52

crawling and HTML parsing functionality. Instead, any such application utilizing

Lucene would have to provide this functionality independently.

At the core of Lucene’s logical architecture is a notion of a document containing

fields of text. This flexibility allows Lucene’s API to be agnostic of file format.

Text from PDFs, HTML, Microsoft Word documents, as well as many others can

all be indexed so long as their textual information can be extracted.

Lucene is a highly scalable, high-performance IR library. It has a small memory

footprint, only 1MB heap size, it index size is roughly 20-30% the size of the

indexed text, it ranks search results, supports several query types like wildcard

queries and proximity queries, it has field searching, date-range searching, the

ability the search multiple indexes and getting a merged result, and it allows for

simultaneous update and searching).

5.2 Choosing an Information Retrieval Library

5.2.1 How Lucene Works

Also using Lucene is simple yet the indexing of a document undergoes some steps.

The data should be text only, so we need to extract text content from files before

indexing, which is responsibility of Importer module. So now we will assume that

data is already in textual format.

Analysis

Lucene first analyzes the data to make it more suitable for indexing. To do so, it

splits the textual data into chunks, or tokens, and performs a number of optional

operations on them. For instance, the tokens could be lowercased before indexing,

to make searches case-insensitive. Typically its also desirable to remove all frequent

but meaningless tokens from the input, such as stop words (a, an, the, in, on, and

so on) in English text. Similarly, its common to analyze input tokens and reduce

them to their roots.

53

Indexing

After the input has been analyzed, Lucene stores it in an inverted index data

structure. This data structure makes efficient use of disk space while allowing

quick keyword lookups. What makes this structure inverted is that it uses tokens

extracted from input documents as lookup keys instead of treating documents as

the central entities. In other words, instead of trying to answer the question “what

words are contained in this document?” this structure is optimized for providing

quick answers to “which documents contain word X?”.

5.2.2 Data organization in Lucene

Lucene deals with data in the form of documents. Each document contains fields

- each has a name and one or more values. Fields could be marked for indexing,

storing or both. Storing means that the original content that was indexed is

Stored. Since we are only interested in searching, we do not Store the contents of

the metadata or full-text. Each document has a unique internal ID, which could

change due to index changes.

Queries retrieve documents form the index, were only the Stored fields are

accessible through the search result. The simplest query is called Term query

which is in the form “Field = Value.” More complex queries could be built by

combining different Term queries with Boolean operators.

Lucene deals with numbers as strings so to support range queries on numbers,

numbers should have fixed number of digits zero padded from the left.

Adding a new document to an index is possible using an IndexWriter, addi-

tion has small cost as it doesnt change the index files, instead it appends to it

and possibly few minor entry changes. Even more, bulk addition has an added

performance benefit, for documents are indexed in memory and flushed once a

preconfigured document counter is reached or the IndexWriter is closed.

Document deletion is possible using an IndexReader and the knowledge of its

internal ID. Since it is dynamic, the internal ID should be retrieved by searching.

The problem is that IndexReader, unlike its name, modifies the index to remove

a document, and causes significant performance overhead in comparison to addi-

tion. Here as well, deleting in batches could save a lot of the cost by reducing

54

Input/Output.

Updating a document is not implemented as a standalone operation in Lucene,

so we need to split this operation into deletion and addition. The cost of batch

updates could be very high as we would not be able to benefit form batch deletes

or additions in a straightforward way.

5.3 Design Constraints

Again, here are our requirements of an IR library:

• Support for full-text search,

• boolean queries,

• addition, deletion and update capabilities,

• high performance and scalability for large data,

• small storage space compared to actual, non-indexed data,

• Keyword Substitution, for example, UN is expanded to United Nations,

• and Unicode support,

• Search is consistent with real system data,

• and any processing overhead must not be significant.

The first five requirements are supported by Lucene. For Unicode support, we

would have to convert data to wide characters, as used by Lucene, and not by

other modules of GLScube.

The main problem is consistency and performance, with both going the op-

posite ways. Here we are not considering search performance, but system perfor-

mance due the overhead of index manipulation.

55

5.4 Design

To achieve the desired requirements we see that the Indexing and Searching module

needs to provide the following functionality:

• Creating a new index for new Stores,

• adding Documents,

• deleting Documents,

• updating Documents,

• and searching.

The class methods of the Indexing and Searching module are called through

the Data Model, and since the Data Model could be executing several threads

simultaneously, and thus, may eventually make concurrent requests to the Indexing

and Searching Module. The most straightforward approach to this situation would

be to carry out an operation like indexing, in the calling thread of the Data Model,

however, this could cause several performance penalties as we will show next,

because the pool of Data Model threads could eventually end up with each of

them indexing a large piece of data from the same I/O device, this would lead to

a long execution time and further, possibly simpler requests would be blocked till

the active requests are indexed.

Since Indexing is expected to be a bottleneck to system response time, we

isolate its execution path from Searching, which we leave to be executed in the

calling thread. Indexing requests on the other hands are queued, and a single

Indexer thread is responsible for performing the queued actions. This approach

would also eliminate index mutual exclusion problems with Lucene, which is the

restriction of what concurrent operation may be executed on one index.

Table 5.2 shows Lucenes valid simultaneous action combinations. Note that

update is a combination of an addition and deletion actions.

Although searching could be executed regardless of the current index state, the

active action may not affect the search result causing a minor inconsistency, which

could be compromised at client side by reapplying the search.

56

Table 5.2: Lucenes valid simultaneous action combinations

Action Add Delete Search
Add Valid Invalid Valid
Delete Invalid Invalid Valid
Search Valid Valid Valid

Before designing the Indexing and Searching module we need to decide the

mapping of Data Model Documents to Lucene documents. Each Data Model

document has an ID, Type, Store ID, Metadata, Tags, possibly Text Content, and

a Document Type; whether it be a Content Document, an Empty Document, a

Virtual Collection or a Composite Document. Search queries could be applied on

any of these fields. But the search results should only contain the Document ID,

Store ID, and Document Type, which are enough to identify a document uniquely.

Hence, these three fields are Stored and indexed, while other fields are indexed but

not Stored.

One of the important indexing parameters that could affect both searching and

indexing is the Analyzer that will be used for indexing. Lucene implements four

analyzers each with different behavior. These are:

• White Space Analyzer

– Removes white spaces and punctuation marks.

• Simple Analyzer

– Removes white spaces and punctuation marks.

– Converts string to lowercase.

– Removes symbols like (@, +, -) from the string.

• Stop Analyzer

– Removes white spaces and punctuation marks.

– Converts string to lowercase.

– Removes symbols like (@, +, -) from the string.

57

– Removes stop words (the, that, a , of ,).

• Standard Analyzer

– Removes white spaces and punctuation marks.

– Converts string to lowercase.

– Removes stop words (the, that, a , of ,).

The following example shows the difference. Consider these two sentences:

‘‘The quick brown fox jumped over the lazy dogs’’ ‘‘XY&Z Corporation

- xyz@example.com’’

The output for the analyzer will be as follows:

• White Space Analyzer

The [quick] [brown] [fox] [jumped] [over] [the] [lazy] [dogs]

XY&Z [Corporation] [-] [xyz@example.com]

• Simple Analyzer

the [quick] [brown] [fox] [jumped] [over] [the] [lazy] [dogs]

xy [z] [corporation] [xyz] [example] [com]

• Stop Analyzer

quick [brown] [fox] [jumped] [over] [lazy] [dogs]

xy [z] [corporation] [xyz] [example] [com]

• Standard Analyzer

quick [brown] [fox] [jumped] [over] [lazy] [dogs]

xy&z [corporation] [xyz@example.com]

We selected the Standard Analyzer as the most suitable of the four. It will

generate a case-insensitive index, remove stop words and keep symbols (searching

for an e-mail wont be possible using Simple or Stop Analyzer). Using this analyzer

58

in indexing means that the queries should also be analyzed using same Analyzer

to have perfect matching of results (query for The Matrix should be Matrix. Since

the was removed from index by the Analyzer, it must also be removed from the

query).

5.4.1 Indexing

Figure 5.1: Indexing submodule

An indexing request arrives from the Data Model requesting one of three oper-

ations: Add, Update, or Delete. The first approach we evaluated for the Indexing

submodule was to directly put Add and Delete requests in a request queue for

execution, and replace Update requests with a Delete and an Add request. In

this approach, the Indexing sub-module is always reading requests from the re-

quest queue. It opens a Lucene IndexReader or IndexWriter for the Store of the

current request, registers the opened Store, and then executes the request. After

executing the request it checks the next one, if it is for the same Store it reuses

the same opened IndexReader or IndexWriter, otherwise it closes it and opens a

new one. The Input/Output of indexing is only applied when the IndexReader or

IndexWriter is closed, or after its buffer is full.

The advantage of this approach are that for a long sequence of Addition re-

quests, or a long sequence of Deletion requests, belonging to the same Store, ex-

pensive Input/Output will be saved. However, for a long sequence of Updates,

59

a sequence with mixed Addition and Deletion requests, whether they are for the

same Store or for different Stores, the cost of Input/Output operations will be

considerably higher.

The second approach, which we undertook, is to create a request queue for

Addition, and a request queue for Deletion, and since the cost of Deletions in

Lucene is high, as described above, performing the bulk Deletions will be Delayed

till either there no no more Addition requests to process, or, the number of queued

Deletion requests has met a certain threshold.

Figure 5.2: Flowchart of Adding a Document to the index

60

This approach, although would yield better performance, might lead to incon-

sistent search results. Since a subset of the indexed information must be removed,

but was not because their Deletion request has been delayed, these information

may match against search queries until they are explicitly deleted. Thus, the

search results are filtered from any Documents that have pending Deletion re-

quests. The Blacklist is a container for storing information about the Documents

currently pending Deletion. This way, the use of the Blacklist allows for achieving

high system consistency while in the same time retaining good performance form

delaying deletions.

Another important issue is that when we start executing the queued Deletion

requests, we do not want to cause starvation for the arriving Addition requests,

which as described above, are more critical and should have higher priority. Hence,

there is a limit for the maximum number of Deletion requests performed sequen-

tially without reverting to executing Addition requests.

Splitting the Add and Delete requests to two queues raises another issue. Since

an Update request is converted to an Add and Delete request, there is no guarantee

that the Delete request would execute before the Add request. To solve this issue,

we added an internal version number for each Document indexed. Initially, this

number is set to 0 for Addition requests. When an Update operation arrives, it is

split to a request to Delete the highest version of the required Document, and an

Addition request for a version 1 higher than the highest version. This means that

there could possibly be more than one version of a Document in the index, till the

Deletion of the older versions takes place. However, only one result is returned for

any Document if it matched a search query.

Figure 5.2 shows the flowchat of Adding a Document to the index. Figure 5.3

shows the flowchat of Deleting a Document from the index.

The Searching and Indexing module has 4 types of index related requests:

• Create New Index

– This is not queued, but executed directly.

• Add Document

– An addition request is added to the request queue, with version of (0).

61

• Delete Document

– Last documents version is retrieved.

– The retrieved documents version is added to the blacklist.

• Update Document

– Last document version is retrieved.

– The retrieved documents version is added to the blacklist.

– An addition request is added to the request queue, with a version one

higher than the Last documents version.

5.4.2 Searching

The first step in performing a search is verifying the passed query is valid, according

to the set search syntax. Table 5.3 describes the search syntax.

Before executing the query it must be Normalized to a uniform format. The

following are the steps undertaken by the Search sub-module to Normalize the

query:

• Lower case conversion,

• syntax checking and correction,

• adding Lucene related operators,

• and conversion to wide characters.

To show an example of Normalization, consider the input query “Name :: al-

gorithm and not type : pdf not java and size :”. First, the query was converted to

lower case Then, its syntax was checked and corrected, in this case the repeated

colon was replaced by one, and the last field specifier was removed. Next, wild

cards were added to the keywords, so that algorithm* would match both algorithm

and algorithms, and similary pdf and java. Also in this step operators were added

like the and in and not java.

62

Table 5.3: Search Syntax

Syntax Example Description
Keyword UN Search of any existence of

UN in all fields.
Quoted String “The Brown Fox” Search for “The brown Fox”

in all fields.
Keyword: Keyword Title: UN Searches for UN in all fields

named “Title”
Keyword: Sentence Title:“The Brown Fox” Searches “The brown Fox”

in all fields named “Title”.
(BooleanQuery) (Brown OR Grey) Enforces ordering.
(SimpleQuery) (Fox) Enforces ordering.
SimpleQuery Simple-
Query

The “Brown Fox” Searches for the union of the
result of two queries sepa-
rated by a space.

SimpleQuery
BooleanQuery

The Brown OR Fox Searches for the union of the
result of two queries sepa-
rated by a space.

SimpleQuery OR
SimpleQuery

Brown OR Fox Searches for the union of the
result of two queries.

SimpleQuery OR
BooleanQuery

Brown OR Fox Searches for the union of the
result of two queries.

SimpleQuery AND
SimpleQuery

Brown AND Fox Searches for the intersection
of the result of two queries.

SimpleQuery AND
BooleanQuery

Brown AND Fox Searches for the intersection
of the result of two queries.

SimpleQuery AND
NOT SimpleQuery

Brown AND NOT Fox Searches for the difference of
the result of two queries.

SimpleQuery AND
NOT BooleanQuery

Brown AND NOT Fox Searches for the difference of
the result of two queries.

63

The resulting query after Normalization would be “name : algorithm* and not

type : pdf* and not java*”.

After the query is executed, the search results are then categorized into different

Document Types (as defined by the Data Model), and Blacklisted Documents are

removed from the result.

64

Figure 5.3: Flowchart of Deleting a Document from the index

Part III

Experimental Studies

65

Chapter 6

Performance Analysis

We ran a set of experiments to investigate the performance of GLScube, and

estimate the added overhead. The experiments was carried out on a Pentium 4

clocked at 2.4 Ghz, 384MB of RAM and a 5400 RPM 40GB disk drive with 2 MB

of cache.

The experiment was divided into two parts. The first measures the cost of

indexing, and the second measures the cost of searching.

In the indexing experiment, we performed full indexing on sample of 678 MB.

Statistics of the sample data is shown in Table 6.1. Of all these files, only the

“chm” type does not have an associated Importer, and thus, it will be imported

to a Generic Type.

Table 6.1: Statistics of the sample data used to test full indexing performance

Type Count Size (MB)
MP3 85 374.7
AVI 13 122.6
TXT 19 8.4
CHM 6 42.1
PDF 16 50.2
JPG 771 79.9
Total 910 677.9

67

68

Table 6.2: Indexing Statistics: Storage Overhead for sample data of size 678 MB

Size (MB)
Database Tables 5.3
Lucene Index 5.1
Total 10.4

6.1 Testing Process

To perform the Indexing and Searching experiments, custom programs where writ-

ten to calculate the required time (in microseconds) of performing some actions.

The programs used the GLScube API, which means that the measured cost covers

the cost of not only, for example searching, but also the cost of formating the result

and sending it back to the client applications.

Measurement of the disk I/O and CPU usage was done using dstat, an alterna-

tive to the iostat, vmstat and netstat suite of performance measuring applications.

6.2 Indexing Experiment

This experiment tests the system performance when a relatively large sample of

data is copied to a GLScube Store, and what are the penalties associated compared

to copying the same data without the existence of the GLScube services.

However, it must be noted that this experiment is not an indicator of system

performance. Copying a large amount of data, although not uncommon, is not

the most common operation. The most important factor would be the cost of

incremental indexing, but whose cost would be much more difficult to analyze.

Table 6.3 shows the result of full-indexing the sample data shown above. In

this experiment, copying the data took 183 seconds, during which the indexing

operation was interleaved. After copying, indexing continued for an additional

95 seconds. The resulting size of the database and Lucene index are 10.4 MB, as

shown in Table 6.2, around 1.5% the size of the original data, which we considerable

an acceptable cost in storage.

To draw more clear understanding of the result, we performed the same ex-

69

Figure 6.1: Comparison of the Average User CPU usage, both with and without
Indexing

periment with the GLScube daemon closed. In this case, copying the same data

took 109 seconds, around 60% of the time it took to copy the files while the dae-

mon was running, and hence, indexing. Furthermore, the average user CPU usage

dropped to 3.8%, compared to a much higher usage of 40% when the GLScube

was running. I/O performance was also better in the absense of indexing, because

the hard drive was all dedicated to writing the data, and unlike indexing, there

was no need to read the written data again. A comparison of the Average User

CPU usage is shown in Figure 6.1.

Although the results might seem inefficient, we find them excusable. First,

the I/O performance can never be improved unless we overcome the necessity to

read the files from the hard drive. With Direct Memory Access (DMA), this may

never be possible. With DMA, the data would never pass through the kernel and

thus there is no mean for intercepting it while in memory, and indexing it without

having to re-read it from the disk drive.

There could be a room for improvement in the CPU performance. However, it

must be noted that extracting information from some file formats is very expensive.

Take for example PDF, in which the text is compressed and in order to index it,

must be decompressed.

70

Table 6.3: Indexing Statistics: Performance Overhead

Time to Copy with Indexing 183 seconds
Time to Index (including Copying) 278 seconds
Average User CPU Usage while indexing 40%
Average System CPU Usage while indexing 20%
I/O Read Rate while indexing 26.2 Mbps
I/O Write Rate while indexing 28.48 Mbps
Time to Copy without Indexing 109 seconds
Average User CPU Usage without indexing 3.8%
Average System CPU Usage without indexing 3.2%
I/O Write Rate while indexing 48.6 Mbps

Table 6.4: Searching Statistics: Response time to executing 100 Queries

Total Time 782 milliseconds
Average Time 7.8 milliseconds
Standard Deviation 2.8 milliseconds

6.3 Searching Experiment

As shown in the Indexing experiment, there is a considerable cost associated with

Indexing. In this experiment, we show that this high cost could be put into a

different prespective when it is evaluated with the performance of searching.

To test the performance of searching, the same sample of data, described in

Table 6.1 is used. Now that it is indexed, we test the performance of searching

by executing 100 search queries sequentially, through an application that uses the

GLScube API to receive results for the requests. The requests where randomly

created to provide a mix of boolean operators, grouping, and even contain syn-

tactically invalid queries to account for the cost of correcting search queries. The

result to this test is shown in Table 6.4.

From this result, we can definitely conclude that the performance gained in

searching is very interesting. A search query through almost 1000 files took 7.8

milliseconds on average, and the deviation from this time is only 2.8 milliseconds.

71

Table 6.5: Searching Statistics: Comparison of response time to executing 100
queries

Number of Files Number of Terms Size (MB) Average Response
55 34,789 105.7 5.7 milliseconds
253 51,501 334.5 6.1 milliseconds
910 103,047 677.9 7.8 milliseconds
978 126,095 971.8 8.8 milliseconds

It is important however to show that the search performance does not linearly

degrade with the amount of indexed information. Thus, we performed another

experiment to verify that performance degrades at a rate slower than a linear

function. The results to this experiment against samples of size 105MB, 334MB,

677MB and 974MB is shown in Table 6.5.

72

Appendix A

GNU Free Documentation

License

Version 1.2, November 2002

Copyright c©2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and

useful document ”free” in the sense of freedom: to assure everyone the effective

freedom to copy and redistribute it, with or without modifying it, either commer-

cially or noncommercially. Secondarily, this License preserves for the author and

publisher a way to get credit for their work, while not being considered responsible

for modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works of the

document must themselves be free in the same sense. It complements the GNU

General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,

because free software needs free documentation: a free program should come with

73

74

manuals providing the same freedoms that the software does. But this License is

not limited to software manuals; it can be used for any textual work, regardless of

subject matter or whether it is published as a printed book. We recommend this

License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a

notice placed by the copyright holder saying it can be distributed under the terms

of this License. Such a notice grants a world-wide, royalty-free license, unlimited in

duration, to use that work under the conditions stated herein. The ”Document”,

below, refers to any such manual or work. Any member of the public is a licensee,

and is addressed as ”you”. You accept the license if you copy, modify or distribute

the work in a way requiring permission under copyright law.

A ”Modified Version” of the Document means any work containing the

Document or a portion of it, either copied verbatim, or with modifications and/or

translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of

the Document that deals exclusively with the relationship of the publishers or au-

thors of the Document to the Document’s overall subject (or to related matters)

and contains nothing that could fall directly within that overall subject. (Thus,

if the Document is in part a textbook of mathematics, a Secondary Section may

not explain any mathematics.) The relationship could be a matter of histori-

cal connection with the subject or with related matters, or of legal, commercial,

philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are

designated, as being those of Invariant Sections, in the notice that says that the

Document is released under this License. If a section does not fit the above def-

inition of Secondary then it is not allowed to be designated as Invariant. The

Document may contain zero Invariant Sections. If the Document does not identify

any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as Front-

Cover Texts or Back-Cover Texts, in the notice that says that the Document is

75

released under this License. A Front-Cover Text may be at most 5 words, and a

Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy, rep-

resented in a format whose specification is available to the general public, that is

suitable for revising the document straightforwardly with generic text editors or

(for images composed of pixels) generic paint programs or (for drawings) some

widely available drawing editor, and that is suitable for input to text formatters

or for automatic translation to a variety of formats suitable for input to text for-

matters. A copy made in an otherwise Transparent file format whose markup, or

absence of markup, has been arranged to thwart or discourage subsequent modifi-

cation by readers is not Transparent. An image format is not Transparent if used

for any substantial amount of text. A copy that is not ”Transparent” is called

”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII with-

out markup, Texinfo input format, LaTeX input format, SGML or XML using

a publicly available DTD, and standard-conforming simple HTML, PostScript

or PDF designed for human modification. Examples of transparent image for-

mats include PNG, XCF and JPG. Opaque formats include proprietary formats

that can be read and edited only by proprietary word processors, SGML or XML

for which the DTD and/or processing tools are not generally available, and the

machine-generated HTML, PostScript or PDF produced by some word processors

for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such

following pages as are needed to hold, legibly, the material this License requires to

appear in the title page. For works in formats which do not have any title page

as such, ”Title Page” means the text near the most prominent appearance of the

work’s title, preceding the beginning of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose

title either is precisely XYZ or contains XYZ in parentheses following text that

translates XYZ in another language. (Here XYZ stands for a specific section name

mentioned below, such as ”Acknowledgements”, ”Dedications”, ”Endorse-

ments”, or ”History”.) To ”Preserve the Title” of such a section when you

modify the Document means that it remains a section ”Entitled XYZ” according

76

to this definition.

The Document may include Warranty Disclaimers next to the notice which

states that this License applies to the Document. These Warranty Disclaimers

are considered to be included by reference in this License, but only as regards

disclaiming warranties: any other implication that these Warranty Disclaimers

may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or

noncommercially, provided that this License, the copyright notices, and the license

notice saying this License applies to the Document are reproduced in all copies,

and that you add no other conditions whatsoever to those of this License. You may

not use technical measures to obstruct or control the reading or further copying

of the copies you make or distribute. However, you may accept compensation in

exchange for copies. If you distribute a large enough number of copies you must

also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you

may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed

covers) of the Document, numbering more than 100, and the Document’s license

notice requires Cover Texts, you must enclose the copies in covers that carry,

clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,

and Back-Cover Texts on the back cover. Both covers must also clearly and legibly

identify you as the publisher of these copies. The front cover must present the full

title with all words of the title equally prominent and visible. You may add other

material on the covers in addition. Copying with changes limited to the covers, as

long as they preserve the title of the Document and satisfy these conditions, can

be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you

should put the first ones listed (as many as fit reasonably) on the actual cover,

77

and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more

than 100, you must either include a machine-readable Transparent copy along

with each Opaque copy, or state in or with each Opaque copy a computer-network

location from which the general network-using public has access to download using

public-standard network protocols a complete Transparent copy of the Document,

free of added material. If you use the latter option, you must take reasonably

prudent steps, when you begin distribution of Opaque copies in quantity, to ensure

that this Transparent copy will remain thus accessible at the stated location until

at least one year after the last time you distribute an Opaque copy (directly or

through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document

well before redistributing any large number of copies, to give them a chance to

provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the con-

ditions of sections 2 and 3 above, provided that you release the Modified Version

under precisely this License, with the Modified Version filling the role of the Doc-

ument, thus licensing distribution and modification of the Modified Version to

whoever possesses a copy of it. In addition, you must do these things in the

Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of

the Document, and from those of previous versions (which should, if there

were any, be listed in the History section of the Document). You may use

the same title as a previous version if the original publisher of that version

gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible

for authorship of the modifications in the Modified Version, together with at

least five of the principal authors of the Document (all of its principal authors,

if it has fewer than five), unless they release you from this requirement.

78

C. State on the Title page the name of the publisher of the Modified Version,

as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the

other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the

public permission to use the Modified Version under the terms of this License,

in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required

Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled ”History”, Preserve its Title, and add to it

an item stating at least the title, year, new authors, and publisher of the

Modified Version as given on the Title Page. If there is no section Entitled

”History” in the Document, create one stating the title, year, authors, and

publisher of the Document as given on its Title Page, then add an item

describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access

to a Transparent copy of the Document, and likewise the network locations

given in the Document for previous versions it was based on. These may be

placed in the ”History” section. You may omit a network location for a work

that was published at least four years before the Document itself, or if the

original publisher of the version it refers to gives permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve

the Title of the section, and preserve in the section all the substance and

tone of each of the contributor acknowledgements and/or dedications given

therein.

79

L. Preserve all the Invariant Sections of the Document, unaltered in their text

and in their titles. Section numbers or the equivalent are not considered part

of the section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be

included in the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to

conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that

qualify as Secondary Sections and contain no material copied from the Document,

you may at your option designate some or all of these sections as invariant. To

do this, add their titles to the list of Invariant Sections in the Modified Version’s

license notice. These titles must be distinct from any other section titles.

You may add a section Entitled ”Endorsements”, provided it contains nothing

but endorsements of your Modified Version by various parties–for example, state-

ments of peer review or that the text has been approved by an organization as the

authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage

of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the

Modified Version. Only one passage of Front-Cover Text and one of Back-Cover

Text may be added by (or through arrangements made by) any one entity. If the

Document already includes a cover text for the same cover, previously added by

you or by arrangement made by the same entity you are acting on behalf of, you

may not add another; but you may replace the old one, on explicit permission

from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give

permission to use their names for publicity for or to assert or imply endorsement

of any Modified Version.

80

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,

under the terms defined in section 4 above for modified versions, provided that

you include in the combination all of the Invariant Sections of all of the original

documents, unmodified, and list them all as Invariant Sections of your combined

work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple

identical Invariant Sections may be replaced with a single copy. If there are mul-

tiple Invariant Sections with the same name but different contents, make the title

of each such section unique by adding at the end of it, in parentheses, the name of

the original author or publisher of that section if known, or else a unique number.

Make the same adjustment to the section titles in the list of Invariant Sections in

the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History” in the

various original documents, forming one section Entitled ”History”; likewise com-

bine any sections Entitled ”Acknowledgements”, and any sections Entitled ”Ded-

ications”. You must delete all sections Entitled ”Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents re-

leased under this License, and replace the individual copies of this License in the

various documents with a single copy that is included in the collection, provided

that you follow the rules of this License for verbatim copying of each of the docu-

ments in all other respects.

You may extract a single document from such a collection, and distribute it

individually under this License, provided you insert a copy of this License into

the extracted document, and follow this License in all other respects regarding

verbatim copying of that document.

81

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and indepen-

dent documents or works, in or on a volume of a storage or distribution medium,

is called an ”aggregate” if the copyright resulting from the compilation is not used

to limit the legal rights of the compilation’s users beyond what the individual

works permit. When the Document is included in an aggregate, this License does

not apply to the other works in the aggregate which are not themselves derivative

works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the

Document, then if the Document is less than one half of the entire aggregate,

the Document’s Cover Texts may be placed on covers that bracket the Document

within the aggregate, or the electronic equivalent of covers if the Document is in

electronic form. Otherwise they must appear on printed covers that bracket the

whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations

of the Document under the terms of section 4. Replacing Invariant Sections with

translations requires special permission from their copyright holders, but you may

include translations of some or all Invariant Sections in addition to the original ver-

sions of these Invariant Sections. You may include a translation of this License, and

all the license notices in the Document, and any Warranty Disclaimers, provided

that you also include the original English version of this License and the original

versions of those notices and disclaimers. In case of a disagreement between the

translation and the original version of this License or a notice or disclaimer, the

original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”,

or ”History”, the requirement (section 4) to Preserve its Title (section 1) will

typically require changing the actual title.

82

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as ex-

pressly provided for under this License. Any other attempt to copy, modify, sub-

license or distribute the Document is void, and will automatically terminate your

rights under this License. However, parties who have received copies, or rights,

from you under this License will not have their licenses terminated so long as such

parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free

Documentation License from time to time. Such new versions will be similar in

spirit to the present version, but may differ in detail to address new problems or

concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the

Document specifies that a particular numbered version of this License ”or any later

version” applies to it, you have the option of following the terms and conditions

either of that specified version or of any later version that has been published (not

as a draft) by the Free Software Foundation. If the Document does not specify a

version number of this License, you may choose any version ever published (not

as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License

in the document and put the following copyright and license notices just after the

title page:

Copyright c©YEAR YOUR NAME. Permission is granted to copy, dis-

tribute and/or modify this document under the terms of the GNU Free

Documentation License, Version 1.2 or any later version published by

the Free Software Foundation; with no Invariant Sections, no Front-

83

Cover Texts, and no Back-Cover Texts. A copy of the license is in-

cluded in the section entitled ”GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, re-

place the ”with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the

Front-Cover Texts being LIST, and with the Back-Cover Texts being

LIST.

If you have Invariant Sections without Cover Texts, or some other combination

of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend

releasing these examples in parallel under your choice of free software license, such

as the GNU General Public License, to permit their use in free software.

84

Appendix B

Unicode

Unicode is a standard designed to allow text and symbols from all languages to

be consistently represented. A crucial part of GLScube is localization, and thus,

Unicode is relied upon for text representation. Next, we shall describe the history

behind Unicode and its usage in GNU/Linux.

ISO 10646 and Unicode

ISO 10646 and Unicode where two independant efforts to create a single unified

character set for encoding encode text of all forms and languages, so that it could be

used, stored and transfered by a computer. The projects started in the late 1980s,

and arround 1991, the Organization for Standarization (ISO) and the Unicode

Project joined their efforts and worked together on creating a single code table,

and maintaining compatibility.

ISO 10646 is only a character map that provides a unique code point - a number

- for each character, and leaves the visual interpretation of the glyph to the software

application. Unicode adds on ISO 10646 by supporting combined characters (

represented as two code points, e and a combining acute), precomposed characters

(as one code point), text normalisation, bidirectional display and collation (the

last two features being cruical for scripts like Arabic).

As of now, ISO 10646 defines two forms of encoding: the UCS (Universal

Character Set), namely UCS-2 and UCS-4. UCS-2 uses a single code value between

85

86

0 and 65,536 for each character, so that each character would occupy exactly

two bytes. UCS-2 permits representation of every code point in the BMP (Basic

Multilingual Plane, or Plane 0), and cannot represent code points outside it (like

the Chinese GB18030). UCS-4 uses a single code value between 0 and hexadecimal

7FFFFFFF for each each character, so that each character would occupy exactly

four bytes. USC-4 permits representation of every code point in the UCS.

An application supporting ISO 10646 does not necessarily fully support Uni-

code. Thus, an application could properly display ISO 10646 characters which

have a one-to-one character-to-glyph mapping and single directionality, but would

not correctly display Arabic characters with its bidirectional and one-character-

to-many-glyphs script.

The UTF-8 encoding uses one to four bytes per code point. UTF-16 uses two

bytes per code point and is nearly identical to UCS-2, with the difference that

it allows encoding characters above hexadecimal FFFF as a pair of code values

from the unused range D800-DFFF. UTF-32 uses four bytes per code point and is

nearly identical to UCS-4.

UTF-8 is the native internal representation of text in GNU/Linux, BSD and

Mac OSX, while UTF-16 is adopted in Microsoft Windows NT, and the Java and

.NET bytecode environments.

Before the introduction, and widespread usage of Unicode, ISO-8859

was the most commonly used standard to provide multi-lingual ap-

plications and documents. ISO-8859 was an extension to the ASCII

character set, where it made usage of the unassigned upper 128 values

in a byte to store non-English characters. The standard itself was di-

vided into 15 standards, each named in the form of ISO-8859-n. For

example, ISO-8859-6 is the Arabic language standard. However, ISO-

8859 had many disadvatages, some of which were its small table space

- 128 bits - was not big enough to represent many languages, and there

was no direct way to use two languages’ character sets in the same

scope simultaneously.

87

GNU/Linux Locale

The locale environment is the set of parameters that describe the user’s language,

how the time is displayed, and other language and cultural rules. A specific locale

specifies preferences like how a character is converted to uppercase (using the toup-

per function), how mblen should count a multi-byte string, whether to use a point

or a decimal point or decimal comma in numbers and various other conventions.

Each of the possible preferences is mapped to an environment variable; for ex-

ample, the character encoding is defined by the LC CTYPE environment variable

and the format of time and date is defined by LC TIME. The environment variable

LC ALL, if set, acts as a subistitution for all the other variables, and only if it is

not set that the other variables are looked up.

char * setlocale(int category, const char *locale);

If the second argument to the setlocale function is empty, the locale is selected

as the value of the LC ALL environment variable. If it was empty, the environment

variable with the same name as the passed category (LC CTYPE, LC COLLATE,

..) is used, if this was empty too, the LANG environment variable is used, other-

wise, the function fails. For example, if the environment variable LC ALL was set

to en US then a call to setlocale(LC ALL, “”); will set the locale to en US.

When a C/C++ program starts up, it initially uses the “C” locale by default.

As of today, many GNU/Linux distributions have switched their default locales

to UTF-8, including, but not limited to, Red Hat Linux 8.0 (and higher), SUSE

Linux 9.1 (and higher) and Ubuntu Linux.

To determine the currently used locale, execute the locale command. To get

a list of the locales supported by your system, pass “a” as a parameter to the

command:

locale -a

Wide Characters and Multi-byte Characters

Multi-byte strings are sequences of characters where each character is encoded in

a varying number of bytes. The unit of storage of multi-byte string is a single

88

byte (char datatype). In order to interpret a multi-byte string, the encoding of

the string must be known ahead.

Wide strings on the other hand are sequences of characters where each char-

acter has a platform dependant fixed length that is longer than one byte. The

unit of storage of a wide string is a single wide character (wchar t datatype). In

GNU/Linux, wchar t is 32-bits long, contrary to Microsoft Windows where it is

16-bits long.

Functions that convert between multi-byte strings and wide strings are locale-

sensitive. This is mandatory, because otherwise the conversion procedure would

not be able to decide whether a character is one byte, two bytes or more. It is

important to notice that generally, dealing with multi-byte string is dependant on

the current locale, while wide character strings are independant from the current

locale.

GNU/Linux, C and Unicode

In a GNU/Linux terminal with UTF-8 support, key strokes are transformed into

the corresponding multi-byte UTF-8 sequence and sent to the stdin of the fore-

ground process. Similarly, any output of a process on stdout is sent to the terminal

where it is processed with a UTF-8 decoder and then displayed.

There are two approaches to add Unicode support to an application. In the

first, data is left UTF-8 everywhere. The second approach is to convert the input

data into wide strings, store and process in the application as such, and only

convert it to UTF-8 at output time.

In the first approach, where data is left UTF-8 everywhere, the standard C

char data type can be used to store the multi-byte string. All that is required is to

set the application’s locale as the user’s at initialization. Internally, data is stored

and processed as multi-byte strings, and the local-dependant functions mbstowcs

and wcstombs can be used at any time to convert from multi-byte to wide strings

or vice versa. Many of C’s functions are locale-independant, so there usage will

not be different in case of a Unicode applications, some of these are strcpy, strcat,

strcmp, strstr and strtok. However, others will no longer work as anticipated,

such as the strlen function, as strlen works by counting the number of bytes. To

89

determine the length of a multibyte string, make a call to mbstowcs with NULL

as the destination parameter. This would return the number of wide characters

that would have been required if conversion took place.

size_t requiredWChars = mbstowcs((wchar_t *) 0,

sourceMBString, strlen(sourceString));

The following code demonstrates some of the mentioned topics:

#include <locale.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main() {

setlocale(LC_ALL, ‘‘");

// Get the current locale

char * currentLocale = setlocale(LC_ALL, NULL);

printf(‘‘Locale: %s\n", currentLocale);

// convert a wide character string to a multi-byte string

wchar_t * source = L‘‘";

size_t destinationLength = wcstombs((wchar_t *) 0,

source, wcslen(source));

char * destination = new char [destinationLength];

wcstombs(destination, source, 100);

// output...

printf(‘‘String Length: %d\n", strlen(destination));

90

return 0;

}

Compile this program and execute the following commands in the shell:

$$ export LC_ALL=en_US.utf8

$$./unicode_test

String Length: 6

$$ export LC_ALL=ar_EG.utf8

$$./unicode_test

String Length: 6

$$ export LC_ALL=ar_EG.iso88596

$$./unicode_test

String Length: 3

Now what happened is as follows: In the first and second run, we had the

current locale set to UTF-8, consequently, the wcstombs function call in the pro-

gram converted the wide character string “source” to a multi-byte string encoded

as UTF-8, because that was the locale the application was set to. In the third

run however, the application is initialized to the ISO-8859-1 locale, which is, as

described before, an extension to the ASCII standard that uses 8-bits per char-

acter. Hence, the wcstombs function call mapped each of the wide characters to

their one byte representation in the ISO-8859-1 character set.

Bibliography

[1] OdeFS: A File System Interface to an Object-Oriented Database, volume 18,

2000.

[2] Deborah Barreau and Bonnie A. Nardi. Finding and reminding: File organi-

zation from the desktop. SIGCHI Bulletin, 27(3):39–43, 1995.

[3] Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel. O’Reilly,

2nd edition, 2002.

[4] Luke Cavanagh. Automatic categorization: Next big breakthrough in pub-

lishing? The Seybold Report, 2(6):3–7, 2002.

[5] Apple Computer. Mac osx: Spotlight - technology brief. 2005.

[6] Paul Dourish et al. Extending document management systems with user-

specific active properties. ACM Transactions on Information Systems (TOIS),

18(2):140–170, 2000.

[7] Dominic Giampaolo. Practical File System Design with the Be File System.

Morgan Kaufmann Publishers, Inc, San Francisco, California, 1999.

[8] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W. O’Toole.

Semantic file systems. Proceedings of the Symposium on Operating Systems

Principles, pages 16–25, 1991.

[9] Otis Gospodnetic and Erik Hatcher. Lucene in Action. Manning Publications,

Greenwich, 2004.

[10] The Shore Project Group. Shoring up persistent applications. 1997.

91

92

[11] Martin Haye. Cross-instance search system: Search engine comparison. 2004.

[12] Gary Marsden and David E. Cairns. Improving the usability of the hierarchical

file system. Proceedings of SAICSIT, pages 122–129, 2003.

[13] Steve McCarthy, Mike Leis, and Steve Byan. Larger disk blocks or not?

Proceedings of the USENIX FAST Conference, Monteray, CA, 2002.

[14] Microsoft Corporation. Microsoft WinFS SDK Beta 1 Documentation, 2005.

[15] Mark Mitchell, Jeffrey Oldham, and Alex Samuel. Advanced Linux Program-

ming. New Riders, Indianapolis, IN, 2001.

[16] Bruce Momjian. PostgreSQL - Introduction and Concepts. Addison-Wesley,

2001.

[17] Nick Murphy, Mark Tonkelowitz, and Mike Vernal. The design and imple-

mentation of the database file system. 2002.

[18] David R. Musser, Gillmer J. Derge, and Atul Saini. STL Tutorial and Ref-

erence Guide - C++ Programming with the Standard Template. 2nd, 2nd

edition, 2001.

[19] Michael A. Olson. Proceedings of the winter usenix conference. 1993.

[20] Dennis Quan, Karun Bakshi, David Huynh, and David R. Karger. User

interfaces for supporting multiple categorization. Proceedings of INTERACT

2003, 2003.

[21] David A. Rusling. The Linux Kernel. Version 8.0-3. 1999. 26 july 2005

<http://www.tldp.org/ldp/tlk/tlk.html >edition, 2005.

[22] Doug Schaffer and Saul Greenberg. Sifting through hierarchical information.

INTERACT ’93 and CHI ’93 Conference Companion on Human Factors in

Computing Systems, pages 173–174, 1993.

[23] Ivan Smith. Historical notes about the cost of hard drive storage space. 3

Dec. 2005 <http://www.littletechshoppe.com/ns1625/winchest.html >, 2004.

93

[24] Kent Sullivan. The windows 95 user interface: a case study in usability

engineering. Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems: Common Ground, pages 473–480, 1996.

[25] David Thomas and Andrew Hunt. Pragmatic Version Control Using CVS.

The Pragmatic Programmers, 2nd edition, 2003.

[26] Gary V. Vaughan, Ben Elliston, Tom Tromey, and Ian Lance Taylor. GNU

Autoconf, Automake, and Libtool. Sams, 1st edition, 2000.

94

x

[2, 5, 3, 4, 6, 23, 1, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 10, 25, 11, 26]

95

