
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95045 USA
650 960-1300

http://www.sun.com/blueprints

Application Performance

Optimization

By Börje Lindh - Sun Microsystems AB, Sweden

Sun BluePrints™ OnLine - March 2002

Part No.: 816-4529-10
Revision 1.0, 03/19/02
Edition: March 2002



Please

Recycle

Copyright 2002 Sun Microsystems, Inc. 4130 Network Circle, Santa Clara, California 95045 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, Sun Enterprise, Sun HPC ClusterTools, Forte, Java, Prism, and Solaris are trademarks or

registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the US and other

countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc. 4130 Network Circle, Santa Clara, California 95045 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Blade, Sun Microsystems, le logo Sun, Sun BluePrints, Sun Enterprise, Sun HPC ClusterTools, Forte, Java, Prism, et Solaris sont des

marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes

les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-

Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

Toutes les marques SPARC, utilisées sous licence, sont des marques déposées ou enregistrées de SPARC International, Inc. aux Etats-Unis et

dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.



1

Application Performance
Optimization

Many developers and users leave a lot of performance on the table due to lack of

information. Several good documents on this subject are available, but they are all

very extensive and might not be easy to find.

This document is a short introduction to performance on Sun systems. It tries to

provide an overview of the subject as well as to supply links and pointers to tools

and documentation. The intent is to provide information to help you improve the

application performance of your system.

What Limits Application Performance?

This is not a trivial question. The usual system tools allow you to understand how

the system as a whole is used, but these tools do not tell you if the application is

using the CPU in an optimal way. To obtain optimal performance, you must look at

both the system level and the application level.

For the system level, you have the usual tools such as vmstat , iostat , and so

forth. Also, there is a set of performance tools developed by Adrian Cockcroft and

Rich Pettit called SE Toolkit. We especially recommend the tools called zoom.se for

interactive testing and virtual_adrian for non-interactive logging of system

behavior. To understand what process is causing the load, the command prstat is

very helpful. You can find a lot of information on system performance as well as a

pointer to the SE Toolkit at http://www.sun.com/sun-on-net/performance .

The actual tool is available from http://www.setoolkit.com and from http://
www.sunfreeware.com .

The Performance Analyzer, which is part of the Forte™ Developer software, can be

very helpful in understanding how well the application is optimized.



2 Application Performance Optimization • March 2002

The Optimal Situation

When the application is running into the limits in every dimension, including fully

utilized CPU pipelines and cache bandwidth, you have achieved fully balanced

performance. You are not likely to do better until you get a new computer that is

faster in all aspects—CPU speed, memory bandwidth, memory latency, and so forth.

I/O Limitations

Virtual memory (disk) is much, much slower than physical memory, actually on the

order of 100,000 times slower. On many systems, disk I/O limits application

performance. Therefore, having enough memory for both the application and

caching the set of commonly read files to eliminate unnecessary disk I/O is very

important.

A single disk can handle only a certain number of random access I/O requests. For

a 10,000 RPM disk this number is on the order of 120 to 130 I/O operations per

second. If your application must do more than that, you need multiple disks even if

your storage needs are less than the size of one disk.

To evenly spread the load between multiple disks, you can use disk striping. This is

also referred to as RAID-0. There are a few common RAID levels. RAID-1 is

mirroring and RAID-5 is striping with parity so that a disk can be lost without losing

data. When both high performance and protection against data loss is required, it is

usual to use RAID-0+1 (both striping and mirroring).

Note that if your I/O needs are large, you may require a lot more storage capacity

than you need for data storage to meet your performance needs.

If the system uses synchronous writes, that is, an application is waiting for the data

to reach stable storage before it continues, a write cache can significantly improve

application performance. Most high-end disk subsystems today have this.

If you want to learn more about system performance tuning, we recommend reading

Sun Performance and Tuning—Java and the Internet, 2nd Ed” by Adrian Cockcroft and

Richard Pettit (ISBN 0-13-095249-4). An advanced network storage solution today

might be faster than the traditional locally attached disk. In some cases, the standard

UNIX® file system itself may be a bottleneck, and you must look at alternate file

systems such as Sun™ QFS."

Network performance also limits the performance of an application. The SE Toolkit

is very useful in finding these kinds of problems for typical TCP/IP network traffic.

If the application is running in parallel on multiple nodes that must synchronize,



The Optimal Situation 3

finding out that the network is actually the bottleneck requires other tools. The Forte

Developer analyzer and the Prism™ debugger software (which is part of the Sun

HPC ClusterTools™ software) are the right tools to use.

Not only network capacity but also network latency, that is, how long it takes to

transfer a message between two computers, may become a limiting factor. The

different forms of Ethernet networks all have fairly high latency, but there are also

other networks like Myrinet (http://www.myri.com ) which have better

characteristics for parallel computing. Another alternative is to run the application

on a large SMP machine where the different processes can communicate using

shared memory instead of a network.

Memory Hierarchy

Today's systems have a complex memory hierarchy. Multiple levels of fast buffer

memory (often referred to as cache) have been inserted between the processor and

main memory. The purpose of cache is to store frequently used data. Programs that

can take advantage of these caches run significantly faster. Accessing data in a CPU

register takes 1 to 2ns. Accessing memory takes, depending on system, between

180ns and 550ns. Accessing virtual memory (on disk) takes in the order of 10ms

(10,000,000ns).

The CPU chip has both level 1 instruction and level 1 data caches. Accessing these

caches is usually two to three times slower than accessing the registers. There is also

a Translation Lookaside Buffer (TLB) on the chip, which is cache for translations

between virtual page addresses and physical page addresses. As the CPU does not

have room for large enough caches on the chip, there is also an external level 2 cache

made up by fast SRAM memory. The speed of this is usually 4 to 10ns; sizes today

vary between 0.5 megabytes and 8 megabytes.

The three common ways to replace data in caches are:

■ Direct mapped—location equals memory location modulo cache size

■ Fully associative—location equals oldest cache line (LRU)

■ X-way associative—choose a set first; direct mapped within set (the value of X is

often 2 or 4)

A higher associativity reduces the risk for cache conflicts and may thus improve

performance. In the UltraSPARC™ I and II processors , the L1 data cache is direct

mapped, the L1 instruction cache is two-way, and the L2 cache is direct mapped. In

the UltraSPARC III processor both the L1 caches are four-way and the L2 is direct

mapped. In the UltraSPARC III Cu processor both the L1 caches are four-way and

the L2 is two-way.



4 Application Performance Optimization • March 2002

For some systems, like the Sun Enterprise™ X500 series of machines, memory

interleave can greatly affect the overall system performance. A Perl script called

memconf is available from http://www.sunfreeware.com that can be helpful in

understanding memory interleaving in your system.

For the Solaris™ 7 operating environment a tool called memstat, written by Richard

McDougall, allows you to see what is in the system memory. This tool is available

from http://www.sun.com/sun-on-net/performance .

What Is Tuning All About?

The main idea of tuning is to:

■ Keep data as close to the CPU as possible.

■ Use all data that have been loaded into the cache (spatial locality).

■ Reuse data that has been cached as long as possible (temporal locality).

■ Obtain an optimal instruction stream and make maximum use of the hardware

resources in the CPU.

All of the preceding tuning might be realized by the compiler, but it is limited by

lack of information. The coding style can also make a difference and cause the

compiler to generate suboptimal code. We recommend that you write clear code and

leave the low-level details to the compiler. Where possible, memory access should be

streamlined.

By the latter we mean that care should be taken to set up the data structures such

that main memory is accessed linearly without jumps (the so-called unit stride

memory access) and that data elements are reused in a single loop as often as

possible. It is outside the scope of this paper to go into more detail.

Manual algorithm changes can be very rewarding in performance, and simple

modifications can improve performance on a variety of systems. The performance

analyzer can help identify opportunities for algorithm performance enhancements.

Interested readers can find much more information on this topic in Techniques For
Optimizing Applications—High Performance Computing by Rajat Garg and Ilya

Sharapov (ISBN 0-13-093476-3). Also, tuning optimization seminars called Sun Tune

seminar are given by Ruud van der Pas. If you are interested in attending one of

these seminars, contact your local Sun office.

Application Code Best Practices

Compilers today are very powerful, but they lack the knowledge about what the

programmer is trying to do. To make the job of the compiler easy, thus allowing

good optimization, keep the code as clear and simple as possible.



The Optimal Situation 5

Some advice from one of our best tuning experts, Ruud van der Pas is:

■ Split the code in compute intensive parts.

■ Write efficient, but clear code; leave the details to the compiler.

■ Avoid very bulky loops.

■ Be careful how you set up your data structures.

■ Minimize global data structures.

■ Simplify branches where possible.

■ Put the most likely branch first.

■ Push the branch part out of the loop

Optimized math routines are available. You can access these routines by adding the

-xlibmopt flag in FORTRAN, and the -lmopt flag in C. The Sun Forte Developer

software includes a highly tuned performance library that has routines like BLAS

level 1–3, LAPACK, FFTPACK and VFFTPACK. These routines can be linked in by

adding -xlic_lib=sunperf . To get optimal performance, it is important to use the

right version by setting -xarch . Also, note that these routines are compiled with -
dalign , so this option is required.

Why Enable Compiler Optimization?

It is important to understand that compiler optimization is disabled by default. The

default mode is to generate correct code as fast as possible to increase the

productivity of the software developer, as the optimization work takes time. By

turning on optimization, the execution time for an application can sometimes be

reduced to 50 percent or less of the unoptimized execution time. This means that

once you have a correct program, you need to recompile with optimization enabled

and verify that your program is still correct.

Compiling for the right instruction set, so that all registers in the CPU are used, is

important. (If an application is compiled for v7, only half of the UltraSPARC

processor floating point registers are used.) With the UltraSPARC III Cu processor

chip and onwards, it is possible to move data to the on-chip prefetch cache, so that

the data is available on chip when needed.

Also, be aware that the compiler is constantly being improved. Moving to the latest

compiler version can often improve application performance.



6 Application Performance Optimization • March 2002

Putting Your Effort in the Right Place

In many cases, one routine or perhaps a few routines take up most of the execution

time. You should put most of your effort into these routines. The Forte Developer

software has a very powerful tool called Performance Analyzer that you can use to

find these routines.

When tuning, the most important thing is to verify that the program generates the

correct results. Be sure to check that the result remains correct when the

optimization level is increased. Some of the optimizations techniques used by the

compiler make assumptions about the code, which in some cases may be incorrect.

Compiler flags are interpreted left to right, which means that you might not always

get the result you expect. The best way to check what the compiler is doing is to turn

on verbose mode, which is done with -v in FORTRAN and -# in C.

If you want to check the flags without doing any real compilation to verify that you

really get what you want, you can add -dryrun (FORTRAN) or -### (C).

If you are debugging code, you must compile with the -g flag. The Forte Developer

software supports source browsing, which needs -xsb to be added.

The command f95 -flags , will print the most common flags accepted by the

FORTRAN 95 compiler. The current version of the Sun Forte program supports C,

C++, FORTRAN and Java™software. Besides the compilers, the current version also

includes a complete development environment with context sensitive editors, source

browser, debugger, and so forth.

Besides the usual man pages, you can also find useful information in:

/opt/SUNWspro/docs/index.html

/opt/SUNWspro/READMEs

http://docs.sun.com (or locally installed AnswerBook collections)

Compiler Flag -fast

The most important flag is -fast , which is a macro consisting of many different

flags. Note that -fast differs between different compiler versions.

In the Forte Developer 6.2 software, -fast expands a variety of flags. The flags

common to FORTRAN and C are:

-xtarget=native

-xO5



The Optimal Situation 7

-fns

-fsimple=2

-dalign

-xlibmil

FORTRAN only flags are:

-xdepend

-xvector=yes

-xprefetch=yes

-ftrap=%none (f77)

-ftrap=common (f95)

-xlibmopt

-pad=local

C only flags are:

-ftrap=%none

-fsingle

-xbuiltin=%all

Also note that -fast optimizes for the machine on which the compilation is done. If

you don't compile on the target machine on which you will run the application, you

might need to set things like -xarch, -xcache and -xchip .

Always verify that your results are correct, and check the program execution profile

in the Performance Analyzer.

Also in some of the flags included in -fast, the basic optimization level is set with

-On, where n is a number between 1 and 5:

n = 1 – Basic block optimization

n = 2 – Global optimization

n = 3 – Loop unrolling and modulo scheduling

n = 4 – Intrafile inlining and pointer checking

n = 5 – Aggressive optimization, including profiling feedback

The optimization level seldom causes any problems with program accuracy.



8 Application Performance Optimization • March 2002

The Solaris operating environment is a 64-bit operating environment that allows

execution of both 32-bit and 64-bit applications concurrently. If your application

requires an address space larger than 4 gigabytes, you must compile for 64 bits. You

do this by setting the -xarch flag to v9 [a,b]. Using -xarch=v9b means that it

should be compiled for 64 bits, using the full instruction set in the UltraSPARC III

processor, including UltraSPARC III processor specific instructions. However, a

program compiled this way will not run on a machine with an UltraSPARC II

processor.

If you don't need 64 bits, 32-bit code is usually slightly faster. In this case, use

-xarch=v8plus[a,b] . Note that if you compile with -xarch=v8 , you will

generate generic SPARC® V8 code that will run also on old SuperSPARC™

processors, but you will, for example, not make optimal use of all the floating point

registers in the UltraSPARC processor.

The flag -xtarget=native means that you optimize for the machine you are

compiling on. Optimizing the code for a specific CPU pipeline and cache size will

only affect performance, not compatibility. If you, for example, optimize for the

UltraSPARC III processor, the code will run on an UltraSPARC II machine, but not at

optimal speed. The pipeline to optimize for is set with the flag

-xchip=[ultra2,ultra3 , ...] The cache to optimize for is defined with the flag

-xcache . Here are two examples:

-xcache=16/32/1:2048/64/1 —UltraSPARC II processor with 2 megabyte L2$

(direct mapped)

-xcache=64/32/4:8192/64/1 —UltraSPARC III processor with 8 megabyte L2$

(direct mapped)

The Forte Developer software includes a program called fpversion that you can

use to find the characteristics of the machine you are using.

The option -fsimple selects floating point optimization preferences. You set it with

-fsimple= n, where n, can be:

n = 0—Strict IEEE754 conformance (default)

n = 1—Allows conservative simplifications. Numeric values are not likely to change.

n = 2—More aggressive floating point optimizations. Numeric values are likely to be

slightly different due to roundup differences.

Setting -fsimple can often have a significant impact (up to 20 percent) on

performance, but you must verify the accuracy of the results.

The -xdepend option is an important option for performance, as loops are analyzed

for dependencies and possible transformations such as loop interchange and loop

fusion. It requires an optimization level of at least -xO3 . This option is included in -
fast for FORTRAN but not for C in the Forte Developer 6.2 software.



The Optimal Situation 9

The -xprefetch option can hide memory latencies by issuing fetch instructions

ahead of time, so that the data is available when it's needed for computing. This

option does, however, take up an instruction slot, and might therefore make some

code run slower. An UltraSPARC II processor CPU or later is required and at least

-xarch=v8plus or higher. You can add prefetch directives to the code, or just let

the compiler do it is best.

Multifile Program Optimization

In many cases a big program is split into multiple files during the development. This

method makes the development process easier. It is fast to just recompile the file you

working on and relink (using make). However, from an application performance

standpoint, this method is not optimal, as the compiler only compiles one file at the

time and has no knowledge of the rest of the program. By adding the option -xipo
to the compiler flags, you allow the compiler to optimize the whole program and, for

example, inline routines from separate source files. Previous to version 6.2 of the Sun

Forte Developer software, the way to get around this was to either concatenate the

files before final compilation or compile all files in a single command and use the

-xcrossfile option.

Parallelizing Your Application.

Essentially there are two ways to parallelize a code—shared memory parallelization

and message passing. If you want to use shared memory parallelization, the Forte

Developer software is the tool you need. It supports the OpenMP program

development environment. To use this tool, you must add OpenMP compiler

directives to your source code, compile with -xexplicitpar -mp=openmp , and

then set the environment variable OMP_NUM_THREADSto the number of threads you

want before running your code. You can also let the compiler do its best without

adding any directive and, in some cases, even this can produce a respectable

program speedup.

The other parallelization possibility is to use message passing. The Sun HPC

ClusterTools 4.0 software is Sun’s current MPI implementation. It is based on the

MPI development environment that Sun acquired from Thinking Machines. Besides

the MPI libraries, it contains a Scientific Subroutine Library called S3L and a very

powerful debugger/data visualizer called Prism debugger software. The Sun HPC

ClusterTools 4.0 software supports jobs running on up to 2048 CPUs on up to 64

nodes.



10 Application Performance Optimization • March 2002

Conclusion

In many real life systems, the application performance is far from optimal. A lot of

improvement can often be achieved by measuring how the system behaves and

configuring the system optimally (regarding memory, disk I/O, network, and so

forth).

If you have access to the application source code, compiling with the latest compiler

version and with compiler optimization enabled will make a significant

improvement. In most cases, compiling with -fast is a very good start. Also,

keeping the code as simple as possible and using optimized libraries when possible

helps a lot.

Author's Biography

Börje Lindh

Börje has over 13 years of UNIX software experience. He joined Sun in 1994 as a

Systems Engineer, and is now a Technical Computing Specialist at Sun Sweden.


