
Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 1
bada 1.0.0b2

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved.

bada Tutorial:
Communication
(Telephony, Messaging, Network)

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 2

Contents

• Telephony

• Messaging

• Network

– Net

– Sockets

– Http

– Wi-Fi

– Bluetooth

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 3

Telephony

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 4

Contents

• Essential Classes and Relationships

• Overview

• CallManager

– Example: Get Current Call Status

• NetworkManager

– NetworkInfo

– Example: Get Active Network Information

– Example: Get Status Change Notifications

• SimInfo

– Example: Get SIM Card Information

• FAQ

• Review

• Answers

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 5

Essential Classes and Relationships

Feature Provided by

Provides information about the current call. CallManager

Provides information about the current active network and its status. NetworkManager,

NetworkInfo, NetworkStatus,

ITelephonyNetworkEventListener

Provides information about the currently inserted SIM card. SimInfo

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 6

Overview

• The Telephony namespace contains classes and interfaces

to access the device‟s telephony capabilities.

• Key features of the telephony service are related to calls,

the network and the SIM card:

– Call:

• Getting the current call type and call status.

– Network:

• Getting notification of network status changes for voice and data services.

• Getting network information, such as PLMN, MCC, MNC, Cell ID, and LAC.

– SIM card:

• Getting SIM card information, such as SPN, MCC, MNC, ICC-ID,

and operator name.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 7

CallManager

• The call manager provides information about the current call type

and status using the following 2 methods:

– GetCurrentCallStatus()

– GetCurrentCallType()

• The call status is enumerated as shown below:

• The call type is enumerated as shown below:

Telephony::CallType Description

TYPE_VOICE_CALL The call is voice only.

TYPE_VIDEO_CALL The call is video and voice.

Telephony::CallStatus Description

CALL_STATUS_IDLE No call in progress.

CALL_STATUS_ACTIVE A voice or video call in progress.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 8

Example: Get Current Call Status

Get the status of the current call and the call type.

– Open \<BADA_SDK_HOME>\Examples\Communication\src

\Telephony\TelephonyExample.cpp, GetCallInfoExample()

1. Construct a CallManager:

CallManager::Construct()

2. Get the status of the current call:
CallManager::GetCurrentCallStatus()

3. If the status is active, get the type of the current call:
CallManager::GetCurrentCallType()

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 9

NetworkManager

• The NetworkManager class returns a NetworkInfo object

and a NetworkStatus object.

• Pass new NetworkInfo and NetworkStatus objects into their

respective methods to get current information about the network

and its status.

– GetNetworkInfo(&networkInfo)

– GetNetworkStatus(&networkStatus)

NetworkInfo

GetCellId()

GetLac()

GetMcc()

GetMnc()

GetPlmn()

NetworkStatus

IsCallServiceAvailable()

IsDataServiceAvailable()

IsRoaming()

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 10

NetworkInfo

The NetworkManager‟s GetNetworkInfo() method returns

a NetworkInfo object that contains information about the network

that the device is currently connected to or registered with.

Method Description

GetCellId() The cell ID of the mobile device.

GetLac() The Location Area Code.

GetMcc() The Mobile Country Code.

GetMnc() The Mobile Network Code.

GetPlmn() The Public Land Mobile Network.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 11

Example: Get Active Network Information
(1/2)
Get information on the active network and its status.

– Open \<BADA_SDK_HOME>\Examples\Communication\src\

Telephony\TelephonyExample.cpp, GetNetworkInfoExample()

1. Construct a NetworkManager:

NetworkManager::Construct()

2. Get the instance of NetworkStatus:

NetworkManager::GetNetworkStatus(networkStatus)

3. Get the network status using getter methods:
NetworkStatus::IsCallServiceAvailable()

NetworkStatus::IsDataServiceAvailable()

NetworkStatus::IsRoaming()

4. Get a NetworkInfo instance:

NetworkManager::GetNetworkInfo()

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 12

Example: Get Active Network Information
(2/2)

5. Get network information:
NetworkInfo::GetMnc()

NetworkInfo::GetMcc()

NetworkInfo::GetCellId()

NetworkInfo::GetLac()

NetworkInfo::GetPlmn()

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 13

Example: Get Status Change Notifications

Get notifications when the network status changes.

– Open \<BADA_SDK_HOME>\Examples\Communication\src\

Telephony\TelephonyExample.cpp,

GetNetworkNotificationExample()

1. Implement an ITelephonyNetworkEventListener interface

listener and create an instance.

2. Construct a NetworkManager with the listener:

NetworkManager::Construct(listener)

3. When network status changes, the
OnTelephonyNetworkStatusChanged() event handler fires:

ITelephonyNetworkEventListener::

OnTelephonyNetworkStatusChanged()

4. Get the status changes from the NetworkStatus object:

NetworkStatus::IsCallServiceAvailable()

NetworkStatus::IsDataServiceAvailable()

NetworkStatus::IsRoaming()

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 14

SimInfo

SimInfo contains information about the current SIM card.

Method Description

GetIccId() The Integrated Circuit Card ID (ICC-ID).

GetMcc() The Mobile Country Code or the SIM IMSI (International Mobile Subscriber

Identity).

GetMnc() The Mobile Network Code or the SIM IMSI.

GetOperatorName() The mobile network operator name.

GetSpn() The Service Provider Name.

IsAvailable() Whether the SIM card is in the device or not.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 15

Example: Get SIM Card Information

Get SIM card information using a SimInfo object.

– Open \<BADA_SDK_HOME>\Examples\Communication\src\

Telephony\TelephonyExample.cpp, GetSimInfoExample()

1. Construct a SimInfo:

SimInfo::Construct()

2. Get SIM card information using SimInfo methods:

GetMnc()

GetMcc()

GetSpn()

GetIccId()

GetOperatorName()

IsAvailable()

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 16

FAQ (1/2)

• Why does SPN return an empty string?

– SPN is not a mandatory field. Some of the SIM cards that do not have it

return an empty string.

• What is the ICC-ID?

– ICC-ID is an acronym for Integrated Circuit Card ID.

– The ID uniquely identifies each SIM internationally.

– ICC-ID is stored on a SIM card and printed or engraved on it.

– ITU-T recommendation E.118 defines ICC-ID.

– They are 18- or 19-digit numbers.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 17

FAQ (2/2)

What are the MCC and MNC?

– MCC (Mobile Country Code) is a 3-digit code that identifies mobile

stations in wireless telephone networks.

– MNC (Mobile Network Code) is a 2 or 3-digit code that uniquely

identifies mobile phone operators.

– MCC and MNC are defined in ITU E.212

(“Land Mobile Numbering Plan”).

– The following are MCC and MNC examples:

Carrier name (country) MCC MNC

British Telecom(UK) 234 00

O2 (UK) 234 02, 10, 11

Vodafone (UK) 234 15

T-Mobile (UK) 234 30

T-Mobile (Germany) 262 01, 06

SK Telecom (Korea) 450 03, 05

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 18

Review

1. What types of calls are there?

2. What does the GetIccId() method return and what does it

represent?

3. Two classes have some similar methods. What are the classes?

Name at least 1 similar method.

4. Which of the following are used when uniquely identifying

a mobile phone internationally?

– ICC-ID

– MCC

– MNC

– SPN

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 19

Answers

1. Voice and video.

2. Integrated Circuit Card ID. It uniquely identifies a SIM card

internationally.

3. NetworkInfo and SimInfo. Similar methods include GetMcc()

and GetMnc().

4. ICC-ID is the identity value itself.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 20

Messaging

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 21

Contents

• Essential Classes

• Relationships between Classes: SMS

• Relationships between Classes: MMS

• Relationships between Classes: Email

• Relationships between Classes: Push

• Overview

• Manager Classes

• Data Classes

– RecipientList

• Sending Messages Programmatically

– Example: Send an SMS Programmatically

– Example: Send an MMS Programmatically

– Example: Send an Email Programmatically

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 22

Contents

• Push Notification Service

– Example: Receive a Push Message

• Event Injector

• FAQ

• Review

• Answers

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 23

Essential Classes

Feature Provided by

Provides an SMS message containing body text. SmsMessage

Provides an MMS message containing a subject, body text, and attachments. MmsMessage

Provides an email message containing a subject, body text, and attachments. EmailMessage

Provides a push message containing body text. PushMessage

Sends SMS messages. SmsManager

Sends MMS messages with attachments. MmsManager

Sends email messages with attachments. EmailManager

Receives push messages and checks unread messages. PushManager

Provides an asynchronous listener for sending SMS messages. ISmsListener

Provides an asynchronous listener for sending MMS messages. IMmsListener

Provides an asynchronous listener for sending email messages. IEmailListener

Provides an event listener for receiving push messages. IPushEventListener

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 24

Relationships between Classes: SMS

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 25

Relationships between Classes: MMS

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 26

Relationships between Classes: Email

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 27

Relationships between Classes: Push

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 28

Overview

• The Messaging namespace contains classes and interfaces

that provide SMS, MMS, email, and push messaging features.

• Key features include:

– Creating and sending SMS messages.

– Creating and sending MMS and email messages with attachments.

– Receiving push messages.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 29

Manager Classes

• SmsManager

– Adds listener to receive asynchronous results.

– Sends SMS messages.

• MmsManager

– Adds listener to receive asynchronous results.

– Sends MMS messages with attachments (image, video and audio).

• EmailManager

– Adds listener to receive asynchronous results.

– Sends email messages with attachments.

• PushManager

– Adds listener to receive incoming push messages.

– Checks unread push messages.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 30

Data Classes

• SmsMessage

– The abstract data type class for SMS messages.

– Creates the body text.

• MmsMessage

– The abstract data type class for MMS messages.

– Creates the body text, subject, and attachments.

• EmailMessage

– The abstract data type class for email messages.

– Creates the body text, subject, and attachments.

• PushMessage

– The abstract data type class for push messages.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 31

Data Classes

RecipientList

– The abstract data type class for recipients.

– Adds, removes, sets, and gets recipients.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 32

RecipientList

• The RecipientList contains a list of phone numbers or

addresses to send messages to.

• A recipient list has 3 distinct sections to it, divided using
the RecipientType enumeration.

• You can create a recipient list using a particular recipient list type,

and add another list of another type.

• You can also add or remove individual recipients.

• When getting a list of recipients, you must specify what type they are,
TO, CC, or BCC.

Type Description Used with

TO The list of people the message is addressed to. SMS, MMS, and email

CC The list of people the message is carbon copied to. MMS and email

BCC The list of people the message is blind carbon copied to. MMS and email

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 33

Sending Messages Programmatically (1/3)

You can programmatically send SMS, MMS, and email messages using

below classes:

– SmsManager, SmsMessage

– MmsManager, MmsMessage

– EmailManager, EmailMessage

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 34

Sending Messages Programmatically (2/3)

• You can send all message types to multiple recipients.

• You can add attachments to MMS and email messages:

– Each attachment has size limitations. For more information, see the API

Reference.

– Email attachments: The file format does not matter.

– MMS attachments: A subset of the MMS specification is supported.

• Image only

• Audio only

• Video only

• Image and audio clip

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 35

Sending Messages Programmatically (3/3)

Status report:

– After your application sends an SMS, MMS, or email message, it waits

for the asynchronous sent status message.

– When sending an MMS or email message, you receive one status

report regardless of the number of recipients.

– When sending an SMS message, you receive a separate status report

for each recipient.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 36

Example: Send an SMS Programmatically

Send an SMS message.

– Open \<BADA_SDK_HOME>\Examples\Communication\src\

Messaging\SendSmsMessage.cpp

1. Implement an ISmsListener and create an instance.

2. Construct an SmsManager:

SmsManager::Construct(listener)

3. Set the body text:
SmsMessage::SetText(message)

4. Create a recipient list and add recipients:
RecipientList::Add(type, recipient)

5. Send the message with recipients:
SmsManager::Send(smsMessage, recipientList, true)

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 37

Example: Send an MMS Programmatically

Send an MMS message.

– Open \<BADA_SDK_HOME>\Examples\Communication\src\

Messaging\SendMmsMessage.cpp

1. Implement an IMmsListener and create an instance.

2. Construct an MmsManager:
MmsManager::Construct(listener)

3. Set the body text:
MmsMessage::SetText(message)

4. Set the subject:
MmsMessage::SetSubject(subject)

5. Create and add recipients:
RecipientList::Add(type, recipient)

6. Add attachments:
MmsMessage::AddAttachment(format, filePath)

7. Send the message:
MmsManager::Send(mmsMessage, recipientList, true)

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 38

Example: Send an Email Programmatically

Send an email message.

– Open \<BADA_SDK_HOME>\Examples\Communication\src\

Messaging\SendEmailMessage.cpp

1. Implement an IEmailListener and create an instance.

2. Construct an EmailManager:
EmailManager::Construct(listener)

3. Set the body text:
EmailMessage::SetText(message)

4. Set the subject:
EmailMessage::SetSubject(subject)

5. Create and add recipients:
RecipientList::Add(type, recipient)

6. Add attachments:
EmailMessage::AddAttachment(filePath)

7. Send the message:
EmailManager::Send(emailMessage, recipientList, true)

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 39

Push Notification Service (1/4)

• Applications can use the PushManager class to receive

push messages from remote servers.

• The push service provides notifications for users to launch

the relevant application when a new message arrives.

bada Server Device ApplicationsService Providers

Send Notification
Push

Delivery

Notification
Launch

User

News

Service

Social

Service

Game

Service

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 40

Push Notification Service (2/4)

User consent:

– Application must notify and obtain consent from the users before sending

push notifications to their devices.

– Applications must notify the users by displaying a pop-up window with the

following message:

– If a user denies the push notifications, the server does not deliver push

messages to the device.

<AppName> wants to send you

push notifications. It may use

packet data service, and the

notifications may include ticker and

icon badges. Allow?

[Yes] [No]

Push Notification Agreement

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 41

Push Notification Service (3/4)

Push notifications enabled:

– To receive push notifications, the user must sign in to the Samsung

account and enable Push sync in My accounts.

• If calling
Osp::Social::Services::ProfileService::GetMyUserId()

returns E_USER_NOT_REGISTERED, the user is not signed in.

• The application can check the push notification setting by calling
Osp::System::SettingInfo::GetValue() with the

PushEnabled key.

– The application can notify the users if the device is not ready to receive

push notifications.

To use the Push

Notification Service, sign in

to “Samsung account” and

enable “Push sync” in “My

accounts”.

[OK]

Notice

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 42

Push Notification Service (4/4)

• The bada Server provides an open API for sending push

notifications.

– To send a push notification to a device, the application server needs to
know the ApplicationId and UserId of the destination.

– The application must obtain user consent and register its UserId with

the server.

– For more information, see the bada developer site.

• The Simulator cannot receive push notifications from a server. You

can test the push notification service on the Simulator using the

Event Injector.

bada

device

bada

server

Application

server

2. Send push notifications
Application

1. Register UserId under user consent

3. Deliver push notifications

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 43

Example: Receive a Push Message

Receive a push message.

– Open \<BADA_SDK_HOME>\Examples\Communication\src\

Messaging\ReceivePushMessage.cpp

1. Construct a PushManager:

PushManager::Construct()

2. Implement an IPushEventListener and create an instance.

3. Add the push event listener:
PushManager::AddPushEventListener(listener)

4. Check for unread messages:
PushManager::CheckUnreadMessage()

5. Remove the listener:

PushManager::RemovePushEventListener()

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 44

Event Injector (1/2)

• You can generate a push message using the event injector.

• From the screenshot:

† Multi-byte languages, such as Korean, are not supported.

†† Badge number is effective only if the action type is not DISCARD.

Parameter
Sub -

parameter
Description

Application ID Your unique application ID

Payload† Message body (up to 512 bytes)

Action Behavior when the application is not running

Action Type

• DISCARD: Discard the message

• SILENT: Store the message silently

• ALERT: Store the message and alert the

user

Alert

Message†

Notification message for the user (up to 40

bytes)

Badge Number†† A number to label the application icon with

Option

• SET: Set badge number to a given value

• INCREASE: Increase badge number by a

given value

• DECREASE: Decrease badge number by a

given value

Value A value to set, increase or decrease

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 45

Event Injector (2/2)

• After your application sends an SMS or MMS message, it waits for

the asynchronous sent status message.

• You can generate and issue an SMS or MMS sent status message

in the Messaging > Status Report tab.

• You can choose an SMS or MMS sent status:

– SUCCESS

– Other errors

Note: In case of SMS status, you must send the SMS Sent

Status once for each recipient.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 46

FAQ

• Can I receive or handle received messages?

– No. All message receiving is handled by the native messaging
application on the device.
Due to performance and privacy issues, bada applications do not have
access to the Inbox.

• How can I use AppControl to send different kinds of messages?

– See the UI and Applications tutorial.

• When I try to send a message, an E_STORAGE_FULL exception
occurs. What do I need to do?

– You must delete the messages in the Sentbox.

• What is the difference between the Sentbox and Outbox?

– If a user sends a message successfully, it is saved in the Sentbox.
If sending the message fails or gets cancelled, the message is saved in
the Outbox.

• Even though I delete some messages in the Sentbox, I still get the
E_STORAGE_FULL exception when I try to send an email.

– In case of email messages, the deleted messages go to the Trash
folder. You must delete the messages in Trash manually.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 47

Review

1. What different kinds of messages can you send using bada?

2. How can you send a message to more than one person?

3. Which message formats support attachments, and what method

is used to add attachments?

4. Can you send file attachments in an MMS?

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 48

Answers

1. SMS, MMS, and email messages.

2. Use a RecipientList with the SetRecipientList() method

to send to a list of people.

3. MMS and email messages support adding attachments through
the AddAttachment() method. The AddAttachment()

signatures for MMS and email messages are different.

4. No. You can only send image, audio, and video attachments.

Other file formats are not supported.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 49

Network

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 50

Contents

• Overview

• Sync vs. Async : The Problem

• Sync vs. Async : The Solution

• Listener Interfaces

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 51

Overview (1/2)

The Net namespace and its sub-namespaces provide a robust set of

low- to high-level networking tools:

– Account management

– Connection management

– DNS and IP address management

– HTTP management

– Socket management

– Wi-Fi management

– Bluetooth management

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 52

Overview (2/2)

Practical considerations:

– Classes and namespaces in the Net namespace, such as Http,

and Sockets, are usually used in non-blocking mode.

– Interfaces are defined to handle events, and must be implemented

to receive notifications.

• For example, the Osp::Net::ISocketEventListener event handler

needs to be implemented for a socket.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 53

Sync vs. Async : The Problem

Applications that use Sync mode can freeze or become non-responsive

during the time the transaction is controlled by the server.

Client

Send request

Server

Receive request

Process request
Program freezes

in Sync mode

Return response

Client receives

response from server

and continues

running (if it has

not crashed)

F
ro

z
e
n

Transaction leaves client

Transaction returns to client

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 54

Sync vs. Async : The Solution

The solution to the problem is to run async mode. This requires an

event handler to receive a notification when the server responds to the

request.

Application continues running while waiting for the response

Application makes

asynchronous request

Network latency + server processing time does not

affect applications running in async mode

Application

asynchronously receives

response in an

event handler

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 55

Listener Interfaces

You need to manually implement listener interfaces to handle events and

notifications. The following is a boilerplate for the

ISocketEventListener. You can implement other listeners the same

way.
using namespace Osp::Net;

using namespace Osp::Base;

class TestListener :

public Object,

public virtual ISocketEventListener

{

public:

TestListener() {}

~TestListener() {}

void OnSocketConnected

(Socket& socket) { }

void OnSocketClosed

(Socket& socket, NetSocketClosedReason reason) { }

void OnSocketReadyToReceive

(Socket& socket) { }

void OnSocketReadyToSend

(Socket& socket) { }

void OnSocketAccept

(Socket& socket) { }

};

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 56

Net

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 57

Contents

• Essential Classes

• Relationships between Classes

• Overview

• Accounts and Connections

– Network Accounts

• NetAccountInfo

– Network Connections

• Default and Custom Network Connections

• Example: Set Preferred Network

• Example: Control Custom Network Connection

– More Classes and Info

• DNS

– Example: Query DNS

• Proxy Address Setting

• FAQ

• Review

• Answers

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 58

Essential Classes

Feature Provided by

Provides functions for creating, deleting, and administering accounts. NetAccountManager

Encapsulates account information. NetAccountInfo

Provides methods to create and manage network connections for data communications. NetConnection

INetConnectionEventListener

Encapsulates connection information. NetConnectionInfo

Provides simple domain name resolution functionality. Dns

IDnsEventListener

Provides networking utilities. NetEndPoint

IPAddress (IP4Address and

IP6Address)

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 59

Relationships between Classes

NetAccountManager

NetAccountInfo

NetConnection

NetConnectionInfo

<<interface>>

INetConnectionEventListener

 0..* 0..*

0..*

0..*

<<primitive>>

NetAccountID
 1

 1

1

1

 1 1

Dns

IDnsEventListener

1

1

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 60

Overview

• The Net namespace lets you work with a range of low- to high-level

networking classes for data communications.

• Key features include:

– Network account

– Network connection

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 61

Accounts and Connections

• Accounts are only used for configuration, while connections

represent the actual run-time session. So, connections are always

account-based.

• This means that connections always require a network account to

access resources on the network.

Application

Connection

Account

Network

D
a
ta

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 62

Network Accounts

• In order to access a remote network, many configuration parameters

are necessary, such as the network type, access point name,

protocol type, and HTTP proxy address. A network account is

a set of these parameters.

• With a network account, you can:

– Get a list of account information on the device.

– Add a new account.

– Delete an existing account.

– Modify account information.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 63

NetAccountInfo

NetAccountInfo contains all the information needed to make a connection.

Some properties are set together in a single method.

Get Set Item Description

Access point name The access point name.

Account ID The account ID.

Account name The account name.

Authentication info The authorization type (PAP or CHAP), account ID, and account password.

DNS address scheme The NetAddressScheme for the DNS servers.

Local address The IP address.

Local address scheme The NetAddressScheme for the account. Dynamic or static.

Account name max. length The maximum length for an account name.

ID max. length The maximum length for an account ID.

Password max. length The maximum length for a password.

Operation mode The operation mode.

Primary DNS address The IP address of the primary DNS server.

Protocol type The protocol type.

Proxy address The IP address of the proxy, if any.

Secondary DNS address The IP address of the secondary DNS server.

Account password The account password.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 64

Network Connections

• A network connection is a runtime session for a network service.

It requires a network account to establish the session. In order to

access a network, a network connection must be established.

• With a network connection, you can:

– Create a network connection using a specific network account.

– Start a network connection.

– Stop a network connection.

– Register an event listener for network events.

3G

Network connection

Network connection

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 65

Default and Custom Network Connections

• Default network connection:

– Network connections are necessary
to use network-based services, but
they are difficult to use. The default
network connection simplifies
network usage by letting the platform
manage the network connection.
To use the default network
connection, simply do not specify
a network connection and the
platform uses the default internally.

• Custom network connection
(for advanced developers):

– You can create a customized network
connection for direct control. With
a custom network connection, you
can use a specific network account
and start or stop the network
connection at any time.

1. An application requests network

services without a network connection.

2. Network services gets and starts

a default network connection internally.

3. Network services accesses a remote network.

Network

Services

(Http/Socket)

Application Network
1

2

3

(a) A workflow using a default network connection

1. An application creates and starts

a custom network connection.

2. The application requests network

services with a network connection.

3. Network services accesses a remote network.

(b) A workflow using a custom network connection

Network

Services

(Http/Socket)

Application Network
2

1

3

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 66

Example: Set Preferred Network

Set a preferred network for an application.

– Open \<BADA_SDK_HOME>\Examples\Communication\src\Net\

NetPreferenceExample.cpp

1. Construct a NetAccountManager:

Net::NetAccountManager::Construct()

2. Set the preferred network for the default network connection:
Net:: NetAccountManager::SetNetPreference

(NET_PS_ONLY)

3. Construct a Socket or Http object:

Net::Sockets::Socket::Construct()

Net::Http:HttpSession::Construct()

Note 1: If a developer does not need to set preferred network, skip Steps 1 and 2.

Note 2: If an application does not set a preferred network, according to system network policy,

network is automatically selected.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 67

Example: Control Custom Network
Connection
Start and stop a custom network connection.

– Open \<BADA_SDK_HOME>\Examples\Communication\src\Net\
NetConnectionExample.cpp

1. Implement an INetConnectionEventListener and create an
instance.

2. Get an account:
NetAccountManager::GetNetAccountIdsN()

3. Construct a NetConnection:
NetConnection::Construct(accountId)

4. Add the listener:
NetConnection::AddNetConnectionListener (Listener)

5. Start the connection:
NetConnection::Start()

6. Do something useful in the ‘started’ event handler.

7. Stop the connection:
NetConnection::Stop()

8. Do something useful in the ‘stopped’ event handler.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 68

More Classes and Info

• NetConnectionInfo class:

– Contains all connection information, such as the protocol type, access

point name, local address, and DNS address.

• NetAccountId Typedef as opposed to NetAccountInfo class:

– NetAccountId identifies an account.

– NetAccountInfo contains all account information.

• NetStatistics class:

– Provides statistics on network conditions.

• Gets the size of last sent or received data in bytes.

• Gets the size of total sent or received data in bytes.

• Statistics can be reset.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 69

DNS

• People remember friendly host names, not address octets.

Which of these would you remember?

SamsungMobile.com or 195.125.115.161?

• DNS translates host names into IP addresses and vice versa.

A. Look up IP addresses from user-friendly host names.

B. Look up host names from IP addresses.

A. GetHostByName(www.samsungmobile.com)

195.125.115.161

B. GetHostByAddress(195.125.115.161)

www.samsungmobile.com

Send a host name, get an IP address Send an IP address, get a host name

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 70

Example: Query DNS

Get an IP address from a host name.

– Open \<BADA_SDK_HOME>\Examples\Communication\src\Net\

DnsExample.cpp,

DnsRequest() and OnDnsResolutionCompletedN()

1. Request an IP address by host name:
Dns::GetHostByName(hostName)

2. Retrieve the IP address from the response in the event handler:
IDnsEventListener::OnDnsResolutionCompletedN

(ipHostEntry, r)

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 71

Proxy Address Setting (1/2)

You can change the proxy address under Settings > Connectivity >

Network > Connections > bada > Proxy address.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 72

Proxy Address Setting (2/2)

S
C

R
O

L
L

address:port

address:port

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 73

Review

1. What is needed before you can make a connection?

2. What class tells you the protocol type?

3. How do you find out an IP address from a fully qualified

domain name?

4. Is it possible to get a host name from an IP address in bada?

5. NetStatistics provides some traffic information. What is it?

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 74

Answers

1. You need a network account first. One way to get a net account

is through 1 of the the
NetAccountManager::GetNetAccount~() methods.

2. NetConnectionInfo.

3. You use the Dns::GetHostByName() method.

4. Yes. Dns::GetHostByAddress() returns a host name.

5. NetStatistics provides the size of the last sent or received data

in bytes as well as the total of all traffic in bytes.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 75

Sockets

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 76

Contents

• Essential Classes

• Relationships between Classes

• Overview

• Non-blocking mode

– Example: TCP Client in Non-blocking Mode

• Blocking mode

– Example: UDP Client in Blocking Mode

• Secure Sockets

– Example: Secure Sockets

• FAQ

• Review

• Answers

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 77

Feature Provided by

Provides BSD-like socket call functionality to communicate with nodes on a network. Socket

Provides a listener for socket events. ISocketEventListener

Provides BSD-like secure socket call functionality to communicate with nodes on a

network.

SecureSocket

Provides a listener for secure socket events. ISecureSocketEventListener

Specifies whether a socket remains connected after a Close call and the length of

time it remains connected, if data remains to be sent.

LingerOption

Provides support for multicasting in sockets. IpMulticastRequestOption

Provides socket utilities, such as select, host, and network conversion. SocketUtility

Essential Classes

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 78

Relationships between Classes

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 79

Overview

• A socket is one endpoint in a two-way communication link between

two programs running on a network.

• The Socket and SecureSocket classes provide a rich set of

methods and properties for network communications. These classes

allow you to communicate over a network.

• Key features include:

– BSD-like socket handling

– Sockets:

• TCP client, TCP server, and UDP client

• Non-blocking (default) and blocking modes

– Secure sockets:

• Support for TLS1.0 and SSL 3.0

• TCP client socket functionality only

• Non-blocking mode only

– Key methods: Listen(), AcceptN(), Connect(), Send(),

SendTo() , Receive(), ReceiveFrom(), and Close().

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 80

Non-blocking Mode

• Sockets are asynchronous (non-blocking mode) by default.

• The basic flow for using non-blocking sockets is an

event-driven procedure.

• Non-blocking mode can be used with both TCP and UDP sockets.

• The ISocketEventListener provides event handlers for socket

events, and is added to a socket through the socket’s
AddSocketListener() method.

• Once the listener is set, you must specify which events to listen
for using the socket’s AsyncSelectByListener() method.

Events are specified using the bitwise OR operator (pipes: “|”).

For example, “EventA | EventC | EventN”.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 81

Example: TCP Client in Non-blocking Mode

Create a TCP client that sends and receives data.

– Open
\<BADA_SDK_HOME>\Examples\Communication\src\Sockets\

SocketsTcpClientExample.cpp

1. Construct a Socket:
Socket::Construct(NET_SOCKET_AF_IPV4,

NET_SOCKET_TYPE_STREAM, NET_SOCKET_PROTOCOL_TCP)

2. Add a socket listener:
Socket::AddSocketListener(listener)

3. Set the listener to listen for socket events:
Socket::AsyncSelectByListener(socketEventTypes)

4. Connect to a TCP server:
Socket::Connect(remoteEndPoint)

5. Send and receive data:
Socket::Send(buffer)

Socket::Receive(buffer)

6. Close the socket:
Socket::Close()

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 82

Blocking Mode

• Sockets can be created and used synchronously in blocking mode.

• To use a socket in blocking mode, you must call the
Socket::Ioctl() method with the NET_SOCKET_FIONBIO

option after initializing the socket.

• Blocking mode can be used with both TCP and UDP sockets.

• Use caution when using sockets in blocking mode. Some hardware

does not support sockets in blocking mode.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 83

Example: UDP Client in Blocking Mode

Create a UDP client that sends data to other clients and receives data

from other clients.

– Open
\<BADA_SDK_HOME>\Examples\Communication\src\Sockets\

SocketsUdpExample.cpp

1. Construct a Socket:

Socket::Construct(Net_SOCKET_AF_IPV4,

NET_SOCKET_TYPE_DATAGRAM, NET_SOCKET_PROTOCOL_UDP)

2. Send and receive some data:
Socket::SendTo(buffer, remoteEndPoint)

Socket::ReceiveFrom(buffer, remoteEndPoint)

3. Close the socket:
Socket::Close()

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 84

Secure Sockets

• Secure sockets are only used asynchronously in non-blocking mode,

and only with TCP.

• Samsung bada includes secure sockets support for TLS1.0 and

partial support for SSL3.0.

• The ISecureSocketEventListener provides event handlers for

secure socket events, and is added to a secure socket through the
secure socket‟s AddSecureSocketListener() methods.

• Once the listener is set, you must specify which events to listen
for using the socket‟s AsyncSelectByListener() method.

Events are specified using the bitwise OR operator (pipes: “|”).

For example, “EventA | EventC | EventN”.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 85

Example: Secure Sockets

Create a secure client that sends and receives data.

– Open \<BADA_SDK_HOME>\Examples\Communication\src
\Sockets\SocketsSecureExample.cpp

1. Construct a SecureSocket:
SecureSocket::Construct(Net_SOCKET_AF_IPV4,

NET_SOCKET_TYPE_STREAM, NET_SOCKET_PROTOCOL_SSL)

2. Add a secure socket listener:
SecureSocket::AddSecureSocketListener(listener)

3. Set the listener to listen for secure socket events:
SecureSocket::AsyncSelectByListener(socketEventTypes)

4. Connect to a secure server:
SecureSocket::Connect(remoteEndPoint))

5. Send and receive data:
SecureSocket::Send(buffer)

SecureSocket::Receive(buffer)

6. Close the secure socket:
SecureSocket::Close()

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 86

FAQ (1/3)

• What role does the SocketUtility class play?

– It provides network utility tools to perform common tasks, such as:

• Determining the status of one or more sockets, waiting if necessary.

– SocketUtility::Select()

• Converting host byte order and network byte order.

– SocketUtility::HtoNL()

– SocketUtility::HtoNS()

– SocketUtility::NtoHL()

– SocketUtility::NtoHS()

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 87

Which ciphers does the SecureSocket class support?

Type Description

Certificate types X.509

Protocols TLS1.0, SSL3.0

Ciphers
AES-256-CBC, AES-128-CBC, 3DES-CBC, DES-ECB, 3DES-ECB, DES-CBC, AES-

192-CBC, AES-ECB-128, AES-192-ECB, AES-ECB-256

MACs SHA512, SHA384, SHA256, SHA1, MD5

Key exchange algorithms RSA

Compression methods NULL

FAQ (2/4)

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 88

FAQ (3/4)

What options can I use?

NS: Not supported.

Level Name Description Set Get

IPPROTO_TCP
TCP_NODELAY Disables the Nagle algorithm for send coalescing. O O

TCP_MAXSEG The MSS (Maximum Segment Size) for TCP. O O

IPPROTO_IP

IP_TTL The time-to-live. O O

IP_TOS The type-of-service and precedence. O O

IP_ADD_MEMBERSHIP Adds membership for multicasting. O X

IP_DROP_MEMBERSHIP Drops membership for multicasting. O X

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 89

FAQ (4/4)

Level Name Description Set Get

SOL_SOCKET

SO_ACCEPTCONN The socket is listening. X O

SO_BROADCAST Permits sending datagrams to broadcast addresses. O O

SO_DEBUG Records debugging information. NS NS

SO_DONTROUTE Do not route; send the packet directly to the interface addresses. NS NS

SO_ERROR Gets and clears any socket errors. NS NS

SO_KEEPALIVE Sends keep-alives. O O

SO_LINGER The linger options. O O

SO_OOBINLINE Enables receiving „Out Of Band‟ data inline. O O

SO_RCVBUF The buffer size for receiving. O O

SO_RCVLOWAT The low water mark for Receive operations. NS NS

SO_RCVTIMEO The receive socket buffer time-out value. O O

SO_REUSEADDR Allows the socket to be bound to an address that is already in use. O O

SO_SNDBUF The buffer size for sends. O O

SO_SNDLOWAT The low water mark for Send operations. NS NS

SO_SNDTIMEO The send socket buffer time-out. O O

SO_TYPE The socket type. X O

SO_SSLVERSION The SSL version of the secure socket (only for secure sockets). O O

SO_SSLCIPHERSUITEID The SSL cipher suite ID of the secure socket (only for secure sockets). O O

SO_SSLCERTVERIFY
The SSL certificate verification of the secure socket (only for secure

sockets).
O X

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 90

Review

1. Fill in the blank: The SecureSockets class provides functionality

that is better known as _______?

2. You need to perform a host to network conversion.

What bada class do you use?

3. Which enumeration would you use when working in blocking mode?

a) NetSecureSocketSslCipherSuiteID

b) NetSecureSocketSslVersion

c) NetSocketAddressFamily

d) NetSocketIoctlCmd

e) NetSocketOptLevel

f) NetSocketOptName

g) NetSocketProtocol

h) NetSocketType

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 91

Answers

1. SSL.

2. SocketUtility.

3. d) NetSocketIoctlCmd.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 92

HTTP

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 93

Contents

• Essential Classes

• Relationships between Classes

• Overview

– HTTP Session and Transaction

– HTTP Protocol Basics

– Transfer Mode

– HTTP Session Mode

– Example: Send an HTTP Request

– Example: Receive a Response

– Example: Send a Request Using POST

• Sample Application: “HttpClient”

• FAQ

• Review

• Answers

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 94

Essential Classes

Feature Provided by

Provides a collection of header fields associated with an HTTP message. Provides easy

access to headers.

HttpHeader

Provides the base class for HttpRequest and HttpResponse messages. HttpMessage

Provides an HTTP request message. HttpRequest

Provides an HTTP response message. HttpResponse

Provides an HTTP session object. HttpSession

Provides an HTTP transaction object that encapsulates HttpRequest and

HttpResponse, as well as a listener for HttpTransaction events.

HttpTransaction

IHttpTransactionEventListen

er

Encapsulates cookie functionality for an HttpResponse. HttpCookie

Manages a collection of HTTP cookies for a session. HttpCookieStorageManager

Provides tools for HTTP authentication. HttpAuthentication

Provides tools required for authentication with credentials. HttpCredentials

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 95

Relationships between Classes

HttpRequest

HttpResponse

HttpSession

HttpTransaction

0..*

0..*

HttpHeader

HttpMessage

1

1

<<interface>>

IHttpTransactionEventListener

0..*

0..*

HttpCookieStorageManager

HttpCookie

HttpAuthentication

HttpCredentials

 1

 1

0..*

0..*

0..1

0..1

 1

 1

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 96

Overview

• The hypertext transfer protocol is a communications protocol

designed to transfer hypertext documents between computers over

the World Wide Web. It defines what actions web servers and

browsers take in response to various commands.

• Key features include:

– Multi-Session and Multi-Transaction.

– Most HTTP 1.1 client features, including pipelining, chunking,

and connection management.

– HTTPS (TLS1.0 and SSL3.0).

– Full HTTP verb support (HEAD, GET, POST...).

– HTTP cookies.

– HTTP authentication:

• Basic authentication

• Digest authentication

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 97

Overview

“Message” is the HTTP terminology for data exchanged between

a client and a server.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 98

HTTP Session and Transaction

• HTTP Session

– A session encapsulates the client's HTTP activity over the duration

of the client's execution.

– A set of transactions using the same connection settings, such as

a proxy or a host.

• HTTP Transaction

– A transaction represents an interaction between an HTTP client

and an HTTP origin server.

– A transaction can be submitted in 2 different ways: chunked

or non-chunked mode.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 99

HTTP Protocol Basics

HTTP Sessions > Transactions > Requests and Responses

– Clients have 1+ sessions, and sessions have 1+ transactions.

– Transactions are comprised of a Request and a Response.

Client

HTTP Session

HTTP TransactionHTTP Transaction

HTTP Transaction

HTTP Transaction

Request

(To Server)

Response

(From

Server)

HTTP Session

HTTP Transaction

HTTP Transaction

HTTP Transaction

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 100

Transfer Mode

• Data can be sent all at once or in several parts.

• Non-chunked mode:

– Non-chunked mode is the default for requests.

– To use the non-chunked mode, add a header field
“Content-Length: body-length”.

• Chunked mode:

– To enable chunking, add a header field “Transfer-encoding: chunked”
to a request header and use the HttpTransaction‟s
EnableTransactionReadyToWrite() method.

– Implement an OnTransactionReadyToWrite() event handler to
send more chunks.

– An empty chunk is considered to be the last chunk.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 101

HTTP Session Mode (1/2)

In normal mode, all HTTP transactions in a session share the same

connection. That is, 1 session has 1 connection, or in other words, only

one transaction is processed at a time.

Request1

Request2

Request3

Response1

Response2

Response3

HTTP Client HTTP Server

Normal Mode

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 102

HTTP Session Mode (2/2)

In pipelining mode, as with normal mode, all requests and responses

share the same connection, but multiple requests can be submitted

concurrently without waiting for each response.

Request1

Request2

Request3

Response1

Response2

Response3

HTTP Client HTTP Server

Pipelining Mode

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 103

Example: Send an HTTP Request

Send an HTTP request.

– Open \<BADA_SDK_HOME>\Examples\Communication\src\Http
\HttpExample.cpp, SendRequest()

1. Construct an HttpSession:
HttpSession::Construct(sessionMode, &proxyAddr,

hostAddr, commonHeader)

2. Open a new transaction:
HttpSession::OpenTransactionN()

3. Get an HTTP request:
HttpTransaction::GetRequest()

4. Set the HTTP method and URI:
HttpRequest::SetMethod(method)

HttpRequest::SetUri(uri)

5. Add the HTTP header:
Header::AddField(fieldName, fieldValue)

6. Submit the request:
HttpTransaction::Submit()

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 104

Example: Receive a Response

Receive an HTTP response.

– Open \<BADA_SDK_HOME>\Examples\Communication\src\Http

\HttpExample.cpp, OnTransactionReadyToRead()

1. Get the response in the event handler:
HttpExample::OnTransactionReadyToRead(session,

transaction, availableBodyLen)

HttpTransaction::GetResponse()

2. Read the header:
HttpResponse::GetHeader()

3. Check the status code:
HttpResponse::GetStatusCode()

4. Read the body of the HTTP response:
HttpResponse::ReadBodyN()

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 105

Example: Send a Request Using POST (1/2)

Send a chunked HTTP request using POST.

– Open \<BADA_SDK_HOME>\Examples\Communication\src

\Http\HttpPostExample.cpp, SendPostRequest() and

OnTransactionReadyToWrite()

1. Get an HTTP request:
Net::Http::HttpTransaction::GetRequest()

2. Add an HTTP header to specify that the request is chunked:
Header::AddField(L“Transfer-Encoding”, L“chunked”)

3. Enable chunking and the OnTransactionReadyToWrite() event

handler method:
HttpTransaction::EnableTransactionReadyToWrite()

4. Set the request body:
HttpRequest::WriteBody()

5. Submit the request:
HttpTransaction::Submit()

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 106

Example: Send a Request Using POST (2/2)

6. Send a chunk of the request:
HttpPostExample::OnTransactionReadyToWrite()

WriteBody()

7. Send the last chunk of the request:
HttpPostExample::OnTransactionReadyToWrite()

WriteBody()

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 107

Sample Application: “HttpClient”

• Open \<BADA_SDK_HOME>\Samples\HttpClient\src.

– HttpClient.cpp

• HttpClient shows:

– How to use a session to open a transaction.

– How to send an HTTP request.

– How to receive an HTTP response.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 108

FAQ

• How can I send a request in chunked mode?

– Add the header field "Transfer-Encoding" with the value "chunked".

– Call EnableTransactionReadyToWrite().

– Send chunked data in OnTransactionReadyToWrite().

– To end the request, send an empty chunk as the last chunk
in OnTransactionReadyToWrite().

• How can I set an HTTP proxy?

– Construct an HttpSession instance with the pProxyAddr parameter.

• How can I send a request using a persistent connection?

– Normal and pipelining mode support persistent connections.

• How can I send a request using pipelining?

– Construct an HttpSession instance with

NET_HTTP_SESSION_MODE_PIPELINING.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 109

Review

1. Does bada support the OPTIONS and TRACE verbs?

2. What do you call data exchanged between a client and a server

in HTTP terminology?

3. True or false. Sessions can have multiple clients.

4. What method do you use to get a request?

5. You have an HttpRequest* object, “pHttpRequest”, and need

to send your request in chunks. How do you turn on chunking?

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 110

Answers

1. Yes. The bada Http namespace supports all HTTP verbs.

2. Message.

3. False. The question is nonsense. Clients can have multiple

sessions, but sessions cannot have any clients; sessions

can have multiple transactions though.

4. HttpTransaction::GetRequest().

5. Given the HttpRequest* object “pHttpRequest”, use the

Header::AddField() method like this:

HttpHeader* pHeader = null;

pHeader = pHttpRequest->GetHeader();

pHeader->AddField(L“Transfer-Encoding”,

L“chunked”);

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 111

Wi-Fi

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 112

Contents

• Essential Classes

• Relationships between Classes

• Overview

• Wi-Fi Modes

• Examples

– Example: Activate and Deactivate Wi-Fi

– Example: Get Wi-Fi Account Information

– Example: Connect with a Specific Access Point after Scanning

– Example: Start and Stop an Ad Hoc Connection

• FAQ

• Review

• Answers

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 113

Feature Provided by

Manages the local Wi-Fi device. WifiManager

Listens for WifiManager events. IWifiManagerEventListener

Encapsulates all Wi-Fi account information. WifiNetAccountInfo

Opens Wi-Fi services through an ad hoc Network. AdhocService

Listens for AdhocService events. IAdhocServiceEventListener

Provides a base type for ad hoc peer information. AdhocPeerInfo

Provides functionality to manage Wi-Fi BSS information. WifiBssInfo

Provides functionality to manage Wi-Fi security information. WifiSecurityInfo

Essential Classes

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 114

Relationships between Classes

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 115

Overview

• The Wi-Fi namespace facilitates activating and deactivating

a local Wi-Fi device and establishing an ad hoc network.

• Key features include:

– Wi-Fi device management

– Wi-Fi connection management

• Infrastructure mode

• Independent mode (ad hoc mode)

– Wi-Fi account info management

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 116

Wi-Fi Modes

Wi-Fi can connect in two modes:

– Infrastructure mode

• A wireless access point is required for infrastructure mode

wireless networking.

• To join the wireless local area network (WLAN), a client must be

configured to use the same service set identifier (SSID) as the access point.

– Independent mode (ad hoc mode)

• This mode allows a Wi-Fi network to function without a central wireless

router or access point.

• All wireless peers on the ad hoc network must use the same SSID

and channel number. Currently, the channel is not controllable, the Wi-Fi

device scans and selects a proper channel by itself.

• AdhocService helps communicate over ad hoc networks:

– Provides simple methods to create and manage ad hoc networks.

– Provides peer information in the same ad hoc network.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 117

Example: Activate and Deactivate Wi-Fi

Activate and deactivate a Wi-Fi connection.

– Open
\<BADA_SDK_HOME>\Examples\Communication\src\Wifi\

WifiExample.cpp, ActivateDeactivateWiFi()

1. Create a WifiManager:

WifiManager::Construct(listener)

2. Activate Wi-Fi:

WifiManager::Activate()

3. Check that Wi-Fi is active:
IWifiManagerEventListener::OnWifiActivated(r)

4. Check that Wi-Fi is connected:
IWifiManagerEventListener::OnWifiConnected(ssid, r)

5. Deactivate the Wi-Fi connection:
WifiManager::Deactivate()

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 118

Example: Get Wi-Fi Account Information

Get Wi-Fi account information.

– Open
\<BADA_SDK_HOME>\Examples\Communication\src\Wifi\

WifiExample.cpp, GetWifiAccountInfo()

1. Get a Wi-Fi network account ID (the valid Wi-Fi ID):
NetAccountManager::GetNetAccountId(NET_BEARER_WIFI)

2. Get network account information:
NetAccountManager::GetNetAccountInfoN()

3. Check if the obtained NetAccountInfo is about Wi-Fi:
WifiNetAccountInfo::GetBearerType()

4. Get information from the Wi-Fi account info:
WifiNetAccountInfo::

• GetBssId()

• GetBssType()

• GetRadioChannel()

• GetSecurityInfo()

• GetSsid()

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 119

Example: Connect with a Specific Access Point
after Scanning

Scan nearby access points (AP) and connect with a specific AP.

– Open \<BADA_SDK_HOME>\Examples\Communication\

src\Wifi\WifiExample.cpp, ConnectAfterScanning()

1. Scan nearby APs:

• Scan for APs:
WifiManager::Scan()

• Get WifiBssInfo through the OnWifiScanCompletedN() event handler.

2. Connect with an AP:

• Get the security info:
WifiBssInfo::GetSecurityInfo()

• Set the network key according to the encryption type of the target AP:
WifiSecurityInfo::

– SetNetworkKeyWep()

– SetNetworkKeyTkip()

– SetNetworkKeyAes()

• Connect with the AP:
WifiManager::Connect(WifiBssInfo&)

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 120

Example: Start and Stop an Ad Hoc
Connection
Illustrates how to use the AdhocService.

– Open
\<BADA_SDK_HOME>\Examples\Communication\src\Wifi\

WifiExample.cpp, AdhocApp()

1. Start the ad hoc service:
AdhocService::StartAdhocService()

2. Get information about neighbors:
AdhocService::GetNeighborsN()

3. Broadcast a message to neighbors:
AdhocService::SendBroadcastMessage()

4. Stop the ad hoc service:
AdhocService::StopAdhocService()

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 121

FAQ

• How do I create a Wi-Fi net account?

– You cannot programmatically create, update, or delete a Wi-Fi net
account through the NetAccountManager or any bada methods.

– You can only get the Wi-Fi net account information from
NetAccountManager.

– You can have the user add or delete Wi-Fi information through the Wi-Fi

Setting UI.

• How many peers can I have in the Wi-Fi ad hoc mode in bada

simultaneously?

– Samsung bada manages up to 8 peers simultaneously.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 122

Review

1. What are the two modes that Wi-Fi can connect in?

2. Does the WifiManager use 1-phase or 2-phase construction?

3. True or false. The only limit to the number of neighbors you

can see is determined by the physical hardware.

4. True or false. To see if a Wi-Fi connection is active, you use
the WifiManager::Activate() method.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 123

Answers

1. Infrastructure mode and independent mode (ad hoc mode).

2. 2-phase construction.

3. False. The AdhocService will only allow you to see up to

8 neighbors at a time.

4. False. WifiManager::Activate() actives a Wi-Fi connection.

You use the WifiManager::IsConnected() method to

check directly or the

IWifiManagerEventListener::OnWifiConnected()

method to be notified when the Wi-Fi connection is established.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 124

Bluetooth

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 125

Contents

• Essential Classes

• Relationships between Classes

• Overview

• Pairing

• Bluetooth Profiles

• Examples

– Example: Query Bluetooth Devices

– Example: OPP Client

– Example: OPP Server

– Example: SPP Initiator

– Example: SPP Acceptor

– Example: Use Application Controls to Pair Bluetooth Devices

• FAQ

• Review

• Answers

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 126

Feature Provided by

Provides functionality to get information about devices and

discovers objects as well as configures the Bluetooth stack.

BluetoothManager

BluetoothDevice

IBluetoothManagerEventListener

Handles Bluetooth OPP server, such as incoming push requests. BluetoothOppServer

IBluetoothOppServerEventListener

Handles Bluetooth OPP client, such as outgoing push requests. BluetoothOppClient

IBluetoothOppClientEventListener

Handles Bluetooth SPP acceptor, such as incoming connection

requests.

BluetoothSppAcceptor

IBluetoothSppAcceptorEventListener

Handles Bluetooth SPP initiator, such as outgoing connection

requests.

BluetoothSppInitiator

IBluetoothSppInitiatorEventListener

Essential Classes

OPP

SPP

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 127

Relationships between Classes

BluetoothDevice

BluetoothManager

 1..*

 1..*

BluetoothOppServer

BluetoothOppClient

<<interface>>

IBluetoothSppAcceptorEventListener

<<interface>>

IBluetoothSppInitiatorEventListener

BluetoothSppInitiator

BluetoothSppAcceptor

<<interface>>

IBluetoothManagerEventListener

<<interface>>

IBluetoothOppClientEventListener

<<interface>>

IBluetoothOppServerEventListener

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 128

Overview

• Bluetooth is a wireless technology that operates in a secure,

globally unlicensed Industrial, Scientific and Medical (ISM)

2.4 GHz short-range radio frequency bandwidth.

• Modest performance

– Up to 723.2 kbps data rate (v1.2).

– The peak data rate with EDR is 3 Mbps (v2.1).

• Devices can be master and slave simultaneously.

• Currently bada supports only point-to-point connections.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 129

Pairing

• Pairs of devices can establish a relationship by creating a shared

secret known as a link key.

• A device that wants to communicate only with a bonded device

can cryptographically authenticate the identity of the other device,

and so be sure that it is the same device it previously paired with.

• Link keys can be deleted at any time by either device.

• Pairing process is started internally if you call
BluetoothOppClient::PushFile() or

BluetoothSppInitiator::Connect() with the discovered

device.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 130

Bluetooth Profiles (1/2)

• Bluetooth profiles facilitate various connection methods for different

devices.

• All Bluetooth profiles derive from the Generic Access Profile (GAP).

That is, GAP is the superset for all Bluetooth profiles.

• Bluetooth profile hierarchy of bada supported profiles:

Generic Access Profile

Serial Port Profile

Generic Object Exchange Profile

Object Push Profile

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 131

Bluetooth Profiles (2/2)

bada supported Bluetooth profiles:

– Generic Access Profile (GAP)

• Discovers and establishes a connection with other devices (pairing).

• Provides the basis for all other profiles.

– Serial Port Profile (SPP)

• SPP is for replacing cables in RS-232 communications with a simple

wireless alternative. It is the basis for DUN, FAX, HSP and AVRCP profiles.

– Object Push Profile (OPP)

• OPP is for sending media and content, such as vCards and appointments.

OPP initiates sending content (“push”) rather than having the recipient

request it.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 132

Example: Query Bluetooth Devices

Get information about Bluetooth devices.

– Open \<\BADA_SDK_HOME>\Examples\Communication\src\

Bluetooth\BluetoothExample.cpp, GetBluetoothDevice()

1. Activate Bluetooth:

BluetoothManager::Activate()

2. Get information about Bluetooth devices:
BluetoothManager::GetLocalDevice()

BluetoothManager::GetPairedDeviceList()

BluetoothManager::GetPairedDeviceAt(index)

3. Deactivate Bluetooth:
BluetoothManager::Deactivate()

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 133

Example: OPP Client

Use a Bluetooth device as an OPP client.

– Open \<BADA_SDK_HOME>\Examples\Communication\src\

Bluetooth\BluetoothExample.cpp,

BluetoothOppClientExample()

1. Activate Bluetooth:
Bluetooth::BluetoothManager::Activate()

2. Get a Bluetooth device:
BluetoothManager::GetLocalDevice()

BluetoothManager::GetPairedDeviceList()

BluetoothManager::GetPairedDeviceAt(index)

3. Construct an OPP client:
BluetoothOppClient::Construct(listener)

4. Push the file to other Bluetooth devices (OPP server):
BluetoothOppClient::PushFile(remoteDevice, filePath)

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 134

Example: OPP Server

Use a Bluetooth device as an OPP server.

– Open \<BADA_SDK_HOME>\Examples\Communication\src\

Bluetooth\BluetoothExample.cpp,

BluetoothOppServerExample()

1. Activate Bluetooth:
BluetoothManager::Activate()

2. Construct an OPP server:
BluetoothOppServer::Construct(listener)

3. Start the OPP service:
BluetoothOppServer::StartService(dstPath)

4. Accept a connection:
BluetoothOppServer::AcceptPush()

5. Stop the OPP service:
BluetoothOppServer::StopService()

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 135

Example: SPP Initiator

Use a Bluetooth device as an SPP initiator.

– Open \<BADA_SDK_HOME>\Examples\Communication\src\

Bluetooth\BluetoothExample.cpp,

BluetoothSppInitiatorExample()

1. Activate Bluetooth:
BluetoothManager::Activate()

2. Get a Bluetooth device:
BluetoothManager::GetLocalDevice()

BluetoothManager::GetPairedDeviceList()

BluetoothManager::GetPairedDeviceAt(index)

3. Construct an SPP initiator:
BluetoothSppInitiator::Construct(listener)

4. Connect to an SPP acceptor:
BluetoothSppInitiator::Connect(remoteDevice)

5. Send some data:
BluetoothSppInitiator::SendData(byteBuffer)

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 136

Example: SPP Acceptor

Use a Bluetooth device as an SPP Acceptor.

– Open \<BADA_SDK_HOME>\Examples\Communication\src\

Bluetooth\BluetoothExample.cpp,

BluetoothSppAcceptorExample()

1. Activate Bluetooth:
BluetoothManager::Activate()

2. Construct an SPP acceptor:
BluetoothSppAcceptor::Construct(listener)

3. Start the SPP service:
BluetoothSppAcceptor::StartService()

4. Accept a connection:
BluetoothSppAcceptor::AcceptConnection()

5. Stop the SPP service:
BluetoothSppAcceptor::StopService()

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 137

Example: Use Application Controls to Pair
Bluetooth Devices
Get a specific device through application controls and start the pairing
process by pushing a file to the device.

– Open \<BADA_SDK_HOME>\Examples\Communication\src\

Bluetooth\BluetoothExample.cpp, DiscoverPairAndPush()

1. Get a specific device through application controls:
• Get an AppControl instance and start the application control behavior:

AppManager::FindAppControlN(APPCONTROL_BT, OPERATION_PICK);

AppControl::Start()

• Get a device information through the OnAppControlCompleted() event
handler.

• Create an instance of BluetoothDevice:
remoteDevice = new BluetoothDevice(address, name,

BT_COD_MAJ_DEV_CLS_UNCLASSIFIED,

BT_COD_MIN_DEV_CLS_UNCLASSIFIED, BT_COD_SVC_UNKNOWN,

BT_SVC_NONE);

2. Push a file to the created BluetoothDevice to start pairing:
BluetoothOppClient::PushFile(remoteDevice, filePath)

The pairing process is started internally before the push request is sent.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 138

FAQ

• How can I pair Bluetooth devices?

– There is no direct API for pairing devices. However, you can use

application controls to discover a new device. The pairing process is
started internally if you call BluetoothOppClient::PushFile() or

BluetoothSppInitiator::Connect() with the discovered device.

• Can I use all Bluetooth profiles?

– Samsung bada only supports the GAP, SPP, and OPP profiles.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 139

Review

1. True or false. bada supports all Bluetooth profiles.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 140

Answers

1. False. bada only supports the GAP, SPP and OPP profiles at

present.

Copyright © 2010 Samsung Electronics Co., Ltd. All rights reserved. 141

