
Chapter 1

Introduction and Overview

The course has a website at

http://www.theory.caltech.edu/∼preskill/ph229
General information can be found there, including a course outline and links
to relevant references.

Our topic can be approached from a variety of points of view, but these
lectures will adopt the perspective of a theoretical physicist (that is, it’s my
perspective and I’m a theoretical physicist). Because of the interdisciplinary
character of the subject, I realize that the students will have a broad spectrum
of backgrounds, and I will try to allow for that in the lectures. Please give
me feedback if I am assuming things that you don’t know.

1.1 Physics of information

Why is a physicist teaching a course about information? In fact, the physics

of information and computation has been a recognized discipline for at least
several decades. This is natural. Information, after all, is something that is
encoded in the state of a physical system; a computation is something that
can be carried out on an actual physically realizable device. So the study of
information and computation should be linked to the study of the underlying
physical processes. Certainly, from an engineering perspective, mastery of
principles of physics and materials science is needed to develop state-of-the-
art computing hardware. (Carver Mead calls his Caltech research group,
dedicated to advancing the art of chip design, the “Physics of Computation”
(Physcmp) group).

1

2 CHAPTER 1. INTRODUCTION AND OVERVIEW

From a more abstract theoretical perspective, there have been noteworthy
milestones in our understanding of how physics constrains our ability to use
and manipulate information. For example:

• Landauer’s principle. Rolf Landauer pointed out in 1961 that erasure
of information is necessarily a dissipative process. His insight is that erasure
always involves the compression of phase space, and so is irreversible.

For example, I can store one bit of information by placing a single molecule
in a box, either on the left side or the right side of a partition that divides
the box. Erasure means that we move the molecule to the left side (say) irre-
spective of whether it started out on the left or right. I can suddenly remove
the partition, and then slowly compress the one-molecule “gas” with a piston
until the molecule is definitely on the left side. This procedure reduces the
entropy of the gas by ∆S = k ln 2 and there is an associated flow of heat from
the box to the environment. If the process is isothermal at temperature T ,
then work W = kT ln 2 is performed on the box, work that I have to provide.
If I am to erase information, someone will have to pay the power bill.

• Reversible computation. The logic gates used to perform computa-
tion are typically irreversible, e.g., the NAND gate

(a, b) → ¬(a ∧ b) (1.1)

has two input bits and one output bit, and we can’t recover a unique input
from the output bit. According to Landauer’s principle, since about one
bit is erased by the gate (averaged over its possible inputs), at least work
W = kT ln 2 is needed to operate the gate. If we have a finite supply of
batteries, there appears to be a theoretical limit to how long a computation
we can perform.

But Charles Bennett found in 1973 that any computation can be per-
formed using only reversible steps, and so in principle requires no dissipation
and no power expenditure. We can actually construct a reversible version
of the NAND gate that preserves all the information about the input: For
example, the (Toffoli) gate

(a, b, c) → (a, b, c⊕ a ∧ b) (1.2)

is a reversible 3-bit gate that flips the third bit if the first two both take
the value 1 and does nothing otherwise. The third output bit becomes the
NAND of a and b if c = 1. We can transform an irreversible computation

1.1. PHYSICS OF INFORMATION 3

to a reversible one by replacing the NAND gates by Toffoli gates. This
computation could in principle be done with negligible dissipation.

However, in the process we generate a lot of extra junk, and one wonders
whether we have only postponed the energy cost; we’ll have to pay when we
need to erase all the junk. Bennett addressed this issue by pointing out that
a reversible computer can run forward to the end of a computation, print
out a copy of the answer (a logically reversible operation) and then reverse

all of its steps to return to its initial configuration. This procedure removes
the junk without any energy cost.

In principle, then, we need not pay any power bill to compute. In prac-
tice, the (irreversible) computers in use today dissipate orders of magnitude
more than kT ln 2 per gate, anyway, so Landauer’s limit is not an important
engineering consideration. But as computing hardware continues to shrink
in size, it may become important to beat Landauer’s limit to prevent the
components from melting, and then reversible computation may be the only
option.

• Maxwell’s demon. The insights of Landauer and Bennett led Bennett
in 1982 to the reconciliation of Maxwell’s demon with the second law of ther-
modynamics. Maxwell had envisioned a gas in a box, divided by a partition
into two parts A and B. The partition contains a shutter operated by the
demon. The demon observes the molecules in the box as they approach the
shutter, allowing fast ones to pass from A to B, and slow ones from B to A.
Hence, A cools and B heats up, with a negligible expenditure of work. Heat
flows from a cold place to a hot place at no cost, in apparent violation of the
second law.

The resolution is that the demon must collect and store information about
the molecules. If the demon has a finite memory capacity, he cannot continue
to cool the gas indefinitely; eventually, information must be erased. At that
point, we finally pay the power bill for the cooling we achieved. (If the demon
does not erase his record, or if we want to do the thermodynamic accounting
before the erasure, then we should associate some entropy with the recorded
information.)

These insights were largely anticipated by Leo Szilard in 1929; he was
truly a pioneer of the physics of information. Szilard, in his analysis of the
Maxwell demon, invented the concept of a bit of information, (the name “bit”
was introduced later, by Tukey) and associated the entropy ∆S = k ln 2 with
the acquisition of one bit (though Szilard does not seem to have fully grasped
Landauer’s principle, that it is the erasure of the bit that carries an inevitable

4 CHAPTER 1. INTRODUCTION AND OVERVIEW

cost).
These examples illustrate that work at the interface of physics and infor-

mation has generated noteworthy results of interest to both physicists and
computer scientists.

1.2 Quantum information

The moral we draw is that “information is physical.” and it is instructive to
consider what physics has to tell us about information. But fundamentally,
the universe is quantum mechanical. How does quantum theory shed light
on the nature of information?

It must have been clear already in the early days of quantum theory that
classical ideas about information would need revision under the new physics.
For example, the clicks registered in a detector that monitors a radioactive
source are described by a truly random Poisson process. In contrast, there is
no place for true randomness in deterministic classical dynamics (although
of course a complex (chaotic) classical system can exhibit behavior that is in
practice indistinguishable from random).

Furthermore, in quantum theory, noncommuting observables cannot si-
multaneously have precisely defined values (the uncertainty principle), and in
fact performing a measurement of one observable A will necessarily influence
the outcome of a subsequent measurement of an observable B, if A and B
do not commute. Hence, the act of acquiring information about a physical
system inevitably disturbs the state of the system. There is no counterpart
of this limitation in classical physics.

The tradeoff between acquiring information and creating a disturbance is
related to quantum randomness. It is because the outcome of a measurement
has a random element that we are unable to infer the initial state of the
system from the measurement outcome.

That acquiring information causes a disturbance is also connected with
another essential distinction between quantum and classical information:
quantum information cannot be copied with perfect fidelity (the no-cloning
principle annunciated by Wootters and Zurek and by Dieks in 1982). If we
could make a perfect copy of a quantum state, we could measure an observ-
able of the copy without disturbing the original and we could defeat the
principle of disturbance. On the other hand, nothing prevents us from copy-
ing classical information perfectly (a welcome feature when you need to back

1.3. EFFICIENT QUANTUM ALGORITHMS 5

up your hard disk).

These properties of quantum information are important, but the really
deep way in which quantum information differs from classical information
emerged from the work of John Bell (1964), who showed that the predictions
of quantum mechanics cannot be reproduced by any local hidden variable
theory. Bell showed that quantum information can be (in fact, typically is)
encoded in nonlocal correlations between the different parts of a physical
system, correlations with no classical counterpart. We will discuss Bell’s
theorem in detail later on, and I will also return to it later in this lecture.

The study of quantum information as a coherent discipline began to
emerge in the 1980’s, and it has blossomed in the 1990’s. Many of the
central results of classical information theory have quantum analogs that
have been discovered and developed recently, and we will discuss some of
these developments later in the course, including: compression of quantum
information, bounds on classical information encoded in quantum systems,
bounds on quantum information sent reliably over a noisy quantum channel.

1.3 Efficient quantum algorithms

Given that quantum information has many unusual properties, it might have
been expected that quantum theory would have a profound impact on our
understanding of computation. That this is spectacularly true came to many
of us as a bolt from the blue unleashed by Peter Shor (an AT&T computer
scientist and a former Caltech undergraduate) in April, 1994. Shor demon-
strated that, at least in principle, a quantum computer can factor a large
number efficiently.

Factoring (finding the prime factors of a composite number) is an example
of an intractable problem with the property:

— The solution can be easily verified, once found.

— But the solution is hard to find.

That is, if p and q are large prime numbers, the product n = pq can be
computed quickly (the number of elementary bit operations required is about
log2 p · log2 q). But given n, it is hard to find p and q.

The time required to find the factors is strongly believed (though this has
never been proved) to be superpolynomial in log(n). That is, as n increases,
the time needed in the worst case grows faster than any power of log(n). The

6 CHAPTER 1. INTRODUCTION AND OVERVIEW

best known factoring algorithm (the “number field sieve”) requires

time ' exp[c(lnn)1/3(ln lnn)2/3] (1.3)

where c = (64/9)1/3 ∼ 1.9. The current state of the art is that the 65 digit
factors of a 130 digit number can be found in the order of one month by a
network of hundreds of work stations. Using this to estimate the prefactor
in Eq. 1.3, we can estimate that factoring a 400 digit number would take
about 1010 years, the age of the universe. So even with vast improvements
in technology, factoring a 400 digit number will be out of reach for a while.

The factoring problem is interesting from the perspective of complexity
theory, as an example of a problem presumed to be intractable; that is, a
problem that can’t be solved in a time bounded by a polynomial in the size
of the input, in this case logn. But it is also of practical importance, because
the difficulty of factoring is the basis of schemes for public key cryptography,
such as the widely used RSA scheme.

The exciting new result that Shor found is that a quantum computer can
factor in polynomial time, e.g., in time O[(lnn)3]. So if we had a quantum
computer that could factor a 130 digit number in one month (of course we
don’t, at least not yet!), running Shor’s algorithm it could factor that 400
digit number in less than 3 years. The harder the problem, the greater the
advantage enjoyed by the quantum computer.

Shor’s result spurred my own interest in quantum information (were it
not for Shor, I don’t suppose I would be teaching this course). It’s fascinating
to contemplate the implications for complexity theory, for quantum theory,
for technology.

1.4 Quantum complexity

Of course, Shor’s work had important antecedents. That a quantum system
can perform a computation was first explicitly pointed out by Paul Benioff
and Richard Feynman (independently) in 1982. In a way, this was a natural
issue to wonder about in view of the relentless trend toward miniaturization
in microcircuitry. If the trend continues, we will eventually approach the
regime where quantum theory is highly relevant to how computing devices
function. Perhaps this consideration provided some of the motivation behind
Benioff’s work. But Feynman’s primary motivation was quite different and
very interesting. To understand Feynman’s viewpoint, we’ll need to be more

1.4. QUANTUM COMPLEXITY 7

explicit about the mathematical description of quantum information and
computation.

The indivisible unit of classical information is the bit: an object that can
take either one of two values: 0 or 1. The corresponding unit of quantum
information is the quantum bit or qubit. The qubit is a vector in a two-
dimensional complex vector space with inner product; in deference to the
classical bit we can call the elements of an orthonormal basis in this space
|0〉 and |1〉. Then a normalized vector can be represented

|ψ〉 = a|0〉 + b|1〉, |a|2 + |b|2 = 1. (1.4)

where a, b ∈ C. We can perform a measurement that projects |ψ〉 onto the
basis |0〉, |1〉. The outcome of the measurement is not deterministic — the
probability that we obtain the result |0〉 is |a|2 and the probability that we
obtain the result |1〉 is |b|2.

The quantum state of N qubits can be expressed as a vector in a space
of dimension 2N . We can choose as an orthonormal basis for this space the
states in which each qubit has a definite value, either |0〉 or |1〉. These can
be labeled by binary strings such as

|01110010 · · · 1001〉 (1.5)

A general normalized vector can be expanded in this basis as

2N−1
∑

x=0

ax|x〉 , (1.6)

where we have associated with each string the number that it represents in
binary notation, ranging in value from 0 to 2N −1. Here the ax’s are complex
numbers satisfying

∑

x |ax|2 = 1. If we measure all N qubits by projecting
each onto the {|0〉, |1〉} basis, the probability of obtaining the outcome |x〉 is
|ax|2.

Now, a quantum computation can be described this way. We assemble N
qubits, and prepare them in a standard initial state such as |0〉|0〉 · · · |0〉, or
|x = 0〉. We then apply a unitary transformation U to the N qubits. (The
transformation U is constructed as a product of standard quantum gates,
unitary transformations that act on just a few qubits at a time). After U is
applied, we measure all of the qubits by projecting onto the {|0〉, |1〉} basis.
The measurement outcome is the output of the computation. So the final

8 CHAPTER 1. INTRODUCTION AND OVERVIEW

output is classical information that can be printed out on a piece of paper,
and published in Physical Review.

Notice that the algorithm performed by the quantum computer is a prob-

abilistic algorithm. That is, we could run exactly the same program twice
and obtain different results, because of the randomness of the quantum mea-
surement process. The quantum algorithm actually generates a probability
distribution of possible outputs. (In fact, Shor’s factoring algorithm is not
guaranteed to succeed in finding the prime factors; it just succeeds with
a reasonable probability. That’s okay, though, because it is easy to verify
whether the factors are correct.)

It should be clear from this description that a quantum computer, though
it may operate according to different physical principles than a classical com-
puter, cannot do anything that a classical computer can’t do. Classical com-
puters can store vectors, rotate vectors, and can model the quantum mea-
surement process by projecting a vector onto mutually orthogonal axes. So
a classical computer can surely simulate a quantum computer to arbitrarily
good accuracy. Our notion of what is computable will be the same, whether
we use a classical computer or a quantum computer.

But we should also consider how long the simulation will take. Suppose we
have a computer that operates on a modest number of qubits, like N = 100.
Then to represent the typical quantum state of the computer, we would need
to write down 2N = 2100 ∼ 1030 complex numbers! No existing or foreseeable
digital computer will be able to do that. And performing a general rotation
of a vector in a space of dimension 1030 is far beyond the computational
capacity of any foreseeable classical computer.

(Of course, N classical bits can take 2N possible values. But for each
one of these, it is very easy to write down a complete description of the
configuration — a binary string of length N . Quantum information is very
different in that writing down a complete description of just one typical
configuration of N qubits is enormously complex.)

So it is true that a classical computer can simulate a quantum computer,
but the simulation becomes extremely inefficient as the number of qubits N
increases. Quantum mechanics is hard (computationally) because we must
deal with huge matrices – there is too much room in Hilbert space. This
observation led Feynman to speculate that a quantum computer would be
able to perform certain tasks that are beyond the reach of any conceivable
classical computer. (The quantum computer has no trouble simulating itself!)
Shor’s result seems to bolster this view.

1.4. QUANTUM COMPLEXITY 9

Is this conclusion unavoidable? In the end, our simulation should provide
a means of assigning probabilities to all the possible outcomes of the final
measurement. It is not really necessary, then, for the classical simulation
to track the complete description of the N -qubit quantum state. We would
settle for a probabilistic classical algorithm, in which the outcome is not
uniquely determined by the input, but in which various outcomes arise with
a probability distribution that coincides with that generated by the quantum
computation. We might hope to perform a local simulation, in which each
qubit has a definite value at each time step, and each quantum gate can act on
the qubits in various possible ways, one of which is selected as determined by
a (pseudo)-random number generator. This simulation would be much easier
than following the evolution of a vector in an exponentially large space.

But the conclusion of John Bell’s powerful theorem is precisely that this
simulation could never work: there is no local probabilistic algorithm that
can reproduce the conclusions of quantum mechanics. Thus, while there is
no known proof, it seems highly likely that simulating a quantum computer
is a very hard problem for any classical computer.

To understand better why the mathematical description of quantum in-
formation is necessarily so complex, imagine we have a 3N -qubit quantum
system (N � 1) divided into three subsystems of N qubits each (called sub-
systems (1),(2), and (3)). We randomly choose a quantum state of the 3N
qubits, and then we separate the 3 subsystems, sending (1) to Santa Barbara
and (3) to San Diego, while (2) remains in Pasadena. Now we would like to
make some measurements to find out as much as we can about the quantum
state. To make it easy on ourselves, let’s imagine that we have a zillion copies
of the state of the system so that we can measure any and all the observables
we want.1 Except for one proviso: we are restricted to carrying out each
measurement within one of the subsystems — no collective measurements
spanning the boundaries between the subsystems are allowed. Then for a
typical state of the 3N -qubit system, our measurements will reveal almost
nothing about what the state is. Nearly all the information that distinguishes
one state from another is in the nonlocal correlations between measurement
outcomes in subsystem (1) (2), and (3). These are the nonlocal correlations
that Bell found to be an essential part of the physical description.

1We cannot make copies of an unknown quantum state ourselves, but we can ask a
friend to prepare many identical copies of the state (he can do it because he knows what
the state is), and not tell us what he did.

10 CHAPTER 1. INTRODUCTION AND OVERVIEW

We’ll see that information content can be quantified by entropy (large
entropy means little information.) If we choose a state for the 3N qubits
randomly, we almost always find that the entropy of each subsystem is very
close to

S ∼= N − 2−(N+1), (1.7)

a result found by Don Page. Here N is the maximum possible value of the
entropy, corresponding to the case in which the subsystem carries no accessi-
ble information at all. Thus, for large N we can access only an exponentially
small amount of information by looking at each subsystem separately.

That is, the measurements reveal very little information if we don’t con-
sider how measurement results obtained in San Diego, Pasadena, and Santa
Barbara are correlated with one another — in the language I am using, a
measurement of a correlation is considered to be a “collective” measurement
(even though it could actually be performed by experimenters who observe
the separate parts of the same copy of the state, and then exchange phone
calls to compare their results). By measuring the correlations we can learn
much more; in principle, we can completely reconstruct the state.

Any satisfactory description of the state of the 3N qubits must charac-
terize these nonlocal correlations, which are exceedingly complex. This is
why a classical simulation of a large quantum system requires vast resources.
(When such nonlocal correlations exist among the parts of a system, we say
that the parts are “entangled,” meaning that we can’t fully decipher the state
of the system by dividing the system up and studying the separate parts.)

1.5 Quantum parallelism

Feynman’s idea was put in a more concrete form by David Deutsch in 1985.
Deutsch emphasized that a quantum computer can best realize its compu-
tational potential by invoking what he called “quantum parallelism.” To
understand what this means, it is best to consider an example.

Following Deutsch, imagine we have a black box that computes a func-
tion that takes a single bit x to a single bit f(x). We don’t know what is
happening inside the box, but it must be something complicated, because the
computation takes 24 hours. There are four possible functions f(x) (because
each of f(0) and f(1) can take either one of two possible values) and we’d

1.5. QUANTUM PARALLELISM 11

like to know what the box is computing. It would take 48 hours to find out
both f(0) and f(1).

But we don’t have that much time; we need the answer in 24 hours, not
48. And it turns out that we would be satisfied to know whether f(x) is
constant (f(0) = f(1)) or balanced (f(0) 6= f(1)). Even so, it takes 48 hours
to get the answer.

Now suppose we have a quantum black box that computes f(x). Of course
f(x) might not be invertible, while the action of our quantum computer is
unitary and must be invertible, so we’ll need a transformation Uf that takes
two qubits to two:

Uf : |x〉|y〉 → |x〉|y ⊕ f(x)〉 . (1.8)

(This machine flips the second qubit if f acting on the first qubit is 1, and
doesn’t do anything if f acting on the first qubit is 0.) We can determine if
f(x) is constant or balanced by using the quantum black box twice. But it
still takes a day for it to produce one output, so that won’t do. Can we get
the answer (in 24 hours) by running the quantum black box just once. (This
is “Deutsch’s problem.”)

Because the black box is a quantum computer, we can choose the input
state to be a superposition of |0〉 and |1〉. If the second qubit is initially
prepared in the state 1√

2
(|0〉 − |1〉), then

Uf : |x〉 1√
2
(|0〉 − |1〉) → |x〉 1√

2
(|f(x)〉 − |1 ⊕ f(x)〉)

= |x〉(−1)f(x) 1√
2
(|0〉 − |1〉), (1.9)

so we have isolated the function f in an x-dependent phase. Now suppose
we prepare the first qubit as 1√

2
(|0〉 + |1〉). Then the black box acts as

Uf :
1√
2
(|0〉 + |1〉) 1√

2
(|0〉 − |1〉) →

1√
2

[

(−1)f(0)|0〉 + (−1)f(1)|1〉
] 1√

2
(|0〉 − |1〉) . (1.10)

Finally, we can perform a measurement that projects the first qubit onto the
basis

|±〉 =
1√
2
(|0〉 ± |1〉). (1.11)

12 CHAPTER 1. INTRODUCTION AND OVERVIEW

Evidently, we will always obtain |+〉 if the function is balanced, and |−〉 if
the function is constant.2

So we have solved Deutsch’s problem, and we have found a separation be-
tween what a classical computer and a quantum computer can achieve. The
classical computer has to run the black box twice to distinguish a balanced
function from a constant function, but a quantum computer does the job in
one go!

This is possible because the quantum computer is not limited to com-
puting either f(0) or f(1). It can act on a superposition of |0〉 and |1〉, and
thereby extract “global” information about the function, information that
depends on both f(0) and f(1). This is quantum parallelism.

Now suppose we are interested in global properties of a function that acts
on N bits, a function with 2N possible arguments. To compute a complete
table of values of f(x), we would have to calculate f 2N times, completely
infeasible for N � 1 (e.g., 1030 times for N = 100). But with a quantum
computer that acts according to

Uf : |x〉|0〉 → |x〉|f(x)〉 , (1.12)

we could choose the input register to be in a state

[

1√
2
(|0〉 + |1〉)

]N

=
1

2N/2

2N−1
∑

x=0

|x〉 , (1.13)

and by computing f(x) only once, we can generate a state

1

2N/2

2N−1
∑

x=0

|x〉|f(x)〉 . (1.14)

Global properties of f are encoded in this state, and we might be able to
extract some of those properties if we can only think of an efficient way to
do it.

This quantum computation exhibits “massive quantum parallelism;” a
simulation of the preparation of this state on a classical computer would

2In our earlier description of a quantum computation, we stated that the final mea-
surement would project each qubit onto the {|0〉, |1〉} basis, but here we are allowing
measurement in a different basis. To describe the procedure in the earlier framework, we
would apply an appropriate unitary change of basis to each qubit before performing the
final measurement.

1.6. A NEW CLASSIFICATION OF COMPLEXITY 13

require us to compute f an unimaginably large number of times (for N � 1).
Yet we have done it with the quantum computer in only one go. It is just
this kind of massive parallelism that Shor invokes in his factoring algorithm.

As noted earlier, a characteristic feature of quantum information is that
it can be encoded in nonlocal correlations among different parts of a physical
system. Indeed, this is the case in Eq. (1.14); the properties of the function f
are stored as correlations between the “input register” and “output register”
of our quantum computer. This nonlocal information, however, is not so easy
to decipher.

If, for example, I were to measure the input register, I would obtain a
result |x0〉, where x0 is chosen completely at random from the 2N possible
values. This procedure would prepare a state

|x0〉|f(x0)〉. (1.15)

We could proceed to measure the output register to find the value of f(x0).
But because Eq. (1.14) has been destroyed by the measurement, the intricate
correlations among the registers have been lost, and we get no opportunity
to determine f(y0) for any y0 6= x0 by making further measurements. In this
case, then, the quantum computation provided no advantage over a classical
one.

The lesson of the solution to Deutsch’s problem is that we can sometimes
be more clever in exploiting the correlations encoded in Eq. (1.14). Much
of the art of designing quantum algorithms involves finding ways to make
efficient use of the nonlocal correlations.

1.6 A new classification of complexity

The computer on your desktop is not a quantum computer, but still it is a
remarkable device: in principle, it is capable of performing any conceivable
computation. In practice there are computations that you can’t do — you
either run out of time or you run out of memory. But if you provide an
unlimited amount of memory, and you are willing to wait as long as it takes,
then anything that deserves to be called a computation can be done by your
little PC. We say, therefore, that it is a “universal computer.”

Classical complexity theory is the study of which problems are hard and
which ones are easy. Usually, “hard” and “easy” are defined in terms of how
much time and/or memory are needed. But how can we make meaningful

14 CHAPTER 1. INTRODUCTION AND OVERVIEW

distinctions between hard and easy without specifying the hardware we will
be using? A problem might be hard on the PC, but perhaps I could design
a special purpose machine that could solve that problem much faster. Or
maybe in the future a much better general purpose computer will be available
that solves the problem far more efficiently. Truly meaningful distinctions
between hard and easy should be universal — they ought not to depend on
which machine we are using.

Much of complexity theory focuses on the distinction between “polyno-
mial time” and “exponential time” algorithms. For any algorithm A, which
can act on an input of variable length, we may associate a complexity func-

tion TA(N), where N is the length of the input in bits. TA(N) is the longest
“time” (that is, number of elementary steps) it takes for the algorithm to
run to completion, for any N -bit input. (For example, if A is a factoring
algorithm, TA(N) is the time needed to factor an N -bit number in the worst
possible case.) We say that A is polynomial time if

TA(N) ≤ Poly (N), (1.16)

where Poly (N) denotes a polynomial of N . Hence, polynomial time means
that the time needed to solve the problem does not grow faster than a power
of the number of input bits.

If the problem is not polynomial time, we say it is exponential time
(though this is really a misnomer, because of course that are superpoly-
nomial functions like N log N that actually increase much more slowly than
an exponential). This is a reasonable way to draw the line between easy and
hard. But the truly compelling reason to make the distinction this way is
that it is machine-independent: it does not matter what computer we are
using. The universality of the distinction between polynomial and exponen-
tial follows from one of the central results of computer science: one universal
(classical) computer can simulate another with at worst “polynomial over-
head.” This means that if an algorithm runs on your computer in polynomial
time, then I can always run it on my computer in polynomial time. If I can’t
think of a better way to do it, I can always have my computer emulate how
yours operates; the cost of running the emulation is only polynomial time.
Similarly, your computer can emulate mine, so we will always agree on which
algorithms are polynomial time.3

3To make this statement precise, we need to be a little careful. For example, we
should exclude certain kinds of “unreasonable” machines, like a parallel computer with an
unlimited number of nodes.

1.7. WHAT ABOUT ERRORS? 15

Now it is true that information and computation in the physical world
are fundamentally quantum mechanical, but this insight, however dear to
physicists, would not be of great interest (at least from the viewpoint of
complexity theory) were it possible to simulate a quantum computer on a
classical computer with polynomial overhead. Quantum algorithms might
prove to be of technological interest, but perhaps no more so than future
advances in classical algorithms that might speed up the solution of certain
problems.

But if, as is indicated (but not proved!) by Shor’s algorithm, no polynomial-
time simulation of a quantum computer is possible, that changes everything.
Thirty years of work on complexity theory will still stand as mathematical
truth, as theorems characterizing the capabilities of classical universal com-
puters. But it may fall as physical truth, because a classical Turing machine
is not an appropriate model of the computations that can really be performed
in the physical world.

If the quantum classification of complexity is indeed different than the
classical classification (as is suspected but not proved), then this result will
shake the foundations of computer science. In the long term, it may also
strongly impact technology. But what is its significance for physics?

I’m not sure. But perhaps it is telling that no conceivable classical com-
putation can accurately predict the behavior of even a modest number of
qubits (of order 100). This may suggest that relatively small quantum sys-
tems have greater potential than we suspected to surprise, baffle, and delight
us.

1.7 What about errors?

As significant as Shor’s factoring algorithm may prove to be, there is another
recently discovered feature of quantum information that may be just as im-
portant: the discovery of quantum error correction. Indeed, were it not for
this development, the prospects for quantum computing technology would
not seem bright.

As we have noted, the essential property of quantum information that a
quantum computer exploits is the existence of nonlocal correlations among
the different parts of a physical system. If I look at only part of the system
at a time, I can decipher only very little of the information encoded in the
system.

16 CHAPTER 1. INTRODUCTION AND OVERVIEW

Unfortunately, these nonlocal correlations are extremely fragile and tend
to decay very rapidly in practice. The problem is that our quantum system
is inevitably in contact with a much larger system, its environment. It is
virtually impossible to perfectly isolate a big quantum system from its en-
vironment, even if we make a heroic effort to do so. Interactions between a
quantum device and its environment establish nonlocal correlations between
the two. Eventually the quantum information that we initially encoded in
the device becomes encoded, instead, in correlations between the device and
the environment. At that stage, we can no longer access the information by
observing only the device. In practice, the information is irrevocably lost.
Even if the coupling between device and environment is quite weak, this
happens to a macroscopic device remarkably quickly.

Erwin Schrödinger chided the proponents of the mainstream interpreta-
tion of quantum mechanics by observing that the theory will allow a quantum
state of a cat of the form

|cat〉 =
1√
2

(|dead〉 + |alive〉) . (1.17)

To Schrödinger, the possibility of such states was a blemish on the theory,
because every cat he had seen was either dead or alive, not half dead and
half alive.

One of the most important advances in quantum theory over the past
15 years is that we have learned how to answer Schrödinger with growing
confidence. The state |cat〉 is possible in principle, but is rarely seen because
it is extremely unstable. The cats Schrödinger observed were never well
isolated from the environment. If someone were to prepare the state |cat〉,
the quantum information encoded in the superposition of |dead〉 and |alive〉
would immediately be transferred to correlations between the cat and the
environment, and become completely inaccessible. In effect, the environment
continually measures the cat, projecting it onto either the state |alive〉 or
|dead〉. This process is called decoherence. We will return to the study of
decoherence later in the course.

Now, to perform a complex quantum computation, we need to prepare a
delicate superposition of states of a relatively large quantum system (though
perhaps not as large as a cat). Unfortunately, this system cannot be perfectly
isolated from the environment, so this superposition, like the state |cat〉,
decays very rapidly. The encoded quantum information is quickly lost, and
our quantum computer crashes.

1.7. WHAT ABOUT ERRORS? 17

To put it another way, contact between the computer and the environ-
ment (decoherence) causes errors that degrade the quantum information. To
operate a quantum computer reliably, we must find some way to prevent or
correct these errors.

Actually, decoherence is not our only problem. Even if we could achieve
perfect isolation from the environment, we could not expect to operate a
quantum computer with perfect accuracy. The quantum gates that the ma-
chine executes are unitary transformations that operate on a few qubits at a
time, let’s say 4 × 4 unitary matrices acting on two qubits. Of course, these
unitary matrices form a continuum. We may have a protocol for applying
U0 to 2 qubits, but our execution of the protocol will not be flawless, so the
actual transformation

U = U0 (1 +O(ε)) (1.18)

will differ from the intended U0 by some amount of order ε. After about 1/ε
gates are applied, these errors will accumulate and induce a serious failure.
Classical analog devices suffer from a similar problem, but small errors are
much less of a problem for devices that perform discrete logic.

In fact, modern digital circuits are remarkably reliable. They achieve
such high accuracy with help from dissipation. We can envision a classical
gate that acts on a bit, encoded as a ball residing at one of the two minima
of a double-lobed potential. The gate may push the ball over the intervening
barrier to the other side of the potential. Of course, the gate won’t be
implemented perfectly; it may push the ball a little too hard. Over time,
these imperfections might accumulate, causing an error.

To improve the performance, we cool the bit (in effect) after each gate.
This is a dissipative process that releases heat to the environment and com-
presses the phase space of the ball, bringing it close to the local minimum
of the potential. So the small errors that we may make wind up heating the
environment rather than compromising the performance of the device.

But we can’t cool a quantum computer this way. Contact with the en-
vironment may enhance the reliability of classical information, but it would
destroy encoded quantum information. More generally, accumulation of er-
ror will be a problem for classical reversible computation as well. To prevent
errors from building up we need to discard the information about the errors,
and throwing away information is always a dissipative process.

Still, let’s not give up too easily. A sophisticated machinery has been
developed to contend with errors in classical information, the theory of er-

18 CHAPTER 1. INTRODUCTION AND OVERVIEW

ror correcting codes. To what extent can we coopt this wisdom to protect
quantum information as well?

How does classical error correction work? The simplest example of a
classical error-correcting code is a repetition code: we replace the bit we
wish to protect by 3 copies of the bit,

0 → (000),

1 → (111). (1.19)

Now an error may occur that causes one of the three bits to flip; if it’s the
first bit, say,

(000) → (100),

(111) → (011). (1.20)

Now in spite of the error, we can still decode the bit correctly, by majority
voting.

Of course, if the probability of error in each bit were p, it would be
possible for two of the three bits to flip, or even for all three to flip. A double
flip can happen in three different ways, so the probability of a double flip is
3p2(1 − p), while the probability of a triple flip is p3. Altogether, then, the
probability that majority voting fails is 3p2(1− p) + p3 = 3p2 − 2p3. But for

3p2 − 2p3 < p or p <
1

2
, (1.21)

the code improves the reliability of the information.
We can improve the reliability further by using a longer code. One such

code (though far from the most efficient) is an N -bit repetition code. The
probability distribution for the average value of the bit, by the central limit
theorem, approaches a Gaussian with width 1/

√
N as N → ∞. If P = 1

2
+ ε

is the probability that each bit has the correct value, then the probability
that the majority vote fails (for large N) is

Perror ∼ e−Nε2

, (1.22)

arising from the tail of the Gaussian. Thus, for any ε > 0, by introducing
enough redundancy we can achieve arbitrarily good reliability. Even for
ε < 0, we’ll be okay if we always assume that majority voting gives the

1.7. WHAT ABOUT ERRORS? 19

wrong result. Only for P = 1
2

is the cause lost, for then our block of N bits
will be random, and encode no information.

In the 50’s, John Von Neumann showed that a classical computer with
noisy components can work reliably, by employing sufficient redundancy. He
pointed out that, if necessary, we can compute each logic gate many times,
and accept the majority result. (Von Neumann was especially interested in
how his brain was able to function so well, in spite of the unreliability of
neurons. He was pleased to explain why he was so smart.)

But now we want to use error correction to keep a quantum computer on
track, and we can immediately see that there are difficulties:

1. Phase errors. With quantum information, more things can go wrong.
In addition to bit-flip errors

|0〉 → |1〉,
|1〉 → |0〉. (1.23)

there can also be phase errors

|0〉 → |0〉,
|1〉 → −|1〉. (1.24)

A phase error is serious, because it makes the state 1√
2
[|0〉+ |1〉] flip to

the orthogonal state 1√
2
[|0〉− |1〉]. But the classical coding provided no

protection against phase errors.

2. Small errors. As already noted, quantum information is continuous.
If a qubit is intended to be in the state

a|0〉 + b|1〉, (1.25)

an error might change a and b by an amount of order ε, and these small
errors can accumulate over time. The classical method is designed to
correct large (bit flip) errors.

3. Measurement causes disturbance. In the majority voting scheme,
it seemed that we needed to measure the bits in the code to detect and
correct the errors. But we can’t measure qubits without disturbing the
quantum information that they encode.

4. No cloning. With classical coding, we protected information by mak-
ing extra copies of it. But we know that quantum information cannot
be copied with perfect fidelity.

20 CHAPTER 1. INTRODUCTION AND OVERVIEW

1.8 Quantum error-correcting codes

Despite these obstacles, it turns out that quantum error correction really
is possible. The first example of a quantum error-correcting code was con-
structed about two years ago by (guess who!) Peter Shor. This discovery
ushered in a new discipline that has matured remarkably quickly – the the-
ory of quantum error-correcting codes. We will study this theory later in the
course.

Probably the best way to understand how quantum error correction works
is to examine Shor’s original code. It is the most straightforward quantum
generalization of the classical 3-bit repetition code.

Let’s look at that 3-bit code one more time, but this time mindful of the
requirement that, with a quantum code, we will need to be able to correct
the errors without measuring any of the encoded information.

Suppose we encode a single qubit with 3 qubits:

|0〉 → |0̄〉 ≡ |000〉,
|1〉 → |1̄〉 ≡ |111〉, (1.26)

or, in other words, we encode a superposition

a|0〉 + b|1〉 → a|0̄〉 + b|1̄〉 = a|000〉 + b|111〉 . (1.27)

We would like to be able to correct a bit flip error without destroying this
superposition.

Of course, it won’t do to measure a single qubit. If I measure the first
qubit and get the result |0〉, then I have prepared the state |0̄〉 of all three
qubits, and we have lost the quantum information encoded in the coefficients
a and b.

But there is no need to restrict our attention to single-qubit measure-
ments. I could also perform collective measurements on two-qubits at once,
and collective measurements suffice to diagnose a bit-flip error. For a 3-qubit
state |x, y, z〉 I could measure, say, the two-qubit observables y⊕ z, or x⊕ z
(where ⊕ denotes addition modulo 2). For both |x, y, z〉 = |000〉 and |111〉
these would be 0, but if any one bit flips, then at least one of these quantities
will be 1. In fact, if there is a single bit flip, the two bits

(y ⊕ z, x⊕ z), (1.28)

1.8. QUANTUM ERROR-CORRECTING CODES 21

just designate in binary notation the position (1,2 or 3) of the bit that flipped.
These two bits constitute a syndrome that diagnoses the error that occurred.

For example, if the first bit flips,

a|000〉 + b|111〉 → a|100〉 + b|011〉, (1.29)

then the measurement of (y⊕z, x⊕z) yields the result (0, 1), which instructs
us to flip the first bit; this indeed repairs the error.

Of course, instead of a (large) bit flip there could be a small error:

|000〉 → |000〉 + ε|100〉
|111〉 → |111〉 − ε|011〉. (1.30)

But even in this case the above procedure would work fine. In measuring
(y ⊕ z, x ⊕ z), we would project out an eigenstate of this observable. Most
of the time (probability 1 − |ε|2) we obtain the result (0, 0) and project the
damaged state back to the original state, and so correct the error. Occasion-
ally (probability |ε|2) we obtain the result (0, 1) and project the state onto
Eq. 1.29. But then the syndrome instructs us to flip the first bit, which re-
stores the original state. Similarly, if there is an amplitude of order ε for each
of the three qubits to flip, then with a probability of order |ε|2 the syndrome
measurement will project the state to one in which one of the three bits is
flipped, and the syndrome will tell us which one.

So we have already overcome 3 of the 4 obstacles cited earlier. We see
that it is possible to make a measurement that diagnoses the error without
damaging the information (answering (3)), and that a quantum measurement
can project a state with a small error to either a state with no error or a state
with a large discrete error that we know how to correct (answering (2)). As
for (4), the issue didn’t come up, because the state a|0̄〉+b|1̄〉 is not obtained
by cloning – it is not the same as (a|0〉 + b|1〉)3; that is, it differs from three
copies of the unencoded state.

Only one challenge remains: (1) phase errors. Our code does not yet
provide any protection against phase errors, for if any one of the three qubits
undergoes a phase error then our encoded state a|0̄〉 + b|1̄〉 is transformed
to a|0̄〉 − b|1̄〉, and the encoded quantum information is damaged. In fact,
phase errors have become three times more likely than if we hadn’t used the
code. But with the methods in hand that conquered problems (2)-(4), we can
approach problem (1) with new confidence. Having protected against bit-flip

22 CHAPTER 1. INTRODUCTION AND OVERVIEW

errors by encoding bits redundantly, we are led to protect against phase-flip
errors by encoding phases redundantly.

Following Shor, we encode a single qubit using nine qubits, according to

|0〉 → |0̄〉 ≡ 1

23/2
(|000) + |111〉) (|000〉 + |111〉) (|000〉 + |111〉) ,

|1〉 → |1̄〉 ≡ 1

23/2
(|000) − |111〉) (|000〉 − |111〉) (|000〉 − |111〉) .(1.31)

Both |0̄〉 and |1̄〉 consist of three clusters of three qubits each, with each
cluster prepared in the same quantum state. Each of the clusters has triple
bit redundancy, so we can correct a single bit flip in any cluster by the method
discussed above.

Now suppose that a phase flip occurs in one of the clusters. The error
changes the relative sign of |000〉 and |111〉 in that cluster so that

|000〉 + |111〉 → |000〉 − |111〉,
|000〉 − |111〉 → |000〉 + |111〉. (1.32)

This means that the relative phase of the damaged cluster differs from the
phases of the other two clusters. Thus, as in our discussion of bit-flip cor-
rection, we can identify the damaged cluster, not by measuring the relative
phase in each cluster (which would disturb the encoded information) but
by comparing the phases of pairs of clusters. In this case, we need to mea-
sure a six-qubit observable to do the comparison, e.g., the observable that
flips qubits 1 through 6. Since flipping twice is the identity, this observable
squares to 1, and has eigenvalues ±1. A pair of clusters with the same sign
is an eigenstate with eigenvalue +1, and a pair of clusters with opposite sign
is an eigenstate with eigenvalue −1. By measuring the six-qubit observable
for a second pair of clusters, we can determine which cluster has a different
sign than the others. Then, we apply a unitary phase transformation to one
of the qubits in that cluster to reverse the sign and correct the error.

Now suppose that a unitary error U = 1 + 0(ε) occurs for each of the 9
qubits. The most general single-qubit unitary transformation (aside from a
physically irrelevant overall phase) can be expanded to order ε as

U = 1 + iεx

(

0 1
1 0

)

+ iεy

(

0 −i
i 0

)

+ iεz

(

1 0
0 −1

)

.
(1.33)

1.8. QUANTUM ERROR-CORRECTING CODES 23

the three terms of order ε in the expansion can be interpreted as a bit flip
operator, a phase flip operator, and an operator in which both a bit flip
and a phase flip occur. If we prepare an encoded state a|0̄〉 + b|1̄〉, allow
the unitary errors to occur on each qubit, and then measure the bit-flip and
phase-flip syndromes, then most of the time we will project the state back
to its original form, but with a probability of order |ε|2, one qubit will have
a large error: a bit flip, a phase flip, or both. From the syndrome, we learn
which bit flipped, and which cluster had a phase error, so we can apply the
suitable one-qubit unitary operator to fix the error.

Error recovery will fail if, after the syndrome measurement, there are
two bit flip errors in each of two clusters (which induces a phase error in
the encoded data) or if phase errors occur in two different clusters (which
induces a bit-flip error in the encoded data). But the probability of such a
double phase error is of order |ε|4. So for |ε| small enough, coding improves
the reliability of the quantum information.

The code also protects against decoherence. By restoring the quantum
state irrespective of the nature of the error, our procedure removes any en-
tanglement between the quantum state and the environment.

Here as always, error correction is a dissipative process, since information
about the nature of the errors is flushed out of the quantum system. In this
case, that information resides in our recorded measurement results, and heat
will be dissipated when that record is erased.

Further developments in quantum error correction will be discussed later
in the course, including:

• As with classical coding it turns out that there are “good” quantum
codes that allow us to achieve arbitrarily high reliability as long as the error
rate per qubit is small enough.

• We’ve assumed that the error recovery procedure is itself executed flaw-
lessly. But the syndrome measurement was complicated – we needed to mea-
sure two-qubit and six-qubit collective observables to diagnose the errors – so
we actually might further damage the data when we try to correct it. We’ll
show, though, that error correction can be carried out so that it still works
effectively even if we make occasional errors during the recovery process.

• To operate a quantum computer we’ll want not only to store quantum
information reliably, but also to process it. We’ll show that it is possible to
apply quantum gates to encoded information.

Let’s summarize the essential ideas that underlie our quantum error cor-
rection scheme:

24 CHAPTER 1. INTRODUCTION AND OVERVIEW

1. We digitized the errors. Although the errors in the quantum information
were small, we performed measurements that projected our state onto
either a state with no error, or a state with one of a discrete set of
errors that we knew how to convert.

2. We measured the errors without measuring the data. Our measure-
ments revealed the nature of the errors without revealing (and hence
disturbing) the encoded information.

3. The errors are local, and the encoded information is nonlocal. It is im-
portant to emphasize the central assumption underlying the construc-
tion of the code – that errors affecting different qubits are, to a good
approximation, uncorrelated. We have tacitly assumed that an event
that causes errors in two qubits is much less likely than an event caus-
ing an error in a single qubit. It is of course a physics question whether
this assumption is justified or not – we can easily envision processes
that will cause errors in two qubits at once. If such correlated errors
are common, coding will fail to improve reliability.

The code takes advantage of the presumed local nature of the errors by
encoding the information in a nonlocal way - that is the information is stored
in correlations involving several qubits. There is no way to distinguish |0̄〉
and |1̄〉 by measuring a single qubit of the nine. If we measure one qubit
we will find |0〉 with probability 1

2
and |1〉 with probability 1

2
irrespective of

the value of the encoded qubit. To access the encoded information we need
to measure a 3-qubit observable (the operator that flips all three qubits in a
cluster can distinguish |000〉 + |111〉 from |000〉 − |111〉).

The environment might occasionally kick one of the qubits, in effect “mea-
suring” it. But the encoded information cannot be damaged by disturbing
that one qubit, because a single qubit, by itself, actually carries no informa-
tion at all. Nonlocally encoded information is invulnerable to local influences
– this is the central principle on which quantum error-correcting codes are
founded.

1.9 Quantum hardware

The theoretical developments concerning quantum complexity and quantum
error correction have been accompanied by a burgeoning experimental effort

1.9. QUANTUM HARDWARE 25

to process coherent quantum information. I’ll briefly describe some of this
activity here.

To build hardware for a quantum computer, we’ll need technology that
enables us to manipulate qubits. The hardware will need to meet some
stringent specifications:

1. Storage: We’ll need to store qubits for a long time, long enough to
complete an interesting computation.

2. Isolation: The qubits must be well isolated from the environment, to
minimize decoherence errors.

3. Readout: We’ll need to measure the qubits efficiently and reliably.

4. Gates: We’ll need to manipulate the quantum states of individual
qubits, and to induce controlled interactions among qubits, so that we
can perform quantum gates.

5. Precision: The quantum gates should be implemented with high pre-
cision if the device is to perform reliably.

1.9.1 Ion Trap

One possible way to achieve these goals was suggested by Ignacio Cirac and
Peter Zoller, and has been pursued by Dave Wineland’s group at the National
Institute for Standards and Technology (NIST), as well as other groups. In
this scheme, each qubit is carried by a single ion held in a linear Paul trap.
The quantum state of each ion is a linear combination of the ground state
|g〉 (interpreted as |0〉) and a particular long-lived metastable excited state
|e〉 (interpreted as |1〉). A coherent linear combination of the two levels,

a|g〉 + beiωt|e〉, (1.34)

can survive for a time comparable to the lifetime of the excited state (though
of course the relative phase oscillates as shown because of the energy splitting
~ω between the levels). The ions are so well isolated that spontaneous decay
can be the dominant form of decoherence.

It is easy to read out the ions by performing a measurement that projects
onto the {|g〉, |e〉} basis. A laser is tuned to a transition from the state |g〉
to a short-lived excited state |e′〉. When the laser illuminates the ions, each

26 CHAPTER 1. INTRODUCTION AND OVERVIEW

qubit with the value |0〉 repeatedly absorbs and reemits the laser light, so
that it flows visibly (fluoresces). Qubits with the value |1〉 remain dark.

Because of their mutual Coulomb repulsion, the ions are sufficiently well
separated that they can be individually addressed by pulsed lasers. If a laser
is tuned to the frequency ω of the transition and is focused on the nth ion,
then Rabi oscillations are induced between |0〉 and |1〉. By timing the laser
pulse properly and choosing the phase of the laser appropriately, we can
apply any one-qubit unitary transformation. In particular, acting on |0〉, the
laser pulse can prepare any desired linear combination of |0〉 and |1〉.

But the most difficult part of designing and building quantum computing
hardware is getting two qubits to interact with one another. In the ion
trap, interactions arise because of the Coulomb repulsion between the ions.
Because of the mutual Couloumb repulsion, there is a spectrum of coupled
normal modes of vibration for the trapped ions. When the ion absorbs or
emits a laser photon, the center of mass of the ion recoils. But if the laser
is properly tuned, then when a single ion absorbs or emits, a normal mode
involving many ions will recoil coherently (the Mössbauer effect).

The vibrational mode of lowest frequency (frequency ν) is the center-of-
mass (cm) mode, in which the ions oscillate in lockstep in the harmonic well
of the trap. The ions can be laser cooled to a temperature much less than ν,
so that each vibrational mode is very likely to occupy its quantum-mechanical
ground state. Now imagine that a laser tuned to the frequency ω − ν shines
on the nth ion. For a properly time pulse the state |e〉n will rotate to |g〉n,
while the cm oscillator makes a transition from its ground state |0〉cm to its
first excited state |1〉cm (a cm “phonon” is produced). However, the state
|g〉n|0〉cm is not on resonance for any transition and so is unaffected by the
pulse. Thus the laser pulse induces a unitary transformation acting as

|g〉n|0〉cm → |g〉n|0〉cm,
|e〉n|0〉cm → −i|g〉n|1〉cm. (1.35)

This operation removes a bit of information that is initially stored in the
internal state of the nth ion, and deposits that bit in the collective state of
motion of all the ions.

This means that the state of motion of the mth ion (m 6= n) has been in-
fluenced by the internal state of the nth ion. In this sense, we have succeeded
in inducing an interaction between the ions. To complete the quantum gate,
we should transfer the quantum information from the cm phonon back to

1.9. QUANTUM HARDWARE 27

the internal state of one of the ions. The procedure should be designed so
that the cm mode always returns to its ground state |0〉cm at the conclusion
of the gate implementation. For example, Cirac and Zoller showed that the
quantum XOR (or controlled not) gate

|x, y〉 → |x, y ⊕ x〉, (1.36)

can be implemented in an ion trap with altogether 5 laser pulses. The condi-
tional excitation of a phonon, Eq. (1.35) has been demonstrated experimen-
tally, for a single trapped ion, by the NIST group.

One big drawback of the ion trap computer is that it is an intrinsically
slow device. Its speed is ultimately limited by the energy-time uncertainty
relation. Since the uncertainty in the energy of the laser photons should be
small compared to the characteristic vibrational splitting ν, each laser pulse
should last a time long compared to ν−1. In practice, ν is likely to be of
order 100 kHz.

1.9.2 Cavity QED

An alternative hardware design (suggested by Pellizzari, Gardiner, Cirac,
and Zoller) is being pursued by Jeff Kimble’s group here at Caltech. The
idea is to trap several neutral atoms inside a small high finesse optical cavity.
Quantum information can again be stored in the internal states of the atoms.
But here the atoms interact because they all couple to the normal modes of
the electromagnetic field in the cavity (instead of the vibrational modes as
in the ion trap). Again, by driving transitions with pulsed lasers, we can
induce a transition in one atom that is conditioned on the internal state of
another atom.

Another possibility is to store a qubit, not in the internal state of an ion,
but in the polarization of a photon. Then a trapped atom can be used as
the intermediary that causes one photon to interact with another (instead of
a photon being used to couple one atom to another). In their “flying qubit”
experiment two years ago. The Kimble group demonstrated the operation of
a two-photon quantum gate, in which the circular polarization of one photon

28 CHAPTER 1. INTRODUCTION AND OVERVIEW

influences the phase of another photon:

|L〉1|L〉2 → |L〉1|L〉2
|L〉1|R〉2 → |L〉1|R〉2
|R〉1|L〉2 → |R〉1|L〉2
|R〉1|R〉2 → ei∆|R〉1|R〉2 (1.37)

where |L〉, |R〉 denote photon states with left and right circular polarization.
To achieve this interaction, one photon is stored in the cavity, where the |L〉
polarization does not couple to the atom, but the |R〉 polarization couples
strongly. A second photon transverses the cavity, and for the second photon
as well, one polarization interacts with the atom preferentially. The second
photon wave pocket acquires a particular phase shift ei∆ only if both pho-
tons have |R〉 polarization. Because the phase shift is conditioned on the
polarization of both photons, this is a nontrivial two-qubit quantum gate.

1.9.3 NMR

A third (dark horse) hardware scheme has sprung up in the past year, and
has leap frogged over the ion trap and cavity QED to take the current lead
in coherent quantum processing. The new scheme uses nuclear magnetic
resonance (NMR) technology. Now qubits are carried by certain nuclear
spins in a particular molecule. Each spin can either be aligned (| ↑〉 = |0〉)
or antialigned (| ↓〉 = |1〉) with an applied constant magnetic field. The
spins take a long time to relax or decohere, so the qubits can be stored for a
reasonable time.

We can also turn on a pulsed rotating magnetic field with frequency
ω (where the ω is the energy splitting between the spin-up and spin-down
states), and induce Rabi oscillations of the spin. By timing the pulse suitably,
we can perform a desired unitary transformation on a single spin (just as in
our discussion of the ion trap). All the spins in the molecule are exposed to
the rotating magnetic field but only those on resonance respond.

Furthermore, the spins have dipole-dipole interactions, and this coupling
can be exploited to perform a gate. The splitting between | ↑〉 and | ↓〉 for
one spin actually depends on the state of neighboring spins. So whether a
driving pulse is on resonance to tip the spin over is conditioned on the state
of another spin.

1.9. QUANTUM HARDWARE 29

All this has been known to chemists for decades. Yet it was only in the
past year that Gershenfeld and Chuang, and independently Cory, Fahmy, and
Havel, pointed out that NMR provides a useful implementation of quantum
computation. This was not obvious for several reasons. Most importantly,
NMR systems are very hot. The typical temperature of the spins (room
temperature, say) might be of order a million times larger than the energy
splitting between |0〉 and |1〉. This means that the quantum state of our
computer (the spins in a single molecule) is very noisy – it is subject to
strong random thermal fluctuations. This noise will disguise the quantum
information. Furthermore, we actually perform our processing not on a single
molecule, but on a macroscopic sample containing of order 1023 “computers,”
and the signal we read out of this device is actually averaged over this ensem-
ble. But quantum algorithms are probabilistic, because of the randomness of
quantum measurement. Hence averaging over the ensemble is not equivalent
to running the computation on a single device; averaging may obscure the
results.

Gershenfeld and Chuang and Cory, Fahmy, and Havel, explained how to
overcome these difficulties. They described how “effective pure states” can
be prepared, manipulated, and monitored by performing suitable operations
on the thermal ensemble. The idea is to arrange for the fluctuating properties
of the molecule to average out when the signal is detected, so that only the
underlying coherent properties are measured. They also pointed out that
some quantum algorithms (including Shor’s factoring algorithm) can be cast
in a deterministic form (so that at least a large fraction of the computers give
the same answer); then averaging over many computations will not spoil the
result.

Quite recently, NMR methods have been used to prepare a maximally
entangled state of three qubits, which had never been achieved before.

Clearly, quantum computing hardware is in its infancy. Existing hardware
will need to be scaled up by many orders of magnitude (both in the number of
stored qubits, and the number of gates that can be applied) before ambitious
computations can be attempted. In the case of the NMR method, there is
a particularly serious limitation that arises as a matter of principle, because
the ratio of the coherent signal to the background declines exponentially with
the number of spins per molecule. In practice, it will be very challenging to
perform an NMR quantum computation with more than of order 10 qubits.

Probably, if quantum computers are eventually to become practical de-
vices, new ideas about how to construct quantum hardware will be needed.

30 CHAPTER 1. INTRODUCTION AND OVERVIEW

1.10 Summary

This concludes our introductory overview to quantum computation. We
have seen that three converging factors have combined to make this subject
exciting.

1. Quantum computers can solve hard problems. It seems that
a new classification of complexity has been erected, a classification
better founded on the fundamental laws of physics than traditional
complexity theory. (But it remains to characterize more precisely the
class of problems for which quantum computers have a big advantage
over classical computers.)

2. Quantum errors can be corrected. With suitable coding methods,
we can protect a complicated quantum system from the debilitating
effects of decoherence. We may never see an actual cat that is half dead
and half alive, but perhaps we can prepare and preserve an encoded cat

that is half dead and half alive.

3. Quantum hardware can be constructed. We are privileged to be
witnessing the dawn of the age of coherent manipulation of quantum
information in the laboratory.

Our aim, in this course, will be to deepen our understanding of points
(1), (2), and (3).

